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Abstract

An (N ;n,m, {w1, . . . , wt})-separating hash family is a set H of N functions h : X −→ Y
with |X| = n, |Y | = m, t ≥ 2 having the following property. For any pairwise disjoint subsets
C1, . . . , Ct ⊆ X with |Ci| = wi, i = 1, . . . , t, there exists at least one function h ∈ H such that
h(C1), h(C2), . . . , h(Ct) are pairwise disjoint. Separating hash families generalize many known
combinatorial structures such as perfect hash families, frameproof codes, secure frameproof
codes, identifiable parent property codes. In this paper we present new upper bounds on n
which improve many previously known bounds. Further we include constructions showing that
some of these bounds are optimal.

Keywords. Separating hash family, perfect hash family, frameproof code, 2-IPP code.

1 Introduction

Let h be a function from a set X to a set Y and let C1, C2, . . . , Ct ⊆ X be t pairwise disjoint
subsets. We say that h separates C1, C2, . . . , Ct if h(C1), h(C2), . . . , h(Ct) are pairwise disjoint. Let
|X| = n and |Y | = m. We call a set H of N functions from X to Y an (N ;n,m, {w1, . . . , wt})-
separating hash family, and we shall also write as an SHF(N ;n,m, {w1, w2, . . . , wt}), if for all
pairwise disjoint subsets C1, . . . , Ct ⊆ X with |Ci| = wi, for i = 1, . . . , t, there exists at least
one function h ∈ H that separates C1, C2, . . . , Ct. The multiset {w1, w2, . . . , wt} is the type of
the separating hash family. To exclude trivial cases we always assume that n > m, t ≥ 2 and∑t

i=1wi ≤ n. Obviously, we have t ≤ m. Separating hash family with t = 2 was introduced in
[21] and the general case in [23]. Separating hash families include various well-studied objects. For
example, if w1 = · · · = wt = 1, an SHF(N ;n,m, {1, 1, . . . , 1}) is called a perfect hash family which
is usually denoted by PHF(N ;n,m, t). Perfect hash families have been studied extensively, see for
instance, [2], [9], [6], [18], [17], [25], [20]. w-frameproof codes are separating hash families of type
{1, w} [10], [19] and w-secure frameproof codes are separating hash families of type {w,w} [21].
Further, codes with identifiable parent property (2-IPP codes) are separating hash families of type
{1, 1, 1} and {2, 2} simultaneously [15], [19], [24].
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An SHF(N ;n,m, {w1, w2 . . . , wt}) can be depicted as an N ×n array A in which the columns are
labeled by the elements of X, the rows by the functions hi ∈ H and the (i, j)− entry of the array
is the value hi(j). Thus, an SHF(N ;n,m, {w1, w2 . . . , wt}) is equivalent to an N × n array with
entries from a set of m symbols such that for all disjoint sets of columns C1, C2, . . . , Ct of A with
|Ci| = wi, for i = 1, 2, . . . , t, there exists at least one row r of A such that

{A(r, x) : x ∈ Ci} ∩ {A(r, y) : y ∈ Cj} = ∅.

for all i 6= j. We call A the matrix representation or array representation of the hash family.

One of the main problems in studying separating hash families is to maximize n, when the other
parameters N , m and {w1, w2, . . . , wt} are given. The determination of bounds for n has been
subject of much research recently [5], [16], [19], [22], [23], [3].

Often orthogonal arrays are used to construct certain good classes of separating hash families.
An orthogonal array OA(t,N,m) is an N ×mt array A with entries from a set of m ≥ 2 symbols
such that within any t rows of A every possible t−tuple of symbols occurs exactly once. This
property is equivalent to the fact that every two columns of A agree in at most t − 1 rows. A
classical construction of orthogonal arrays is as follows [12]. Let q be a prime power and t ≥ 2.
Let P = {P1, P2, . . . , Pqt} be the set of all polynomials of degree at most t− 1 over the finite field
Fq. Now let R be a subset of elements of Fq ∪ {∞}. Define an |R| × qt array A in which the entry
A(u, j) is Pj(u) if u ∈ R \ {∞} and is at−1 when Pj(x) =

∑t−1
i=0 aix

i and u = ∞. Then A is an
OA(t, |R|, q).

This paper contains new results on bounds for separating hash families. The bounds obtained
improve the known bounds in the literature. Section 2 presents some basic results and known
bounds for separating hash families. Section 3 contains a new bound for SHF of general type
{w1, . . . , wt} with t ≥ 3. Section 4 deals with bounds for SHF when N = w1 + · · · + wt. At first,
new bounds for SHF of type {1, w} and type {2, 2} are proved, which are then used to prove a
bound for SHF of type {w1, w2} by the method of induction. A bound for SHF of general type is
derived from this bound. Section 5 shows an optimal bound for SHF of type {1, 2} when N is odd.
Section 6 presents constructions of optimal or asymptotically optimal SHF for several types.

