
Simple t-designs: A recursive construction for
arbitrary t

Tran van Trung
Institute for Experimental Mathematics

University of Duisburg-Essen
Thea-Leymann-Straße 9, 45127 Essen, Germany

Abstract

The aim of this paper is to present a recursive construction of simple
t−designs for arbitrary t. The construction is of purely combinatorial nature
and it requires finding solutions for the indices of the ingredient designs that
satisfy a certain set of equalities. We give a small number of examples to illus-
trate the construction, whereby we have found a large number of new t−designs,
which were previously unknown. This indicates that the method is useful and
powerful.
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1 Introduction

One of the most challenging problems in design theory is the problem of constructing
simple t−designs for large t. There are several major approaches to the problem.
These are constructing t−designs from large sets of t−designs, for instance [1], [11],
[14], [15], [20], [21], [25]; constructing t−designs by using prescribed automorphism
groups, for example [3], [4], [5], [6], [7], [9], [13], [16]; or contructing t−designs via
recursive construction methods, see for instance [10], [12], [17], [18], [19], [22], [23],
[24].

In this paper we present a new recursive method for constructing simple t−designs
for arbitrary t. The method is of combinatorial nature, which is a composition tech-
nique where a t−design is built up from other smaller ingredient designs. Which
ingredient designs will be necessary are determined by the solutions to a set of equal-
ities involving their indices. The method proves to be very useful and powerful. Our
experimental results obtained from its application have shown that, even for a small
number of chosen parameters for the ingredient designs, plentiful new simple designs
can be constructed, which were previously unknown.

1



We recall some basic definitions. A t−design, denoted by t − (v, k, λ), is a pair
(X,B), where X is a v−set of points and B is a collection of k−subsets, called blocks,
of X having the property that every t−set of X is a subset of exactly λ blocks in
B. The parameter λ is called the index of the design. A t−design is called simple if
no two blocks are identical i.e. no block of B is repeated; otherwise, it is called non-
simple (i.e. B is a multiset). It can be shown by simple counting that a t − (v, k, λ)
design is an s − (v, k, λs) design for 0 ≤ s ≤ t, where λs = λ

(
v−s
t−s

)
/
(
k−s
t−s

)
. Since λs

is an integer, necessary conditions for the parameters of a t−design are
(
k−s
t−s

)
|λ
(
v−s
t−s

)
,

for 0 ≤ s ≤ t. For given t, v and k, we denote by λmin(t, k, v), or λmin for short, the
smallest positive integer such that these conditions are satisfied for all 0 ≤ s ≤ t. By
complementing each block in X of a t− (v, k, λ) design, we obtain a t− (v, v− k, λ∗)
design, where λ∗ = λ

(
v−k
t

)
/
(
k
t

)
, hence we shall assume that k ≤ v/2. The largest value

for λ for which a simple t − (v, k, λ) design exists is denoted by λmax and we have
λmax =

(
v−t
k−t

)
. The simple t− (v, k, λmax) design is called the complete design or the

trivial design. A t− (v, k, 1) design is called a t-Steiner system.
We refer the reader to [2], [8] for more information about designs.

1.1 The Construction

We first introduce ingredients and notation used in the construction.
Let t, v, k be non-negative integers such that v ≥ k ≥ t ≥ 0. Let X be a v-set

and let X = X1 ∪ X2 be a partition of X (i.e X1 ∩ X2 = ∅) with |X1| = v1 and
|X2| = v2.

Throughout the paper the parameter set t− (v2, j, λ̄
(j)
t ) for a design indicates that

the point set of the design is X2. Also, a design defined on the point set X2 will be
denoted by D̄ = (X2, B̄).

1. For i = 0, . . . , t, let Di = (X1,B(i)) be the complete i − (v1, i, 1) design. For

i = t+ 1, . . . , k, let Di = (X1,B(i)) be a simple t− (v1, i, λ
(i)
t ) design.

