A tight bound for frameproof codes viewed in terms of separating hash families

Tran van Trung
Institut für Experimentelle Mathematik
Universität Duisburg-Essen
Ellernstrasse 29
45326 Essen, Germany
trung@iem.uni-due.de

Abstract

Frameproof codes have been introduced for use in digital fingerprinting that prevent a coalition of w or fewer legitimate users from constructing a fingerprint of another user not in the coalition. It turns out that w-frameproof codes are equivalent to separating hash families of type $\{1, w\}$. In this paper we prove a tight bound for frameproof codes in terms of separating hash families.

1 Introduction

Let Q be a finite set of size q and let N be a positive integer. A subset $C \subseteq Q^{N}$ with $|C|=n$ is called C an (N, n, q) code. The elements of C are called codewords. Each codeword $x \in C$ is of the form $x=\left(x_{1}, \ldots, x_{N}\right)$, where $x_{i} \in Q, 1 \leq i \leq N$. For any subset of codewords $P \subseteq C$, the set of descendants of P, denoted $\operatorname{desc}(P)$, is defined by

$$
\operatorname{desc}(P)=\left\{x \in Q^{N}: x_{i} \in\left\{a_{i}: a \in P\right\}, 1 \leq i \leq N\right\} .
$$

Let C be an (N, n, q) code and let $w \geq 2$ be an integer. C is called a w-frameproof code if for all $P \subseteq C$ with $|P| \leq w$, we have that $\operatorname{desc}(P) \cap C=P$. Frameproof codes were first introduced by Boneh and Shaw [6], for use in fingerprinting of digital data to prevent a coalition of w or fewer legitimate users from constructing a copy of fingerprint of another user not in the coalition. Frameproof codes and their applications have been studied extensively, see for instance, [6], [13], [9], [16], [18], [15], [4], [10]. One of the basic problems is the studying of upper bounds on the cardinality of frameproof codes. Many strong bounds have been obtained in the papers [16], [15], [4]. It turns out that frameproof codes are a special type of separating hash families (SHF). Let h be a function from a set X to a set Y and let $C_{1}, C_{2}, \ldots, C_{t} \subseteq X$ be t pairwise disjoint subsets. We say that h separates $C_{1}, C_{2}, \ldots, C_{t}$ if $h\left(C_{1}\right), h\left(C_{2}\right), \ldots, h\left(C_{t}\right)$ are pairwise disjoint, where $h\left(C_{i}\right)=\left\{h(x) \mid x \in C_{i}\right\}$. Let $|X|=n$ and $|Y|=q$. We call a set \mathcal{H} of N functions from X to Y an $\left(N ; n, q,\left\{w_{1}, \ldots, w_{t}\right\}\right)$-separating hash family, denoted by $\operatorname{SHF}\left(N ; n, q,\left\{w_{1}, \ldots, w_{t}\right\}\right)$, if for all pairwise disjoint subsets $C_{1}, \ldots, C_{t} \subseteq X$ with $\left|C_{i}\right|=w_{i}$, for $i=1, \ldots, t$, there exists at
least one function $h \in \mathcal{H}$ that separates $C_{1}, C_{2}, \ldots, C_{t}$. The multiset $\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ is the type of the separating hash family. Separating hash families provide a link to many known combinatorial structures such as perfect hash families, frameproof codes, secure frameproof codes, identifiable parent property codes. Many results on separating hash families can be found in [18], [19], [5], [20], [14], [1], [2], [3], [11].

Frameproof codes and separating hash families have the following connection. An $(N, n, q) w$ frameproof codes exists if and only if an $\operatorname{SHF}(N ; n, q,\{1, w\})$ exists. As it is more convenient to work with separating hash families, we will prove the results in this paper in terms of separating hash families.