2 Basic results and known bounds on separating hash families

In the following we present some basic results and several known best bounds for separating hash
families.

The following results are basic and useful, see for instance [23].

Lemma 1 If an SHF(N ;n,m, {w1, w2, . . . , wt}) exists, then an SHF(N ;n,m, {w′1, w3, . . . , wt}) with
w′1 = w1 + w2 exists.

Lemma 2 Let c ≥ 2 be an integer. Suppose there exists an SHF(N ;n,m, {w1, . . . , wt}). Then
there exists an SHF(dNc e;n,m

c, {w1, . . . , wt}).

Proof. Let H = {h1, h2, . . . , hN : X −→ Y } be an SHF(N ;n,m, {w1, . . . , wt}). Let d := dNc e.
Consider d subsets A1, . . . , Ad of {1, 2, . . . , N} such that |Au| = c for u = 1, . . . , d and A1∪. . .∪Ad =
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{1, 2, . . . , N}. Define a hash family H′ = {h′1, h′2, . . . , h′d : X −→ Y c}, where h′u(x) = (hi(x) : i ∈
Au). We see thatH′ is an SHF(d;n,mc, {w1, . . . , wt}). This is because if the sets hi0(Cj) and hi0(Ck)
are disjoint, where i0 ∈ Au and u ∈ {1, . . . , d}, then the sets h′u(Cj) and h′u(Ck) are also disjoint.
For if we have h′u(Cj) ∩ h′u(Ck) 6= ∅, then there are x ∈ Cj and y ∈ Ck such that h′u(x) = h′u(y).
This implies that hi(x) = hi(y) for all i ∈ Au, contradicting the fact that hi0(x) 6= hi0(y) as hi0(Cj)
and hi0(Ck) are disjoint. �

In the following we only record some known best bounds for separating hash families. Further
bounds for SHF are found in recent papers, see [5], [22], [23], [16], [13], [21], [15], [4].

For special type {1, 1, 2} Stinson, Wei and Chen have proved the following strong bound.

Theorem 1 ([23]) Suppose there is an SHF(N ;n,m, {1, 1, 2}). Then n ≤ 3md
N
3
e+2−2

√
3md

N
3
e + 1.

A strong bound for SHF of general type is obtained by Blackburn, Etzion, Stinson and Zaverucha
[5].

Theorem 2 ([5]) If there is an SHF(N ;n,m, {w1, . . . , wt}) , then

n ≤ γmd
N

(u−1)
e
,

where u =
∑t

i=1wi, γ = (w1.w2 + u− w1 − w2) and w1, w2 ≤ wi for i = 3, . . . , t.

However, this bound has been improved by the following recent results in [3].

Theorem 3 ([3]) Suppose there exists an SHF(N ;n,m, {w1, . . . , wt}). Let u =
∑t

i=1wi. Then

n ≤ (u− 1)md
N

(u−1)
e
.

Theorem 4 ([3]) Let t ≥ 3 be an integer. Suppose there exists an SHF(N ;n,m, {w1, w2, . . . , wt}).
Let u =

∑t
i=1wi. Then

n ≤ (u− 1)(md
N

(u−1)
e − 1) + 1.

3 An improved bound for SHF of general type {w1, . . . , wt} with
t ≥ 3

In this section we present a new bound for SHF of general type. The proof for this bound uses the
method of induction. We first prove a useful lemma about the structure of a general SHF. This
crucial lemma is then used for the induction step of the proof.

Lemma 3 Suppose there exists an SHF(N ;n,m, {w1, . . . , wt}) with w1 + · · ·+wt ≥ 3, wt ≥ wi for
i = 1, . . . , wt−1 and n−m ≥ w1+· · ·+wt−1. Then there exists an SHF(N−1;n1,m, {w1, . . . , wt−1, wt−
1}) with n1 ≥ n−m.
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Proof. Let A be the matrix representation of an SHF(N ;n,m, {w1, . . . , wt}) with w1+· · ·+wt ≥ 3.
Let m1 denote the number of symbols that appear in the first row of A. Since permuting the
columns of A does not change the separation property, we may assume that the first row of A has
pairwise different symbols in the first m1 columns. Let A1 denote the (N − 1) × (n −m1) matrix
obtained from A by ignoring the first row and the first m1 columns of A. Set n1 := n−m1. Then
n1 ≥ n−m ≥ w1+· · ·+wt−1+wt−1.We claim that A1 is an SHF(N−1;n1,m, {w1, . . . , wt−1, wt−1}).
Assume that A1 is not an SHF(N − 1;n1,m, {w1, . . . , wt−1, wt − 1}). Then there are column sets
C1, . . . , Ct−1, Ct with |Ci| = wi, i = 1, . . . , t − 1 and |Ct| = wt − 1, that are not separated in any
row of A1. Note that if wt = 1 (i.e. w1 = w2 = . . . = wt = 1), then we consider |Ct| temporarily as
an empty set. Let a be a symbol appearing in some column of C1 in the first row of A. Then in the
first m1 columns of A there is a column c having symbol a in the first row. Add this column c to
Ct. Now it is easily checked that C1, . . . , Ct−1, Ct ∪ {c} are not separated in A, which contradicts
the separation property of A. �

We now prove a new bound for SHF(u− 1;n,m, {w1, w2, w3}).