2. Similarly, for i = 0, . . . , t, let D̄i = (X2, B̄(i)) be the complete i−(v2, i, 1) design.

And for i = t+ 1, . . . , k, let D̄i = (X2, B̄(i)) be a simple t− (v2, i, λ̄
(i)
t ) design.

3. Two degenerate cases for designs occur when either v = k = t = 0 or v = k.
The first case v = k = t = 0 gives an “empty” design, denoted by ∅, however we
use the convention that the number of blocks of the empty design is 1 (i.e. the
unique block is the empty block). The second case v = k gives a degenerate k-
design having just 1 block consisting of all v points. Thus, in these two extreme
cases the number of blocks of the designs is always 1.

4. We denote by T(s,t−s) a t-subset T of X with |T ∩X1| = s and hence |T ∩X2| =
t− s, for s = 0, . . . , t. It is clear that any t-subset of X is a T(s,t−s) set for some
s ∈ {0, . . . , t}.

5. Let X be a finite set and let u ∈ {0, 1}. The notation X × [u] has the following
meaning. X × [0] is the empty set ∅, and X × [1] = X.
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We now describe our construction. Consider (k + 1) pairs of simple designs

(Di, D̄k−i) for i = 0, . . . , k, where Di = (X1,B(i)) is a simple t− (v1, i, λ
(i)
t ) design and

D̄k−i = (X2, B̄(k−i)) a simple t− (v2, k − i, λ̄(k−i)
t ) design, as defined above. For each

pair (Di, D̄k−i) define

B(i,k−i) := {B = Bi ∪ B̄k−i / Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

Thus, B(i,k−i) is a collection of k-subsets of X obtained by taking the union of blocks
of Di and D̄k−i. Note that the sets B(i,k−i) and B(j,k−j) are pairwise disjoint for i 6= j
and i, j = 0, . . . , k.

Define

B := B(0,k) × [u0] ∪ B(1,k−1) × [u1] ∪ · · · ∪ B(k−1,1) × [uk−1] ∪ B(k,0) × [uk],

where ui ∈ {0, 1}, for i = 0, . . . , k.
It should be noted that the notation B(i,k−i) × [ui], as defined in [5.] above,

indicates that either we have an empty set ∅ (when ui = 0) or the set B(i,k−i) itself
(when ui = 1). The empty set case implies that the pair (Di, D̄k−i) is not used and
the other case shows the use of (Di, D̄k−i). Thus ui’s are considered as variables.

We examine the necessary conditions for which (X,B) forms a simple t-design.
Consider the block set B(i,k−i). We see that each t-subset T(s,t−s) of X is contained in

λ(i)s .λ̄
(k−i)
t−s

blocks of B(i,k−i), for s = 0, . . . , t. It is clear because any s-set of X1 is contained in

λ
(i)
s blocks of Di and any (t− s)-set of X2 is contained in λ̄

(k−i)
t−s blocks of D̄k−i. Note

that λ
(i)
s .λ̄

(k−i)
t−s could be equal to 0; this is the case when i < s or k− i < t− s. Define

Λ
(i,k−i)
s,t−s := λ(i)s .λ̄

(k−i)
t−s .

It follows that for a given t-set T(s,t−s) of X the number of blocks in B containing
T(s,t−s) is equal to

Ls,t−s := u0.Λ
(0,k)
s,t−s + u1.Λ

(1,k−1)
s,t−s + · · ·+ uk.Λ

(k,0)
s,t−s

=
k∑

i=0

ui.Λ
(i,k−i)
s,t−s

=
k∑

i=0

ui.λ
(i)
s .λ̄

(k−i)
t−s ,

Since any t-set T of X is of form Ts,t−s for some s ∈ {0, . . . , t}, so if

L0,t = L1,t = L2,t−2 = · · · = Lt,0 := Λ,

where Λ is a positive integer, then (X,B) forms a simple t-design with parameters
t− (v, k,Λ).

