A tight bound for frameproof codes viewed in terms of separating hash families

Tran van Trung Institut für Experimentelle Mathematik Universität Duisburg-Essen Ellernstrasse 29 45326 Essen, Germany trung@iem.uni-due.de

Abstract

Frameproof codes have been introduced for use in digital fingerprinting that prevent a coalition of w or fewer legitimate users from constructing a fingerprint of another user not in the coalition. It turns out that w-frameproof codes are equivalent to separating hash families of type $\{1, w\}$. In this paper we prove a tight bound for frameproof codes in terms of separating hash families.

1 Introduction

Let Q be a finite set of size q and let N be a positive integer. A subset $C \subseteq Q^N$ with |C| = n is called C an (N, n, q) code. The elements of C are called codewords. Each codeword $x \in C$ is of the form $x = (x_1, \ldots, x_N)$, where $x_i \in Q$, $1 \leq i \leq N$. For any subset of codewords $P \subseteq C$, the set of descendants of P, denoted desc(P), is defined by

$$\operatorname{desc}(P) = \{ x \in Q^N : x_i \in \{ a_i : a \in P \}, \ 1 \le i \le N \}.$$

Let C be an (N, n, q) code and let $w \ge 2$ be an integer. C is called a *w*-frameproof code if for all $P \subseteq C$ with $|P| \le w$, we have that $\operatorname{desc}(P) \cap C = P$. Frameproof codes were first introduced by Boneh and Shaw [6], for use in fingerprinting of digital data to prevent a coalition of w or fewer legitimate users from constructing a copy of fingerprint of another user not in the coalition. Frameproof codes and their applications have been studied extensively, see for instance, [6], [13], [9], [16], [18], [15], [4], [10]. One of the basic problems is the studying of upper bounds on the cardinality of frameproof codes. Many strong bounds have been obtained in the papers [16], [15], [4]. It turns out that frameproof codes are a special type of separating hash families (SHF). Let h be a function from a set X to a set Y and let $C_1, C_2, \ldots, C_t \subseteq X$ be t pairwise disjoint subsets. We say that h separates C_1, C_2, \ldots, C_t if $h(C_1), h(C_2), \ldots, h(C_t)$ are pairwise disjoint, where $h(C_i) = \{h(x) \mid x \in C_i\}$. Let |X| = n and |Y| = q. We call a set \mathcal{H} of N functions from X to Y an $(N; n, q, \{w_1, \ldots, w_t\})$ -separating hash family, denoted by $\mathsf{SHF}(N; n, q, \{w_1, \ldots, w_t\})$, if for all pairwise disjoint subsets $C_1, \ldots, C_t \subseteq X$ with $|C_i| = w_i$, for $i = 1, \ldots, t$, there exists at least one function $h \in \mathcal{H}$ that separates C_1, C_2, \ldots, C_t . The multiset $\{w_1, w_2, \ldots, w_t\}$ is the type of the separating hash family. Separating hash families provide a link to many known combinatorial structures such as perfect hash families, frameproof codes, secure frameproof codes, identifiable parent property codes. Many results on separating hash families can be found in [18], [19], [5], [20], [14], [1], [2], [3], [11].

Frameproof codes and separating hash families have the following connection. An (N, n, q) wframeproof codes exists if and only if an $\mathsf{SHF}(N; n, q, \{1, w\})$ exists. As it is more convenient to work with separating hash families, we will prove the results in this paper in terms of separating hash families.