Theorem 5 Suppose there exists an SHF(u− 1;n,m, {w1, w2, w3}), where u = w1 + w2 + w3 and
w3 ≥ 2. Then

n ≤ (u− 1)m+ 2− 2
√

3m+ 1.

Proof. We prove the theorem by induction on u. Note that u ≥ 4. Let A be the matrix
representation of an SHF(u− 1;n,m, {w1, w2, w3}). Assume u = 4. Then w1 = w2 = 1 and w2 = 2.
By Theorem 1 of Stinson, Wei and Chen we have n ≤ 3m+ 2− 2

√
3m+ 1. Hence, the statement

is valid. Assume by induction that the statement n ≤ (u − 1)m + 2 − 2
√

3m+ 1 is valid for all
u = 4, . . . , k − 1, with k − 1 ≥ 4. Suppose now that there exists an SHF(k − 1;n,m, {w1, w2, w3})
with w3 ≥ 2 such that n > (k− 1)m+ 2− 2

√
3m+ 1, where k = w1 +w2 +w3. Since k ≥ 5, m ≥ 3

and n−m > (k−2)m+2−2
√

3m+ 1, we have n−m > k−1 and therefore n−m > w1+w2+w3−1.
By Lemma 3 there exists an SHF(k− 2;n1,m, {w1, w2, w3− 1}) with n1 ≥ n−m > (k− 2)m+ 2−
2
√

3m+ 1, which contradicts the assumption of the induction. This completes the proof. �

The next corollary is an immediate consequence of Theorem 5.

Corollary 1 Suppose there exists an SHF(u − 1;n,m, {w1, . . . , wt}), where u =
∑t

i=1wi ≥ 4 and
t ≥ 3. Then

n ≤ (u− 1)m+ 2− 2
√

3m+ 1.

Proof. The corrolary follows by Lemma 1, because any SHF(u− 1;n,m, {w1, . . . , wt}) with t ≥ 4
is also an SHF(u− 1;n,m, {w1, w2, w

′
3}) with w′3 = w3 + · · ·+ wt. �

We now use Lemma 2 and Corollary 1 to derive a new bound for SHF.

Theorem 6 Suppose there exists an SHF(N ;n,m, {w1, w2, . . . , wt}) with t ≥ 3 and u =
∑t

i=1wi ≥
4. Then

n ≤ (u− 1)md
N

(u−1)
e + 2− 2

√
3md

N
(u−1)

e + 1.
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Proof. Assume, by contradiction, that there exists an SHF(N ;n,m, {w1, . . . , wt}) with t ≥ 3

and u =
∑t

i=1wi ≥ 4 such that n = (u − 1)md
N

(u−1)
e + 2 − 2

√
3md

N
(u−1)

e + 1 + 1. By Lemma
2 there exists an SHF(dNc e;n,m

c, {w1, . . . , wt}) with c := d N
(u−1)e. Observe that if there exists

an SHF(N ;n,m, {w1, w2, . . . , wt}) with matrix representation A. Then for any N ′ > N there
exists an SHF(N ′;n,m, {w1, w2, . . . , wt}) obtained by adding N ′ −N arbitrary new rows using the
same symbol set to A. Now, as dNc e ≤ u − 1, the observation says that there is an SHF(u −
1;n,mc, {w1, . . . , wt}) with n = (u− 1)mc + 2− 2

√
3mc + 1 + 1, which contradicts Theorem 5. �

Note that for any given type {w1, . . . , wt} with t ≥ 3 and u ≥ 4 and a large value m the bound
in Theorem 6 improves previously known bounds.

Remark 3.1 A method used to establishing bounds for SHF as shown in the literature and also
in this section is that one first finds a bound for SHF with N = u − 1, where u =

∑t
i=1wi and

then apply Lemma 2 to obtain a bound for any N . It seems that the general bounds obtained in
Theorems 3, 4 and 6 are strong when (u− 1)|N . There are hints showing that the constant (u− 1)
in the bound n ≤ (u − 1)m for an SHF(u − 1;n,m, {w1, . . . , wt}) is the best possible when m is
getting to infinity, in spite of the fact that this bound can be further improved. For instance, we
have proved the following results.

(i) In an SHF(3;n,m, {2, 2}) with m ≥ 7, we have n < 3m− 6;
for m ∈ {2, . . . , 8} we have n ≤ 2m if m is even, and n ≤ 2m− 1 if m is odd.

