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Abstract

Frameproof codes have been introduced for use in digital fingerprinting that prevent a coali-
tion of w or fewer legitimate users from constructing a fingerprint of another user not in the
coalition. It turns out that w-frameproof codes are equivalent to separating hash families of
type {1, w}. In this paper we prove a tight bound for frameproof codes in terms of separating
hash families.

1 Introduction

Let Q be a finite set of size q and let N be a positive integer. A subset C ⊆ QN with |C| = n is
called C an (N,n, q) code. The elements of C are called codewords. Each codeword x ∈ C is of
the form x = (x1, . . . , xN ), where xi ∈ Q, 1 ≤ i ≤ N . For any subset of codewords P ⊆ C, the set
of descendants of P , denoted desc(P ), is defined by

desc(P ) = {x ∈ QN : xi ∈ {ai : a ∈ P}, 1 ≤ i ≤ N}.

Let C be an (N,n, q) code and let w ≥ 2 be an integer. C is called a w-frameproof code if for
all P ⊆ C with |P | ≤ w, we have that desc(P ) ∩ C = P . Frameproof codes were first introduced
by Boneh and Shaw [6], for use in fingerprinting of digital data to prevent a coalition of w or
fewer legitimate users from constructing a copy of fingerprint of another user not in the coalition.
Frameproof codes and their applications have been studied extensively, see for instance, [6], [13],
[9], [16], [18], [15], [4], [10]. One of the basic problems is the studying of upper bounds on the
cardinality of frameproof codes. Many strong bounds have been obtained in the papers [16], [15],
[4]. It turns out that frameproof codes are a special type of separating hash families (SHF).
Let h be a function from a set X to a set Y and let C1, C2, . . . , Ct ⊆ X be t pairwise disjoint
subsets. We say that h separates C1, C2, . . . , Ct if h(C1), h(C2), . . . , h(Ct) are pairwise disjoint,
where h(Ci) = {h(x) | x ∈ Ci}. Let |X| = n and |Y | = q. We call a set H of N functions from
X to Y an (N ;n, q, {w1, . . . , wt})-separating hash family, denoted by SHF(N ;n, q, {w1, . . . , wt}), if
for all pairwise disjoint subsets C1, . . . , Ct ⊆ X with |Ci| = wi, for i = 1, . . . , t, there exists at
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least one function h ∈ H that separates C1, C2, . . . , Ct. The multiset {w1, w2, . . . , wt} is the type of
the separating hash family. Separating hash families provide a link to many known combinatorial
structures such as perfect hash families, frameproof codes, secure frameproof codes, identifiable
parent property codes. Many results on separating hash families can be found in [18], [19], [5], [20],
[14], [1], [2], [3], [11].

Frameproof codes and separating hash families have the following connection. An (N,n, q) w-
frameproof codes exists if and only if an SHF(N ;n, q, {1, w}) exists. As it is more convenient to
work with separating hash families, we will prove the results in this paper in terms of separating
hash families.

It is often useful to present an SHF(N ;n, q, {w1, . . . , wt}) as an N × n matrix on q symbols, say
A. The rows of A correspond to the hash functions in the family, the columns correspond to the
elements in the domain X, and the entry in row f and column x is f(x). We call A the matrix
representation of the hash family. The matrix A has the following property. For given disjoint sets
of columns C1, C2, . . . , Ct with |Ci| = wi, 1 ≤ i ≤ t, there exists at least one row f of A such that

{A(f, x) : x ∈ Ci} ∩ {A(f, x) : x ∈ Cj} = ∅,

for all i 6= j, i.e. row f separates the column sets C1, C2, . . . , Ct. Now if we write the codewords of
an (N,n, q) w-frameproof code columnwise as an N × n matrix A, i.e. each codeword is a column
of A, then A is the matrix representation of an SHF(N ;n, q, {1, w}). The problem of determining
an upper bound on the cardinality of an (N,n, q) w-frameproof code becomes the problem of
determining an upper bound on the number of columns of A for given N , q, and w. When N ≤ w,
it has been shown that n ≤ w(q − 1), see [16], or [4]. The more interesting case is when N > w.
Strong bounds for case N > w are obtained in [16], [15], [4], [3].

We are interested in the case N = wd + 1 with d ≥ 1. Several previously strong bounds known
for this case are found in [4], [3].

Theorem 1 ([4]) Let N , q, w and d be positive integers such that N = wd + 1, w ≥ 2. Suppose
there is an (N,n, q) w-frameproof code. Then n ≤ qd+1 + O(qd).