It is often useful to present an $\operatorname{SHF}\left(N ; n, q,\left\{w_{1}, \ldots, w_{t}\right\}\right)$ as an $N \times n$ matrix on q symbols, say A. The rows of A correspond to the hash functions in the family, the columns correspond to the elements in the domain X, and the entry in row f and column x is $f(x)$. We call A the matrix representation of the hash family. The matrix A has the following property. For given disjoint sets of columns $C_{1}, C_{2}, \ldots, C_{t}$ with $\left|C_{i}\right|=w_{i}, 1 \leq i \leq t$, there exists at least one row f of A such that

$$
\left\{\mathrm{A}(f, x): x \in C_{i}\right\} \cap\left\{\mathrm{A}(f, x): x \in C_{j}\right\}=\emptyset,
$$

for all $i \neq j$, i.e. row f separates the column sets $C_{1}, C_{2}, \ldots, C_{t}$. Now if we write the codewords of an (N, n, q) w-frameproof code columnwise as an $N \times n$ matrix A, i.e. each codeword is a column of A , then A is the matrix representation of an $\operatorname{SHF}(N ; n, q,\{1, w\})$. The problem of determining an upper bound on the cardinality of an $(N, n, q) w$-frameproof code becomes the problem of determining an upper bound on the number of columns of A for given N, q, and w. When $N \leq w$, it has been shown that $n \leq w(q-1)$, see [16], or [4]. The more interesting case is when $N>w$. Strong bounds for case $N>w$ are obtained in [16], [15], [4], [3].

We are interested in the case $N=w d+1$ with $d \geq 1$. Several previously strong bounds known for this case are found in [4], [3].

Theorem 1 ([4]) Let N, q, w and d be positive integers such that $N=w d+1, w \geq 2$. Suppose there is an $(N, n, q) w$-frameproof code. Then $n \leq q^{d+1}+O\left(q^{d}\right)$.

Theorem 2 ([3]) Let N, q and d be positive integers such that $N=2 d+1$. Suppose there is an (N, n, q) 2-frameproof code. Then $n \leq q^{d+1}$.

Theorem 3 ([3]) Let q and w be positive integers such that $w \geq 2, q \geq w+1$. Suppose there is an $(w+1, n, q) w$-frameproof code. Then $n \leq q^{2}$.

The bounds in Theorems 2, 3 are tight.
The aim of the paper is to prove the following bound on the cardinality of w-frameproof codes.

Theorem 4 Let d, q, w be positive integers such that $q \geq w \geq 2$. Suppose there exists an (N, n, q) w-frameproof code with $N=w d+1$. Then $n \leq q^{d+1}$.

The bound of Theorem 4 is tight as shown in the next section.

2 A tight bound for separating hash families of type $\{1, w\}$

For the sake of completeness we include the following simple lemma.

Lemma $1 \operatorname{An}(N, n, q) w$-frameproof code is equivalent to an $\operatorname{SHF}(N ; n, q,\{1, w\})$.
Proof. Let A be an $N \times n$ matrix having entries from a set of q symbols. Let $\{c\}$ and P be any given disjoint subsets of columns of A with $|\{c\}|=1$ and $|P| \leq w$, where w is an integer such that $w \geq 2$. We may view A as an (N, n, q) code whose codewords are the columns. Assume that A is an $(N, n, q) w$-frameproof code. By definition this is equivalent to $\operatorname{desc}(P) \cap \mathrm{A}=P$. Further, $\operatorname{desc}(P) \cap \mathrm{A}=P$ is equivalent to the fact that there is a row i that separates $\{c\}$ and P. The latter says that A is the matrix representation of an $\operatorname{SHF}(N ; n, q,\{1, w\})$.

Let A be the matrix representation of an $\operatorname{SHF}(w d+1 ; n, q,\{1, w\})$, where d is a positive integer. Thus A is an $N \times n$ matrix with $N=w d+1$ having entries from a set of q symbols. Let $1,2, \ldots, N$ denote the row positions of A. Note that the rows of A may be permuted but the row positions are fixed. Consider two partitions of the row positions of A .