We record the result of the construction discussed above in the following theorem.
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Theorem 1.1 Let v, k, t be integers with v > k > t ≥ 2. Let X be a v-set and let
X = X1 ∪X2 be a partition of X with |X1| = v1 and |X2| = v2. Let Di = (X1,B(i))
be the complete i− (v1, i, 1) design for i = 0, . . . , t and let Di = (X1,B(i)) be a simple

t−(v1, i, λ
(i)
t ) design for i = t+1, . . . , k. Similarly, let D̄i = (X2, B̄(i)) be the complete

i− (v2, i, 1) design for i = 0, . . . , t, and let D̄i = (X2, B̄(i)) be a simple t− (v2, i, λ̄
(i)
t )

design for i = t+ 1, . . . , k. Define

B = B(0,k) × [u0] ∪ B(1,k−1) × [u1] ∪ · · · ∪ B(k−1,1) × [uk−1] ∪ B(k,0) × [uk],

where
B(i,k−i) = {B = Bi ∪ B̄k−i / Bi ∈ B(i), B̄k−i ∈ B̄(k−i)}.

Assume that

L0,t = L1,t−1 = L2,t−2 = · · · = Lt,0 := Λ, (1)

for a positive integer Λ, where

Ls,t−s =
k∑

i=0

ui.λ
(i)
s .λ̄

(k−i)
t−s , (2)

s = 0, . . . , t, and ui ∈ {0, 1}, for i = 0, . . . , k. Then (X,B) is a simple t − (v, k,Λ)
design.

Two remarks should be included. Firstly, Eq.(1) always has at least one solution
giving rise to the complete t− (v, k,

(
v−t
k−t

)
) design. In other words, if each ingredient

design is a complete design with its corresponding parameters, then we obtain the
complete design as a result. Secondly, we mainly focus on simple designs, so we have
formulated Theorem 1.1 accordingly. But, the construction by no means restricts
to simple t−designs. It works for both simple and non-simple designs. In fact, the
construction only uses the “balance property” which depends on the indices λ

(i)
t ,

and not on any “structural property” of the ingredient designs. Thus, if any of the
ingredient designs is non-simple, then so is the resulting design constructed from a
solution of Eq.(1).

2 Applications

In this section we illustrate the construction in Theorem 1.1 through a number of
examples which also prove the strength of the method. In fact, for some given pa-
rameters with t = 4, 5, 6, we have constructed a large number of new simple designs.

In the following we will employ the notation from Chapter 4 : t-Designs with t ≥ 3
of the Handbook of Combinatorial Designs. The parameter set t−(v, k, λ) of a design
will be written as t − (v, k,mλmin). Since the supplement of a simple t − (v, k, λ)
design is a t− (v, k, λmax−λ) design, we usually consider simple t− (v, k, λ) designs
with λ ≤ λmax/2. Thus, the upper limit of m of a constructed design will be
LIM = bλmax/(2λmin)c. But, it should be remarked that, when an ingredient design
with index λ is used, then λ can take on all possible values, i.e. λmin ≤ λ ≤ λmax.
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2.1 Simple 5− (36, k,Λ) designs

A detailed example will illustrate the construction.

2.1.1 Simple 5− (36, 10,Λ) designs

Let X = X1 ∪ X2 be a partition of the point set X with |X| = 36 into two subsets
X1 and X2 with |X1| = |X2| = 18. For i = 0, 1, 2, 3, 4, 5 let Di = (X1,B(i)) be the
complete i − (18, i, 1) designs. For i = 6, 7, 8, 9, 10 let Di = (X1,B(i)) be a simple

5− (18, i, λ
(i)
5 ) design. These designs have the following parameters.

• 5− (18, 6, λ
(6)
5 ) = 5− (18, 6,m), m = 1, 2, . . . , 13.