It is often useful to present an $\mathsf{SHF}(N; n, q, \{w_1, \ldots, w_t\})$ as an $N \times n$ matrix on q symbols, say A. The rows of A correspond to the hash functions in the family, the columns correspond to the elements in the domain X, and the entry in row f and column x is f(x). We call A the matrix representation of the hash family. The matrix A has the following property. For given disjoint sets of columns C_1, C_2, \ldots, C_t with $|C_i| = w_i, 1 \le i \le t$, there exists at least one row f of A such that

$$\{\mathsf{A}(f,x): x \in C_i\} \cap \{\mathsf{A}(f,x): x \in C_i\} = \emptyset,$$

for all $i \neq j$, i.e. row f separates the column sets C_1, C_2, \ldots, C_t . Now if we write the codewords of an (N, n, q) w-frameproof code columnwise as an $N \times n$ matrix A, i.e. each codeword is a column of A, then A is the matrix representation of an $\mathsf{SHF}(N; n, q, \{1, w\})$. The problem of determining an upper bound on the cardinality of an (N, n, q) w-frameproof code becomes the problem of determining an upper bound on the number of columns of A for given N, q, and w. When $N \leq w$, it has been shown that $n \leq w(q-1)$, see [16], or [4]. The more interesting case is when N > w. Strong bounds for case N > w are obtained in [16], [15], [4], [3].

We are interested in the case N = wd + 1 with $d \ge 1$. Several previously strong bounds known for this case are found in [4], [3].

Theorem 1 ([4]) Let N, q, w and d be positive integers such that N = wd + 1, $w \ge 2$. Suppose there is an (N, n, q) w-frameproof code. Then $n \le q^{d+1} + O(q^d)$.

Theorem 2 ([3]) Let N, q and d be positive integers such that N = 2d + 1. Suppose there is an (N, n, q) 2-frameproof code. Then $n \leq q^{d+1}$.

Theorem 3 ([3]) Let q and w be positive integers such that $w \ge 2$, $q \ge w + 1$. Suppose there is an (w + 1, n, q) w-frameproof code. Then $n \le q^2$.

The bounds in Theorems 2, 3 are tight.

The aim of the paper is to prove the following bound on the cardinality of w-frameproof codes.

Theorem 4 Let d, q, w be positive integers such that $q \ge w \ge 2$. Suppose there exists an (N, n, q) w-frameproof code with N = wd + 1. Then $n \le q^{d+1}$.

The bound of Theorem 4 is tight as shown in the next section.

2 A tight bound for separating hash families of type $\{1, w\}$

For the sake of completeness we include the following simple lemma.

Lemma 1 An (N, n, q) w-frameproof code is equivalent to an SHF $(N; n, q, \{1, w\})$.

Proof. Let A be an $N \times n$ matrix having entries from a set of q symbols. Let $\{c\}$ and P be any given disjoint subsets of columns of A with $|\{c\}| = 1$ and $|P| \le w$, where w is an integer such that $w \ge 2$. We may view A as an (N, n, q) code whose codewords are the columns. Assume that A is an (N, n, q) w-frameproof code. By definition this is equivalent to desc $(P) \cap A = P$. Further, desc $(P) \cap A = P$ is equivalent to the fact that there is a row i that separates $\{c\}$ and P. The latter says that A is the matrix representation of an $\mathsf{SHF}(N; n, q, \{1, w\})$.

Let A be the matrix representation of an $\mathsf{SHF}(wd+1; n, q, \{1, w\})$, where d is a positive integer. Thus A is an $N \times n$ matrix with N = wd+1 having entries from a set of q symbols. Let $1, 2, \ldots, N$ denote the row positions of A. Note that the rows of A may be permuted but the row positions are fixed. Consider two partitions of the row positions of A.

The first partition, denoted by R_1, R_2, \ldots, R_w , is defined by

$$R_1 = \{1, \dots, d, d+1\}, R_2 = \{d+2, \dots, 2d+1\}, \dots, R_w = \{(w-1)d+2, \dots, wd+1\}.$$

So we have $|R_1| = d + 1$ and $|R_2| = \cdots = |R_w| = d$.

The second partition, denoted by Z_1, Z_2, \ldots, Z_w , is defined by

$$Z_1 = \{1, \dots, d\}, Z_2 = \{d+1, \dots, 2d\}, \dots, Z_{w-1} = \{(w-2)d+1, \dots, (w-1)d\},$$
$$Z_w = \{(w-1)d+1, \dots, wd+1\}.$$

So we have $|Z_1| = \cdots = |Z_{w-1}| = d$ and $|Z_w| = d + 1$.