Theorem 2 ([3]) Let N , q and d be positive integers such that N = 2d + 1. Suppose there is an
(N,n, q) 2-frameproof code. Then n ≤ qd+1.

Theorem 3 ([3]) Let q and w be positive integers such that w ≥ 2, q ≥ w + 1. Suppose there is
an (w + 1, n, q) w-frameproof code. Then n ≤ q2.

The bounds in Theorems 2, 3 are tight.

The aim of the paper is to prove the following bound on the cardinality of w-frameproof codes.

Theorem 4 Let d, q, w be positive integers such that q ≥ w ≥ 2. Suppose there exists an (N,n, q)
w-frameproof code with N = wd + 1. Then n ≤ qd+1.

The bound of Theorem 4 is tight as shown in the next section.
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2 A tight bound for separating hash families of type {1, w}

For the sake of completeness we include the following simple lemma.

Lemma 1 An (N,n, q) w-frameproof code is equivalent to an SHF(N ;n, q, {1, w}).

Proof. Let A be an N × n matrix having entries from a set of q symbols. Let {c} and P be any
given disjoint subsets of columns of A with |{c}| = 1 and |P | ≤ w, where w is an integer such that
w ≥ 2. We may view A as an (N,n, q) code whose codewords are the columns. Assume that A
is an (N,n, q) w-frameproof code. By definition this is equivalent to desc(P ) ∩ A = P . Further,
desc(P )∩A = P is equivalent to the fact that there is a row i that separates {c} and P . The latter
says that A is the matrix representation of an SHF(N ;n, q, {1, w}). �

Let A be the matrix representation of an SHF(wd + 1;n, q, {1, w}), where d is a positive integer.
Thus A is an N ×n matrix with N = wd+ 1 having entries from a set of q symbols. Let 1, 2, . . . , N
denote the row positions of A. Note that the rows of A may be permuted but the row positions are
fixed. Consider two partitions of the row positions of A.

The first partition, denoted by R1, R2, . . . , Rw, is defined by

R1 = {1, . . . , d, d + 1}, R2 = {d + 2, . . . , 2d + 1}, . . . , Rw = {(w − 1)d + 2, . . . , wd + 1}.

So we have |R1| = d + 1 and |R2| = · · · = |Rw| = d.

The second partition, denoted by Z1, Z2, . . . , Zw, is defined by

Z1 = {1, . . . , d} , Z2 = {d + 1, . . . , 2d} , . . . , Zw−1 = {(w − 2)d + 1, . . . , (w − 1)d} ,

Zw = {(w − 1)d + 1, . . . , wd + 1}.

So we have |Z1| = · · · = |Zw−1| = d and |Zw| = d + 1.

Let ci be a column of A. We write ci = ci1||ci2|| . . . ||ciw (resp. ci = c′i1||c′i2|| . . . ||c′iw) where cij
(resp. c′ij) is the restriction of ci to the row positions of Rj (resp. of Zj). Thus cij and c′ij are a
d-tuple or a d + 1-tuple of symbols.

Using the notation just described we first prove the following lemma.

Lemma 2 Let A be the matrix representation of an SHF(wd+ 1;n, q, {1, w}), where d is a positive
integer. Suppose that there are two columns c1 and c2 of A agreeing in the first (d+1) row positions
of R1 (resp. in the last (d + 1) row positions of Zw). Then each of the columns c1 and c2 has at
least a unique d-tuple corresponding to one of R2, . . . , Rw (resp. to one of Z1, . . . , Zw−1).

Proof. By using the notation described above we write ci = ci1||ci2|| . . . ||ciw for i = 1, 2, where
cij is the restriction of ci to Rj . Since c1 and c2 agree in R1, we have that c11 = c21, where c11
and c21 are d + 1-tuples of symbols. Whereas ci2, . . . , ciw are all d-tuples of symbols. Assume, by
contradiction, that all d-tuples c12, . . . , c1w are repeated in R2, . . . , Rw, say in columns s2, . . . , sw.
Then we have the following configuration in A.
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R1 →
R2 →

...
Rw →

. . . c1 c2 s2 . . . sw . . .

. . . c11 c21 ∗ . . . ∗ . . .

. . . c12 c22 c12 . . . ∗ . . .
. . .

...
...

...
. . .

...
. . .

. . . c1w c2w ∗ . . . c1w . . .

