On a Class of Traceability Codes

Tran van Trung and Sosina Martirosyan
Institute for Experimental Mathematics, University of Essen
Ellernstrasse 29, 45326 Essen, Germany
{trung, sosina}@exp-math.uni-essen.de

Abstract

Traceability codes are designed to be used in schemes that protect copyrighted digital data against piracy. The main aim of this paper is to give an answer to a Staddon-Stinson-Wei's problem of the existence of traceability codes with $q < w^2$ and b > q. We provide a large class of these codes constructed by using a new general construction method for q-ary codes.

1 Introduction

Traceability (TA) codes are designed to be used in schemes that protect copyrighted digital data against piracy. An example of such an application in pay-per-view movies is described in Fiat and Tassa [8]. Different notions of "traceability" have been studied by several researchers in recent years, e.g., [3], [4], [5], [8], [9], [10], [11], [12], [13].

In this paper, notation and definitions of traceability codes are adapted from Staddon, Stinson and Wei's paper [13].

A code C of length n with b codewords and minimum distance d over an alphabet Q with |Q| = q is called an (n, b, q; d)-code. If d is not needed, we call C an (n, b, q)-code. A codeword will have the form $x = (x_1, \ldots, x_n)$, where $x_i \in Q$, $1 \le i \le n$.

For any subset of codewords $C_0 \subseteq C$, the set of descendants of C_0 , denoted $\mathbf{desc}(C_0)$, is defined by

$$\mathbf{desc}(\mathcal{C}_0) = \{x \in Q^n : x_i \in \{a_i : a \in \mathcal{C}_0\}, 1 \le i \le n\}.$$

For any $x, y \in Q^n$, define $I(x, y) = \{i : x_i = y_i\}$.

Definition 1.1 Suppose C is an (n, b, q)-code and $w \ge 2$ is an integer. C is called a w-TA code provided that, for all subsets $C_i \subseteq C$ of size at most w and all $x \in \mathbf{desc}(C_i)$, there is at least one codeword $y \in C_i$ such that |I(x, y)| > |I(x, z)| for any $z \in C \setminus C_i$.

The following result stated in [4], [5], [13] is useful. We present it here with a simple proof.

Theorem 1.1 Any (n, b, q; d) code with $d > n(1 - 1/w^2)$ is an (n, b, q) w-TA code.

Proof. Let \mathcal{C} be an (n, b, q; d) code with $d > n(1 - 1/w^2)$. Set $\alpha = n(1 - 1/w^2)$. Any two codewords $c_1, c_2 \in \mathcal{C}$ agree in at most $\beta = n - (\alpha + 1) = n/w^2 - 1$ positions. Let $\mathcal{C}' = \{c'_1, \ldots, c'_v\} \subseteq \mathcal{C}$ be a subset of size v. For any $u \in \mathbf{desc}(\mathcal{C}')$, define $M(u) = \max\{|I(u, c'_i)| : i = 1, \ldots, v\}$ and $M = \min_{u \in \mathbf{desc}(\mathcal{C}')} M(u)$. Then $n/v \leq M$. On the

other hand, for any $c \in \mathcal{C} \setminus \mathcal{C}'$ we have $\sum_{c_i' \in \mathcal{C}'} |I(c, c_i')| \leq v\beta$. Now \mathcal{C} will be a v-TA code if $v\beta < n/v$. Thus $\beta < n/v^2$, equivalently $n/w^2 - 1 < n/v^2$. Hence $v \leq w$, as desired. \square

In [13], it is shown that if there exists an (n, b, q) w-TA code, then w < q. The following theorem [13] is obtained by applying Theorem 1.1 to q-ary Reed-Solomon codes.

Theorem 1.2 (Staddon, Stinson and Wei) Suppose n, q and w are given, with q a prime power and $n \leq q+1$. Then there exists an (n,b,q) w-TA code in which $b=q^{\lceil n/w^2 \rceil}$.

In Theorem 1.2, if $q < w^2$, then b = q. Thus, as an open problem Staddon, Stinson, and Wei [13], ask the following question: Can we construct w-TA codes with $q < w^2$ and b > q?

Our aim is to give an answer to the Staddon-Stinson-Wei's problem. Precisely, we present a general construction method for q-ary codes with large Hamming distance. Using this method we are able to construct a large class of w-TA codes with $q < w^2$ and b > q, and thus obtain a positive answer to the problem.