Let c_i be a column of A. We write $c_i = c_{i1}||c_{i2}|| \dots ||c_{iw}$ (resp. $c_i = c'_{i1}||c'_{i2}|| \dots ||c'_{iw}$) where c_{ij} (resp. c'_{ij}) is the restriction of c_i to the row positions of R_j (resp. of Z_j). Thus c_{ij} and c'_{ij} are a *d*-tuple or a d + 1-tuple of symbols.

Using the notation just described we first prove the following lemma.

Lemma 2 Let A be the matrix representation of an $SHF(wd+1; n, q, \{1, w\})$, where d is a positive integer. Suppose that there are two columns c_1 and c_2 of A agreeing in the first (d+1) row positions of R_1 (resp. in the last (d+1) row positions of Z_w). Then each of the columns c_1 and c_2 has at least a unique d-tuple corresponding to one of R_2, \ldots, R_w (resp. to one of Z_1, \ldots, Z_{w-1}).

Proof. By using the notation described above we write $c_i = c_{i1}||c_{i2}|| \dots ||c_{iw}$ for i = 1, 2, where c_{ij} is the restriction of c_i to R_j . Since c_1 and c_2 agree in R_1 , we have that $c_{11} = c_{21}$, where c_{11} and c_{21} are d + 1-tuples of symbols. Whereas c_{i2}, \dots, c_{iw} are all d-tuples of symbols. Assume, by contradiction, that all d-tuples c_{12}, \dots, c_{1w} are repeated in R_2, \dots, R_w , say in columns s_2, \dots, s_w . Then we have the following configuration in A.

		c_1	c_2	s_2		s_w		
$R_1 \rightarrow$		c_{11}	c_{21}	*		*)
$R_2 \rightarrow$		c_{12}	c_{22}	c_{12}		*	•••	
÷	·	÷	÷	÷	·	÷	·	
$R_w \rightarrow$		c_{1w}	c_{2w}	*		c_{1w}	•••	J

But then the two column sets $\{c_1\}$ and $\{c_2, s_2, \ldots, s_w\}$ cannot be separated in A, a contradiction. Hence, at least one of the *d*-tuples c_{12}, \ldots, c_{1w} must be unique. A similar argument shows that at least one of the *d*-tuples c_{22}, \ldots, c_{2w} is unique. When columns c_1 and c_2 agree in the last (d + 1)row positions, we obtain the statement with a similar argument by using partition Z_1, \ldots, Z_w . \Box

We now prove Theorem 4 in terms of separating hash families, which is equivalent to the following theorem.

Theorem 5 Let q, w, and d be positive integers such that $q \ge w \ge 2$. Suppose that there exists an $\mathsf{SHF}(wd+1;n,q,\{1,w\})$. Then $n \le q^{d+1}$.

Proof. Let A be the $(wd + 1) \times n$ - matrix representation of an $\mathsf{SHF}(wd + 1; n, q, \{1, w\})$. The idea of the proof is to show that if $n \ge q^{d+1} + 1$, then there are q^d unique d-tuples of symbols corresponding to R_w or Z_1 , by using Lemma 2 and by permuting the rows of A. This leads to a contradiction, as there are no free d-tuples available to fill the columns of A.

Now assume, by contradiction, that $n = q^{d+1} + 1$. We focus on R_1 , R_w and Z_1 , Z_w . The proof consists of a finite number of repeated steps, which prove that the number of unique *d*-tuples of symbols corresponding to R_w and Z_1 strictly increases with the number of steps. More precisely, each step begins with u_1 pairs of columns agreeing in the (d+1) rows of R_1 and ends in x unique *d*-tuples corresponding to R_w , y unique *d*-tuples corresponding to Z_1 , and u_2 pairs of columns agreeing in the (d+1) rows of R_1 with $u_2 > u_1$. During each step the rows corresponding to R_1 , R_w , Z_1 and Z_w have usually been changed. To illustrate the idea we show the first two steps.

