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Abstract. The paper deals with recursive constructions for simple 3-designs
based on other 3-designs having (1, σ)-resolution. The concept of (1, σ)-resolution

may be viewed as a generalization of the parallelism for designs. We show
the constructions and their applications to produce many previously unknown

infinite families of simple 3-designs. We also include a discussion of (1, σ)-

resolvability of the constructed designs.

1. Introduction

In our previous papers [16, 17] we have presented several recursive constructions
for simple 3-designs. In [16], among others, generalizations of the well-known dou-
bling construction of Steiner quadruple systems for 3-designs are introduced. In [17]
more general recursive constructions of simple 3-designs are described, whereby in-
gredient designs may have repeated blocks. The methods in these papers are based
on the existence of 3-designs having a parallelism, i.e. the blocks of the design can
be partitioned into classes of mutually disjoint blocks such that every point is in
exactly one block of each class. Designs with parallelism have shown to be useful
for constructing designs in the literature [13], [7], [10], [12], [9], [11], [15], [16, 17].

The concept of (1, σ)-resolvability for t − (v, k, λ) designs may be viewed as a
generalization of that of parallelism. For the latter means that the design is (1, 1)-
resolvable. It should be mentioned that if a t − (v, k, λ) design has a parallelism
we necessarily have k|v; this condition does no longer hold for (1, σ)-resolvability
in general. Thus, the natural question is that whether or not the methods in our
previous papers [16, 17] can be extended to (1, σ)-resolvable 3-designs. We show
that this is in fact the case. Our aim in this paper is to present this generalization.
The result provides a general method for constructing simple 3-designs which largely
extends the use of complete designs as ingredients for the construction. We show the
strength of the method by giving some simple applications to construct a number of
families of simple 3-designs, which, to our knowledge, were not previously known to
exist. We also include a discussion of (1, σ)-resolvability of the constructed designs.

For notation and general definitions of t-designs we refer to [3, 8].
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2. Constructions of 3-Designs using (1, σ)-Resolution

In this section we present recursive constructions of simple 3-designs using (1, σ)-
resolution of their ingredients.

2.1. Preliminaries. We begin with a few definitions and set up necessary condi-
tions for the ingredients used in the constructions.

Definition 1. A t− (v, k, λ)-design (X,B) is said to be (s, σ)-resolvable for a given
s ∈ {1, . . . , t}, if its block set B can be partitioned into w classes π1, . . . , πw such
that (X,πi) is a s−(v, k, σ) design for all i = 1, . . . , w. Each πi is called a resolution
class.

It is worth noting that the concept of resolvability (i.e. (1, 1)-resolvability) for
BIBD introduced by Bose in 1942 [6] was generalized by Shrikhande and Raghavarao
to σ-resolvability (i.e. (1, σ)-resolvability) for BIBD in 1964 [14]. A definition of
s-resolvability (i.e. (s, σ)-resolvability) for t-designs with t ≥ 3 and 1 ≤ s ≤ t may
be found in [1], for example.

Remark 1. If (X,B) is the complete t−(v, k,
(
v−t
k−t
)
) design, then a (t, σ)-resolution

of (X,B) is a large set of t− (v, k, σ) designs.
It should be remarked that each t − (v, k, λ) design always has a trivial (s, λs)-

resolution consisting of a single class, i.e. w = 1, for all 1 ≤ s ≤ t. Throughout
the paper when we speak of (s, σ)-resolution we mean that w ≥ 2. Note that w =

λ
(
v
t

)(
k
s

)
/σ
(
v
s

)(
k
t

)
.

Definition 2. Let D be a t − (v, k, λ) design admitting a (s, σ)-resolution with
π1, . . . , πw as resolution classes. Define a distance between any two classes πi and
πj by d(πi, πj) = min{|i− j|, w − |i− j|}.

For the constructions in this paper we employ designs having a (1, σ)-resolution.
We now describe the detailed assumption and notation used throughout the paper.

Let {k1, . . . , kn, kn+1, . . . , k2n} and k be integers with 2 ≤ k1 < · · · < kn ≤ k/2
such that ki + kn+i = k for i = 1, . . . , n.

Assume that there exist 3 − (v, ki, λ
(i)) designs Di = (X,Bi) having a (1, σ(i))-

resolution such that wi = wn+i for all i = 1, . . . , n, where wj denotes the number

of classes in a (1, σ(j))-resolution of Dj , i.e. Di and Dn+i have the same number of
resolution classes.

It is also assumed that

1. For each pair (Di, Dn+i), 1 ≤ i ≤ n, either Di or Dn+i has to be simple.
2. If a Dj , j ∈ {i, n+ i}, is not simple, then Dj is a union of aj copies of a simple

3 − (v, kj , α
(j)) design Cj , wherein Cj admits a (1, σ(j))-resolution. Thus,

λ(j) = ajα
(j).

Note that the trivial 2− (v, 2, 1) design will be considered as a 3− (v, 2, λ) design
with λ = 0.

Further we need to specify the way of setting up (1, σ(j))-resolution classes for
Dj , when Dj is the union of aj copies Cj .

Let P (j) = {π(j)
1 , . . . , π

(j)
tj } be a (1, σ(j))-resolution of the simple design Cj . The

corresponding (1, σ(j))-resolution of Dj is chosen to be the “concatenation” of aj
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sets P (j). This means that the wj = ajtj resolution classes of Dj are arranged in
the following way

π
(j)
1 , . . . , π

(j)
tj , π

(j)
1 , . . . , π

(j)
tj , . . . , π

(j)
1 , . . . , π

(j)
tj .