(ii) In an SHF(4;n,m, {3, 2}) with m > 3 we have n ≤ 4m− 6.

(iii) In an SHF(5;n,m, {3, 3}) with m > 11 we have n < 5m− 13.

4 A further improved bound for SHF(u; n, m, {w1, . . . , wt})

From the general bounds for SHF(N ;n,m{w1, . . . , wt}) in Theorems 3, and 4 and 6 we see that n
is roughly equal to (u− 1)m2 when N = u, where u :=

∑t
i=1wi. In this section we present further

improvement of the bounds for this case. More precisely, we prove that the constant (u − 1) can
be reduced to a value of size at most 1.

The proof of the statement is as follows. Firstly, we prove the claim for SHF of types {1, w} and
{2, 2}, which is then used for an induction proof of the statement for type {w1, w2}. Finally, we
apply Lemma 1 to obtain the result for the general type {w1, . . . , wt}.

4.1 A strong bound for SHF(w + 1; n, m, {1, w})

In this section we prove a strong bound on n for SHF(u;n,m, {1, w}) with u = 1 +w. It turns out
that this bound is optimal when m ≥ u as it will be shown in a subsequent section.

To begin with, we state a structural lemma for SHF of type {1, w}.
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Lemma 4 Suppose there is an SHF(N ;n,m, {1, w}) with N ≥ w + 1. Let A = (ai,j) be its matrix
representation. If two distinct columns j1 and j2 of A agree in at least N − (w− 1) positions, then
there are rows i1 and i2 such that ai`,j` appears only once in row i` for ` = 1, 2.

Proof. By permuting the rows of A we can assume that the two columns j1 and j2 agree in the
first ` positions, ` ≥ N − (w − 1). If for each row i = ` + 1, . . . , N , there is a column ji, ji 6= j1,
such that ai,j1 = ai,ji , then the two sets C1 = {j1} and C2 = {j2, j`+1, . . . , jN}, (|C2| ≤ w), cannot
be separated. �

Theorem 7 Suppose there is an SHF(u;n,m, {1, w}) with u = 1 + w. Then we have

(i) n ≤ m2, if u ≤ m,

(ii) n ≤ um, if u > m.

Proof. Le A be the matrix representation of an SHF(u;n,m, {1, w}). Let C denote the set of
columns of A. Divide C into two different parts A1 and A2, where A1 consists of the columns which
have the Hamming distance at least w to all other columns (i.e. any column in A1 agrees in at most
one position to all other columns). Define A2 = C− A1. Thus, for any column c1 ∈ A2 there exists
at least one further column c2 ∈ A2 such that c1 and c2 agree in at least two positions. By Lemma
4, if c ∈ A2, then there is some symbol in some row of c which cannot appear anywhere else in that
row. For each column c in part A2 consider one of these symbols and denote it by ac. We construct
pairwise disjoint sets of columns C1,C2, . . . ,Cu, each Ci consisting of the columns c having ac in
row i, 1 ≤ i ≤ u. If |Ci| = `i, 1 ≤ i ≤ w + 1, then |A2| = `1 + `2 + · · · + `w+1, 0 ≤ `i ≤ m.
On the other hand, |Ci| = `i means that A1 can have at most m − `i symbols in row i. Let
`max = max{`i : 1 ≤ i ≤ u} and `min = min{`i : 1 ≤ i ≤ u}. So there is some i, 1 ≤ i ≤ u with
`min = `i. Thus in A1, the i’th row has the maximum possible number of symbols and each symbol
can appear at most m− `max times, otherwise two columns in A1 agree in more than one position.
So we have:

n = |A1|+ |A2| ≤ (m− `min)(m− `max) + `1 + · · ·+ `w+1

≤ m2 −m.`min −m.`max + `min.`max + (w + 1).`max.

As `max ≤ m we have `max.`min −m.`min ≤ 0 and hence

n ≤ m2 + (w + 1−m)`max,

which is less than or equal to um for u > m and is bounded by m2 for u ≤ m. �

4.2 A new bound for SHF(4; n, m, {2, 2})

Although the bound n ≤ m2 for SHF(u;n,m, {1, w}) of type {1, w} in previous section turns out
to be optimal when m ≥ u, as shown in section 6, we show in this section, however, that n is even
less than m2 for SHF(4;n,m, {2, 2}).

Theorem 8 If there exists an SHF(4;n,m, {2, 2}) with m ≥ 4, then n < m2.
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Proof. Assume by contradiction that there exists an SHF(4;m2,m, {2, 2}). Let A be its matrix
representation. We first prove that every two columns of A can agree in at most one position.