Step 1.

Since $n = q^{d+1} + 1$, there are two columns c_1 and c_2 of A agreeing in the (d + 1) rows of R_1 . By permuting the d-tuples c_{12}, \ldots, c_{1w} if necessary, we may assume by using Lemma 2 that c_{1w} is a unique d-tuple. This is because, if c_{1j} is a unique d-tuple with $j \neq w$, we interchange the rows in R_j and in R_w in such a way that c_{1j} becomes c_{1w} of R_w . Since this type of permuting rows in A will be repeated frequently, we say for short that we update the rows of R_w (by using the rows of R_j). Note that permuting the rows of A does not effect the separation property of A. Since c_{1w} is unique, the maximal number of remaining d-tuples corresponding to R_w is $q^d - 1$. If each of these d-tuples appears at most q times in R_w , we can fill only $(q^d - 1)q$ columns of A. So there are $q^{d+1} - (q^d - 1)q = q$ columns, whose d-tuples are repeated at least q + 1 times in R_w . Thus there are at least q (d + 1)-tuples of symbols repeated in Z_w , because there are q symbols altogether. Each of these q repeated (d + 1)-tuples gives at least one unique d-tuple distributed in the rows of Z_1, \ldots, Z_{w-1} . Since $q \ge w > w - 1$, at least one Z_i , $i \in \{1, \ldots, w - 1\}$ contains at least 2 unique d-tuples. If $i \neq 1$, then by updating the rows of Z_1 we may assume that Z_1 contains 2 unique d-tuples. The (maximal) remaining $q^d - 2$ d-tuples in Z_1 are distributed in th $q^{d+1} + 1 - 2 = q^{d+1} - 1$ columns of A. Again if each of these $q^d - 2$ d-tuples appears at most q times, we can fill at most $(q^d - 2)q$ columns. So there are $q^{d+1} + 1 - 2 - (q^d - 2)q = 2q - 1$ columns with d-tuples in Z_1 that have to repeat at least q + 1 times. Thus there are at least 2q - 1 repeated (d + 1)-tuples in the (d + 1) rows of R_1 .

Step 2.

From Step 1 we have that there are at least 2q - 1 pairs of columns such that each pair agrees in the (d+1) rows of R_1 . By using Lemma 2 each of these pairs provides at least one unique d-tuple distributed in R_2, \ldots, R_w . Since $2q - 1 \ge 2w - 1 > 2(w - 1)$, there is an R_i that contains at least 3 unique d-tuples. If $R_i \neq R_w$, we update the rows of R_w . So we may assume that R_w contains at least 3 unique d-tuples. Hence there are at most $q^d - 3$ remaining d-tuples in R_w distributed in $(q^{d+1}+1-3) = (q^{d+1}-2)$ columns of A. If each of these d-tuples appears at most q times in R_w , then only $(q^d - 3)q$ columns of A can be filled. So there are $(q^{d+1} + 1) - 3 - (q^d - 3)q = 3q - 2$ columns, whose d-tuples are repeated at least q + 1 times in R_w . Hence there are at least 3q - 2(d+1)-tuples repeated in Z_w . Since each pair of these repeated columns provides at least one unique d-tuple in some Z_i , $i \in \{1, \ldots, w-1\}$, we have at least 3q-2 unique d-tuples distributed in Z_1, \ldots, Z_{w-1} . Since $3q-2 \ge 3w-2 > 3(w-1)$, there is an Z_i that contains at least 4 unique d-tuples. If $i \neq 1$, then again by updating the rows of Z_1 we may assume that Z_1 contains 4 unique d-tuples. The (maximal) remaining $q^d - 4$ d-tuples in Z_1 are distributed in the remaining $q^{d+1} + 1 - 4 = q^{d+1} - 3$ columns of A. Again if each of these d-tuples appears at most q times, we can fill at most $(q^d - 4)q$ columns. So there are $q^{d+1} + 1 - 4 - (q^d - 4)q = 4q - 3$ columns with d-tuples in Z_1 that have to repeat at least q+1 times. Hence there are at least 4q-3 repeated (d+1)-tuples in the (d+1) rows of R_1 .