Finally, we also assume that there exists a 3− (v, k,Λ) design D = (X,B), when
it is needed in our construction.

Notation:

• π(`)
1 , . . . , π

(`)
w` denote the w` classes in a (1, σ(`))-resolution of D` for ` =

1, . . . , 2n. Recall that wh = wn+h for h = 1, . . . , n.

• The distance defined on the resolution classes of D` is then d(`)(π
(`)
i , π

(`)
j ) =

min{|i− j|, w` − |i− j|}.
• b(j) = σ(j)v/k denotes the number of blocks in each class of a (1, σ(j))-

resolution of Dj .

• uj := σ(j) denotes the number of blocks containing a point in each class of a

(1, σ(j))-resolution of Dj .

• λ(j)2 = λ(j)(v− 2)/(kj − 2) denotes the number of blocks of Dj containing two
points.

2.2. Construction I. In this section we describe the first construction by using
the set-up above for the case kn 6= k/2.

Let D̃i = (X̃, B̃i) be a copy of Di defined on the point set X̃ such that X∩X̃ = ∅.
Also let D̃ = (X̃, B̃) be a copy of D.

Define blocks on the point set X ∪ X̃ as follows:

I. blocks of D and blocks of D̃;

II. blocks of the form A ∪ B̃ for any A ∈ π
(h)
i and B̃ ∈ π̃

(n+h)
j with εh ≤

d(h)(π
(h)
i , π

(h)
j ) ≤ sh, εh = 0, 1, for h = 1, . . . , n;

III. blocks of the form Ã ∪ B for any Ã ∈ π̃
(h)
i and B ∈ π

(n+h)
j with εh ≤

d(h)(π
(h)
i , π

(h)
j ) ≤ sh, εh = 0, 1, for h = 1, . . . , n.

Here, and in the sequel, the non-negative integers sh, h = 1, . . . , n, denote the
parameters that have to be determined, for which the defined blocks of types I, II
and III form a 3-design. Thus, sh, should not be confused with s in (s, σ)-resolution
as defined above.

Notation: Define zh = (2sh + 1 − εh) if sh <
w
2 , and zh = (2sh − εh) if sh = w

2 ,
for h = 1, . . . , n.

Any 3 points a, b, c ∈ X, resp. ã, b̃, c̃ ∈ X̃ are contained in

• Λ blocks of type I,
• zhλ(h)b(n+h) blocks of type II for h = 1, . . . , n,
• zhλ(n+h)b(h) blocks of type III for h = 1, . . . , n.

Thus a, b, c appear together in

Λ +

n∑
h=1

zhλ
(h)b(n+h) + zhλ

(n+h)b(h)
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blocks. Set

∆ =

n∑
h=1

zhλ
(h)b(n+h) + zhλ

(n+h)b(h).

Now consider 3 points a, b, c̃, where a, b ∈ X and c̃ ∈ X̃. Because of the symmetry
the number of blocks containing 3 points a, b, c̃, is equal to the number of blocks
containing ã, b̃, c. For each h = 1, . . . , n, any two points a and b are contained in

λ
(h)
2 blocks of Dh and in λ

(n+h)
2 blocks of Dn+h; further, the point c̃ is in uh (resp.

un+h) blocks of each resolution class of D̃h (resp. D̃n+h).
So a, b, c̃ appear in

• zhλ(h)2 un+h blocks of type II for h = 1, . . . , n,

• zhλ(n+h)2 uh blocks of type III for h = 1, . . . , n.

Thus a, b, c̃ are contained together in

Θ :=

n∑
h=1

zhλ
(h)
2 un+h + zhλ

(n+h)
2 uh

blocks.

Therefore the blocks defined in I, II and III will form a 3-design if

Λ + ∆ = Θ,

or

Λ = Θ−∆.

Note that Λ = Θ −∆ ≥ 0. The case Λ = Θ −∆ = 0 implies that D and D̃ are
not needed in the construction. In both cases either Θ −∆ > 0 or Θ −∆ = 0 the
constructed blocks form a simple 3− (2v, k,Θ) design with

Θ =

n∑
h=1

{(λ(h)2 un+h + λ
(n+h)
2 uh)}zh,

where 1 ≤ zh ≤ wh if both Dh and Dn+h are simple and 1 ≤ zh ≤ tj if Dj is
non-simple, j ∈ {h, n+ h}.

What remains to be verified is the simplicity of the resulting design when either
Dh or Dn+h is non-simple. Evidently, if both Dh and Dn+h are simple for all
1 ≤ h ≤ n, then the constructed design is simple.

To start with we observe that two blocks constructed from two pairs (Di, Dn+i)
and (Dj , Dn+j), i 6= j, are always distinct. Further any two blocks of different
types are also distinct. Thus, we need to consider two blocks of the same type, in
particular, of type II or type III constructed from a pair (Dj , Dn+j). W.l.o.g. we

may assume that Dj is a union of aj copies of a simple 3 − (v, kj , α
(j)) design Cj

and Dn+j is simple.
The following argument is the same for blocks of types II and III. So let E =

A1 ∪ B̃1 and F = A2 ∪ B̃2 be two blocks of type II of the resulting design, where

A1 ∈ π
(j)
i1

, B̃1 ∈ π̃
(n+j)
h1

, A2 ∈ π
(j)
i2

and B̃2 ∈ π̃
(n+j)
h2

. Suppose E = F . Then

B̃1 = B̃2, and hence h1 = h2, since D̃n+j is simple. Consequently, A1 = A2, so we
have

1. either i1 = i2,
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2. or i1 6= i2.

