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Abstract

Frameproof codes have been introduced for use in digital fingerprinting that prevent a coali-
tion of w or fewer legitimate users from constructing a fingerprint of another user not in the
coalition. It turns out that w-frameproof codes are equivalent to separating hash families of
type {1,w}. In this paper we prove a tight bound for frameproof codes in terms of separating
hash families.

1 Introduction

Let @ be a finite set of size ¢ and let N be a positive integer. A subset C C QY with |C| = n is
called C' an (N,n,q) code. The elements of C' are called codewords. Each codeword x € C is of
the form = = (x1,...,2n), where z; € @, 1 < i < N. For any subset of codewords P C C, the set
of descendants of P, denoted desc(P), is defined by

desc(P)={z e Q" :z;€{a;:a € P}, 1<i<N}.

Let C be an (N,n,q) code and let w > 2 be an integer. C' is called a w-frameproof code if for
all P C C with |P| < w, we have that desc(P) N C = P. Frameproof codes were first introduced
by Boneh and Shaw [6], for use in fingerprinting of digital data to prevent a coalition of w or
fewer legitimate users from constructing a copy of fingerprint of another user not in the coalition.
Frameproof codes and their applications have been studied extensively, see for instance, [6], [13],
[9], [16], [18], [15], [4], [10]. One of the basic problems is the studying of upper bounds on the
cardinality of frameproof codes. Many strong bounds have been obtained in the papers [16], [15],
[4]. It turns out that frameproof codes are a special type of separating hash families (SHF).
Let h be a function from a set X to a set Y and let Cq,C5,...,Cy € X be t pairwise disjoint
subsets. We say that h separates C1,Cy,...,Cy if h(C1),h(C3),...,h(C}) are pairwise disjoint,
where h(C;) = {h(z) | z € C;}. Let |X| = n and Y| = ¢. We call a set H of N functions from
X toY an (N;n,q,{ws,...,ws})-separating hash family, denoted by SHF(N;n, q, {w1,...,w¢}), if
for all pairwise disjoint subsets Ci,...,Cy € X with |C;| = w;, for i = 1,...,t, there exists at



least one function h € ‘H that separates Cy, Co,...,Cy. The multiset {w1,ws, ..., w¢} is the type of
the separating hash family. Separating hash families provide a link to many known combinatorial
structures such as perfect hash families, frameproof codes, secure frameproof codes, identifiable
parent property codes. Many results on separating hash families can be found in [18], [19], [5], [20],
[14], 1], [2], [3], [11].

Frameproof codes and separating hash families have the following connection. An (N,n,q) w-
frameproof codes exists if and only if an SHF(NV;n,q, {1,w}) exists. As it is more convenient to
work with separating hash families, we will prove the results in this paper in terms of separating
hash families.

It is often useful to present an SHF(N;n,q, {w1,...,w:}) as an N X n matrix on ¢ symbols, say
A. The rows of A correspond to the hash functions in the family, the columns correspond to the
elements in the domain X, and the entry in row f and column z is f(z). We call A the matrix
representation of the hash family. The matrix A has the following property. For given disjoint sets
of columns C,Co,...,Cy with |C;| = w;, 1 < i < t, there exists at least one row f of A such that

{A(f,z): z € Ci}n{A(f,z): z € C;} =0,

for all 7 # j, i.e. row f separates the column sets C, Co, ..., C;. Now if we write the codewords of
an (N, n,q) w-frameproof code columnwise as an N x n matrix A, i.e. each codeword is a column
of A, then A is the matrix representation of an SHF(N;n,q,{1,w}). The problem of determining
an upper bound on the cardinality of an (NN,n,q) w-frameproof code becomes the problem of
determining an upper bound on the number of columns of A for given N, ¢, and w. When N < w,
it has been shown that n < w(q — 1), see [16], or [4]. The more interesting case is when N > w.
Strong bounds for case N > w are obtained in [16], [15], [4], [3].

We are interested in the case N = wd + 1 with d > 1. Several previously strong bounds known
for this case are found in [4], [3].

Theorem 1 ([4]) Let N, q, w and d be positive integers such that N = wd + 1, w > 2. Suppose
there is an (N, n,q) w-frameproof code. Then n < ¢ + O(q?).