Assume that there are two columns of A agreeing in the first two rows. If there are also two
columns agreeing in the last two rows, then we have the following forbidden configuration in which
the sets of columns {1, 3} and {2, 4} are not separable:

a a ∗ ∗
b b ∗ ∗
∗ ∗ c c
∗ ∗ d d

Therefore in the last two rows of A any two columns have at most one agreement. As there are
m2 columns in A, any pair of symbols appears in the last two rows as column exactly once. This
implies that in the last two rows any symbol appears exactly m (≥ 4) times. Assume that the first
two columns of A have the form.

a a
b b
x z
y t

As x and t appear in the corresponding rows at least four times, we get the following forbidden
configuration in which the sets of columns {1, 4} and {2, 3} are not separable.

a a ∗ ∗
b b ∗ ∗
x z x ∗
y t ∗ t

This shows that any two columns of A agree in at most one row and every symbol appears in each
row exactly m times.

Next we show that in an SHF(4;m2,m, {2, 2}) there exist two columns having no agreement in
all four rows.

Assume, by contradiction, that every two columns agree in at least one position (i.e. exactly one
position). Consider a submatrix of A consisting of four columns having the same symbol in the
first row (as m ≥ 4, such columns exist) together with a fifth column having a different symbol in
the first row. So we have the following configuration:

a a a a b
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

where b 6= a. Each of the first four columns should agree with the last column at least in one
row from the last three rows. Thus by the pigeonhole principle, two columns from the first four
columns agree with the last column in the same row. It implies that two columns from the first
four columns agree in at least two positions which contradicts the above argumentation.
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Now we can prove that A is not an SHF of type {2, 2}. Consider two columns of A having no
agreement in all four rows.

x α
y β
z γ
t δ

As each pair appears exactly once in every two rows and two columns agree in at most one position,
we have the following submatrix

x α x ∗
y β β ∗
z γ ∗ z
t δ ∗ δ

in which the sets of columns {1, 2} and {3, 4} are not separable. This completes the proof. �

With Theorems 7 and 8 we are now in a position to prove a bound for SHF of type {w1, w2}.

Theorem 9 Suppose there exists an SHF(u;n,m, {w1, w2}), where u = w1 +w2 and m ≥ u. Then
n ≤ m2.

Proof. The proof uses induction on u. The case w1 = 1 ≤ w2 has been proved by Theorem 7
and the case w1 = w2 = 2 by Theorem 8. We may assume for the induction that w1, w2 ≥ 2. Now
assume as an induction step that the statement of the theorem is valid for u ≥ 4. Assume, for a
contradiction, that an SHF(u;m2 + 1,m, {w1, w2}) exists with A as the matrix representation. Let
A1 be the (u − 2) × (m2 + 1) matrix obtained from A by ignoring the first two rows of A. By the
induction assumption A1 is not an SHF(u− 2;m2 + 1,m, {w1− 1, w2− 1}). Therefore there are two
disjoint sets of columns C1 and C2 with |C1| = w1 − 1 and |C2| = w2 − 1, which are not separated
in A1.

Denote by Mi the set of all elements in the row i appearing in Ci for i = 1, 2. Also let C be
the set of all columns of A. Define C′ = C \ (C1 ∪ C2). By considering the first two rows and the
columns of C′, we see that one of the following two cases has to occur.

(i) There are columns c1, c2 ∈ C′ with c1 6= c2 such that the element in the second row of c1 is
a member of M2 and the element in the first row of c2 is a member of M1. Then the sets
C1 ∪ {c1} and C2 ∪ {c2} are not separated in A, a contradiction.

(ii) Either c1 (or c2) as defined in (i) does not exist or there exists only one column in which
the element in the first row belongs to M1 and the element in the second row belongs to
M2. W.l.o.g. we assume that c1 does not exist. This implies that C′ has at most (m − 1)
elements in row 1 to fill at least m2 + 1− (w1 − 1 +w2 − 1 + 1) columns. As m ≥ u we have
m2 + 1 − (w1 − 1 + w2 − 1 + 1) ≥ m2 −m + 2. Thus there is an element appearing at least
m+ 1 times in row 1. Hence there are two columns c1, c2 ∈ C′ agreeing in the first two rows.
It means that C1 ∪ {c1} and C2 ∪ {c2} are not separated in A, a contradiction.

This completes the proof. �
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As an immediate consequence of Theorem 9 we have the following corollary.

Corollary 2 Suppose there exists an SHF(u;n,m, {w1, . . . , wt}), where u =
∑t

i=1wi and m ≥ u.
Then n ≤ m2.

Proof. The corollary follows from Theorem 9 and Lemma 1. �

When w1 = w2 = w we can prove a slightly stronger result. The proof makes use of Theorem 8
and of a similar argument as that of Theorem 9, therefore we omit it.

Theorem 10 Suppose there exists an SHF(u;n,m, {w,w}), where u = w+w = 2w ≥ 4 and m ≥ u.
Then n < m2.

5 An optimal bound for SHF(N ; n, m, {1, 2})

For the small type {1, 2} we can prove a tight bound for SHF, when N is odd. For general bounds
of SHF(N ;n,m, {1, w}) we refer the reader to [8].