In the first case, E and F are the same block. In the second case, E and F are
repeated blocks; this can happen only if |i2−i1| is a multiple of tj , i.e. tj | |i2−i1|, this
is because the resolution classes of Dj are chosen to be the concatenation of aj copies

of a given set P (j) of resolution classes of Cj . Now, as εj ≤ d(j)(π(j)
i1
, π

(j)
h1

) ≤ sj and

εj ≤ d(j)(π
(j)
i2
, π

(j)
h2

) = d(j)(π
(j)
i2
, π

(j)
h1

) ≤ sj , it follows that zj > tj . Therefore, the
second case will not occur if zj ≤ tj .

Hence, if zj ≤ tj for all non-simple Dj ’s, the resulting design remains simple.

With the notation above, we summarize Construction I in the following theorem.

Theorem 1. Let {k1, . . . , kn, kn+1, . . . , k2n} and k be integers with 2 ≤ k1 < · · · <
kn < k/2 and ki+kn+i = k for i = 1, . . . , n. Assume that there exist 3− (v, ki, λ

(i))
designs Di = (X,Bi) admitting a (1, σ(i))-resolution such that wi = wn+i, where wj
is the number of resolution classes of Dj. Assume further that at least one design
from each pair (Di, Dn+i), 1 ≤ i ≤ n, is simple and if a Dj, j ∈ {i, n + i}, is

not simple, then Dj is a union of aj copies of a simple 3 − (v, kj , α
(j)) design Cj

admitting a (1, σ(j))-resolution, i.e. λ(j) = ajα
(j). Let tj denote the number of

resolution classes of Cj. Let

Θ :=

n∑
h=1

{(λ(h)2 un+h + λ
(n+h)
2 uh)}zh,

∆ :=

n∑
h=1

{(λ(h)b(n+h) + λ(n+h)b(h))}zh.

(i) Assume that

0 = Θ−∆,(1)

with 1 ≤ zh ≤ wh if both Dh and Dn+h are simple and 1 ≤ zh ≤ tj if Dj is
non-simple, j ∈ {h, n + h}. Then there exists a simple 3 − (2v, k,Θ) design
D.

(ii) Assume that

0 < Θ−∆,(2)

with 1 ≤ zh ≤ wh if both Dh and Dn+h are simple and 1 ≤ zh ≤ tj if Dj is
non-simple, j ∈ {h, n+ h}; further assume that there is a 3− (v, k,Λ) design
with Λ = Θ−∆. Then there exists a simple 3− (2v, k,Θ) design D.

2.3. Construction II. In this section we consider the case kn = k/2.
We observe that the resulting designs in Construction I would have repeated

blocks if kn = k/2 and the block sets of Dn and D2n are not disjoint. To deal
with the case kn = k/2 the blocks constructed from the pair (Dn, D2n) need to be
modified.

Suppose now 2 ≤ k1 < · · · < kn = k/2. Take Dn = D2n and assume that Dn is

simple. Now define the blocks on the point set X ∪ X̃ as follows:

I. blocks of D and blocks of D̃;

II. blocks of the form A ∪ B̃ for any A ∈ π
(h)
i and B̃ ∈ π̃

(n+h)
j with εh ≤

d(h)(π
(h)
i , π

(h)
j ) ≤ sh, εh = 0, 1, for h = 1, . . . , n− 1;
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III. blocks of the form Ã ∪ B for any Ã ∈ π̃
(h)
i and B ∈ π

(n+h)
j with εh ≤

d(h)(π
(h)
i , π

(h)
j ) ≤ sh, εh = 0, 1, for h = 1, . . . , n− 1;

IV. blocks of the form A ∪ B̃ for any A ∈ π
(n)
i and B̃ ∈ π̃

(2n)
j with εn ≤

d(n)(π
(n)
i , π

(n)
j ) ≤ sn, εn = 0, 1.

Construction II differs from Construction I only in blocks of type IV. Observe
that any three points a, b, c ∈ X (resp. ã, b̃, c̃ ∈ X̃) are contained in znλ

(n)b(n)

blocks of type IV; any three points a, b, c̃ with a, b ∈ X and c̃ ∈ X̃ (resp. ã, b̃, c) are

contained in znλ
(n)
2 un blocks of type IV. All other countings as well as the proof of

simplicity of the resulting design remain unchanged as shown in Construction I.

We obtain the following theorem for the case kn = k/2.

Theorem 2. Let {k1, . . . , kn, kn+1, . . . , k2n} and k be integers with 2 ≤ k1 < . . . <
kn = k/2 and ki+kn+i = k for i = 1, . . . , n. Assume that there exist 3− (v, ki, λ

(i))
designs Di = (X,Bi) admitting a (1, σ(i))-resolution such that wi = wn+i, where wj
is the number of resolution classes of Dj. Assume further that at least one design
from each pair (Di, Dn+i), 1 ≤ i ≤ n, is simple and if a Dj, j ∈ {i, n + i}, is

not simple, then Dj is a union of aj copies of a simple 3 − (v, kj , α
(j)) design Cj

admitting a (1, σ(j))-resolution, i.e. λ(j) = ajα
(j). Let tj denote the number of

resolution classes of Cj. Let

Θ∗ := λ
(n)
2 unzn +

n−1∑
h=1

{(λ(h)2 un+h + λ
(n+h)
2 uh)}zh,

∆∗ := λ(n)b(n)zn +

n−1∑
h=1

{(λ(h)b(n+h) + λ(n+h)b(h))}zh.

(i) Assume that

0 = Θ∗ −∆∗,(3)

with 1 ≤ zh ≤ wh if both Dh and Dn+h are simple and 1 ≤ zh ≤ tj if Dj is
non-simple, j ∈ {h, n + h}. Then there exists a simple 3 − (2v, k,Θ∗) design
D.