The first partition, denoted by $R_{1}, R_{2}, \ldots, R_{w}$, is defined by

$$
R_{1}=\{1, \ldots, d, d+1\}, R_{2}=\{d+2, \ldots, 2 d+1\}, \ldots, R_{w}=\{(w-1) d+2, \ldots, w d+1\}
$$

So we have $\left|R_{1}\right|=d+1$ and $\left|R_{2}\right|=\cdots=\left|R_{w}\right|=d$.
The second partition, denoted by $Z_{1}, Z_{2}, \ldots, Z_{w}$, is defined by

$$
\begin{aligned}
& Z_{1}=\{1, \ldots, d\}, Z_{2}=\{d+1, \ldots, 2 d\}, \ldots, Z_{w-1}=\{(w-2) d+1, \ldots,(w-1) d\}, \\
& Z_{w}=\{(w-1) d+1, \ldots, w d+1\} .
\end{aligned}
$$

So we have $\left|Z_{1}\right|=\cdots=\left|Z_{w-1}\right|=d$ and $\left|Z_{w}\right|=d+1$.
Let c_{i} be a column of A . We write $c_{i}=c_{i 1}\left\|c_{i 2}\right\| \ldots \| c_{i w}$ (resp. $c_{i}=c_{i 1}^{\prime}\left\|c_{i 2}^{\prime}\right\| \ldots \| c_{i w}^{\prime}$) where $c_{i j}$ (resp. $c_{i j}^{\prime}$) is the restriction of c_{i} to the row positions of R_{j} (resp. of Z_{j}). Thus $c_{i j}$ and $c_{i j}^{\prime}$ are a d-tuple or a $d+1$-tuple of symbols.

Using the notation just described we first prove the following lemma.
Lemma 2 Let A be the matrix representation of an $\operatorname{SHF}(w d+1 ; n, q,\{1, w\})$, where d is a positive integer. Suppose that there are two columns c_{1} and c_{2} of A agreeing in the first $(d+1)$ row positions of R_{1} (resp. in the last $(d+1)$ row positions of Z_{w}). Then each of the columns c_{1} and c_{2} has at least a unique d-tuple corresponding to one of R_{2}, \ldots, R_{w} (resp. to one of Z_{1}, \ldots, Z_{w-1}).

Proof. By using the notation described above we write $c_{i}=c_{i 1}\left\|c_{i 2}\right\| \ldots \| c_{i w}$ for $i=1,2$, where $c_{i j}$ is the restriction of c_{i} to R_{j}. Since c_{1} and c_{2} agree in R_{1}, we have that $c_{11}=c_{21}$, where c_{11} and c_{21} are $d+1$-tuples of symbols. Whereas $c_{i 2}, \ldots, c_{i w}$ are all d-tuples of symbols. Assume, by contradiction, that all d-tuples $c_{12}, \ldots, c_{1 w}$ are repeated in R_{2}, \ldots, R_{w}, say in columns s_{2}, \ldots, s_{w}. Then we have the following configuration in A .

But then the two column sets $\left\{c_{1}\right\}$ and $\left\{c_{2}, s_{2}, \ldots, s_{w}\right\}$ cannot be separated in A, a contradiction. Hence, at least one of the d-tuples $c_{12}, \ldots, c_{1 w}$ must be unique. A similar argument shows that at least one of the d-tuples $c_{22}, \ldots, c_{2 w}$ is unique. When columns c_{1} and c_{2} agree in the last $(d+1)$ row positions, we obtain the statement with a similar argument by using partition Z_{1}, \ldots, Z_{w}.

We now prove Theorem 4 in terms of separating hash families, which is equivalent to the following theorem.

Theorem 5 Let q, w, and d be positive integers such that $q \geq w \geq 2$. Suppose that there exists an $\operatorname{SHF}(w d+1 ; n, q,\{1, w\})$. Then $n \leq q^{d+1}$.

Proof. Let A be the $(w d+1) \times n$ - matrix representation of an $\operatorname{SHF}(w d+1 ; n, q,\{1, w\})$. The idea of the proof is to show that if $n \geq q^{d+1}+1$, then there are q^{d} unique d-tuples of symbols corresponding to R_{w} or Z_{1}, by using Lemma 2 and by permuting the rows of A . This leads to a contradiction, as there are no free d-tuples available to fill the columns of A.

Now assume, by contradiction, that $n=q^{d+1}+1$. We focus on R_{1}, R_{w} and Z_{1}, Z_{w}. The proof consists of a finite number of repeated steps, which prove that the number of unique d-tuples of symbols corresponding to R_{w} and Z_{1} strictly increases with the number of steps. More precisely, each step begins with u_{1} pairs of columns agreeing in the $(d+1)$ rows of R_{1} and ends in x unique d-tuples corresponding to R_{w}, y unique d-tuples corresponding to Z_{1}, and u_{2} pairs of columns agreeing in the $(d+1)$ rows of R_{1} with $u_{2}>u_{1}$. During each step the rows corresponding to R_{1}, R_{w}, Z_{1} and Z_{w} have usually been changed. To illustrate the idea we show the first two steps.

