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Abstract

Many of the known attacks against a number of cryptographic prim-
itives are based on knowing the order of the underlying group. We
propose a new idea that involves hiding the order of the group. As a
first example, we examine the feasibility of combining the intractability
of the integer factorization and discrete logarithm problems to extend

the ElGamal cryptosystem to the case where the order of the group is
hidden.
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1 Introduction

There are two enduring problems on which public key cryptography has relied
over the past two decades: i) The difficulty of factorization of large integers,
and ii) the difficulty of solving the Discrete Logarithm Problem (DLP). All
known efficient cryptanalytic attacks on the DLP require knowledge of the
order of the underlying group G. On the other hand, a system like RSA,
based on i), can be viewed as one in which the order of the underlying group
is hidden.

We note that the DLP is not an intrinsically intractable problem. Rather,
it depends on the particular representation of the underlying cyclic group.
For example, the problem is trivial in the additive cyclic group Z, under
addition modulo n. If a € Z, is a generator, then gcd(a,n) = 1, and the
problem becomes:

ar =p

which is clearly solvable by finding o ! in the ring Z, by means of the

Euclidean algorithm. In general the DLP is believed to be difficult in the
cyclic multiplicative group IF;; of an appropriate finite field Fy, and for a
cyclic components of an appropriately chosen elliptic curve £ over a finite field
F,. Thus, we see that the “intractability” of DLP relates to the particular
representation of the cyclic group in question. If n = |G|, Shank’s’ and
Pollard’s algorithms [5, 6] solve the DLP in time O(y/n). Moreover, if n
has relatively small factors, the Silver-Pohlig-Hellman algorithm provides a
significant reduction to the time complexity. The index calculus approach
for solving the DLP in IF; may be viewed as a time - space trade-off and
can be extremely time-efficient at the expense of space needed to store the
accumulated linear equations.

On the other hand, what could be said of a situation in which the attacker
of an instance of the ElGamal cryptosystem did not know the order of the
underlying group? How could such a system be designed? And how can the
notion of discrete logarithm be extended to arbitrary, non-abelian groups?
Can practical proposals be made which go beyond cyclic groups represented
in the familiar ways? An even more ambitious question would ask how can
we build secure and practical systems based on group-theoretic methods,
which rely on the generally undecidable word problem. We believe that the
high road to building such systems would be to concentrate on combinatorial
group-theoretic methods. A system like the ones proposed in [2, 7], and
analyzed in [3] are perhaps models on which to build. In the past, not much
effort has been expanded on the substance of the above questions.

In this paper we present an example that demonstrates the efficacy of
hiding the group order.

lalso known as the Baby step - Giant step algorithm
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1.1 The ElGamal scheme

In what follows we remind the reader of the ElGamal public key cryptosys-
tem. The message space is a large cyclic group G in which DLP is hard.
Let a be a generator known by all communicants. Alice chooses a random
integer k which she keeps secret, and publishes 8 = o. If Bob wants to send
Alice message z, he chooses a random integer R, and sends Alice the pair
(y1,2) = (af, Bz). Now, Alice can compute 5% by:

2= B = (@")F = (o)t =y}
Hence, Alice can recover the message z by:
r=z""(2z) =27y

A third party who intercepts (y1,y2) and can solve the DLP can also recover
z, either by finding the secret key k, from § = o, or by finding R from
y1 = aft. Clearly, Alice as well as the interceptor need to have access to an
efficient algorithm for computing z ! in G = (). Of course, if |G| is known,
z~1 can be computed efficiently by computing z/%/~ if not by a more efficient

method.

2 A Public-Key Cryptosystem of ElGamal type

We propose a public-key cryptosystem which uses computations in Z,,, where
n is the product of two distinct large primes p and ¢. This cryptosystem is
close to the ElGamal cryptosystem. We prove, however, that our cryptosys-
tem is at least as strong as each of the E1Gamal and RSA cryptosystems. Our
proof shows an interesting fact that it is possible to compare the strength of
a cryptosystem of ElGamal type with RSA using the same modulus. The
original El1Gamal cryptosystem does not allow such a comparison.

2.1 Description of the cryptosystem

Let n = pipe be the product of two large distinct primes p; and ps such
that the discrete logarithm problem is intractable in each Z;i. For better
security we may select p; to be of the form p; = 2¢; + 1 where ¢; are (Sophie
Germain) primes. Let a; be a primitive element in Z,,, and a; an element of
Z,, with the property that

ged(pr — 1,p2 — 1) | (a1 — a2) (2.1)

Note that this condition permits the choice a1 = ao. We are thankful to the
anonymous referee who pointed out that no particular weakness appears to
result from this choice.
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In what follows repeated use of the Chinese Remainder Theorem (CRT) will
be made, without additional reference, to obtain solutions of certain systems
of congruence equations.

Let

Bi = a;* mod p;, fori=1,2.

Under condition ( 2.1), the congruence equations

a a1 (mod p; — 1),

a = a2 (modpy—1)

have a unique solution a modulo #, where

t=(p1—1)(p2 —1)/ged(p1 — 1,p2 — 1)
= ¢(n)/ged(p1 — 1,p2 — 1).

