Angewandte Mathematik für Studierende der Ingenieurwissenschaften

Frank Osterbrink

Moers, den 25. Juli 2012
Einführung

Inhaltsverzeichnis

1 Mengenlehre
1.1 Der Begriff der „Menge“ .. 6
1.2 Aussagen und Wahrheitswerte ... 7
1.3 Mengen können eine Menge... .. 10
1.4 Die rationalen und die reellen Zahlen 13
 1.4.6 In \(\mathbb{R} \) herrscht Ordnung .. 17
1.5 Supremum und Infimum .. 19
1.6 Das Prinzip der vollständigen Induktion 19
1.7 Potenzen und Wurzeln ... 21
1.8 Summen und Produkte .. 23

2 Gleichungen
2.1 Äquivalenzumformungen .. 29
2.2 Lineare Gleichungen ... 29
2.3 Quadratische Gleichungen ... 30
2.4 Kubische Gleichungen ... 32
2.5 Gleichungen höherer Ordnung ... 34
2.6 Betragsgleichungen ... 35
2.7 Wurzelgleichungen .. 36
2.8 Ungleichungen ... 37

3 Funktionen
3.1 Was ist eine Funktion? ... 40
3.2 Wichtige Eigenschaften einer Funktion 46
3.3 Lineare Funktionen .. 48
3.4 Quadratische Funktionen .. 49
3.5 Rationale Funktionen ... 50
3.6 Exponentialfunktion .. 51
3.7 Logarithmen ... 52
3.8 Trigonometrische Funktionen ... 54

4 Die komplexen Zahlen
4.1 Die Lösung von \(x^2 + 1 = 0 \) .. 62
4.2 Die Polardarstellung komplexer Zahlen 65
4.3 Multiplikation und Wurzeln ... 66

5 Folgen, Grenzwerte und Stetigkeit
5.1 Folgen reeller oder komplexer Zahlen 71
5.2 Grenzwerte und Konvergenz ... 72
5.3 Stetige Funktionen ... 79
5.4 Grenzwerte von Funktionen .. 80
Kapitel 1

Mengenlehre
1.1 Der Begriff der „Menge“

„Eine Menge ist eine Zusammenfassung von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen.“

(Georg Cantor, 1845 - 1918: Begründer der naiven Mengenlehre)

Diese Definition wirkt zunächst sehr ansprechend und gut gelungen, ist aber mathematisch formal nicht korrekt und führt auf Widersprüche wie das folgende „Russellsche Paradoxon“:

Man stelle sich einen Barbier in einem Ort vor, der genau die Männer des Ortes rasiert, die sich nicht selbst rasieren. Rasiert er sich dann selbst?

Wenn ja, dürfte er sich nach obiger Aussage aber nicht selbst rasieren, wenn nein, dann müsste er es jedoch tun. Hier ist also Vorsicht geboten! Durch einen entsprechenden axiomatischen Aufbau der Mengenlehre kann man dieses sowie viele andere Paradoxa von vornherein vermeiden. Im mathematischen Alltag spielen diese feinen Unterschiede aber kaum eine Rolle, sodass wir hier von der obigen „naiven“ Definition ausgehen (Tatsächlich lassen wir also den Begriff der Menge undefiniert → In der Mathematik ein Kapitalverbrechen!).

Die Objekte in einer Menge nennt man „Elemente“ der Menge. Ist *x* ein Element der Menge *M*, so schreiben wir *x* ∈ *M*; andernfalls *x* /∈ *M*. Mengen lassen sich prinzipiell auf zwei Arten beschreiben:

1. durch Aufzählung ihrer Elemente.

 \[M = \{ x, y, z, \ldots \} \]

 bedeutet

 „*M* ist die Menge, die aus den Elementen *x*, *y*, *z*, ... besteht“.

Natürlich dürfen die Punkte nur dann gesetzt werden, wenn absolut und zweifelsfrei klar ist, wie es weitergeht.

Beispiel 1.1.1:

- \(\mathbb{N} := \{ 1, 2, 3, 4, \ldots \} \) ist die Menge der „natürlichen Zahlen“.
- \(\mathbb{G} := \{ 0, 2, 4, 6, 8, 10, \ldots \} \) ist die Menge der geraden, d. h. durch zwei teilbaren natürlichen Zahlen.
- \(\emptyset := \{ \} \) ist die sogenannte leere Menge, die kein Element enthält.