Step 1.
Since $n=q^{d+1}+1$, there are two columns c_{1} and c_{2} of A agreeing in the $(d+1)$ rows of R_{1}. By permuting the d-tuples $c_{12}, \ldots, c_{1 w}$ if necessary, we may assume by using Lemma 2 that $c_{1 w}$ is a unique d-tuple. This is because, if $c_{1 j}$ is a unique d-tuple with $j \neq w$, we interchange the rows in R_{j} and in R_{w} in such a way that $c_{1 j}$ becomes $c_{1 w}$ of R_{w}. Since this type of permuting rows in A will be repeated frequently, we say for short that we update the rows of R_{w} (by using the rows of R_{j}). Note that permuting the rows of A does not effect the separation property of A . Since $c_{1 w}$ is unique, the maximal number of remaining d-tuples corresponding to R_{w} is $q^{d}-1$. If each of these d-tuples appears at most q times in R_{w}, we can fill only $\left(q^{d}-1\right) q$ columns of A. So there are $q^{d+1}-\left(q^{d}-1\right) q=q$ columns, whose d-tuples are repeated at least $q+1$ times in R_{w}. Thus there are at least $q(d+1)$-tuples of symbols repeated in Z_{w}, because there are q symbols altogether. Each of these q repeated $(d+1)$-tuples gives at least one unique d-tuple distributed in the rows of Z_{1}, \ldots, Z_{w-1}. Since $q \geq w>w-1$, at least one $Z_{i}, i \in\{1, \ldots, w-1\}$ contains
at least 2 unique d-tuples. If $i \neq 1$, then by updating the rows of Z_{1} we may assume that Z_{1} contains 2 unique d-tuples. The (maximal) remaining $q^{d}-2 d$-tuples in Z_{1} are distributed in th $q^{d+1}+1-2=q^{d+1}-1$ columns of A. Again if each of these $q^{d}-2 d$-tuples appears at most q times, we can fill at most $\left(q^{d}-2\right) q$ columns. So there are $q^{d+1}+1-2-\left(q^{d}-2\right) q=2 q-1$ columns with d-tuples in Z_{1} that have to repeat at least $q+1$ times. Thus there are at least $2 q-1$ repeated $(d+1)$-tuples in the $(d+1)$ rows of R_{1}.

Step 2.
From Step 1 we have that there are at least $2 q-1$ pairs of columns such that each pair agrees in the $(d+1)$ rows of R_{1}. By using Lemma 2 each of these pairs provides at least one unique d-tuple distributed in R_{2}, \ldots, R_{w}. Since $2 q-1 \geq 2 w-1>2(w-1)$, there is an R_{i} that contains at least 3 unique d-tuples. If $R_{i} \neq R_{w}$, we update the rows of R_{w}. So we may assume that R_{w} contains at least 3 unique d-tuples. Hence there are at most $q^{d}-3$ remaining d-tuples in R_{w} distributed in $\left(q^{d+1}+1-3\right)=\left(q^{d+1}-2\right)$ columns of A. If each of these d-tuples appears at most q times in R_{w}, then only $\left(q^{d}-3\right) q$ columns of A can be filled. So there are $\left(q^{d+1}+1\right)-3-\left(q^{d}-3\right) q=3 q-2$ columns, whose d-tuples are repeated at least $q+1$ times in R_{w}. Hence there are at least $3 q-2$ $(d+1)$-tuples repeated in Z_{w}. Since each pair of these repeated columns provides at least one unique d-tuple in some $Z_{i}, i \in\{1, \ldots, w-1\}$, we have at least $3 q-2$ unique d-tuples distributed in Z_{1}, \ldots, Z_{w-1}. Since $3 q-2 \geq 3 w-2>3(w-1)$, there is an Z_{i} that contains at least 4 unique d-tuples. If $i \neq 1$, then again by updating the rows of Z_{1} we may assume that Z_{1} contains 4 unique d-tuples. The (maximal) remaining $q^{d}-4 d$-tuples in Z_{1} are distributed in the remaining $q^{d+1}+1-4=q^{d+1}-3$ columns of A. Again if each of these d-tuples appears at most q times, we can fill at most $\left(q^{d}-4\right) q$ columns. So there are $q^{d+1}+1-4-\left(q^{d}-4\right) q=4 q-3$ columns with d-tuples in Z_{1} that have to repeat at least $q+1$ times. Hence there are at least $4 q-3$ repeated $(d+1)$-tuples in the $(d+1)$ rows of R_{1}.