Theorem 2 ([3]) Let N, q and d be positive integers such that N = 2d + 1. Suppose there is an
(N,n,q) 2-frameproof code. Then n < ¢@*1.

Theorem 3 ([3]) Let g and w be positive integers such that w > 2, ¢ > w + 1. Suppose there is
an (w + 1,n,q) w-frameproof code. Then n < ¢>.

The bounds in Theorems 2, 3 are tight.

The aim of the paper is to prove the following bound on the cardinality of w-frameproof codes.

Theorem 4 Let d, q, w be positive integers such that ¢ > w > 2. Suppose there exists an (N,n,q)
w-frameproof code with N = wd + 1. Then n < ¢*+1.

The bound of Theorem 4 is tight as shown in the next section.



2 A tight bound for separating hash families of type {1, w}

For the sake of completeness we include the following simple lemma.

Lemma 1 An (N,n,q) w-frameproof code is equivalent to an SHF(N;n,q, {1, w}).

Proof. Let A be an N X n matrix having entries from a set of ¢ symbols. Let {c} and P be any
given disjoint subsets of columns of A with [{c}| =1 and |P| < w, where w is an integer such that
w > 2. We may view A as an (N,n,q) code whose codewords are the columns. Assume that A
is an (N, n,q) w-frameproof code. By definition this is equivalent to desc(P) N A = P. Further,
desc(P)NA = P is equivalent to the fact that there is a row ¢ that separates {c} and P. The latter
says that A is the matrix representation of an SHF(N;n,q, {1, w}). O

Let A be the matrix representation of an SHF(wd + 1;n,q,{1,w}), where d is a positive integer.
Thus A is an N X n matrix with N = wd + 1 having entries from a set of ¢ symbols. Let 1,2,... . N
denote the row positions of A. Note that the rows of A may be permuted but the row positions are
fixed. Consider two partitions of the row positions of A.

The first partition, denoted by R1, Ra, ..., Ry, is defined by
Ry ={1,...,d,d+ 1}, Ro={d+2,...,2d+1}, ... , Ry ={(w—1)d+2,...,wd + 1}.

So we have |[Ri| =d+ 1 and |Ra| =--- = |Ry| = d.
The second partition, denoted by Z1, Zs, ..., Z,, is defined by

Zyv={1,...,d} , Zy={d+1,...,2d} , ... , Zy_—1 ={(w—2)d+1,...,(w—1)d} ,
Zy={(w—-1)d+1,...,wd + 1}.

So we have |Z1| =+ =|Zy_1| =d and |Z,| =d + 1.

Let ¢; be a column of A. We write ¢; = ¢1]|cia|| - .. ||ciw (resp. ¢ = cj||cisl| - - - ||¢,,) where ¢;;
(resp. cj;) is the restriction of ¢; to the row positions of R; (resp. of Z;). Thus ¢;; and cj; are a
d-tuple or a d + 1-tuple of symbols.

Using the notation just described we first prove the following lemma.

Lemma 2 Let A be the matriz representation of an SHF(wd+ 1;n,q, {1, w}), where d is a positive
integer. Suppose that there are two columns c1 and co of A agreeing in the first (d+1) row positions
of Ry (resp. in the last (d + 1) row positions of Z,,). Then each of the columns ¢ and ca has at
least a unique d-tuple corresponding to one of Ra, ..., Ry (resp. to one of Z1,..., Zy—1).

Proof. By using the notation described above we write ¢; = ¢;1||cial] . . . ||ciw for i = 1,2, where
cij is the restriction of ¢; to R;. Since ¢; and co agree in R, we have that ¢ = c21, where c11
and co1 are d 4+ 1-tuples of symbols. Whereas c¢;o, ..., ¢y, are all d-tuples of symbols. Assume, by
contradiction, that all d-tuples ci9, ..., 1, are repeated in R, ..., Ry, say in columns sg, ..., Sy.
Then we have the following configuration in A.



cT C 82 ... Sy ‘

Ry — |... C11 C21 *
Ry — |... c12 C22 cC12 *
A
Rw—) oo Clw Cp * ... Clw
But then the two column sets {c;} and {cg, S92, . .., Sy } cannot be separated in A, a contradiction.