Since p; and po are distinct primes, the system of congruence equations

a = «a; (mod p),

a = ay (mod py)

has a unique solution a modulo n. Note that o generates a subgroup of order
t in the multiplicative group of units Z; of the ring Z,.

Also, the system of congruences

B = B (mod p),
B = P2 (mod py)

has a unique solution £ modulo n.
Let

Kpub = {naaaﬁ}a
Kp’ri = {plap27a'}a

be the public key and private key of the scheme, respectively, and assign
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K = (KpubaKpri)-

To encrypt a message z € Z,, compute the ciphertext eg,,,(z) =
(y1,y2) as follows: Choose a (secret) random number R € Z, and compute

1 = affmodn
yo = zB% modn.

To decrypt the ciphertext (y1,y2), compute

dr(y1,92) = y2(y?) " mod n. (2.2)

If the o; were chosen not to necessarily be primitive elements of Z,,, but
of rather large order in Z; , a slightly more general system can be constructed
in which « is not necessarily of largest possible order. We denote this more
general system also by (n, a, ).

2.2 Proof of Correctness

Since
a=a; (modp; —1) for i=1,2,

we have that :
of = of" (mod p;).
Therefore, computing modulo p; yields:

ya(yh) ! =

8
—
Q
—~ S
IS
&
~—
/\
??'
IS
&
\/

fori=1,2.

Since p; and po are distinct primes, we conclude that :

y®) =z (mod n).
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3 Security of the cryptosystem

Under the assumption that the integer factorization problem and the discrete
logarithm problem are computationally intractable, we show that our public-
key cryptosystem is at least as secure as each of the RSA and ElGamal
public-key cryptosystems.

REMARK 3.1 Suppose that an RSA public key instance (n, b) is observed by
a potential attacker B. Now, B can establish what we may call an associated
public key (n, «, ) for our cryptosystem as follows. B randomly selects a pos-
itive integer B which is relatively prime to n and computes o = £° mod n. B
now verifies that « is not of small order?. It follows that 8 = a® mod n where
a is the private key in the RSA instance (n,b), i.e. where ab =1 mod ¢(n).
Now, B can treat (n,«,3) as the public key of an instance S of our (more
general) cryptosystem. In what follows, we will assume that an oracle O
exists that breaks this (more general) instance of our cryptosystem. That
is, given (n, «, B) and a ciphertext y, the oracle returns the correct plaintext
z for y in the system S with public key (n,«,3). We proceed to prove the
following theorem.

Theorem 3.1 Qur public-key cryptosystem is stronger than each of the RSA
and the ElGamal public-key cryptosystems in the sense that if there is an
oracle that can break our system, then it can also break each of the RSA
system and the ElGamal system.

Proof. The theorem is an immediate consequence of the following two lem-
mas. |

Lemma 3.1 Suppose O is an oracle that can break our public-key cryptosys-
tem. Then O can break the RSA public-key cryptosystem.

Proof. An attacker B can employ O to break the RSA public key cryp-
tosystem as follows: Let (n,b) be the public-key of the particular instance of
RSA, and y the ciphertext corresponding to some plaintext  which B seeks
to recover.

By the remark just before Theorem 3.1 B constructs an instance of our
cryptosystem with public key (n, «, 3) without knowledge of the private key
(p1,p2,a), of the RSA cryptosystem instance.

Then, B sets y1 = y, chooses an arbitrary o, and considers (y1,y2) as the
ciphertext of some plaintext under our system. Now, let  be the plaintext

2If p1 and p arise from Sophie Germain primes ¢; and ¢ respectively, then ¢(n) = 4¢i g,
t = 2q1g2 and there is an involution in the underlying group.
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determined by querying the oracle O with (y1,y2). Then z must satisfy the
equation
z = yoy; ¢ mod n.

Therefore,
Y% = yoz~ ! mod n.

Thus, querying O allows B to compute the value y{ mod n, for any given vy,
even though B does not know a. This in fact is nothing less than determining
the corresponding plaintext x of ciphertext y under the RSA cryptosystem.

[ |

Lemma 3.2 Suppose O is an oracle that can break our public-key cryptosys-
tem. Then O can break the ElGamal public-key cryptosystem.

Proof. An attacker B can employ O to break the (original) ElGamal public
key cryptosystem as follows:

Let (p1,a1,1) be the public key of an instance &; of the ElGamal cryp-
tosystem and let (y},v5) be the ciphertext under &; of some plaintext z1. Let
a1 be the private key in &1, so that 81 = 0/1“ (mod p;1). Of course a; is not
known to B. B wishes to attack £; and recover zi.

