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Abstract

Traceability codes are designed to be used in schemes that protect copyrighted
digital data against piracy. The main aim of this paper is to give an answer to a
Staddon-Stinson-Wei’s problem of the existence of traceability codes with ¢ < w? and
b > q. We provide a large class of these codes constructed by using a new general
construction method for g-ary codes.

1 Introduction

Traceability (TA) codes are designed to be used in schemes that protect copyrighted digital
data against piracy. An example of such an application in pay-per-view movies is described
in Fiat and Tassa [8]. Different notions of “traceability” have been studied by several
researchers in recent years, e.g., [3], [4], [5], [8], [9], [10], [11], [12], [13].

In this paper, notation and definitions of traceability codes are adapted from Staddon,
Stinson and Wei’s paper [13].

A code C of length n with b codewords and minimum distance d over an alphabet ()
with |@Q| = ¢ is called an (n,b, q; d)-code. If d is not needed, we call C an (n,b, g)-code. A
codeword will have the form z = (24,...,2,), where 2; € Q, 1 < i < n.

For any subset of codewords Cy C C, the set of descendants of Cy, denoted dese(Cop), is
defined by

desc(Co) ={z € Q" :a; € {a; :a € Co}, 1 <i < n}.

For any z,y € Q", define I(z,y) = {i:z; = y;}.

Definition 1.1 Suppose C is an (n,b, q)-code and w > 2 is an integer. C is called a w-TA
code provided that, for all subsets C; C C of size at most w and all v € desc(C;), there is
at least one codeword y € C; such that |I(z,y)| > |I(z,z)| for any z € C\ C;.

The following result stated in [4], [5], [13] is useful. We present it here with a simple
proof.

Theorem 1.1 Any (n,b,q;d) code with d > n(1 — 1/w?) is an (n,b,q) w-TA code.

Proof. Let C be an (n,b,q;d) code with d > n(1 — 1/w?). Set @ = n(1 — 1/w?). Any
two codewords ¢y, ¢ € C agree in at most 3 = n — (o + 1) = n/w? — 1 positions. Let
C' = {d,...,c,} C C be a subset of size v. For any u € desc(C’), define M(u) =

max{|I(u,c})| : i =1,...,v} and M = minuedesc(C/)M(u)' Then n/v < M. On the



other hand, for any ¢ € C\ C" we have Y. .o |I(c, c})] < vf. Now C will be a v-TA code if
vB < n/v. Thus 3 < n/v?, equivalently n/w? —1 < n/v2. Hence v < w, as desired. a

In [13], it is shown that if there exists an (n, b, ¢) w-TA code, then w < ¢. The following
theorem [13] is obtained by applying Theorem 1.1 to g-ary Reed-Solomon codes.

Theorem 1.2 (Staddon, Stinson and Wei) Suppose n, ¢ and w are given, with q a
prime power and n < g+ 1. Then there exists an (n,b, q) w-TA code in which b = q[”/w21.

In Theorem 1.2, if ¢ < w?, then b = ¢. Thus, as an open problem Staddon, Stinson,
and Wei [13], ask the following question: Can we construct w-TA codes with ¢ < w? and
b>q?

Our aim is to give an answer to the Staddon-Stinson-Wei’s problem. Precisely, we
present a general construction method for ¢-ary codes with large Hamming distance. Using
this method we are able to construct a large class of w-TA codes with ¢ < w? and b > ¢,
and thus obtain a positive answer to the problem.

2 A Construction of (n,b,¢;d) codes

We depict an (n, b, ¢; d)-code C as an b x n array A(C) on ¢ symbols, where each row of the
array corresponds to one of the codewords of C. For any a € @), define

mj(a) = {i: AC)(i,J) = a}].
i.e. m;(a) is the frequency of a on the j* column of A(C). Define

m(C) = max (m;(a)).
©) = _max_ (m;(a)
Definition 2.1 Let C be an (n,b,q;d) code. We say that C has an o-resolution if the
codewords of C can be partitioned into s subsets Ay, ..., Ag, where |A;| = o, fori=1,...,s,
in such a way that each A; is a code of minimum distance equal to n, i.e. any two codewords
of A; agree in no position.

CONSTRUCTION

Let C; be an (ny1,b1,¢1;dy) code over an alphabet Q1. Let C3 be an (ng,bs, q2;d3) code
with a o-resolution Ay,..., As. Suppose s > m(Cy). For each a € Q; denote by C3(a) a
copy of Cy defined over an alphabet @(a) such that Q(a;) NQ(az) = 0 if a; # az. Denote
by Ai(a),..., As(a) a o-resolution of Cy(a).