Das Symbol „:=“ bedeutet übrigens „wird definiert durch“ und wird zur schnellen und einfachen Definition mathematischer Symbole verwendet. Der Doppelpunkt steht dabei immer auf der zu definierenden Seite.
2. durch Charakterisierung ihrer Elemente.

\[M = \{ x \mid x \text{ hat die Eigenschaft } E \} \]

bedeutet

„M ist die Menge aller Elemente \(x \), die die Eigenschaft \(E \) haben.

Natürlich darf man bei dieser Art der Definition auch mehrere Eigenschaften aufzählen.

Beispiel 1.1.2:

- \(G := \{ x \in \mathbb{N} \mid x \text{ ist gerade} \} \). Es gilt \(2 \in G \), aber \(101 \notin G \).
- \(P := \{ \text{Planeten im Universum} \mid \text{Planet liegt in unserem Sonnensystem} \} \). Nach der neuen Definition eines Planeten (durch die Internationale Astronomische Union am 24.08.2006 beschlossen) ist \(\text{Mars} \in P \), aber \(\text{Pluto} \notin P \).

Wir sind nun im Stande unseren ersten mathematischen „Satz“ zu formulieren. Sätze treffen Aussagen über mathematische Sachverhalte und enthalten stets Voraussetzungen und Behauptung(en). Die Voraussetzungen nennen dabei die Bedingungen, unter denen die Behauptung(en) gelten. Ein Satz muss daher stets auch bewiesen werden!

Satz 1.1.3: Für eine Menge \(M \) und ein beliebiges Objekt \(x \) gilt stets \(x \in M \) oder \(x \notin M \), nicht aber beides.

Beweis. Für den Beweis ist ein axiomatischer Aufbau des Mengenbegriffs zwingend notwendig. Daher wollen wir an dieser Stelle der Behauptung einfach stillschweigend glauben und verzichten auf einen Beweis. In der Mathematik eigentlich ein absolutes No-Go.

1.2 Aussagen und Wahrheitswerte

Nachdem wir schon im vorherigen Abschnitt den Begriff der *Aussage* ganz intuitiv verwendet haben, wollen wir ihn nun auf eine etwas solidere Basis stellen und einen kurzen Ausflug in die Logik unternehmen. Als *Aussage* werden wir im Folgenden jeden sprachlichen Satz verstehen, der seiner inhaltlichen Bedeutung nach entweder wahr oder falsch ist. Man nennt dies auch das tertium non datur-Prinzip (sinngemäß: „Eine dritte Möglichkeit gibt es nicht“). Dabei kommt es nicht darauf an ob der Satz wahr oder falsch ist. Der Satz „Morgen wird es regnen.“ ist schon heute eine Aussage obwohl sich erst morgen herausstellen wird, ob sie wahr oder falsch ist. Formal ordnen wir einer wahren Aussage den Wahrheitswert \(w \) und einer falschen Aussage den Wahrheitswert \(f \) zu.

Aussagen können mit Hilfe logischer Verknüpfungen zu komplexeren Aussagen kombiniert werden. Zum Beispiel lassen sich die Aussagen „Morgen wird es regnen.“ und „Ich werde in die Uni gehen.“ zur Aussage „Morgen wird es regnen und ich werde in die Uni gehen.“ zusammensetzen. Ob eine komplexere Aussage wahr oder falsch ist errechnet sich dann aus den Wahrheitswerten der Teilaussagen.

Die wichtigsten logischen Verknüpfungen (oder auch *Junktoren*) sind:
(a) Die Negation (in Zeichen: ¬) ordnet einer Aussage A ihren entgegengesetzten Wahrheitswert zu:

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>w</td>
</tr>
</tbody>
</table>

(b) Die Konjunktion (in Zeichen: ∧) ordnet Aussagen A und B genau dann den Wahrheitswert w zu, wenn A und B wahr sind:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ∧ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>w</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>w</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

Umgangssprachlich entspricht die Konjunktion in etwa der Verknüpfung zweier Aussagen durch das Bindevwort „und“.