(ii) Assume that

0 < Θ∗ −∆∗,(4)

with 1 ≤ zh ≤ wh if both Dh and Dn+h are simple and 1 ≤ zh ≤ tj if Dj is
non-simple, j ∈ {h, n+ h}; further assume that there is a 3− (v, k,Λ) design
with Λ = Θ∗ −∆∗. Then there exists a simple 3− (2v, k,Θ∗) design D.

3. Applications

In this section we show applications of Constructions I and II for some small
values of n. It turns out that we can construct many new infinite families of simple
3-designs by merely using complete designs as ingredients. For these applications
we implicitly use the following result and observation.

• Baranyai’s Theorem [2]. The trivial k − (v, k, 1) design is (1,1)-resolvable
(i.e. having a parallelism) if and only if k|v.
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• Block orbits. If gcd(v, k) = 1, then the k−(v, k, 1) design is (1, k)-resolvable.
The resolution classes are the block orbits of a fixed point free automorphism
of order v.

3.1. Applications of Construction I.

3.1.1. n = 1. We consider the most simple case of Construction I, namely the case
with n = 1, k1 = 2 and k2 = 3.

Let v > 5 be an integer such that v ≡ 0 mod 2 and gcd(v, 3) = 1.

• D1 is the union of a1 = (v−2)/6 copies of the complete 2− (v, 2, 1) design C1.
By Baranyai’s Theorem C1 is (1,1)-resolvable, and the number of resolution

(parallel) classes of C1 is t1 = (v−1). ForD1 we have λ(1) = 0, λ
(1)
2 = (v−2)/6,

u1 = 1, b(1) = v/2 and w1 = a1t1.
• D2 is the complete 3 − (v, 3, 1) design. Recall by the observation above that
D2 admits a (1, 3)-resolution, which is derived from the block orbits of a fixed
point-free automorphism of order v on the point set. For D2 we have λ(2) = 1,

λ
(2)
2 = v − 2, u2 = 3, b(2) = v and w2 = (v − 1)(v − 2)/6.

• D is the complete 3− (v, 5,Λ) = 3− (v, 5,
(
v−3
2

)
) design.

With the notation of Theorem 1 we can check that

Λ = Θ−∆

if z1 = (v − 4)/2, where

Θ = {λ(1)2 u2 + λ
(2)
2 u1}z1 = 3(v − 2)z1/2,

∆ = {λ(1)b(2) + λ(2)b(1)}z1 = vz1/2,

Λ =

(
v − 3

2

)
.

The constructed design then has parameters 3− (2v, 5, 34 (v− 2)(v− 4)). Since a1 =
(v − 2)/6, we have that v ≡ 2 mod 6. Thus we have shown the following.

Theorem 3. There is a simple

3− (2v, 5,
3

4
(v − 2)(v − 4))

design for any integer v ≡ 2 mod 6.

We can construct another family of 3-designs with moderate value for Θ. Let
v = 2f + 1 with odd f .

• D1 is the union of a1 = 2f − 1 copies of the complete 2− (2f + 1, 2, 1) design

C1. So, D1 is (1,2)-resolvable with λ(1) = 0, λ
(1)
2 = a1 = 2f − 1, u1 = 2,

b(1) = 2f + 1 and w1 = a1t1 with t1 = 2f−1.
• D2 is the complete 3− (2f + 1, 3, 1) design. Since f is odd, we have 2f + 1 ≡

0 mod 3. So, D2 is (1, 1)-resolvable. For D2 we have λ(2) = 1, λ
(2)
2 = 2f − 1,

u2 = 1, b(2) = (2f + 1)/3 and w2 = 2f−1(2f − 1).
• D is a 3− (2f + 1, 5, 10(2f − 2)) design, which is obtained from the 4− (2f +

1, 5, 20) design [5] with gcd(f, 6) = 1. Thus Λ = 10(2f − 2).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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Now

Θ = {λ(1)2 u2 + λ
(2)
2 u1}z1 = 3(2f − 1)z1,

∆ = {λ(1)b(2) + λ(2)b(1)}z1 = (2f + 1)z1,

Λ = 10(2f − 2).

Hence

Λ = Θ−∆

if z1 = 5. The constructed design has parameters 3− (2(2f + 1), 5, 15(2f − 1)). We
have the following.

Theorem 4. There is a simple 3−(2(2f +1), 5, 15(2f−1)) design for gcd(f, 6) = 1.

3.1.2. n = 2. We construct a family of simple 3-designs with k = 7 by using Con-
struction I with n = 2.

Let v be an integer such that v ≡ 0 mod 4, gcd(v, 3) = 1 and gcd(v, 5) = 1.

• D1 is the union of a1 =
(
v−2
3

)
/20 copies of the complete 2 − (v, 2, 1) design

C1. So, D1 is (1,1)-resolvable. Here we have λ(1) = 0, λ
(1)
2 = a1, u1 = 1 and

b(1) = v/2 and w1 = a1t1 with t1 = (v − 1).
• D3 is the complete 3− (v, 5,

(
v−3
2

)
) design, which is (1, 5)-resolvable. For D3

we have λ(3) =
(
v−3
2

)
, λ

(3)
2 =

(
v−2
3

)
, u3 = 5, b(3) = v and w3 =

(
v−1
4

)
/5.

• D2 is the union of a2 = (v − 3) copies of the complete 3− (v, 3, 1) design C2.