• 5− (18, 7, λ
(7)
5 ) = 5− (18, 7,m6), m = 1, 2, . . . , 13

• 5− (18, 8, λ
(8)
5 ) = 5− (18, 8,m2), m = 1, 2, . . . , 143

• 5− (18, 9, λ
(9)
5 ) = 5− (18, 9,m5), m = 1, 2, . . . , 143

• 5 − (18, 10, λ
(10)
5 ) = 5 − (18, 10,m9), m = 1, 2, . . . , 143 (the complement of a

5− (18, 8,m2)).

Correspondingly, let D̄i = (X2, B̄(i)) be simple designs defined on X2. We first com-
pute L0,5, L1,4, L2,3. We have

Ls,5−s =
10∑
i=0

ui.λ
(i)
s .λ̄

(10−i)
5−s , (3)

s = 0, . . . , 5, and ui ∈ {0, 1} for i = 0, . . . , 10.

Since λ̄
(4)
5 = λ̄

(3)
5 = λ̄

(2)
5 = λ̄

(1)
5 = λ̄

(0)
5 = 0 and λ̄

(5)
5 = 1, we have

L0,5 = u0λ
(0)
0 λ̄

(10)
5 + u1λ

(1)
0 λ̄

(9)
5 + u2λ

(2)
0 λ̄

(8)
5 + u3λ

(3)
0 λ̄

(7)
5 + u4λ

(4)
0 λ̄

(6)
5 + u5λ

(5)
0 λ̄

(5)
5

= u0λ̄
(10)
5 + u118λ̄

(9)
5 + u2153λ̄

(8)
5 + u3816λ̄

(7)
5 + u43060λ̄

(6)
5 + u58568.

Since λ̄
(3)
4 = λ̄

(2)
4 = λ̄

(1)
4 = λ̄

(0)
4 = 0 and λ

(0)
1 = 0, we have

L1,4 = u1λ
(1)
1 λ̄

(9)
4 + u2λ

(2)
1 λ̄

(8)
4 + u3λ

(3)
1 λ̄

(7)
4 + u4λ

(4)
1 λ̄

(6)
4 + u5λ

(5)
1 λ̄

(5)
4 + u6λ

(6)
1 λ̄

(4)
4

= u1
14

5
λ̄
(9)
5 + u2

17× 7

2
λ̄
(8)
5 + u3

136× 14

3
λ̄
(7)
5 + u4680× 7λ̄

(6)
5 +

u52380× 14 + u6476λ
(6)
5 .

Further, since λ̄
(2)
3 = λ̄

(1)
3 = λ̄

(0)
3 = λ

(0)
2 = λ

(1)
2 = 0, we have

L2,3 = u2λ
(2)
2 λ̄

(8)
3 + u3λ

(3)
2 λ̄

(7)
3 + u4λ

(4)
2 λ̄

(6)
3 + u5λ

(5)
2 λ̄

(5)
3 + u6λ

(6)
2 λ̄

(4)
3 + u7λ

(7)
2 λ̄

(3)
3

= u2
21

2
λ̄
(8)
5 + u3

16× 35

2
λ̄
(7)
5 + u4120× 35λ̄

(6)
5 + u5560× 105 +

u6140× 15λ
(6)
5 + u756λ

(7)
5 .
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Similarly, we compute

L3,2 = u3λ
(3)
3 λ̄

(7)
2 + u4λ

(4)
3 λ̄

(6)
2 + u5λ

(5)
3 λ̄

(5)
2 + u6λ

(6)
3 λ̄

(4)
2 + u7λ

(7)
3 λ̄

(3)
2 + u8λ

(8)
3 λ̄

(2)
2

= u356λ̄
(7)
5 + u415× 140λ̄

(6)
5 + u5105× 560 + u635× 120λ

(6)
5 +

u7
35× 16

2
λ
(7)
5 + u8

21

2
λ
(8)
5 .