Precisely, we prove the following result.

Theorem 11 For any SHF(2d+ 1;n,m, {1, 2}) we have n ≤ md+1.

Proof. The following simple observation (O) is relevant for our proof. Let A be any SHF(2d +
1;n,m, {1, 2}). If there are two columns of A agreeing in the first (d + 1) rows (resp. in the last
(d + 1) rows), then the corresponding two d−tuples in the last d rows (resp. in the first d rows)
of these two columns are unique. Since, otherwise these two columns could not be separated by a
column having a repeated d-tuple in the last d rows (resp. in the first d rows).

Now assume there is an SHF(2d+1;md+1+1,m, {1, 2}). Let A be its matrix representation. Since
A has md+1 + 1 columns, there are two columns agreeing in d+ 1 first rows. So, from observation
(O) the d-tuples of symbols in the last d rows of these two columns are unique.

Removing these two columns from A gives rise to an array B with md+1− 1 columns having only
md − 2 (d)-tuples of symbols distributed in the last d rows. If each d-tuple of symbols appears at
most m times in the last d rows, then we can fill only (md − 2)m = md+1 − 2m columns. So, there
are md+1−1−(md+1−2m) = 2m−1 columns in which certain d-tuples of symbols in the last d rows
are repeated at least m+1 times. This is to say that there are at least 2m−1+1 = 2m (d+1)-tuples
of symbols that have to repeat in the last d+ 1 rows, as there are m symbols altogether. These 2m
repeated (d+ 1)-tuples (in the last (d+ 1) rows), provide 2m unique d-tuples in the first d rows by
observation (O). Removing these 2m columns having unique d-tuples of symbols in the first d rows
from A, gives rise to an array C with md+1+1−2m columns having md−2m different d-tuples in the
first d rows. If each of these md− 2m (d)-tuples appears at most m times, then again we can fill at
most (md−2m)m = md+1−2m2 columns. So there are md+1−2m+1−(md+1−2m2) = 2m2−2m+1
columns with d-tuples in the first d rows that have to repeat at least m + 1 times. This gives us
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(2m2 − 2m + 1) + 1 = 2m2 − 2m + 2 repeated (d + 1)-tuples in the first d + 1 rows. Therefore,
observation (O) provides 2m2 − 2m+ 2 unique (d)-tuples in the last d rows.

Now removing these 2m2−2m+2 columns from B we obtain an array D with md+1−1− (2m2−
2m+2) columns having md−2− (2m2−2m+2) = md−2m2 +2m−4 (d)-tuples in the last d rows.
Again, if each of these d-tuples appear at most m times, only at most (md − 2m2 + 2m − 4)m =
md+1− 2m3 + 2m2− 4m columns of D can be filled. Thus, there are md+1− 1− (2m2− 2m+ 2)−
(md+1−2m3 +2m2−4m) = 2m3−4m2 +6m−3 (d)-tuples of symbols in the last d rows repeated at
least m+1 times. This implies that there are at least 2m3−4m2 +6m−3+1 = 2m3−4m2 +6m−2
repeated d+ 1-tuples in the last d+ 1 rows. Hence, observation (O) shows that the corresponding
d-tuples in the first d rows of these d+ 1-tuples must be unique.

We see that the number of unique d−tuples is increasing at each step. Continuing this argument
after d steps will lead to a negative number of d-tuples available for a positive number of columns,
which is a contradiction. �

6 Constructions for SHF

In this section we give several constructions for “good” SHF. First we present a construction for
SHF(3;n,m, {1, 1, 1, 1})’s, whose value n is close to the bound given in Theorem 5. We then give
two constructions for SHF derived from orthogonal arrays showing that the bounds in Theorems 7
and 11 are tight.

6.1 A Construction of SHF(3; n, m, {1, 1, 1, 1})

In this section we present a general construction of a good class of SHF(3;n,m, {1, 1, 1, 1}). We
believe that for large values of m the number of columns n obtained from this construction is close
to an optimal bound. To be more precise, the construction provides separating hash families with
roughly n ∼= 3(m − 2b

√
mc) columns. Thus limm→∞ ñ/m = 3, where ñ is value of n such that an

SHF(3;n,m, {1, 1, 1, 1}) exists. This implies that γ = 3 is asymtotically the best possible minimum
value for constant γ such that n < γ(m− c) for any fixed number c > 0. The construction that will
be described also includes a construction for SHF(3;n,m, {1, 1, 2}) and SHF(3;n,m, {2, 2}), since
the existence of an SHF(3;n,m, {1, 1, 1, 1}) is equivalent to the existence of an SHF of types {1, 1, 2}
by Lemma 3.17 [23] and implies the existence of an SHF of type {2, 2} as well.