So, D2 is (1, 3)-resolvable. For D2 we have λ(2) = v− 3, λ
(2)
2 = (v− 2)(v− 3),

u2 = 3, b(2) = v and w2 = a2t2 with t2 =
(
v−1
2

)
/3.

• D4 is the complete 3 − (v, 4, v − 3) design, which is (1, 1)-resolvable. For D4

we have λ(4) = v − 3, λ
(4)
2 =

(
v−2
2

)
, u4 = 1, b(4) = v/4 and w4 =

(
v−1
3

)
.

We have

Θ = (λ
(1)
2 u3 + λ

(3)
2 u1)z1 + (λ

(2)
2 u4 + λ

(4)
2 u2)z2

=
5

4

(
v − 2

3

)
z1 + 5

(
v − 2

2

)
z2

∆ = (λ(1)b(3) + λ(3)b(1))z1 + (λ(2)b(4) + λ(4)b(2))z2

=
1

4
v(v − 3)(v − 4)z1 +

5

4
v(v − 3)z2

Construction I will yield a simple 3 − (2v, 7,Θ) design, when there exist values
for z1 and z2 such that Θ−∆ = 0.

Set

Θ−∆ := −Az1 +Bz2.

Then we have

A =
1

24
(v − 3)(v − 4)(v + 10)

and

B =
5

4
(v − 3)(v − 4).

It follows that Θ−∆ = 0 if we have Az1 = Bz2, which reduces to the equation

(v + 10)z1 = 30z2,
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where z1 ≤ t1 and z2 ≤ t2, i.e. z1 ≤ v − 1 and z2 ≤ (v − 1)(v − 2)/6. It is clear
that z1 = 30m and z2 = (v + 10)m for integer m ≤ (v − 1)/30 are solutions to the
equation. From z1 = 30m and z2 = (v + 10)m we obtain

Θ =
35

4
v(v − 2)(v − 3)m.

Recall that v ≡ 0 mod 4, v ≡ 1, 2 mod 3, and gcd(5, v) = 1. Moreover, since a1 =(
v−2
3

)
/20 must be an integer, we have v ≡ 2, 3, 4 mod 5. Now the congruence system

v ≡ 0 mod 4, v ≡ 1, 2 mod 3, v ≡ 2, 3, 4 mod 5 has v ≡ 4, 8, 28, 32, 44, 52 mod 60 as
solutions. Thus we have proven the following.

Theorem 5. There is a simple 3−(2v, 7, 354 v(v−2)(v−3)m) design for any integer
v ≡ 4, 8, 28, 32, 44, 52 mod 60 (with v ≥ 32) and any integer m ≤ (v − 1)/30.

3.2. Applications of Construction II.

3.2.1. n = 1. Here is the first example.

Let f > 3 be an odd integer such that gcd(f, 3) = 1.

• D1 is the complete 3− (2f + 1, 3, 1) design. D1 is (1, 1)-resolvable. For D1 we

have λ(1) = 1, λ
(1)
2 = 2f − 1, u1 = 1, b(1) = (2f + 1)/3 and w1 = 2f−1(2f − 1).

• D is a 3 − (2f + 1, 6,Λ) design, which is obtained from the 4 − (2f + 1, 6, λ)
design [4] with gcd(f, 6) = 1, where λ ∈ {10, 60, 70, 90, 100, 150, 160}. Thus
Λ = λ(2f − 2)/3.

Now from Theorem 2 we have Θ∗ = λ
(1)
2 u1z1, ∆∗ = λ(1)b(1)z1. So, Θ∗ − ∆∗ =

2
3 (2f −2)z1. Thus Λ = Θ∗−∆∗ if z1 = λ/2. The constructed design has parameters

3− (2(2f + 1), 6,Θ∗) with Θ∗ = (2f − 1)z1 = (2f − 1)λ/2.
We have the following.

Theorem 6. There exists a simple 3 − (2(2f + 1), 6, (2f − 1)m) design for m ∈
{5, 30, 35, 45, 50, 75, 80} and gcd(f, 6) = 1.

We consider another example of general form. Let v, k be integers with v > k ≥ 3
and gcd(v, k) = 1.

• D1 is the complete design 3 − (v, k,
(
v−3
k−3

)
). So, λ(1) =

(
v−3
k−3

)
, λ

(1)
2 =

(
v−2
k−2

)
,

u1 = k, b(1) = v, and w1 =
(
v−1
k−1

)
/k.

• D is a 3− (v, 2k,Λ) design.

We have Θ∗ = λ
(1)
2 u1z1, ∆∗ = λ(1)b(1)z1. Construction II yields a simple 3 −

(2v, 2k,Θ∗) design, when it holds

Θ∗ −∆∗ = (λ
(1)
2 u1 − λ(1)b(1))z1 = Λ,

or

2

(
v − 3

k − 2

)
z1 = Λ,

with z1 ≤
(
v−1
k−1

)
/k. In this case we have

Θ∗ =
k(v − 2)

2(v − k)
Λ.

We record the result obtained above.
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Theorem 7. Let v > k ≥ 3 be integers with gcd(v, k) = 1. Assume that there
exists a simple 3 − (v, 2k,Λ) design such that m = Λ/2

(
v−3
k−2

)
is an integer and

m ≤
(
v−1
k−1

)
/k. Then there exists a simple 3− (2v, 2k, k(v−2)

2(v−k)Λ) design.

We will illustrate some explicit families for 3-designs from Theorem 7 by taking
the 3− (v, 2k,Λ) design D to be the complete 3− (v, 2k,

(
v−3
2k−3

)
) design.