L4,1 = u4λ
(4)
4 λ̄

(6)
1 + u5λ

(5)
4 λ̄

(5)
1 + u6λ

(6)
4 λ̄

(4)
1 + u7λ

(7)
4 λ̄

(3)
1 + u8λ

(8)
4 λ̄

(2)
1 + u9λ

(9)
4 λ̄

(1)
1

= u4476λ̄
(6)
5 + u514× 2380 + u67× 680λ

(6)
5 + u7

14× 136

3
λ
(7)
5 +

u8
7× 17

2
λ
(8)
5 + u9

14

5
λ
(9)
5 .

L5,0 = u5λ
(5)
5 λ̄

(5)
0 + u6λ

(6)
5 λ̄

(4)
0 + u7λ

(7)
5 λ̄

(3)
0 + u8λ

(8)
5 λ̄

(2)
0 + u9λ

(9)
5 λ̄

(1)
0 + u10λ

(10)
5 λ̄

(0)
0

= u58568 + u63060λ
(6)
5 + u7816λ

(7)
5 + u8153λ

(8)
5 + u918λ

(9)
5 + u10λ

(10)
5 .

Each set of values of ui ∈ {0, 1}, i = 0, . . . , 10, and λ
(j)
5 and λ̄

(j)
5 , j = 6, . . . , 10, for

which the condition

L0,5 = L1,4 = L2,3 = L3,2 = L4,1 = L5,0 := Λ (4)

is fullfilled for a positive integer Λ will yield a simple 5− (36, 10,Λ) design.
Note that a 5− (36, 10, λ) design will be written as 5− (36, 10,m63) with λmin =

63 and λmax =
(
31
5

)
= 169911. So, LIM = b169911/2 ∗ 63c = 1348. By solving

Eq.(1) above, we obtain designs for all m63 ≤ 2697. Altogether 75 values for m
have been found, of which 37 values of m ≤ LIM. However, since not all simple
5 − (18, i, λ

(i)
5 ) designs are known to exist, for example, 5 − (18, 6,m) designs are

known for m = 4, 5, 6, 7, 8, 9, 13 only (here 5 − (18, 6, 13) is the complete design),
we just obtain the following 10 new non-trivial simple 5 − (36, 10,m63) designs for
m = 542, 621, 645, 669, 748, 772, 932, 956, 1304, 1328. More precisely, Table 1 below
shows the details of these 10 solutions.

m λ
(5)
5 λ

(6)
5 λ

(7)
5 λ

(8)
5 λ

(9)
5 λ

(10)
5

542 0 5 6 60 210 990
621 0 6 0 126 75 135
645 0 6 6 78 275 495
669 0 6 12 30 475 855
748 0 7 6 96 340 0
772 0 7 12 48 540 360
932 0 9 0 192 60 720
956 0 9 6 144 260 1080
1304 1 0 66 112 100 792
1328 1 0 72 64 300 1152
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An entry 0 in a column of the table implies that ui = 0, otherwise ui = 1. No
values for λ̄

(j)
5 are given in the table, because we have λ

(j)
5 = λ̄

(j)
5 , j = 6, 7, 8, 9, 10, for

all these solutions.

Remark 2.1 In order to simplify the expressions Ls,5−s we may introduce the fol-

lowing variables xj = ujλ
(j)
5 and yj = uk−jλ̄

(j)
5 for j = 6, 7, 8, 9, 10. More precisely,

xj =

{
0 if uj = 0

λ
(j)
5 if uj = 1

and

yj =

{
0 if uk−j = 0

λ̄
(j)
5 if uk−j = 1

Thus Ls,5−s have much simpler forms, in which xj and yj are allowed to take on the
value of zero. For example,

L2,3 =
21

2
y8 +

16× 35

2
y7 + 120× 35y6 + u5560× 105 + 140× 15x6 + 56x7.

L1,4 =
14

5
y9 +

17× 7

2
y8 +

136× 14

3
y7 + 680× 7y6 + u52380× 14 + 476x6.

L0,5 = y10 + 18y9 + 153y8 + 816y7 + 3060y6 + u58568.

2.1.2 Simple 5− (36, k, λ) designs with 11 ≤ k ≤ 15

We give a summary of the results from the construction of Theorem 1.1 for simple
5− (36, k, λ) designs for k = 11, . . . , 15, for which v1 = v2 = 18.