2 A Construction of (n, b, q; d) codes

We depict an (n, b, q; d)-code \mathcal{C} as an $b \times n$ array $\mathcal{A}(\mathcal{C})$ on q symbols, where each row of the array corresponds to one of the codewords of \mathcal{C} . For any $a \in Q$, define

$$m_i(a) = |\{i : \mathcal{A}(C)(i, j) = a\}|.$$

i.e. $m_j(a)$ is the frequency of a on the j^{th} column of $\mathcal{A}(\mathcal{C})$. Define

$$m(\mathcal{C}) = \max_{1 \le j \le n, a \in Q} (m_j(a)).$$

Definition 2.1 Let C be an (n, b, q; d) code. We say that C has an σ -resolution if the codewords of C can be partitioned into s subsets A_1, \ldots, A_s , where $|A_i| = \sigma$, for $i = 1, \ldots, s$, in such a way that each A_i is a code of minimum distance equal to n, i.e. any two codewords of A_i agree in no position.

CONSTRUCTION

Let C_1 be an $(n_1, b_1, q_1; d_1)$ code over an alphabet Q_1 . Let C_2 be an $(n_2, b_2, q_2; d_2)$ code with a σ -resolution A_1, \ldots, A_s . Suppose $s \geq m(C_1)$. For each $a \in Q_1$ denote by $C_2(a)$ a copy of C_2 defined over an alphabet Q(a) such that $Q(a_1) \cap Q(a_2) = \emptyset$ if $a_1 \neq a_2$. Denote by $A_1(a), \ldots, A_s(a)$ a σ -resolution of $C_2(a)$.

Let $col_j = (a_{1,j}, a_{2,j}, \ldots, a_{b_1,j})^T$ be the j^{th} column of $\mathcal{A}(\mathcal{C}_1)$, $1 \leq j \leq n_1$. Let $a(1), \ldots, a(t)$, say, be t positions of col_j at which symbol $a \in Q_1$ appears. Note that $t \leq m(\mathcal{C}_1)$. Now replace a at position a(1) by $A_1(a)$, a at position a(2) by $A_2(a)$, etc., and a at position a(t) by $A_t(a)$. Perform this process for every symbol of Q_1 and for every column of $\mathcal{A}(\mathcal{C}_1)$. The resulting code \mathcal{C} obtained by this replacement has parameters $(n_1n_2, \sigma b_1, q_1q_2; n_1n_2 - (n_1 - d_1)(n_2 - d_2))$.

Obviously, the length and the number of codewords of C is n_1n_2 and σb_1 respectively. Further, any two codewords $c_1, c_2 \in C_1$ agree in at most $(n_1 - d_1)$ positions. After replacement c_1 and c_2 correspond to two subsets R_1 and R_2 of σ codewords each. Any two

codewords in R_1 (resp. R_2) agree in no position, whereas a codeword from R_1 and a codeword from R_2 agree in at most $(n_1 - d_1)(n_2 - d_2)$ positions. Hence the minimum distance of C is $n_1 n_2 - (n_1 - d_1)(n_2 - d_2)$, as stated.

Further, if $q_1q_2 \geq b_1$ then $\mathcal C$ can be extended to a code $\mathcal C^*$ having parameters $(n_1n_2+1,\sigma b_1,q_1q_2;d)$, where $d=\min\{n_1n_2,n_1n_2+1-(n_1-d_1)(n_2-d_2)\}$. Let $Q=\{a_1,a_2,\ldots,a_{q_1q_2}\}$ be the alphabet of $\mathcal C$ and let $\mathcal C_1=\{c_1,c_2,\ldots,c_{b_1}\}$. By construction, any codeword $c_i\in\mathcal C_1$ corresponds to a subset R_i of σ codewords. For any $i=1,\ldots,b_1$, we add symbol a_i to the $(n_1n_2+1)^{th}$ column of each codeword of R_i . This forms a set R_i^* . The collection of all R_i^* forms an $(n_1n_2+1,\sigma b_1,q_1q_2;d)$ code $\mathcal C^*$ with $d=\min\{n_1n_2,n_1n_2+1-(n_1-d_1)(n_2-d_2)\}$. This can be seen as follows. Any two codewords x* and y* of $\mathcal C^*$ belong either to some R_i^* or to two different R_i^* and R_j^* . In the first case their distance is n_1n_2 because their components agree only at the $(n_1n_2+1)^{th}$ column, and in the second case their distance is at least $n_1n_2+1-(n_1-d_1)(n_2-d_2)$ because their components at the $(n_1n_2+1)^{th}$ column are distinct.

We record the result of the construction in the following theorem.

Theorem 2.1 Suppose there is an $(n_1, b_1, q_1; d_1)$ code C_1 and there is an $(n_2, b_2, q_2; d_2)$ code C_2 with a σ -resolution A_1, \ldots, A_s such that $s \geq m(C_1)$. Then the following hold.