• k = 3. D is the 3− (v, 6,
(
v−3
3

)
) design. There exists a simple 3− (2v, 6,Θ∗)

design with Θ∗ = 3(v−2)
2(v−3)

(
v−3
3

)
, if m =

(
v−3
2k−3

)
/2
(
v−3
k−2

)
= (v − 4)(v − 5)/12 is

an integer. This condition is equivalent to v ≡ 1, 2 mod 3 and v ≡ 0, 1 mod 4.
Hence v ≡ 1, 4, 5, 8 mod 12.

• k = 4. D is the 3− (v, 8,
(
v−3
5

)
) design. There exists a simple 3− (2v, 8,Θ∗)

design with Θ∗ = 4(v−2)
2(v−4)

(
v−3
5

)
, if m =

(
v−3
5

)
/2
(
v−3
2

)
= (v − 5)(v − 6)(v −

7)/2.3.4.5 is an integer. This condition is equivalent to v ≡ 1, 3 mod 4 and
v ≡ 0, 1, 2 mod 5. Hence v ≡ 1, 5, 7, 11, 15, 17 mod 20.

• k = 5. D is the 3 − (v, 10,
(
v−3
7

)
) design. There is a simple 3 − (2v, 10,Θ∗)

design with Θ∗ = 5(v−2)
2(v−4)

(
v−3
7

)
, if m =

(
v−3
7

)
/2
(
v−3
2

)
= (v − 6)(v − 7)(v −

8)(v − 9)/16.3.5.7 is an integer. This condition is equivalent to gcd(v, 5) = 1,
v ≡ 0, 1, 6, 7 mod 8 and v ≡ 0, 1, 2, 6 mod 7.

In summary, we have the following corollary of Theorem 7.

Corollary 1. The following hold.

(i) There is a simple 3− (2v, 6, 3(v−2)
2(v−3)

(
v−3
3

)
) design for v ≡ 1, 4, 5, 8 mod 12.

(ii) There is a simple 3−(2v, 8, 4(v−2)
2(v−4)

(
v−3
5

)
) design for v ≡ 1, 5, 7, 11, 15, 17 mod

20.
(iii) There is a simple 3 − (2v, 10, 5(v−2)

2(v−5)

(
v−3
7

)
) design for v ≡ 0, 1, 2, 6 mod 7,

v ≡ 0, 1, 6, 7 mod 8, and gcd(v, 5) = 1.

3.2.2. n = 2. Let v, k be integers such that v > 2k, k ≥ 3, gcd(v, 2k) = 1 and
gcd(v, k + 1) = 1.

• D1 is a union of a1 = 1
k(2k−1)

(
v−2
2k−2

)
copies of the complete 2− (v, 2, 1) design

C1. Since gcd(v, 2) = 1, C1 is (1, 2)-resolvable and has t1 = (v−1)/2 resolution

classes. For D1 we have λ(1) = 0, λ
(1)
2 = 1

k(2k−1)

(
v−2
2k−2

)
, u1 = 2, b(1) = v,

w1 = a1t1.
• D3 is the complete 2 − (v, 2k,

(
v−3
2k−3

)
) design which is (1, 2k)-resolvable. For

D3 we have λ(3) =
(
v−3
2k−3

)
, λ

(3)
2 =

(
v−2
2k−2

)
, u3 = 2k, b(3) = v, w3 = 1

2k

(
v−1
2k−1

)
.

• D2 is the complete 2−(v, k+1,
(
v−3
k−2

)
) design which is (1, k+1)-resolvable. For

D2 we have λ(2) =
(
v−3
k−2

)
, λ

(2)
2 =

(
v−2
k−1

)
, u2 = k + 1, b(2) = v, w2 = 1

k+1

(
v−1
k

)
.
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We have

Θ∗ = (λ
(1)
2 u3 + λ

(3)
2 u1)z1 + λ

(2)
2 u2z2

=
4k

2k − 1

(
v − 2

2k − 2

)
z1 + (k + 1)

(
v − 2

k − 1

)
z2,

∆∗ = (λ(1)b(3) + λ(3)b(1))z1 + λ(2)b(2)z2

= v

(
v − 3

2k − 3

)
z1 + v

(
v − 3

k − 2

)
z2

We then obtain a simple 3 − (2v, 2(k + 1),Θ∗) design, if there exist positive
integers z1 and z2 with z1 ≤ t1 and z2 ≤ w2 for which Θ∗ −∆∗ = 0.

Set
Θ∗ −∆∗ := −Az1 +Bz2.

Then we have

−A =
4k

2k − 1

(
v − 2

2k − 2

)
− v
(
v − 3

2k − 3

)
= −

(
v − 3

2k − 3

)
α

with α = [v(4k2 − 10k + 2) + 8k]/(2k − 2)(2k − 1),

B = (k + 1)

(
v − 2

k − 1

)
− v
(
v − 3

k − 2

)
= 2

(
v − 3

k − 2

)
(v − k − 1)/(k − 1).

Hence, if Θ∗ −∆∗ = 0, we have Az1 = Bz2. In particular, if A/B is an integer,
then for any integer 1 ≤ z1 ≤ t1 such that z2 = z1A/B ≤ w2, we obtain a simple
3− (2k, 2(k + 1),Θ∗) design.

Here we record this result.

Theorem 8. Let v, k be integers such that v > 2k, k ≥ 3, gcd(v, 2k) = 1 and

gcd(v, k + 1) = 1. Define A =
(
v−3
2k−3

) v(4k2−10k+2)+8k
(2k−2)(2k−1) and B = 2

(
v−3
k−2

)
v−k−1
k−1 . If

A/B is an integer, then for any integer 1 ≤ z1 ≤ (v− 1)/2 such that z2 = z1A/B ≤
1
k+1

(
v−1
k

)
, there exists a simple 3− (2v, 2(k + 1),Θ∗) design with

Θ∗ =

(
v − 2

2k − 2

)
4k

2k − 1
z1 +

(
v − 2

k − 1

)
(k + 1)z2.