When v1 = v2, we observe that most of the solutions of Eq.(1) have the prop-

erty that λ
(k)
5 = λ̄

(k)
5 , which we call symmetric property. Thus, assuming symmetric

property for solutions of Eq.(1) appears to be reasonable. On the other hand, it
will reduce the search time for solutions enormously. For k = 12, 13, 14, 15 we as-
sume the symmetric property, but even so a great number of new designs have been
constructed.

• Simple 5 − (36, 11, λ) = 5 − (36, 11,m21) designs with LIM = 17530. The
construction yields 400 values for m with m ≤ LIM as solutions for Eq.(1). The
73 values for m below

m = 11832, 8712, 8736, 9404, 9416, 9440, 10084, 10120, 10752, 10889,

10913, 11432, 11444, 11456, 11545, 12124, 12136, 12225, 12249,

12261, 12840, 12905, 12929, 12941, 12953, 13496, 14265, 14301,

10676, 10717, 11356, 11397, 12077, 12101, 12781, 12805, 12894,

13396, 13485, 13509, 13574, 14076, 14117, 14189, 14254, 14797,

14821, 15501, 15614, 16205, 16294, 16861, 16909, 13426, 13450,

14130, 14154, 14834, 14858, 15466, 15538, 16146, 16170, 16271,

16850, 16874, 16951, 15390, 16070, 16803, 16875, 17483, 17507.
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show the constructed simple 5− (36, 11,m21) designs. Of which 72 values of m
yield new designs, except one, m = 13485, which has been known already.

• The results for k = 12, 13, 14, 15 are recorded in the following Table 2.

Parameters LIM # solutions of Eq.(1) # constructed designs
5− (36, 12,m15) 87652 3261 240
5− (36, 13,m585) 6742 2427 359
5− (36, 14,m65) 155077 26609 1926
5− (36, 15,m143) 155077 48852 4452

In Table 2 the figures in column “# solutions of Eq.(1)” are the number of
solutions of Eq.(1) having the symmetric property, whereas those in column
“# constructed designs” are the number of constructed simple designs with
parameters in the first column for m ≤ LIM. The constructed 5-designs are
derived from solutions of Eq.(1) and from known simple 5-designs on 18 points
as given in [8].

Remark 2.2 We have also applied our method to constructing 5− (36, k,Λ) designs
for k = 16, 17, 18. In each of these cases we can always construct new designs.

Examples 2.1 We display some new simple 5-designs for k = 11, 12, 13, 14, 15 ex-
plicitly. All but one design have the symmetric property. The missing values for λ

(i)
5

and λ̄
(i)
5 in the following examples imply that the corresponding designs are not used

in the construction. Here are the designs.

• 5 − (36, 11, 11832 × 21) with λ
(7)
5 = 54, λ

(8)
5 = 16, λ

(9)
5 = 240, λ

(10)
5 = 1224,

λ̄
(6)
5 = 8, λ̄

(7)
5 = 12, λ̄

(8)
5 = 108, λ̄

(9)
5 = 360. This solution does not have the

symmetric property.

5− (36, 11, 8712× 21) with λ
(6)
5 = 4, λ

(7)
5 = 6, λ

(8)
5 = 142, λ

(9)
5 = 40, λ

(10)
5 = 72,

λ
(11)
5 = 1320, and λ̄

(i)
5 = λ

(i)
5 , i = 6, 7, 8, 9, 10, 11.

• 5− (36, 12, 15337× 15) with λ
(6)
5 = 4, λ

(7)
5 = 6, λ

(8)
5 = 30, λ

(9)
5 = 55, λ

(10)
5 = 27,

λ
(11)
5 = 660, λ

(12)
5 = 660, and λ̄

(i)
5 = λ

(i)
5 , i = 6, 7, 8, 9, 10, 11, 12.