- (i) There is an $(n_1n_2, \sigma b_1, q_1q_2; n_1n_2 (n_1 d_1)(n_2 d_2))$ code C.
- (ii) Further, if $q_1q_2 \geq b_1$, then C can be extended to a code C^* having parameters $(n_1n_2 + 1, \sigma b_1, q_1q_2; d)$, where $d = \min\{n_1n_2, n_1n_2 + 1 (n_1 d_1)(n_2 d_2)\}$.

We illustrate the construction in Theorem 2.1 by the following example.

Example 2.1 Let C_1 be a (3,4,2;2) code over the alphabet $Q_1 = \{0,1\}$ given by

$$C_1 = \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

Let $C_2(\mathbf{0})$ be a (3,6,3;2) code on the alphabet $\{1,2,3\}$ having a 3-resolution $A_1(\mathbf{0})$ and $A_2(\mathbf{0})$:

$$A_1(\mathbf{0}) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \qquad A_2(\mathbf{0}) = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Let $C_2(1)$ be a copy of $C_2(0)$ on the alphabet $\{4,5,6\}$ with the corresponding 3-resolution

$$A_1(\mathbf{1}) = \begin{pmatrix} 4 & 5 & 6 \\ 5 & 6 & 4 \\ 6 & 4 & 5 \end{pmatrix} \qquad A_2(\mathbf{1}) = \begin{pmatrix} 4 & 6 & 5 \\ 5 & 4 & 6 \\ 6 & 5 & 4 \end{pmatrix}$$

Replacing entries of $\mathcal{A}(\mathcal{C}_1)$ by $A_i(\mathbf{j})$ gives

$$\begin{array}{cccc} A_1(\mathbf{0}) & A_1(\mathbf{0}) & A_1(\mathbf{0}) \\ A_2(\mathbf{0}) & A_1(\mathbf{1}) & A_1(\mathbf{1}) \\ A_1(\mathbf{1}) & A_2(\mathbf{0}) & A_2(\mathbf{1}) \\ A_2(\mathbf{1}) & A_2(\mathbf{1}) & A_2(\mathbf{0}) \end{array}$$

Thus, we obtain a (9,12,6;8) code \mathcal{C} . Now, since the condition $q_1q_2 > b_1$ is satisfied, \mathcal{C} can be extended to a (10,12,6;9) code \mathcal{C}^* .

3 Construction of (n, b, q) w-TA codes with $q < w^2$ and b > q

In this section we discuss a concrete application of the above construction. We see that the method is suitable for constructing q-ary codes with large distance, and therefore, by Theorem 1.1, for constructing w-TA codes with large w. The following theorem shows this fact.

Theorem 3.1 (i) Let q_0 be a prime power. If there is a set of at least $(q_0 - 1)$ mutually orthogonal latin squares (MOLS) of order σ , then there is an (n, b, q; d) code with

$$n = (q_0 + 1)\sigma^m$$

$$b = q_0^2 \sigma^m$$

$$q = q_0 \sigma^m$$

$$d = (q_0 + 1)\sigma^m - 1,$$

for any positive interger m.

(ii) There is an (n, b, q; d) code with

$$n = (...(((q_0 + 1) \underbrace{q_1 + 1)q_1 + 1)...q_1 + 1}_{m})$$

$$b = q_0^2 q_1^m$$

$$q = q_0 q_1^m$$

$$d = n - 1,$$

where $q_1 \ge q_0$ are prime powers and $m \ge 1$ is an integer.

Proof. Take C_0 to be an $OA_1(2, q_0 + 1, q_0)$ orthogonal array A, (see e.g., [6]), i.e. C_0 is a $(q_0 + 1, q_0^2, q_0; q_0)$ extended Reed-Solomon code. The array A has the property that any symbol appears exactly q_0 times in each column. A remark upon MOLS, which are used

here, needs to be made. It is known that any given set of u MOLS M_1, \ldots, M_u can be transformed in such a way that any two rows from different M_i and M_i agree in at most one column. Here, we assume that our MOLS have this property.