B proceeds to construct his own instance of the ElGamal system & :

(p2, a2, B2) by arbitrarily choosing p2 as an odd prime, as € Z;,, and B2 =

oy’ (mod py) for an integer ap such that 1 # a € Z;, ;. For simplicity and
easy computation B chooses an appropriate small® prime p,. Then, B defines
n = p1p2,  as the unique solution modulo n to the congruence equations:

a = ap (mod py)

a = as (mod ps)

and f as the unique solution modulo 7 to:

B = B1 (mod py)
B = B2 (mod po)

Now, B creates under & a plaintext-ciphertext pair (z2, (y1,45))-

Let y1 mod n be the unique solution to the equations

y1 = y1 (modp),
y1 = y{ (mod py),

3In fact it is almost imperative to choose a small prime p» so that the resulting n = p1ps
will be of about the same magnitude as p1, affording a fair comparison between the original
ElGamal and our cryptosystem.
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and yo the unique solution to the congruence equations

yo = yp (mod p1),
Y2 = y; (modpy).
Regarding (y1,y2) as the ciphertext for some plaintext under our system with

public key (n,a,3) B employs the oracle O to recover the corresponding
plaintext, say x. Then z must satisfy

T = yoy; " modn. (3.1)
where o satisfies
a = a1 (modp; —1),
a = ay (modpy—1). (3.2)

though the value of a is unknown to B.
Let

1 = £ mod p;.

Then (3.1) gives

z1 = yhy, ** mod pi,
which means that z; is the plaintext corresponding to the ciphertext (y],5)
under the ElGamal cryptosystem & . |

REMARK 3.2 A reasonable (security) assumption for &; is that 3 does not
divide p;. In the proof of Lemma 3.2, a good choice for the parameters of &
would be po = 7 and as = 3. Then, ged(p; — 1,p2 — 1) = 2, so by condition
(2.1) a1 and ao must have the same parity. If a; is odd, then B may choose
azg =5 and By = af? = 3% = 5(mod 7). Otherwise, if a; is even, B could
choose az = 2 and B, = 32 = 2(mod 7). Condition (2.1) must hold if the
system of congruences (3.2) is to have a solution for a. Since the attacker has
no knowledge of a; or its parity, he/she will need to make two attempts, the
first with parameters (a9, 82) = (5,5) and the second with (a9, 52) = (2, 2).

REMARK 3.3 It is worth emphasizing that in our system the underlying
group G = (a), of hidden order ¢, is a subgroup of Z. The system’s security
is based on the assumption that the factorization problem is intractable for
a given composite integer n. On the other hand, as the system is ElGamal-
like, we also assume the intractability of the DLP for a cyclic group of order
t. Here, the integer ¢ can be chosen to be the product of two large primes
such that ¢ is at least of 1024 bit long, while at the same time we choose the
modulus n to be of the same order of magnitude as ¢t. By current estimates of
the difficulty of the DLP and the factorization problem, such choices appear
to be sufficient to maintain the integrity of the complete system.
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4 Closing Remarks

All known attacks on DLP assume knowledge of the underlying cyclic group.
In this paper we propose an ElGamal like public-key cryptosystem in which
the order of the underlying cyclic group is hidden. We accomplish this by
relying on the intractability of the integer factorization problem, fusing the
RSA and original El1Gamal systems. The underlying group of the new system
is Z,,, where n is the product of two appropriate large primes. We show that
the new system is at least as secure as each of RSA and the original ElGamal
in the sense that if an oracle O can break our system it can also break RSA
and the original ElGamal systems.

During our development a secondary but interesting fact emerges, namely
that it is possible to compare the strength of a cryptosystem of E1Gamal type
with RSA using the same modulus. The original ElGamal cryptosystem does
not allow such a comparison.

The main interest in this article is that it directs attention to the im-
portant, yet often overlooked, security measure of hiding the order of the
underlying group. For future work, one may wish to seek public key scenar-
ios based on combinatorial group theory and the undecidability of the word
problem.

References

[1] T. ELGAMAL, A public key cryptosystem and a signature scheme based
on discrete logarithms, IEEE Transactions on Information Theory,
31(1985), 469-472.

[2] M. GARZON AND Y. ZALCSTEIN, The complexity of Grigorchuk groups

with application to cryptography. Theoretical Computer Science, 88(1)
(1991), 83-98.

[3] M.I. GONZALEZ VAscO, D. HOFHEINZ, C. MARTINEZ, AND R. STEIN-
WANDT, On the security of two cryptosystems using non-abelian groups,
to appear in Designs Codes and Cryptography.

[4] S. HALLGREN, A. RUSSELL, AND A. TA-SHMA, The Hidden Sub-
group Problem and Quantum Computation Using Group Representa-
tions, SIAM J. Comput., Vol. 32 (2004), no. 4, pp. 916 - 934.

[6] A. MENEZES, P. VAN OORSCHOT, AND S. VANSTONE, Handbook of
Applied Cryptography, CRC Press, 1996.

[6] D. R. STINSON, Cryptography Theory and Practice, Chapman &
Hall/CRC, 2nd Ed. 2002.



Hidden order El1Gamal 10

[7] N.R. WAGNER AND M.R. MAGYARIK, A Public Key Cryptosystem
Based on the Word Problem. In G.R. Blakley and D. Chaum, editors,
Advances in Cryptology. Proceedings of CRYPTO 198/, volume 196 of
Lecture Notes in Computer Science, pages 19-36. Springer, 1985.