Hence, at least one of the d-tuples cpo, ..., c1, must be unique. A similar argument shows that at
least one of the d-tuples cag,. .., oy is unique. When columns ¢; and ¢y agree in the last (d + 1)
row positions, we obtain the statement with a similar argument by using partition Z3,...,72,. O

We now prove Theorem 4 in terms of separating hash families, which is equivalent to the following
theorem.

Theorem 5 Let q, w, and d be positive integers such that ¢ > w > 2. Suppose that there exists an
SHF(wd + 1;n,q,{1,w}). Then n < ¢?+L.

Proof.  Let A be the (wd + 1) X n - matrix representation of an SHF(wd + 1;n, ¢, {1,w}). The
idea of the proof is to show that if n > ¢%*! + 1, then there are ¢% unique d-tuples of symbols
corresponding to Ry, or Z1, by using Lemma 2 and by permuting the rows of A. This leads to a
contradiction, as there are no free d-tuples available to fill the columns of A.

Now assume, by contradiction, that n = ¢+ + 1. We focus on Ry, R, and Z;, Z,,. The proof
consists of a finite number of repeated steps, which prove that the number of unique d-tuples of
symbols corresponding to R, and Z; strictly increases with the number of steps. More precisely,
each step begins with u; pairs of columns agreeing in the (d + 1) rows of Ry and ends in = unique
d-tuples corresponding to R,,, y unique d-tuples corresponding to Zi, and us pairs of columns
agreeing in the (d + 1) rows of R; with ug > u;. During each step the rows corresponding to Ry,
Ry, Z1 and Z,, have usually been changed. To illustrate the idea we show the first two steps.

Step 1.

Since n = ¢%*! 4 1, there are two columns c¢; and cy of A agreeing in the (d + 1) rows of R;.
By permuting the d-tuples ci2,...,c1, if necessary, we may assume by using Lemma 2 that cq,,
is a unique d-tuple. This is because, if ¢1; is a unique d-tuple with j # w, we interchange the
rows in R; and in R, in such a way that c;; becomes ¢y, of R,. Since this type of permuting
rows in A will be repeated frequently, we say for short that we update the rows of R, (by using
the rows of R;). Note that permuting the rows of A does not effect the separation property of A.
Since ¢y, is unique, the maximal number of remaining d-tuples corresponding to R, is ¢¢ — 1. If
each of these d-tuples appears at most ¢ times in R,,, we can fill only (¢¢ — 1)¢ columns of A. So
there are ¢%*!' — (¢? — 1)g = ¢ columns, whose d-tuples are repeated at least g + 1 times in R,,.
Thus there are at least ¢ (d + 1)-tuples of symbols repeated in Z,,, because there are ¢ symbols
altogether. Each of these ¢ repeated (d + 1)-tuples gives at least one unique d-tuple distributed
in the rows of Zi,...,Z,_1. Since ¢ > w > w — 1, at least one Z;, i € {1,...,w — 1} contains



at least 2 unique d-tuples. If i # 1, then by updating the rows of Z; we may assume that 7
contains 2 unique d-tuples. The (maximal) remaining ¢? — 2 d-tuples in Z; are distributed in th
¢ +1 -2 = ¢! — 1 columns of A. Again if each of these ¢¢ — 2 d-tuples appears at most ¢
times, we can fill at most (¢ —2)q columns. So there are g% +1—2 — (¢¢ —2)q = 2¢ — 1 columns
with d-tuples in Z; that have to repeat at least ¢+ 1 times. Thus there are at least 2q — 1 repeated
(d + 1)-tuples in the (d + 1) rows of R;.

Step 2.