Let col; = (aij,as;,--.,ap, ;)T be the j" column of A(C;), 1 < j < mny. Let
a(l),...,a(t), say, be t positions of col; at which symbol a € @ appears. Note that
t < m(Cy). Now replace a at position a(1) by Aj(a), @ at position a(2) by As(a), etc.,
and a at position a(t) by A;(a). Perform this process for every symbol of @ and for
every column of A(Cy). The resulting code C obtained by this replacement has parameters
(7117127 abi, qiqa;n1n2 — (n1 - d1)(n2 - dz))-

Obviously, the length and the number of codewords of C is nyny and oby respectively.
Further, any two codewords ¢q,c; € Cy agree in at most (ny — dy) positions. After re-
placement ¢; and ¢y correspond to two subsets Ry and Ry of ¢ codewords each. Any two



codewords in Ry (resp. R3) agree in no position, whereas a codeword from Ry and a code-
word from Ry agree in at most (n; — dy)(n2 — d3) positions. Hence the minimum distance
of C is nyng — (ny — dy)(ng — da), as stated.

Further, if g1g2 > by then C can be extended to a code C* having parameters (nyny +
1,001, q1¢2; d), where d = min{nyng, nyno+1—(ny1—dy)(ne—dz)}. Let Q = {ay, a2, ..., 04,4, }
be the alphabet of C and let Cy = {¢1, ¢o, ..., ¢, }. By construction, any codeword ¢; € C4
corresponds to a subset R; of ¢ codewords. For any ¢ = 1,..., by, we add symbol a; to the
(ning + 1)™ column of each codeword of R;. This forms a set Rf. The collection of all R}
forms an (ning+1,0b1, q1¢2;d) code C* with d = min{nyng, nyna+1— (ny —dy)(ng —da)}.
This can be seen as follows. Any two codewords z* and y* of C* belong either to some
R or to two different RY and R7. In the first case their distance is niny because their
components agree only at the (nyng+ 1)”% column, and in the second case their distance is
at least nyny 41— (ny —dy)(ny — da) because their components at the (nyny 4 1) column
are distinct.

We record the result of the construction in the following theorem.

Theorem 2.1 Suppose there is an (ny,b1,q1;dy) code Cy and there is an (ng, b, qz;ds)
code Cy with a o-resolution Ay, ..., A such that s > m(Cy). Then the following hold.

(i) There is an (ning, oby, q1g2;n1ne — (N1 — dyi)(n2 — dz)) code C.

(ii) Further, if g1q2 > by, then C can be extended to a code C* having parameters (ning +
1,0b1, q1g2; d), where d = min{nyng, ninz+ 1 — (ny — dy)(ne — da) }.

We illustrate the construction in Theorem 2.1 by the following example.

Example 2.1 Let Cy be a (3,4,2;2) code over the alphabet )1 = {0,1} given by

61:

== o O
= o= O
O = O

Let C3(0) be a (3,6,3;2) code on the alphabet {1,2,3} having a 3-resolution A;(0) and
A2 (0)

12 3 13 2
A(0)= 2 3 1 Ay(0)= 2 1 3
31 2 3 2 1

Let C2(1) be a copy of C2(0) on the alphabet {4, 5,6} with the corresponding 3-resolution

4 5 6 4 6 5
A= 5 6 4  A(l)= 5 4 6

6 4 5 6 5 4

Replacing entries of A(Cy) by A;(j) gives

Ar(0)  A1(0)  Aq(0)

Ag(0)  Ar(1)  Aqi(1)

A1) As(0)  As(1)

As(1) As(1)  As(0)



Thus, we obtain a (9,12, 6;8) code C. Now, since the condition g1q; > by is satisfied, C

can be extended to a (10,12, 6;9) code C*.
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3 Construction of (n,b,q) w-TA codes with ¢ < w? and b > ¢

In this section we discuss a concrete application of the above construction. We see that
the method is suitable for constructing g-ary codes with large distance, and therefore, by
Theorem 1.1, for constructing w-TA codes with large w. The following theorem shows this

fact.

Theorem 3.1

(i) Let qo be a prime power. If there is a set of at least (qo — 1) mutually

orthogonal latin squares (MOLS) of order o, then there is an (n,b,q;d) code with

for any positive interger m.

(ii) There is an (n,b, q;d) code with

q
d

Qe o= 3

(g0 + 1)o™
g™

doo
(qO + 1)Um - 17

((((go+D) g +1)g +1)ccqn + 1)

awq

qoq1"

n—1,

m

where g1 > qo are prime powers and m > 1 is an integer.

Proof. Take Cy to be an OA1(2,q0 + 1, qo) orthogonal array A, (see e.g., [6]), i.e. Cp is
a (qo+ 1,42, qo; qo) extended Reed-Solomon code. The array A has the property that any
symbol appears exactly ¢p times in each column. A remark upon MOLS, which are used



here, needs to be made. It is known that any given set of w MOLS M,,..., M, can be
transformed in such a way that any two rows from different A; and M; agree in at most
one column. Here, we assume that our MOLS have this property.