- (i) Now suppose we have a set of q_0 MOLS M_1, \ldots, M_{q_0} of order σ . In the case that we only have (q_0-1) MOLS M_1, \ldots, M_{q_0-1} , we will take M_0 to be the $\sigma \times \sigma$ matrix with entries from the σ symbols of the latin squares such that each symbol appears σ times in exactly one row. In either cases, $M_0, M_1, \ldots, M_{q_0-1}$ together form a σ resolution of a $(\sigma, q_0\sigma, \sigma; \sigma-1)$ code \mathcal{C} . Applying Theorem 2.1 to \mathcal{C}_0 and \mathcal{C} gives a $((q_0+1)\sigma, q_0^2\sigma, q_0\sigma; (q_0+1)\sigma-1)$ code \mathcal{C}_1 . As each symbol of the alphabet appears in each column of $\mathcal{A}(\mathcal{C}_1)$ q_0 times, Theorem 2.1 can be applied to \mathcal{C}_1 and \mathcal{C} again. This recursive procedure gives rise to codes in (i).
- (ii) If $\sigma = q_1 \ (\geq q_0)$ is a prime power, then there are $q_1 1$ MOLS M_1, \ldots, M_{q_1-1} of order q_1 . M_1, \ldots, M_{q_1-1} and M_0 together form a code \mathcal{C} with a q_1 resolution. Extend \mathcal{C}_1 in (i) to a code \mathcal{C}_1^* by adding one more column, as shown in Theorem 2.1. Observe that in \mathcal{C}_1^* a symbol appears q_1 or q_0 times in each column. Thus, we can apply Theorem 2.1 to \mathcal{C}_1^* and \mathcal{C} . Therefore, if at each step the obtained code is extended before applying Theorem 2.1, the resulting code after m steps will have parameters given in (ii).

The following theorem shows that codes constructed in Theorem 3.1, in fact, provide a large class of w-TA codes with $q < w^2$ and b > q.

Theorem 3.2 Let q_0 and q_1 be prime powers such that $q_1 \geq q_0$.

(i) Suppose $\sqrt{q_0q_1}+1 < \lceil \sqrt{q_0q_1+q_1+1} \rceil$. Then for any integer n with

$$\sqrt{q_0q_1} + 1 < \lceil \sqrt{n} \rceil \le \lceil \sqrt{q_0q_1 + q_1 + 1} \rceil$$

there exists an (n, b, q) w-TA code with $q < w^2$ and b > q, where

$$b = q_0^2 q_1$$

$$q = q_0 q_1$$

$$w = \lceil \sqrt{n} \rceil - 1.$$

(ii) For any integer m > 2 and for any integer n with

$$\sqrt{q_0 q_1^m} + 1 < \lceil \sqrt{n} \rceil \le \lceil \sqrt{q_0 q_1^m + q_1^m + \dots + q_1 + 1} \rceil$$

there exists an (n, b, q) w-TA code with $q < w^2$ and b > q, where

$$b = q_0^2 q_1^m$$

$$q = q_0 q_1^m$$

$$w = \lceil \sqrt{n} \rceil - 1.$$

Proof. First, recall that the parameters (N, b, q; d) of a code \mathcal{C}^* in Theorem 3.1 (ii) are $N = q_0 q_1^m + q_1^m + q_1^{m-1} + \dots + q_1 + 1, b = q_0^2 q_1^m, q = q_0 q_1^m, \text{ and } d = N - 1, \text{ where } m \ge 1$ is an integer. We remark that if \mathcal{C}^* is shortened, the resulting code with length $n \leq N$ always have minimum distance d = n - 1.

Let (n, b, q; n-1) be the parameters of a shortened code \mathcal{C} of \mathcal{C}^* (the case $\mathcal{C} = \mathcal{C}^*$ is also included). So, n < N. Let $w = \lceil \sqrt{n} \rceil - 1$. By Theorem 1.1, \mathcal{C} is a w-TA code. The condition $q < w^2$, i.e., $\sqrt{q} < w$, thus becomes $\sqrt{q} < \lceil \sqrt{n} \rceil - 1$, equivalently $\sqrt{q} + 1 < \lceil \sqrt{n} \rceil$. As $n \leq N$, we have $\sqrt{q}+1 < \lceil \sqrt{n} \rceil \leq \lceil \sqrt{N} \rceil$. Now $q=q_0q_1^m$, so if m=1, we have the condition $\sqrt{q_0q_1}+1 < \lceil \sqrt{n} \rceil \leq \lceil \sqrt{q_0q_1+q_1+1} \rceil$. Thus (i) follows. If $m \geq 2$, we see that the condition $\sqrt{q}+1 < \lceil \sqrt{N} \rceil$ is always satisfied. In fact, we only need to verify that $\sqrt{q}+1 < \sqrt{N}$, i.e., $(\sqrt{q_0q_1^m}+1)^2 < q_0q_1^m+q_1^m+q_1^{m-1}+\cdots+q_1+1$. Simplifying the last inequality yields $4q_0q_1^{m-2} < (q_1^{m-1}+\cdots+q_1+1)^2$, which is satisfied for all integers $q_1 \geq q_0 \geq 2$ and $m \geq 2$. Thus we have (ii). The proof is complete.