When repeating the argument as shown in the two steps above, we see that the number of unique d-tuples in R_{w} and Z_{1} strictly increases with the number of steps. More precisely, at Step i with $i \leq q^{d} / 2$ we have that R_{w} contains ($2 i-1$) unique d-tuples and Z_{1} contains $2 i$ unique d-tuples. So, if q is even, Z_{1} (with its rows updated) contains all q^{d} unique d-tuples at step $i=q^{d} / 2$. If q is odd, R_{w} (with its rows updated) contains all q^{d} unique d-tuples at step $i=\left\lceil q^{d} / 2\right\rceil+1$. This shows that there are no more free d-tuples in R_{w} or in Z_{1} to fill the columns of A after a finite number of steps. This contradiction completes the proof.

To show that the bound of Theorem 5 is tight we make use of a combinatorial structure called orthogonal arrays. An orthogonal array $\mathrm{OA}(t, N, m)$ is an $N \times m^{t}$ array A with entries from a set of $m \geq 2$ symbols such that within any t rows of A every possible t-tuple of symbols occurs exactly once. This property is equivalent to the fact that every two columns of A agree in at most $t-1$ rows, see for example [12]. The just given definition of orthogonal arrays is in fact the definition of orthogonal arrays of strength t and index 1. A classical construction of orthogonal arrays is as follows [8]. Let q be a prime power and $t \geq 2$. Let $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{q^{t}}\right\}$ be the set of all polynomials of degree at most $t-1$ over the finite field \mathbb{F}_{q}. Now let \mathcal{R} be a subset of elements of $\mathbb{F}_{q} \cup\{\infty\}$. Define an $|\mathcal{R}| \times q^{t}$ array A in which the entry $\mathrm{A}(u, j)$ is $P_{j}(u)$ if $u \in \mathcal{R} \backslash\{\infty\}$ and is a_{t-1} when $P_{j}(x)=\sum_{i=0}^{t-1} a_{i} x^{i}$ and $u=\infty$. Then A is an $\mathrm{OA}(t,|\mathcal{R}|, q)$. For more about orthogonal arrays we refer the reader to [12].

As an application of orthogonal arrays we obtain the following theorems showing that the bound of Theorem 5 is tight.

Theorem 6 Let q, d, w be positive integers such that q is a prime power with $q \geq w d$ and $w \geq 2$. Then there exists an $\operatorname{SHF}\left(w d+1 ; q^{d+1}, q,\{1, w\}\right)$.

Proof. Let q be a prime power such that $q \geq w d$. Let $\mathcal{R} \subseteq \mathbb{F}_{q} \cup\{\infty\}$ with $|\mathcal{R}|=w d+1$. Consider the classical orthogonal array $\mathrm{OA}(d+1,|\mathcal{R}|, q)$ which is an $(w d+1) \times q^{d+1}$ array A. Now any two different columns of A agree in at most d rows. It follows that for given two disjoint subsets of columns C_{1} and C_{2} of A with $\left|C_{1}\right|=1$ and $\left|C_{2}\right|=w$, there is at least one row that separates C_{1} and C_{2}. Hence A is an $\operatorname{SHF}\left(w d+1 ; q^{d+1}, q,\{1, w\}\right)$.

When q is not a prime power, we have the following result.
Theorem 7 Let $q=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{s}^{e_{s}}$ be a prime power factorization of an integer q with $q \geq 2$ such that $p_{1}^{e_{1}}<p_{2}^{e_{2}}<\ldots<p_{s}^{e_{s}}$. Let w and d be positive integers such that $p_{1}^{e_{1}} \geq w d$ and $w \geq 2$. Then there exists an $\operatorname{SHF}\left(w d+1 ; q^{d+1}, q,\{1, w\}\right)$.