︷
︸︸

︷ A

But then the two column sets {c1} and {c2, s2, . . . , sw} cannot be separated in A, a contradiction.
Hence, at least one of the d-tuples c12, . . . , c1w must be unique. A similar argument shows that at
least one of the d-tuples c22, . . . , c2w is unique. When columns c1 and c2 agree in the last (d + 1)
row positions, we obtain the statement with a similar argument by using partition Z1, . . . , Zw. �

We now prove Theorem 4 in terms of separating hash families, which is equivalent to the following
theorem.

Theorem 5 Let q, w, and d be positive integers such that q ≥ w ≥ 2. Suppose that there exists an
SHF(wd + 1;n, q, {1, w}). Then n ≤ qd+1.

Proof. Let A be the (wd + 1) × n - matrix representation of an SHF(wd + 1;n, q, {1, w}). The
idea of the proof is to show that if n ≥ qd+1 + 1, then there are qd unique d-tuples of symbols
corresponding to Rw or Z1, by using Lemma 2 and by permuting the rows of A. This leads to a
contradiction, as there are no free d-tuples available to fill the columns of A.

Now assume, by contradiction, that n = qd+1 + 1. We focus on R1, Rw and Z1, Zw. The proof
consists of a finite number of repeated steps, which prove that the number of unique d-tuples of
symbols corresponding to Rw and Z1 strictly increases with the number of steps. More precisely,
each step begins with u1 pairs of columns agreeing in the (d + 1) rows of R1 and ends in x unique
d-tuples corresponding to Rw, y unique d-tuples corresponding to Z1, and u2 pairs of columns
agreeing in the (d + 1) rows of R1 with u2 > u1. During each step the rows corresponding to R1,
Rw, Z1 and Zw have usually been changed. To illustrate the idea we show the first two steps.

Step 1.

Since n = qd+1 + 1, there are two columns c1 and c2 of A agreeing in the (d + 1) rows of R1.
By permuting the d-tuples c12, . . . , c1w if necessary, we may assume by using Lemma 2 that c1w
is a unique d-tuple. This is because, if c1j is a unique d-tuple with j 6= w, we interchange the
rows in Rj and in Rw in such a way that c1j becomes c1w of Rw. Since this type of permuting
rows in A will be repeated frequently, we say for short that we update the rows of Rw (by using
the rows of Rj). Note that permuting the rows of A does not effect the separation property of A.
Since c1w is unique, the maximal number of remaining d-tuples corresponding to Rw is qd − 1. If
each of these d-tuples appears at most q times in Rw, we can fill only (qd − 1)q columns of A. So
there are qd+1 − (qd − 1)q = q columns, whose d-tuples are repeated at least q + 1 times in Rw.
Thus there are at least q (d + 1)-tuples of symbols repeated in Zw, because there are q symbols
altogether. Each of these q repeated (d + 1)-tuples gives at least one unique d-tuple distributed
in the rows of Z1, . . . , Zw−1. Since q ≥ w > w − 1, at least one Zi, i ∈ {1, . . . , w − 1} contains
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at least 2 unique d-tuples. If i 6= 1, then by updating the rows of Z1 we may assume that Z1

contains 2 unique d-tuples. The (maximal) remaining qd − 2 d-tuples in Z1 are distributed in th
qd+1 + 1 − 2 = qd+1 − 1 columns of A. Again if each of these qd − 2 d-tuples appears at most q
times, we can fill at most (qd− 2)q columns. So there are qd+1 + 1− 2− (qd− 2)q = 2q− 1 columns
with d-tuples in Z1 that have to repeat at least q+ 1 times. Thus there are at least 2q− 1 repeated
(d + 1)-tuples in the (d + 1) rows of R1.

Step 2.