Let m ≥ 4 be an integer. We write m = m1 + 2m2, where m2 = b
√
mc. Let

V = V1 ∪ V2 ∪ V3

be a set of m symbols consisting of a union of three disjoint sets
V1 = {x1, . . . , xm1}, V2 = {y1, . . . , ym2}, and V3 = {z1, . . . , zm2}.

Construction

Let r ≥ 1, δ, c ≥ 0 be integers such that
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a) r ≤ m2 and
b) 0 ≤ m1 − r(m2 − δ) := c ≤ m2, i.e., r(m2 − δ) + c = m1.

Define the following (1×m1) arrays:

X = [x1 . . . xm1 ]
Y1 = [y1 . . . y1︸ ︷︷ ︸

r

y2 . . . y2︸ ︷︷ ︸
r

. . . ym2−δ . . . ym2−δ︸ ︷︷ ︸
r

ym2−δ+1 . . . ym2−δ+1︸ ︷︷ ︸
c

]

Y2 = [y1y2 . . . yr y1y2 . . . yr . . . y1y2 . . . yr︸ ︷︷ ︸
m2−δ

y1y2 . . . yc]

Z1 = [z1 . . . z1︸ ︷︷ ︸
r

z2 . . . z2︸ ︷︷ ︸
r

. . . zm2−δ . . . zm2−δ︸ ︷︷ ︸
r

zm2−δ+1 . . . zm2−δ+1︸ ︷︷ ︸
c

]

Z2 = [z1z2 . . . zr z1z2 . . . zr . . . z1z2 . . . zr︸ ︷︷ ︸
m2−δ

z1z2 . . . zc]

Now define an 3× 3m1 array A.

A =
X Y1 Z1

Y1 X Z2

Y2 Z2 X

We show that A is an SHF(3; 3m1,m, {1, 1, 1, 1}).

We divide the columns of A into 3 blocks S1, S3 and S3. The first m1 columns form the block S1,
the next m1 columns the block S2 and the last m1 columns the block S3. The following
observation is useful.

-Two different columns from each block Si, i = 1, 2, 3, agree in at most one row.

-Two columns from two different blocks Si and Sj do not agree in any row.

Let {c1, c2, c3, c4} be a given set of four columns of A. We need to consider the following cases.

(i) c1, c2, c3, c4 belong to one block. Then the row having elements of X separates these columns.

(ii) c1, c2, c3, c4 are distributed in two blocks. W.l.o.g. we need to consider only the following two
cases.

(a) c1, c2, c3 ∈ S1 and c4 ∈ S2. Then the first row separates c1, c2, c3, c4.

(b) c1, c2 ∈ S1 and c3, c4 ∈ S2. If c3, c4 are separated in the first row, then the first row
separates the four columns. Assume that c3, c4 are not separated in the first row. Then
c3, c4 are separated in the second and the third row. Since c1, c2 have to be separated either
in the second row or in the third row, it follows that c1, c2, c3, c4 are separated either by the
second or the third row.

(iii) c1, c2, c3, c4 are distributed in three blocks. Wlog we may assume c1, c2 ∈ S1, c3 ∈ S2 and
c4 ∈ S3. It is obvious that the first row separates the four columns.

Thus A is a separating hash family of type {1, 1, 1, 1}.
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We record the result of the construction in the next theorem.

Theorem 12 There exists an SHF(3; 3m− 6b
√
mc,m, {1, 1, 1, 1}) for any integer m ≥ 4.

Especially, if m is of the form m = v2 + 2v, we choose r = v, δ = c = 0 and obtain the following
result. Note that this result has appeared in a paper of Hollmann et al.[15], in Blackburn [7] and
in [23].

Proposition 1 There is an SHF(3; 3v2, v2 + 2v, {1, 1, 1, 1}) for any integer v ≥ 1.

Observe that the construction above still leaves room for slight improvement depending on the
values of m. For instance, assume m = v2. Then we have m2 = v, m1 = v2 − 2v. If we choose
r = v − 1, δ = 2 and c = v − 2, then one symbol in V2 and one in V3 are not used in the
construction. These two free symbols are then used to form an SHF(3; 4, 2, {1, 1, 1, 1}). In this way
we can construct 4 more columns. Hence we have the following.

Proposition 2 There is an SHF(3; 3(v2 − 2v) + 4, v2, {1, 1, 1, 1}) for any integer v ≥ 2.

6.2 Optimal SHF(1 + w; n, m, {1, w}) and SHF(N ; n, m, {1, 2})

The following results show that the bounds in Theorems 7 and 11 are tight.

Theorem 13 For any prime power m and any integer w with w + 1 ≤ m, there is an optimal
SHF(w + 1;m2,m, {1, w}).