5 − (36, 12, 50490 × 15) with λ
(7)
5 = 42, λ

(8)
5 = 46, λ

(9)
5 = 135, λ

(10)
5 = 864, and

λ̄
(i)
5 = λ

(i)
5 , i = 7, 8, 9, 10.

• 5 − (36, 13, 1347 × 585) with λ
(6)
5 = 4, λ

(7)
5 = 18, λ

(8)
5 = 48, λ

(9)
5 = 40,

λ
(10)
5 = 27, λ

(11)
5 = 396, λ

(12)
5 = 1716, λ

(13)
5 = 1287, and λ̄

(i)
5 = λ

(i)
5 , i =

6, 7, 8, 9, 10, 11, 12, 13.

5−(36, 13, 2448×585) with λ
(6)
5 = 4, λ

(7)
5 = 48, λ

(8)
5 = 48, λ

(9)
5 = 120, λ

(10)
5 = 360,

and λ̄
(i)
5 = λ

(i)
5 , i = 6, 7, 8, 9, 10.
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• 5 − (36, 14, 20400 × 65) with λ̄
(6)
5 = 4, λ̄

(7)
5 = 30, λ̄

(9)
5 = 60, λ̄

(10)
5 = 144, and

λ
(i)
5 = λ̄

(i)
5 , i = 6, 7, 9, 10.

5 − (36, 14, 19992 × 65) with λ
(6)
5 = 4, λ

(8)
5 = 98, λ

(9)
5 = 60, λ

(12)
5 = 1056, and

λ̄
(i)
5 = λ

(i)
5 , i = 6, 8, 9, 12.

• 5 − (36, 15, 19040 × 143) with λ
(6)
5 = 4, λ

(7)
5 = 6, λ

(8)
5 = 112, λ

(9)
5 = 320,

λ
(12)
5 = 528, and λ̄

(i)
5 = λ

(i)
5 , i = 6, 7, 8, 9, 12.

5− (36, 15, 119952× 143) with λ
(7)
5 = 42, λ

(8)
5 = 280, λ

(10)
5 = 1152, λ

(12)
5 = 792,

and λ̄
(i)
5 = λ

(i)
5 , i = 7, 8, 10, 12.

Remark 2.3 It is worth mentioning that there may exist different solutions to Eq.(1)
leading to the same value Λ for constructed designs. For instance, the following two
distinct solutions (a) and (b) of Eq.(1) for t = 5, v = 36, k = 13:

(a) λ
(6)
5 = 4, λ

(7)
5 = 54, λ

(8)
5 = 128, λ

(10)
5 = 729, λ

(11)
5 = 264, λ̄

(i)
5 = λ

(i)
5 , i =

6, 7, 8, 10, 11,

(b) λ
(6)
5 = 7, λ

(7)
5 = 42, λ

(8)
5 = 64, λ

(9)
5 = 240, λ

(10)
5 = 288, λ

(11)
5 = 528,

λ̄
(i)
5 = λ

(i)
5 , i = 6, 7, 8, 9, 10, 11,

lead to simple designs with the same parameters 5 − (36, 13, 3672 × 585). However,
they are not isomorphic.

2.2 Simple 4− (35, k,Λ) designs with k = 8, 9, 10

We shall choose v1 = 17 and v2 = 18.

2.2.1 k = 8

There is a unique non-trivial solution for Eq.(1) with λ
(5)
4 = 13, λ

(7)
4 = 264, λ

(8)
4 = 320,

λ̄
(5)
4 = 14, λ̄

(7)
4 = 336, λ̄

(8)
4 = 448, which yields a simple 4− (35, 8, 448× 35) design.

2.2.2 k = 9

There are in total 700 non-trivial solutions for Eq.(1), of which we can construct 452
simple 4− (35, 9,Λ) designs. Here are two examples.

(a) λ
(6)
4 = 18, λ

(7)
4 = 38, λ

(8)
4 = 15, λ

(9)
4 = 27, λ̄

(5)
4 = 4, λ̄

(7)
4 = 84, λ̄

(8)
4 = 133,

λ̄
(9)
4 = 42, which yields a simple 4− (35, 9, 369× 63) design.