(c) Die Disjunktion (in Zeichen: ∨) ordnet Aussagen A und B genau dann den Wahrheitswert w zu, wenn A oder B oder beide wahr sind:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ∨ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>w</td>
<td>f</td>
<td>w</td>
</tr>
<tr>
<td>f</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

Sie entspricht daher ungefähr dem umgangssprachlichen „oder“.

(d) Die Implikation (in Zeichen: =⇒) ordnet Aussagen A und B Wahrheitswerte gemäß folgender Tabelle zu:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A =⇒ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>w</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>w</td>
<td>w</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

(e) Die Äquivalenz (in Zeichen: ⇔) ordnet Aussagen A und B genau dann den Wahrheitswert w zu, wenn A und B denselben Wahrheitswert haben:

1Gemeint ist hier nicht das ausschließende oder im Sinne von „entweder A oder B“.
Satz 1.2.1: Sind A und B zwei Aussagen so ist $A \iff B$ genau dann erfüllt, wenn $A \implies B$ und $B \implies A$ gelten, oder kürzer:

$$(A \iff B) \iff (A \implies B \land B \implies A).$$

Beweis. siehe Übungen!

Beispiel 1.2.2: (1) Wir untersuchen die Aussagen „$-1 = 1$“ und „$(-1)^2 = 1^2$“. Während die zweite wahr ist, ist die erste offensichtlich falsch und dennoch gilt gemäß unserer Definitionen:

$-1 = 1 \implies (-1)^2 = 1^2$,

aber eben nicht

$(-1)^2 = 1^2 \implies -1 = 1$.

(2) Es gilt

$x - 2 = 0 \iff x = 2$.

Ist nämlich $x = 2$, so ist $x - 2 = 2 - 2 = 0$ und damit „\iff“ gezeigt. Andersherum folgt aus $x - 2 = 0$, dass $x = x - 2 + 2 = 0 + 2 = 2$ und somit auch „\iff“.

Definition 1.2.3: (Quantoren) Ist $A(x)$ eine Aussage, die für die Elemente x einer Menge M sinnvoll ist, so schreiben wir

- $\forall x \in M : A(x)$, wenn für jedes Element der Menge M die Aussage A zutrifft und sagen „Für alle x in M gilt $A(x)$.“

- $\exists x \in M : A(x)$, wenn es mindestens ein $x \in M$ gibt, für dass $A(x)$ gilt und sagen „Es gibt ein x in M, für dass $A(x)$ gilt.“

- $\exists! x \in M : A(x)$, wenn es genau ein $x \in M$ gibt, für dass $A(x)$ gilt und sagen „Es gibt genau ein x in M, für dass $A(x)$ gilt.“

Die Symbole \exists und \forall nennt man den Existenz- und Allquantor.

Beispiel 1.2.4: Sei M die Menge aller verheirateten Menschen. Dann ist die Aussage

$\forall x \in M \ \exists y \in M : x$ ist mit y verheiratet

(„Für jeden Menschen x in der Menge M gibt es mindestens einen Menschen y in der Menge M, der mit ihm verheiratet ist.“)
wahr; die Aussage
\[\exists x \in M \ \forall y \in M : x \text{ ist mit } y \text{ verheiratet} \]
(„Es gibt mindestens einen Menschen } x \text{ in der Menge } M, \text{ der mit allen Menschen in der Menge } M \text{ (also insbesondere auch sich selbst) verheiratet ist."

aber (zumindest in Deutschland) offensichtlich nicht.

Merke: Es kommt auf die Reihenfolge der Quantoren an!