(1) Now suppose we have a set of g MOLS My, ..., M, of order o. In the case that we
only have (go—1) MOLS My, ..., My _1, we will take My to be the o x ¢ matrix with entries
from the o symbols of the latin squares such that each symbol appears o times in exactly one
row. In either cases, My, My, ..., My _1 together form a o resolution of a (o, oo, 050 — 1)
code C. Applying Theorem 2.1 to Cq and C gives a ((qo + 1)o, g3, qoo; (g0 + 1)o — 1) code
Ci. As each symbol of the alphabet appears in each column of A(Cy) go times, Theorem
2.1 can be applied to Cy and C again. This recursive procedure gives rise to codes in ().

(13) If 0 = ¢4 (> qo) is a prime power, then there are ¢ — 1 MOLS M, ..., M, _; of
order ¢;. My, ..., My _1 and My together form a code C with a g; resolution. Extend C;
in (i) to a code Cf by adding one more column, as shown in Theorem 2.1. Observe that in
CT a symbol appears ¢ or gp times in each column. Thus, we can apply Theorem 2.1 to C§
and C. Therefore, if at each step the obtained code is extended before applying Theorem
2.1, the resulting code after m steps will have parameters given in (i7). a

The following theorem shows that codes constructed in Theorem 3.1, in fact, provide a
large class of w-TA codes with ¢ < w? and b > q.

Theorem 3.2 Let gy and g1 be prime powers such that ¢1 > qg.

(i) Suppose \/qoq1 + 1 < [v/qoq1 + ¢1 + 1]. Then for any integer n with
Vaoar +1 < [Vl < [Vaoqr + g1 + 1]

there exists an (n,b,q) w-TA code with ¢ < w* and b > q, where

b = f]gfh
q9 = 4qoq1

Wl - 1.

w

(ii) For any integer m > 2 and for any integer n with

Vaoar +1 < [Val < [ aoal + " + -+ a1 +1]

there exists an (n,b,q) w-TA code with ¢ < w* and b > q, where

b = @q"
q = qoqy"

w = [va]- L.

Proof.  First, recall that the parameters (N, b, ¢;d) of a code C* in Theorem 3.1 (i) are
N=qq"+q"+a" "+ +a+1,b=q¢" ¢=qoq", and d = N — 1, where m > 1
is an integer. We remark that if C* is shortened, the resulting code with length n < N
always have minimum distance d = n — 1.

Let (n,b,q;n — 1) be the parameters of a shortened code C of C* (the case C = C* is
also included). So, n < N. Let w = [\/n] — 1. By Theorem 1.1, C is a w-TA code. The

condition ¢ < w?, i.e., /g < w, thus becomes /g < [\/n] —1, equivalently \/g+1 < [/n].



As n < N, we have \/g+ 1 < [{/n] < [VN]. Now ¢ = qoq, so if m = 1, we have the
condition /goqr + 1 < [v/n] < [Vgoq1 + q1 + 1]. Thus (i) follows. If m > 2, we see that
the condition /g + 1 < [\/ﬁ} is always satisfied. In fact, we only need to verify that
Vi+1 < VN ie, (Vi + 1)? < qoq + ¢ + ¢ + -+ ¢ + 1. Simplifying the
last inequality yields 4(]0(]?_2 < (qim_l + -+ + ¢ + 1), which is satisfied for all integers
¢1 > qo > 2 and m > 2. Thus we have (i7). The proof is complete. O

Remark 3.1 In the proof of Theorem 3.2 above, we do not use the approximation /g+1 <
VN to show /g + 1 < [VN] for case m = 1. If we used it, we would get an inequality
4g0 < ¢q1. And therefore, we would miss a large number of w-TA codes. In fact, the

condition \/goq1 + 1 < [/qoq1 + ¢1 + 1], as stated in the theorem, is much stronger.

Example 3.1 Some small w-TA codes of Theorem 3.2 (i) are as follows. A (10,12,6)
3-TA code corresponds to gg = 2 and ¢; = 3. This code is also displayed in Example 2.1.
For go = 3 and ¢; = 4 we have a (17,36,12) 4-TA code, and for o = 4 and ¢; = 5 we have
a (26,80,20) 5-TA code.

Remark 3.2 It is worth to note that the construction method in Theorem 2.1 can produce
good g-ary codes. Recall that for any (n,b, ¢;d) code the Plotkin bound is given by b(b —
1)d <2n Ef;g 23;214-1 b;b;, where b; = | (b+1)/q], see, e.g., [1]. Now consider, for example,
the codes in Theorem 3.1 (i7). It is easy to check that if go = ¢1, these codes meet the
Plotkin bound with equality. Moreover, for the three codes mentioned in Example 3.1 we
have the following. The (10,12,6;9) code is optimal. The (17,36,12;16) and (26,80,20;25)
codes are ‘quasi’ optimal because the maximum value for b derived from the Plotkin bound
is 37 in the first case and 81 in the second case.
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