(b) λ
(5)
4 = 4, λ

(7)
4 = 84, λ

(8)
4 = 50, λ

(9)
4 = 90, λ̄

(6)
4 = 28, λ̄

(8)
4 = 294, λ̄

(9)
4 = 140,

which yields a simple 4− (35, 9, 414× 63) design.
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2.2.3 k = 10

There is a huge number of non-trivial solutions for Eq.(1) in this case. For instance,

with the restriction that λ
(5)
4 = 3, we already have constructed 43225 simple 4 −

(35, 10,Λ) designs (many designs have equal value Λ, but they are not isomorphic).
Here is an example.

λ
(5)
4 = 3, λ

(6)
4 = 12, λ

(7)
4 = 6, λ

(8)
4 = 85, λ

(9)
4 = 153, λ

(10)
4 = 612, λ̄

(5)
4 = 2,

λ̄
(6)
4 = 11, λ̄

(7)
4 = 28, λ̄

(8)
4 = 70, λ̄

(9)
4 = 238, λ̄

(10)
4 = 357, which yields a simple

4− (35, 10, 3043× 21) design.

2.3 Some simple 6− (46, k,Λ) designs with k = 13, 15

Some further examples for 6 − (46, 13,Λ) and 6 − (46, 15,Λ) designs are given here.
In both cases the ingredient designs are on 23 points, i.e. v1 = v2 = 23.

• 6 − (46, 13, 3515 × 1560) with λ
(7)
6 = 5, λ

(8)
6 = 40, λ

(9)
6 = 200, λ

(10)
6 = 700,

λ
(11)
6 = 1820, λ

(12)
6 = 3640, λ

(13)
6 = 5720, and λ̄

(i)
6 = λ

(i)
6 , i = 7, 8, 9, 10, 11, 12, 13.

6 − (46, 13, 4218 × 1560) with λ
(7)
6 = 6, λ

(8)
6 = 48, λ

(9)
6 = 240, λ

(10)
6 = 840,

λ
(11)
6 = 2184, λ

(12)
6 = 4368, λ

(13)
6 = 6864, and λ̄

(i)
6 = λ

(i)
6 , i = 7, . . . , 13.

• 6 − (46, 15, 28120 × 2860) with λ
(7)
6 = 5, λ

(8)
6 = 136, λ

(9)
6 = 200, λ

(10)
6 = 700,

λ
(11)
6 = 1820, λ

(12)
6 = 3640, λ

(13)
6 = 5720, λ

(14)
6 = 7150, λ

(15)
6 = 7150, and

λ̄
(i)
6 = λ

(i)
6 , i = 7, . . . , 15.

Remark 2.4 We note that Eq.(1) could have non-trivial solutions when t+ 1 ≤ k ≤
2t − 1. For example, when t = 5, k = 8 and v1 = v2 = 22, Eq.(1) has a non-trivial

solution with u2 = u4 = u6 = 0 (other ui are equal to 1), λ
(7)
5 = 130, λ̄

(8)
5 = 160

and λ̄
(i)
5 = λ

(i)
5 , i = 7, 8, leading to a simple 5 − (44, 8, 4560) design. However, the

existence of an ingredient design with parameters 5 − (22, 7, λ
(7)
5 ) = 5 − (22, 7, 130)

seems to be still undecided.

3 Conclusion

We have presented a new recursive construction for simple t−designs based on a
composition of smaller ingredient designs. The construction leads to find solutions
for the indices of the ingredient designs that satisfy a certain set of equalities. With
a small number of examples to demonstrate the strength of the method, we have
constructed a large amount of new t−designs, which were unknown to date. Clearly
the method is very fruitful and powerful. We believe that this method would enable
interested researchers to improve the Table of simple t−designs in the Handbook of
Combinatorial Designs considerably.
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