Neben der offensichtlich kompakteren Schreibweise bieten diese Formalismen und Symbole der Mathematik noch einen weiteren Vorteil. Die Negation von Aussagen ist nämlich in der formalen Schreibweise sehr viel einfacher, als wenn eine in der natürlichen Sprache formulierte Aussage negiert werden soll. Zum Beispiel ist die korrekte Negation der Aussage „Jeder Student besucht eine Universität.“ nicht etwa „Kein Student besucht eine Universität.“, sondern

„Es gibt mindestens einen Studenten der keine Universität besucht.“

Nennen wir die Menge der Studenten } S \text{ und die Menge der Universitäten } U \text{ können wir die Aussage und ihre Negation auch in der Symbolsprache der Mathematik formulieren:}

\[\forall x \in S \ \exists Y \in U : x \in Y \]
(„Jeder Student besucht eine Universität.“)

und

\[\exists x \in S \ \forall Y \in U : x \notin Y. \]
(„Es gibt mindestens einen Studenten der keine Universität besucht.“)

Schon bei einem oberflächlichen Blick fällt sofort auf, dass sich die Symbole bei der Negation einfach umgedreht haben.

Merke: Zur Negation einer Aussage müssen die logischen Symbole umgedreht werden!

1.3 Mengen können eine Menge...

Sind } M \text{ und } N \text{ Mengen, so heißt } N \text{ „Teilmenge“ der Menge } M \text{ (in Zeichen: } N \subseteq M \text{), falls jedes Element } x \text{ aus } N \text{ auch in } M \text{ liegt. } M \text{ und } N \text{ sind „gleich“ (in Zeichen: } M = N \text{), falls } M \subseteq N \text{ und } N \subseteq M \text{ ist. Übertragen in die Symbolsprache der Mathematik bedeutet das:}

\[N \subseteq M \iff \forall x \in N : x \in M \quad \text{und} \quad N = M \iff N \subseteq M \land M \subseteq N. \]

Zum Beispiel ist also die Menge } G = \{ 2n \mid n \in \mathbb{N} \} \text{ der geraden natürlichen Zahlen eine Teilmenge der natürlichen Zahlen } \mathbb{N}.

Satz 1.3.1: Sei } M \text{ eine Menge. Dann gilt:

\[x \in M \iff \{x\} \subseteq M. \]
Beweis. Nach Definition der Äquivalenz „⇐⇒“ müssen wir zeigen, dass

\[(1) \ x \in M \implies \{x\} \subseteq M \quad \text{und} \quad (2) \ \{x\} \subseteq M \implies x \in M.\]

Beginnen wir mit (1), müssen wir für jedes \(x\) in der Menge \(M\) zeigen, dass \(\{x\}\) eine Teilmenge der Menge \(M\) ist. Das ist aber nach Definition sofort klar, denn jedes Element, dass in der Menge \(\{x\}\) liegt (es gibt ja nur eines, nämlich \(x\)) liegt nach Voraussetzung (\(x\) war ja ein Element der Menge \(M\)) in \(M\) und somit

\[\{x\} \subseteq M.\]

Ist nun andersherum \(\{x\}\) eine Teilmenge der Menge \(M\), so ist nach Definition einer Teilmenge, jedes Element der Menge \(\{x\}\) auch ein Element der Menge \(M\) und somit \(x \in M\). Also gilt auch (2).

\[\blacksquare\]

Definition 1.3.2: Sind \(M\) und \(N\) zwei Mengen, so nennt man

\[\to \ \text{die Menge} \quad M \cup N := \{ x \mid x \in M \lor x \in N \}\]

die „Vereinigung“ der Mengen \(M\) und \(N\).

\[\to \ \text{die Menge} \quad M \cap N := \{ x \mid x \in M \land x \in N \}\]

den „Schnitt“ bzw. „Durchschnitt“ der Mengen \(M\) und \(N\).

\[\to \ \text{die Menge} \quad M \setminus N := \{ x \mid x \in M \land x \notin N \}\]

die „Differenz“ der Mengen \(M\) und \(N\).

\[\to \ \text{die Menge} \quad M \times N := \{ (m,n) \mid m \in M, n \in N \}\]

das „kartesische Produkt“ der Mengen \(M\) und \(N\).