We illustrate two special cases with k = 3 and k = 4 of Theorem 8.

• k = 3.
We then haveA/B = (v−5)(v−3)

3.5 . The conditions that gcd(v, 6) = gcd(v, 4) =
1 and A/B is an integer are equivalent to v ≡ 2 mod 3, v ≡ 1, 3 mod 4 and
v ≡ 0, 2 mod 5. Thus we have v ≡ 5, 17, 35, 47 mod 60. Note that z2 = z1A/B.
In this case we have a 3− (2v, 8,Θ∗) with

Θ∗ =

(
v − 2

4

)
12

5
z1 +

(
v − 2

2

)
4z2

=
7

30
v(v − 2)(v − 3)(v − 5)z1,
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where 1 ≤ z1 ≤ (v − 1)/2.

• k = 4.
We obtain A/B = (v − 6)(v − 7)(13v + 16)/8.3.5.7 . The requirement

that gcd(v, 2k) = gcd(v, 8) = 1, gcd(v, k + 1) = gcd(v, 5) = 1 and A/B is
an integer, reduces to v ≡ 7 mod 8, v ≡ 1, 2, 3 mod 5 and v ≡ 0, 2, 6 mod 7.
Hence v ≡ 7, 23, 63, 111, 167, 191, 223, 231, 247 mod 280. And we have a simple
3− (2v, 10,Θ∗) design with

Θ∗ =

(
v − 2

6

)
16

7
z1 +

(
v − 2

3

)
5z2

= 81v

(
v − 2

6

)
z1/7(v − 5).

In summary, we have proven the following.

Corollary 2. The following hold.

(i) There is a simple 3− (2v, 8, 7
30v(v−2)(v−3)(v−5)m) design for any positive

integers v ≡ 5, 17, 35, 47 mod 60 and m ≤ (v − 1)/2.
(ii) There is a simple 3 − (2v, 10, 81v

(
v−2
6

)
m/7(v − 5)) design for any positive

integers v ≡ 7, 23, 63, 111, 167, 191, 223, 231, 247 mod 280 and m ≤ (v − 1)/2.

3.3. (1, σ)-resolvability of the constructed designs. In this section, we
discuss the question of (1, σ)-resolvability of the designs obtained by Constructions
I and II. In particular, we will consider the cases Θ−∆ = 0 and Θ∗ −∆∗ = 0, i.e.
the cases where a 3− (v, k,Λ) design D is not used in the construction.

We make use of the following observation.

• Let (Dh, Dn+h) be a pair of designs in Constructions I or II such that kh 6=
kn+h. For given (i, j) the blocks constructed from the resolution classes

(π
(h)
i , π̃

(n+h)
j ) and (π̃

(h)
i , π

(n+h)
j ) will be denoted by B(i,j)h,n+h. Thus

B(i,j)h,n+h = {A ∪ B̃, Ã ∪B /A ∈ π(h)
i , Ã ∈ π̃(h)

i , B ∈ π(n+h)
j , B̃ ∈ π̃(n+h)

j }.

Recall that εh ≤ d(h)(π
(h)
i , π

(h)
j ) ≤ sh. It follows that each point x ∈ X or

x̃ ∈ X̃ appears in

σ(i) := uhb
(n+h) + un+hb

(h)

blocks of B(i,j)h,n+h. Note that |B(i,j)h,n+h| = 2b(h)b(n+h).

• For the blocks of type IV in Construction II we have Dn = D2n i.e. kn = k2n.

Let B(i,j)n,n denote the set of blocks constructed from resolution classes of Dn

and D̃n corresponding to the pair (i, j). Then we have

B(i,j)n,n = {A ∪ B̃ /A ∈ π(n)
i , B̃ ∈ π̃(n)

j }.

We have |B(i,j)n,n | = b(n)b(n) and each point x ∈ X or x̃ ∈ X̃ appears in

σ(n) := unb
(n)

blocks of B(i,j)n,n .
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Let m1, . . . ,mn be positive integers such that

m1σ
(1) = · · · = mnσ

(n) := σ.

Observe that the blocks constructed by each pair (Dh, Dn+h) is a union of zhwh
subsets B(i,j)h,n+h of equal size. Now assume that mh|zhwh for all h = 1, . . . , n. This

is equivalent to say that the blocks constructed by the pair (Dh, Dn+h) can be
partitioned into zhwh/mh disjoint 1− (2v, kh + kn+h, σ) = 1− (2v, k, σ) designs. It
is then clear that the constructed design is (1, σ)-resolvable.

In summary, by using the notation above we have the following result.

Proposition 1. Let D be a 3− (2v, k,Θ) (resp. 3− (2v, k,Θ)∗) design obtained by
Construction I (resp. Construction II) for which Θ−∆ = 0 (resp. Θ∗ −∆∗ = 0).
Assume that there exist positive integers m1, . . . ,mn with mh|zhwh, for h = 1, . . . , n,
such that m1σ

(1) = · · · = mnσ
(n) := σ. Then the constructed design D is (1, σ)-

resolvable.

In the rest of this section we consider the (1, σ)-resolvability of some families of
3-designs constructed above.