When repeating the argument as shown in the two steps above, we see that the number of unique d-tuples in R_w and Z_1 strictly increases with the number of steps. More precisely, at Step i with $i \leq q^d/2$ we have that R_w contains (2i - 1) unique d-tuples and Z_1 contains 2i unique d-tuples. So, if q is even, Z_1 (with its rows updated) contains all q^d unique d-tuples at step $i = q^d/2$. If q is odd, R_w (with its rows updated) contains all q^d unique d-tuples at step $i = \lceil q^d/2 \rceil + 1$. This shows that there are no more free d-tuples in R_w or in Z_1 to fill the columns of A after a finite number of steps. This contradiction completes the proof.

To show that the bound of Theorem 5 is tight we make use of a combinatorial structure called orthogonal arrays. An orthogonal array OA(t, N, m) is an $N \times m^t$ array A with entries from a set of $m \ge 2$ symbols such that within any t rows of A every possible t-tuple of symbols occurs exactly once. This property is equivalent to the fact that every two columns of A agree in at most t - 1rows, see for example [12]. The just given definition of orthogonal arrays is in fact the definition of orthogonal arrays of strength t and index 1. A classical construction of orthogonal arrays is as follows [8]. Let q be a prime power and $t \ge 2$. Let $\mathcal{P} = \{P_1, P_2, \ldots, P_{q^t}\}$ be the set of all polynomials of degree at most t - 1 over the finite field \mathbb{F}_q . Now let \mathcal{R} be a subset of elements of $\mathbb{F}_q \cup \{\infty\}$. Define an $|\mathcal{R}| \times q^t$ array A in which the entry A(u, j) is $P_j(u)$ if $u \in \mathcal{R} \setminus \{\infty\}$ and is a_{t-1} when $P_j(x) = \sum_{i=0}^{t-1} a_i x^i$ and $u = \infty$. Then A is an $OA(t, |\mathcal{R}|, q)$. For more about orthogonal arrays we refer the reader to [12]. As an application of orthogonal arrays we obtain the following theorems showing that the bound of Theorem 5 is tight.

Theorem 6 Let q, d, w be positive integers such that q is a prime power with $q \ge wd$ and $w \ge 2$. Then there exists an $\mathsf{SHF}(wd+1;q^{d+1},q,\{1,w\})$.

Proof. Let q be a prime power such that $q \ge wd$. Let $\mathcal{R} \subseteq \mathbb{F}_q \cup \{\infty\}$ with $|\mathcal{R}| = wd+1$. Consider the classical orthogonal array $\mathsf{OA}(d+1, |\mathcal{R}|, q)$ which is an $(wd+1) \times q^{d+1}$ array A. Now any two different columns of A agree in at most d rows. It follows that for given two disjoint subsets of columns C_1 and C_2 of A with $|C_1| = 1$ and $|C_2| = w$, there is at least one row that separates C_1 and C_2 . Hence A is an $\mathsf{SHF}(wd+1; q^{d+1}, q, \{1, w\})$. \Box

When q is not a prime power, we have the following result.

Theorem 7 Let $q = p_1^{e_1} p_2^{e_2} \dots p_s^{e_s}$ be a prime power factorization of an integer q with $q \ge 2$ such that $p_1^{e_1} < p_2^{e_2} < \dots < p_s^{e_s}$. Let w and d be positive integers such that $p_1^{e_1} \ge wd$ and $w \ge 2$. Then there exists an $\mathsf{SHF}(wd+1;q^{d+1},q,\{1,w\})$.