Remark 3.1 In the proof of Theorem 3.2 above, we do not use the approximation $\sqrt{q}+1 < \sqrt{N}$ to show $\sqrt{q}+1 < \lceil \sqrt{N} \rceil$ for case m=1. If we used it, we would get an inequality $4q_0 < q_1$. And therefore, we would miss a large number of w-TA codes. In fact, the condition $\sqrt{q_0q_1}+1 < \lceil \sqrt{q_0q_1+q_1+1} \rceil$, as stated in the theorem, is much stronger.

Example 3.1 Some small w-TA codes of Theorem 3.2 (i) are as follows. A (10, 12, 6) 3-TA code corresponds to $q_0 = 2$ and $q_1 = 3$. This code is also displayed in Example 2.1. For $q_0 = 3$ and $q_1 = 4$ we have a (17,36,12) 4-TA code, and for $q_0 = 4$ and $q_1 = 5$ we have a (26,80,20) 5-TA code.

Remark 3.2 It is worth to note that the construction method in Theorem 2.1 can produce good q-ary codes. Recall that for any (n, b, q; d) code the Plotkin bound is given by $b(b-1)d \leq 2n \sum_{i=0}^{q-2} \sum_{j=i+1}^{q-1} b_i b_j$, where $b_i = \lfloor (b+i)/q \rfloor$, see, e.g., [1]. Now consider, for example, the codes in Theorem 3.1 (ii). It is easy to check that if $q_0 = q_1$, these codes meet the Plotkin bound with equality. Moreover, for the three codes mentioned in Example 3.1 we have the following. The (10,12,6;9) code is optimal. The (17,36,12;16) and (26,80,20;25) codes are 'quasi' optimal because the maximum value for b derived from the Plotkin bound is 37 in the first case and 81 in the second case.

References

- [1] G. T. BOGDANOVA, A. E. BROUWER, S. N. KAPRALOV, AND P. R. J. ÖSTERGRÅRD, Error-Correcting Codes over an Alphabet of Four Elements, *Designs, Codes and Cryptography* 23 (2001), 333–342.
- [2] D. Boneh and M. Franklin, An efficient public keys traitor tracing schemes, in Advances in Cryptology Crypto'94 (Lecture Notes in Computer Science), Springer-Verlag 839 (1994), 257–270.
- [3] D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data, *IEEE Trans. Inform. Theory* 44 (1998), 1897–1905.
- [4] B. Chor, A. Fiat and M. Naor, Tracing traitors, in Advances in Cryptology Crypto'94 (Lecture Notes in Computer Science), Springer-Verlag, 839 (1994), 257-270.
- [5] B. Chor, A. Fiat, M. Naor, and B. Pinkas, Tracing traitors, *IEEE Trans. Inform. Theory* 46 (2000), 480–491.
- [6] C. J. COLBOURN AND J. H. DINITZ, CRC Handbook of Combinatorial Designs, CRC Press, Inc., 1996.

- [7] P. Erdős, P. Frankl and Z. Füredi, Families of finite sets in which no set is covered by the union of r other, Israel Journal of Mathematics 51 (1985), 75–89.
- [8] A. Fiat and T. Tassa, Dynamic traitor tracing, in Advances in Cryptology Crypto'99 (Lecture Notes in Computer Science), Springer-Verlag, 1666 (1999), 354–371.
- [9] A. FIAT AND T. TASSA, Dynamic traitor tracing, J. Cryptology 14 (2001), 211-223.
- [10] E. GAFNI, J. STADDON, AND Y. L. YIN, Efficient methods for integrating traceability and broadcast encryption, in *Advances in Cryptology-Crypto'99 (Lecture Notes in Computer Science)*, Springer-Verlag, **1666** (1999), 372-387.
- [11] R. Kumar, S. Rajagopalan, and A. Sahai, Coding constructions for blacklisting problems without computational assumptions, in *Advances in Cryptology-Crypto'99* (Lecture Notes in Computer Science), Springer-Verlag, **1666** (1999), 609–623.
- [12] K. Kurosawa, T. Yoshida, and Y. Desmedt, Inherently large traceability and asymmetric schemes with arbiter, in *Proc. IEEE Int. Symp. Inform. Theory (ISIT'2000)* Sorrento, Italy, June 2000.
- [13] J. N. STADDON, D. R. STINSON AND R. WEI, Combinatorial properties of frameproof and traceability codes, *IEEE Trans. Inform. Theory* 47 (2001), 1042–1049
- [14] D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes and frameproof codes, SIAM J. Discrete Math. 11 (1998), 41–53.