Proof. Let m be a prime power such that w+1 ≤ m. Let R ⊆ Fm with |R| = w+1. Consider the
classical orthogonal array OA(2, |R|,m) which is an (w + 1)×m2 array A. Now any two different
columns of A agree in at most one row. It follows that for given two disjoint subsets of columns C1

and C2 of A with |C1| = 1 and |C2| = w, there is at least one row that separates C1 and C2. Hence
A is an optimal SHF(w + 1;m2,m, {1, w}) according to Theorem 7.

For an arbitrary integer m we provide a further direct construction of optimal SHF for Theorem
7 from mutually orthogonal Latin squares (MOLS). A Latin square of order m is an m×m array
consisting of elements of an m−set, say S, with the property that each row and each column of the
array is a permutation of S. Two m ×m Latin squares are orthogonal if no ordered pair occurs
more than once when they are superimposed. A set of t ≥ 2 Latin squares is said to be mutually
orthogonal, or a set of MOLS, if any two of t squares are orthogonal. Let {Li : 1 ≤ i ≤ s} be a set
of s MOLS on symbols {0, 1, . . . ,m− 1}. Form an (s+ 2)×m2 array A = (aij) whose columns are
(i, j, L1(i, j), L2(i, j), . . . , Ls(i, j))T for 0 ≤ i, j < m. Then A is an orthogonal array, OA(2, s+2,m).
Now any two columns of A agree in at most one row, therefore A forms an SHF(s+2;m2,m, {1, s+1})
which is optimal by Theorem 7 when s+ 2 ≤ m. We have the following.

Theorem 14 Suppose there are w − 1 MOLS of order m with w + 1 ≤ m. Then there exists an
optimal SHF(w + 1;m2,m, {1, w}).
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Example 1 Let us consider several small values for m that are not prime powers. It is well-known
that there are at least two MOLS of order 10, five MOLS of order 12, three MOLS of order 14 and
four MOLS of order 15, see for instance, [14]. Hence Theorem 14 provides the following optimal
separating hash families:
SHF(w + 1; 102, 10, {1, w}) for w = 2, 3,
SHF(w + 1; 122, 12, {1, w}) for w = 2, 3, 4, 5, 6,
SHF(w + 1; 142, 14, {1, w}) for w = 2, 3, 4,
SHF(w + 1; 152, 15, {1, w}) for w = 2, 3, 4, 5.

By [14] (3.81 Table, page 175) it is known there are at least 6 MOLS of order m for all m ≥ 75.
Thus we have the following theorem.

Theorem 15 For any integer m ≥ 75 there is an optimal SHF(w + 1;m2,m, {1, w}) for w =
2, 3, 4, 5, 6, 7.

For type {1, 2} we have the following results.

Theorem 16 If m is a prime power, then there is an optimal SHF(2d + 1;md+1,m, {1, 2}) with
2d+ 1 ≤ m+ 1.

Proof. Let A be a classical OA(d+1, 2d+1,m). So, A is a (2d+1)×md+1 array with entries from
Fm and any two columns of A agree in at most d rows. Therefore A is an SHF(2d+1;md+1,m, {1, 2}).
This separating hash family achieves the bound of Theorem 11 and is therefore optimal. �

Theorem 16 requires that m is a prime power, however if d = 1, we can remove this restriction.

Theorem 17 For any integer m ≥ 2, there is an optimal SHF(3;m2,m, {1, 2}).

Proof. It is well-known that an OA(2, 3,m) exists for any m ≥ 2. An easy construction of such
an OA is the zero sum construction: taking all triples [a, b, c] ∈ Z3

m with a + b + c = 0 in Zm as
columns of the array. This orthogonal array is also an SHF(3;m2,m, {1, 2}). �

For any integer m ≥ 2 we have the following result.

Theorem 18 Let m = pe11 p
e2
2 . . . pes

s be a prime power factorization of an integer m ≥ 2 such that
pe11 < pe22 < . . . < pes

s . Then there exists an optimal SHF(2d + 1;md+1,m, {1, 2}) for any positive
integer d with 2d ≤ pe11 .

Proof. It is known by a result of Bush (see [11] or [14], 7.20 Theorem, page 226) that there is an
OA(d+1, k,m) for d+1 < pe11 and k ≤ pe11 +1. If we choose k = 2d+1, then an OA(d+1, 2d+1,m)
provides an optimal SHF(2d+ 1;md+1,m, {1, 2}). �
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7 Concluding remarks

We have presented new bounds for SHF of general type and specific types. As well, we showed
further improved bounds for the case N = u. We presented constructions showing that several
bounds of specific types are optimal or asymptotically optimal. There are hints indicating that if
N = u − 1, the leading constant γ in a bound of the form n ≤ γ(m − c), where c is a constant,
cannot be smaller than (u− 1) for almost all values of m. Our bounds for SHF of type {1, w} when
m ≥ u and N = u, as well as for SHF of type {1, 2} and arbitrary odd N are optimal. For N = u
it remains a challenging problem to find optimal bounds on n for type {w1, w2} with w1, w2 ≥ 2.
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