• We begin with the simple 3−(2v, 7, 354 v(v−2)(v−3)m) design D in Theorem 5,
where v ≡ 4, 8, 28, 32, 44, 52 mod 60 (with v ≥ 32) and integer m ≤ (v−1)/30.
The design D is obtained by Construction I with n = 2 and Θ−∆ = 0. From
the parameters of the ingredients (see the proof of Theorem 5) we have
σ(1) = u1b

(3) + u3b
(1) = v + 5v/2 = 7v/2,

σ(2) = u2b
(4) + u4b

(2) = 3v/4 + v = 7v/4.
Choose m1 = 1 and m2 = 2. Then we have σ = σ(1) = 2σ(2). Now the

condition of Proposition 1 reduces to m2|z2w2, i.e. 2|(v + 10)mw2, which is
always satisfied since v is even. Hence D is (1, 7v/2)-resolvable.

• Consider the designs in Corollary 2 obtained by Construction II with n = 2
and Θ∗ −∆∗ = 0.
(i) Let D be a simple 3 − (2v, 8, 7

30v(v − 2)(v − 3)(v − 5)m) design from
Corollary 2, where v ≡ 5, 17, 35, 47 mod 60 and m ≤ (v − 1)/2. Here we
have
σ(1) = u1b

(3) + u3b
(1) = 2v + 6v = 8v,

σ(2) = u2b
(2) = 4v.

Take m1 = 1 and m2 = 2, then σ = σ(1) = 2σ(2) = 8v. The condition is

m2|z2w2, i.e. 2|z2w2, where z2 = z1A/B with A/B = (v−5)(v−3)
3.5 . Since v

is odd, so A/B is even. Thus 2|z2w2. Hence D is (1, 8v)-resolvable.

(ii) Similarly, let D be a simple 3− (2v, 10, 81v
(
v−2
6

)
m/7(v − 5)) design from

Corollary 2, with v ≡ 7 mod 8, v ≡ 1, 2, 3 mod 5, v ≡ 0, 2, 6 mod 7 and
m ≤ (v − 1)/2. We have
σ(1) = u1b

(3) + u3b
(1) = 2v + 2kv = 10v,

σ(2) = u2b
(2) = (k + 1)v = 5v.

Take m1 = 1 and m2 = 2, then σ = σ(1) = 2σ(2) = 10v. The condition is

m2|z2w2, i.e. 2|z2w2, where z2 = z1A/B with A/B = (v−6)(v−7)(13v+16)
8.3.5.7 .

Thus, if either z1(= m) is even or A/B is even, then the condition 2|z2w2

is satisfied. Hence the design D is (1, 10v)-resolvable. Note that A/B
being an even integer is equivalent to 16|(v − 7) or v ≡ 7 mod 16, v ≡
1, 2, 3 mod 5 and v ≡ 0, 2, 6 mod 7.
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We have proven the following.

Proposition 2. The following hold.

(i) The 3−(2v, 7, 354 v(v−2)(v−3)m) design D in Theorem 5 is (1, 7v/2)-resolvable
for v ≡ 4, 8, 28, 32, 44, 52 mod 60 (with v ≥ 32) and integer m ≤ (v − 1)/30.

(ii) The 3− (2v, 8, 7
30v(v−2)(v−3)(v−5)m) design D from Corollary 2 is (1, 8v)-

resolvable for v ≡ 5, 17, 35, 47 mod 60 and m ≤ (v − 1)/2.

(iii) The 3 − (2v, 10, 81v
(
v−2
6

)
m/7(v − 5)) design D from Corollary 2 for v ≡

7, 23, 63, 111, 167, 191, 223, 231, 247 mod 280 and m ≤ (v − 1)/2 is (1, 10v)-
resolvable, if either m even or 16|(v − 7).

It is an open question whether Constructions I and II provide a (2, σ)-resolvable
3-design.

Finally, we include a table listing the simple 3-designs constructed in the paper.

Table 1. Families of simple 3-designs constructed using Theorems 1, 2

No. Constructed design Condition Comment

1 3− (2v, 5, 3
4
(v − 2)(v − 4)) v ≡ 2 mod 6 Thm. 3

2 3− (2(2f + 1), 5, 15(2f − 1)) gcd(f, 6) = 1 Thm. 4

3 3− (2v, 7, 35
4
v(v − 2)(v − 3)m) v ≡ 4, 8, 28, 32, 44, 52 mod 60 Thm. 5

v ≥ 32, m ≤ (v − 1)/30

4 3− (2(2f + 1), 6, (2f − 1)m) m ∈ {5, 30, 35, 45, 50, 75, 80} Thm. 6
gcd(f, 6) = 1

5 3− (2v, 6, 3(v−2)
2(v−3)

(
v−3
3

)
) v ≡ 1, 4, 5, 8 mod 12 Cor. 1(i)

6 3− (2v, 8, 4(v−2)
2(v−4)

(
v−3
5

)
) v ≡ 1, 5, 7, 11, 15, 17 mod 20 Cor. 1(ii)

7 3− (2v, 10, 5(v−2)
2(v−5)

(
v−3
7

)
) v ≡ 0, 1, 2, 6 mod 7, Cor. 1(iii)

v ≡ 0, 1, 6, 7 mod 8,
gcd(v, 5) = 1

8 3− (2v, 8, 7
30
v(v − 2)(v − 3)(v − 5)m) v ≡ 5, 17, 35, 47 mod 60, Cor. 2(i)

m ≤ (v − 1)/2

9 3− (2v, 10, 81v
(
v−2
6

)
m/7(v − 5)) v ≡ 7, 23, 63, 111, 167, Cor. 2(ii)

191, 223, 231, 247 mod 280,
m ≤ (v − 1)/2
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