From Step 1 we have that there are at least 2q− 1 pairs of columns such that each pair agrees in
the (d + 1) rows of R1. By using Lemma 2 each of these pairs provides at least one unique d-tuple
distributed in R2, . . . , Rw. Since 2q − 1 ≥ 2w − 1 > 2(w − 1), there is an Ri that contains at least
3 unique d-tuples. If Ri 6= Rw, we update the rows of Rw. So we may assume that Rw contains
at least 3 unique d-tuples. Hence there are at most qd − 3 remaining d-tuples in Rw distributed in
(qd+1 + 1− 3) = (qd+1 − 2) columns of A. If each of these d-tuples appears at most q times in Rw,
then only (qd − 3)q columns of A can be filled. So there are (qd+1 + 1) − 3 − (qd − 3)q = 3q − 2
columns, whose d-tuples are repeated at least q + 1 times in Rw. Hence there are at least 3q − 2
(d + 1)-tuples repeated in Zw. Since each pair of these repeated columns provides at least one
unique d-tuple in some Zi, i ∈ {1, . . . , w − 1}, we have at least 3q − 2 unique d-tuples distributed
in Z1, . . . , Zw−1. Since 3q − 2 ≥ 3w − 2 > 3(w − 1), there is an Zi that contains at least 4 unique
d-tuples. If i 6= 1, then again by updating the rows of Z1 we may assume that Z1 contains 4
unique d-tuples. The (maximal) remaining qd − 4 d-tuples in Z1 are distributed in the remaining
qd+1 + 1− 4 = qd+1 − 3 columns of A. Again if each of these d-tuples appears at most q times, we
can fill at most (qd − 4)q columns. So there are qd+1 + 1 − 4 − (qd − 4)q = 4q − 3 columns with
d-tuples in Z1 that have to repeat at least q + 1 times. Hence there are at least 4q − 3 repeated
(d + 1)-tuples in the (d + 1) rows of R1.

When repeating the argument as shown in the two steps above, we see that the number of unique
d-tuples in Rw and Z1 strictly increases with the number of steps. More precisely, at Step i with
i ≤ qd/2 we have that Rw contains (2i − 1) unique d-tuples and Z1 contains 2i unique d-tuples.
So, if q is even, Z1 (with its rows updated) contains all qd unique d-tuples at step i = qd/2. If q is
odd, Rw (with its rows updated) contains all qd unique d-tuples at step i = dqd/2e+ 1. This shows
that there are no more free d-tuples in Rw or in Z1 to fill the columns of A after a finite number of
steps. This contradiction completes the proof. �

To show that the bound of Theorem 5 is tight we make use of a combinatorial structure called
orthogonal arrays. An orthogonal array OA(t,N,m) is an N ×mt array A with entries from a set of
m ≥ 2 symbols such that within any t rows of A every possible t−tuple of symbols occurs exactly
once. This property is equivalent to the fact that every two columns of A agree in at most t − 1
rows, see for example [12]. The just given definition of orthogonal arrays is in fact the definition
of orthogonal arrays of strength t and index 1. A classical construction of orthogonal arrays is
as follows [8]. Let q be a prime power and t ≥ 2. Let P = {P1, P2, . . . , Pqt} be the set of all
polynomials of degree at most t − 1 over the finite field Fq. Now let R be a subset of elements of
Fq ∪{∞}. Define an |R|× qt array A in which the entry A(u, j) is Pj(u) if u ∈ R\{∞} and is at−1
when Pj(x) =

∑t−1
i=0 aix

i and u =∞. Then A is an OA(t, |R|, q). For more about orthogonal arrays
we refer the reader to [12].
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As an application of orthogonal arrays we obtain the following theorems showing that the bound
of Theorem 5 is tight.

Theorem 6 Let q, d, w be positive integers such that q is a prime power with q ≥ wd and w ≥ 2.
Then there exists an SHF(wd + 1; qd+1, q, {1, w}).

Proof. Let q be a prime power such that q ≥ wd. Let R ⊆ Fq∪{∞} with |R| = wd+1. Consider
the classical orthogonal array OA(d + 1, |R|, q) which is an (wd + 1)× qd+1 array A. Now any two
different columns of A agree in at most d rows. It follows that for given two disjoint subsets of
columns C1 and C2 of A with |C1| = 1 and |C2| = w, there is at least one row that separates C1

and C2. Hence A is an SHF(wd + 1; qd+1, q, {1, w}). �

When q is not a prime power, we have the following result.

Theorem 7 Let q = pe11 pe22 . . . pess be a prime power factorization of an integer q with q ≥ 2 such
that pe11 < pe22 < . . . < pess . Let w and d be positive integers such that pe11 ≥ wd and w ≥ 2. Then
there exists an SHF(wd + 1; qd+1, q, {1, w}).

Proof. It is known by a result of Bush (see [7] or [12], 7.20 Theorem, page 226) that there is an
OA(d+1, k, q) for d+1 < pe11 and k ≤ pe11 +1. If we choose k = wd+1, then an OA(d+1, wd+1, q)
provides an SHF(wd + 1; qd+1, q, {1, w}). �
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