Proof. It is known by a result of Bush (see [7] or [12], 7.20 Theorem, page 226) that there is an $\mathrm{OA}(d+1, k, q)$ for $d+1<p_{1}^{e_{1}}$ and $k \leq p_{1}^{e_{1}}+1$. If we choose $k=w d+1$, then an $\mathrm{OA}(d+1, w d+1, q)$ provides an $\operatorname{SHF}\left(w d+1 ; q^{d+1}, q,\{1, w\}\right)$.

References

[1] M. Bazrafshan and Tran van Trung, Bounds for separating hash families, J. Combin. Theory Ser. A 118 (2011), 1129-1135.
[2] M. Bazrafshan, Separating Hash Families, PhD thesis, University of Duisburg-Essen, 2011.
[3] M. Bazrafshan and Tran van Trung, Improved bounds for separating hash families, Des. Codes Cryptpgr. DOI 10.1007/s10623-012-9673-7 (2012).
[4] S. R. Blackburn, Frameproof codes, SIAM J. Discrete Math., Vol.16, No. 3 (2003), 499-510.
[5] S. R. Blackburn, T. Etzion, D. R. Stinson and G. M. Zaverucha, A bound on the size of separating hash families, J. Combin. Theory Ser. A 115 (2008), 1246-1256.
[6] D. Boneh, J. Shaw, Collusion-free fingerprinting for digital data, IEEE Trans. Inform. Theory 44 (1998), 1897-1905.
[7] K. A. Bush, A generalization of a theorem due to MacNeish, Ann. Math. Stat. 23 (1952) 293-295.
[8] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat. 23 (1952) 426-434.
[9] , B. Chor, A. Fiat and M. Naor, Tracing traitors, in Advances in Cryptology - CRYPTO'94, Y. G. Desmedt, ed., Lecture Notes in Computer Science, 839, Springer, Berlin (1994), 257 270
[10] C. J. Colbourn, D. Horsley, and V. R. Syrotiuk, Frameproof codes and compressive sensing, Forty-Eighth Annual Allerton Conference, Allerton House, UIUC, Illinois, USA, September 29 - October 1, 2010, 985-990.
[11] C. J. Colbourn, D. Horsley, and C. McLean, Compressive sensing matrices and hash families, Transactions on Communications Vol. 59, Nr.7, July 2011, 1840-1845.
[12] C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial Designs Chapman and Hall/CRC, Boca Raton, FL, 2nd edition, 2007.
[13] A. Fiat and T. Tassa, Dynamic traitor tracing, in Advances in Cryptology-CRYPTO'99, M. Weiner, ed., Lecture Notes in Comput. Sci. 1666, Springer, Berlin, (1999), 354-371.
[14] P. C. Li, R. Wei and G. H. J. van Rees, Constructions of 2-cover-free families and related separating hash families, J. Combin. Des. 14 (2006), 423-440.
[15] P. Sarkar, D. R. Stinson, Frameproof and IPP codes, Progress in Cryptology - Indocrypt 2001, Lecture Notes in Computer Science, Springer, Vol.2247, (2001), 117-126.
[16] J. N. Staddon, D. R. Stinson and R. Wei, Combinatorial properties of frameproof and traceability codes, IEEE Transaction on Information Theory 47 (2001), 1042-1049.
[17] D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes and frameproof codes, SIAM J. Discrete Math. 11 (1998), 41-53.
[18] D. R. Stinson, Tran van Trung and R. Wei, Secure frameproof codes, key distribution patterns, group testing algorithms and related structures, J. Statist. Plann. Inference 86 (2000), 595-617.
[19] D. R. Stinson, R. Wei and K. Chen, On Generalized Separating Hash Families, J. Combin. Theory Ser. A 115 (2008), 105-120.
[20] D. R. Stinson, G. M. Zaverucha, Some improved bounds for secure frameproof codes and related separating hash families, IEEE Transaction on Information Theory 54 (2008), 2508-2514.