Proof. It is known by a result of Bush (see [7] or [12], 7.20 Theorem, page 226) that there is an OA(d+1, k, q) for $d+1 < p_1^{e_1}$ and $k \le p_1^{e_1} + 1$. If we choose k = wd+1, then an OA(d+1, wd+1, q) provides an $SHF(wd+1; q^{d+1}, q, \{1, w\})$.

References

- M. Bazrafshan and Tran van Trung, Bounds for separating hash families, J. Combin. Theory Ser. A 118 (2011), 1129–1135.
- [2] M. Bazrafshan, Separating Hash Families, PhD thesis, University of Duisburg-Essen, 2011.
- M. Bazrafshan and Tran van Trung, Improved bounds for separating hash families, Des. Codes Cryptpgr. DOI 10.1007/s10623-012-9673-7 (2012).
- [4] S. R. Blackburn, Frameproof codes, SIAM J. Discrete Math., Vol.16, No. 3 (2003), 499–510.
- [5] S. R. Blackburn, T. Etzion, D. R. Stinson and G. M. Zaverucha, A bound on the size of separating hash families, J. Combin. Theory Ser. A 115 (2008), 1246–1256.
- [6] D. Boneh, J. Shaw, Collusion-free fingerprinting for digital data, *IEEE Trans. Inform. Theory* 44 (1998), 1897–1905.
- [7] K. A. Bush, A generalization of a theorem due to MacNeish, Ann. Math. Stat. 23 (1952) 293–295.
- [8] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat. 23 (1952) 426–434.

- [9] , B. Chor, A. Fiat and M. Naor, Tracing traitors, in Advances in Cryptology CRYPTO'94,
 Y. G. Desmedt, ed., *Lecture Notes in Computer Science*, 839, Springer, Berlin (1994), 257 270
- [10] C. J. Colbourn, D. Horsley, and V. R. Syrotiuk, Frameproof codes and compressive sensing, *Forty-Eighth Annual Allerton Conference*, Allerton House, UIUC, Illinois, USA, September 29
 – October 1, 2010, 985–990.
- [11] C. J. Colbourn, D. Horsley, and C. McLean, Compressive sensing matrices and hash families, *Transactions on Communications* Vol. 59, Nr.7, July 2011, 1840–1845.
- [12] C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial Designs Chapman and Hall/CRC, Boca Raton, FL, 2nd edition, 2007.
- [13] A. Fiat and T. Tassa, Dynamic traitor tracing, in Advances in Cryptology-CRYPTO'99, M. Weiner, ed., Lecture Notes in Comput. Sci. 1666, Springer, Berlin, (1999), 354–371.
- [14] P. C. Li, R. Wei and G. H. J. van Rees, Constructions of 2-cover-free families and related separating hash families, J. Combin. Des. 14 (2006), 423–440.
- [15] P. Sarkar, D. R. Stinson, Frameproof and IPP codes, Progress in Cryptology Indocrypt 2001, Lecture Notes in Computer Science, Springer, Vol.2247, (2001), 117–126.
- [16] J. N. Staddon, D. R. Stinson and R. Wei, Combinatorial properties of frameproof and traceability codes, *IEEE Transaction on Information Theory* 47 (2001), 1042-1049.
- [17] D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes and frameproof codes, SIAM J. Discrete Math. 11 (1998), 41-53.
- [18] D. R. Stinson, Tran van Trung and R. Wei, Secure frameproof codes, key distribution patterns, group testing algorithms and related structures, J. Statist. Plann. Inference 86 (2000), 595–617.
- [19] D. R. Stinson, R. Wei and K. Chen, On Generalized Separating Hash Families, J. Combin. Theory Ser. A 115 (2008), 105-120.
- [20] D. R. Stinson, G. M. Zaverucha, Some improved bounds for secure frameproof codes and related separating hash families, *IEEE Transaction on Information Theory* 54 (2008), 2508–2514.