From Step 1 we have that there are at least 2¢g — 1 pairs of columns such that each pair agrees in
the (d 4 1) rows of R;. By using Lemma 2 each of these pairs provides at least one unique d-tuple
distributed in Rg,..., Ry. Since 2¢ — 1 > 2w — 1 > 2(w — 1), there is an R; that contains at least
3 unique d-tuples. If R; # R,,, we update the rows of R,,. So we may assume that R, contains
at least 3 unique d-tuples. Hence there are at most ¢% — 3 remaining d-tuples in R,, distributed in
(@1 41 —3) = (¢™' — 2) columns of A. If each of these d-tuples appears at most ¢ times in R,
then only (¢% — 3)¢ columns of A can be filled. So there are (¢ +1) —3 — (¢ — 3)qg = 3¢ — 2
columns, whose d-tuples are repeated at least ¢ + 1 times in R,,. Hence there are at least 3¢ — 2
(d + 1)-tuples repeated in Z,,. Since each pair of these repeated columns provides at least one
unique d-tuple in some Z;, i € {1,...,w — 1}, we have at least 3¢ — 2 unique d-tuples distributed
in Z1,...,Zy—1. Since 3¢ —2 > 3w — 2 > 3(w — 1), there is an Z; that contains at least 4 unique
d-tuples. If ¢ # 1, then again by updating the rows of Z; we may assume that Z; contains 4
unique d-tuples. The (maximal) remaining ¢® — 4 d-tuples in Z; are distributed in the remaining
¢ +1—4 = ¢! — 3 columns of A. Again if each of these d-tuples appears at most ¢ times, we
can fill at most (¢¢ — 4)q columns. So there are ¢! +1 —4 — (¢ — 4)q = 4¢ — 3 columns with
d-tuples in Z; that have to repeat at least ¢ + 1 times. Hence there are at least 4¢ — 3 repeated
(d + 1)-tuples in the (d + 1) rows of R;.

When repeating the argument as shown in the two steps above, we see that the number of unique
d-tuples in R,, and Z; strictly increases with the number of steps. More precisely, at Step ¢ with
i < qd/ 2 we have that R,, contains (2i — 1) unique d-tuples and Z; contains 2i unique d-tuples.
So, if ¢ is even, Z; (with its rows updated) contains all ¢? unique d-tuples at step i = ¢%/2. If ¢ is
odd, R, (with its rows updated) contains all ¢ unique d-tuples at step i = [¢?/2] + 1. This shows
that there are no more free d-tuples in R,, or in Z; to fill the columns of A after a finite number of
steps. This contradiction completes the proof. ]

To show that the bound of Theorem 5 is tight we make use of a combinatorial structure called
orthogonal arrays. An orthogonal array OA(t, N,m) is an N x m! array A with entries from a set of
m > 2 symbols such that within any ¢ rows of A every possible t—tuple of symbols occurs exactly
once. This property is equivalent to the fact that every two columns of A agree in at most ¢t — 1
rows, see for example [12]. The just given definition of orthogonal arrays is in fact the definition
of orthogonal arrays of stremgth t and index 1. A classical construction of orthogonal arrays is
as follows [8]. Let ¢ be a prime power and t > 2. Let P = {Py,P5,...,P;} be the set of all
polynomials of degree at most ¢ — 1 over the finite field F,. Now let R be a subset of elements of
F,U{oco}. Define an |R| x ¢' array A in which the entry A(u, j) is P;j(u) if u € R\ {oo} and is a;—1
when Pj(x) = Zz;é a;z' and u = oo. Then A is an OA(t, |R|, q). For more about orthogonal arrays
we refer the reader to [12].



As an application of orthogonal arrays we obtain the following theorems showing that the bound
of Theorem 5 is tight.

Theorem 6 Let q, d, w be positive integers such that q is a prime power with ¢ > wd and w > 2.
Then there exists an SHF (wd + 1; ¢, ¢, {1, w}).

Proof.  Let g be a prime power such that ¢ > wd. Let R C F,U{oo} with |[R| = wd+1. Consider
the classical orthogonal array OA(d + 1, |R|,q) which is an (wd + 1) x ¢! array A. Now any two
different columns of A agree in at most d rows. It follows that for given two disjoint subsets of

columns C; and Cy of A with |Cj| = 1 and |C2| = w, there is at least one row that separates C;
and Cy. Hence A is an SHF (wd + 1; ¢4, ¢, {1, w}). O

When ¢ is not a prime power, we have the following result.

Theorem 7 Let q = p§'p5?...p5° be a prime power factorization of an integer g with ¢ > 2 such

that p{' < p§* < ... < p%. Let w and d be positive integers such that p{* > wd and w > 2. Then
there ezists an SHF(wd + 1; ¢4, ¢, {1,w}).

Proof. 1t is known by a result of Bush (see [7] or [12], 7.20 Theorem, page 226) that there is an
OA(d+1,k,q) for d+1 < pi* and k < pi* +1. If we choose k = wd+ 1, then an OA(d+1,wd+1, q)
provides an SHF (wd + 1; ¢%*1, ¢, {1, w}). O
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