Ist \(N\) eine Teilmenge von \(M\), so nennt man

\[N^C := M \setminus N\]

das „Komplement“ der Menge \(N\) in \(M\). Den Zusammenhang zwischen verschiedenen Mengen kann man sehr schön mit den sogenannten „Venn-“ oder „Euler-“Diagrammen veranschaulichen:

Beispiel 1.3.3:
(1) Für

\[A := \{-3, -1, 4, 8\} \quad \text{und} \quad B := \{0, \pi\} \]

ist

\[A \times B = \{(-3, 0), (-3, \pi), (-1, 0), (-1, \pi), (4, 0), (4, \pi), (8, 0), (8, \pi)\} \]

und

\[B \times A = \{(0, -1), (0, 3), (0, 4), (0, 8), (\pi, -1), (\pi, 3), (\pi, 4), (\pi, 8)\}. \]

\[\textbf{Merke: Beim kartesischen Produkt } A \times B \text{ kommt es auf die Reihenfolge der Mengen } A \text{ und } B \text{ an. Im Allgemeinen ist } A \times B \neq B \times A. \]

(2) Gegeben seien die Mengen

\[M := \{\spadesuit, 2, \triangle, 5\} \quad \text{und} \quad N := \{\spadesuit, \pi, 5, \heartsuit\}. \]

Dann ist

\[M \cup N = \{\spadesuit, 2, \triangle, \pi, 5, \heartsuit\}, \quad M \cap N = \{\spadesuit, 5\}, \quad N \setminus M = \{\pi, 7, \heartsuit\}. \]

(3) Wir steigern den Schwierigkeitsgrad und untersuchen das Verhältnis der Mengen

\[M := \{x \in \mathbb{N} \mid x \text{ ist durch 5 teilbar und kleiner als 20}\} \quad \text{und} \quad N := \{0, 5, 15\}. \]

Offenbar ist \(M = \{0, 5, 10, 15\} \) und daher

\[N \subseteq M, \]

bzw.

\[N \cup M = M, \quad N \cap M = N, \quad N \setminus M = \emptyset, \quad N^C = \{10\}. \]

\textbf{Satz 1.3.4: (De Morgan’sche Regeln)} Sind \(M \) und \(N \) zwei Mengen, so gilt:

\[(M \cup N)^C = M^C \cap N^C \quad \text{und} \quad (M \cap N)^C = M^C \cup N^C. \]

\textbf{Beweis.} Um eine Aussage zweifelsfrei zu beweisen, dürfen wir Sie lediglich aus den bereits bekannten Definitionen und schon zuvor bewiesenen Sätzen ableiten. Nur dann ist die Aussage aus mathematischer Sicht unumstößlich und allgemein gültig.
Für unsere ersten Erfahrungen mit einem Beweis beschränken wir uns nun auf den ersten Teil der Aussage und überlassen den zweiten Teil den Übungen. Zu zeigen ist also

\[(M \cup N)^C = M^C \cap N^C.\]

Nach unseren vorhergehenden Definitionen müssen wir dazu zweierlei zeigen:

(1) \((M \cup N)^C \subseteq M^C \cap N^C\) und (2) \(M^C \cap N^C \subseteq (M \cup N)^C.\)

Nach Definition einer Teilmenge ist somit nachzuweisen, dass

\[(1) \forall x \in (M \cup N)^C : x \in M^C \cap N^C \quad \text{und} \quad (2) \forall y \in M^C \cap N^C : y \in (M \cup N)^C.\]

Sei nun also zunächst \(x \in (M \cup N)^C\) beliebig. Dann gilt:

\[x \in (M \cup N)^C \overset{\text{Def.}}{\Rightarrow} x \notin M \cup N\]
\[\overset{\text{Def.}}{\Rightarrow} x \notin M \land x \notin N\]
\[\overset{\text{Def.}}{\Rightarrow} x \in M^C \land x \in N^C \overset{\text{Def.}}{\Rightarrow} x \in M^C \cap N^C\]

Da wir an das Element \(x\) keinerlei Forderung gestellt haben (außer das es in \((M \cup N)^C\) liegt), gilt die Aussage für jedes beliebige \(x \in (M \cup N)^C\) und somit die erste Behauptung. Ist nun andersherum \(y \in M^C \cap N^C\) beliebig. Dann gilt:

\[y \in M^C \cap N^C \overset{\text{Def.}}{\Rightarrow} y \in M^C \land y \in N^C\]
\[\overset{\text{Def.}}{\Rightarrow} y \notin M \land y \notin N\]
\[\overset{\text{Def.}}{\Rightarrow} y \notin M \cup N \overset{\text{Def.}}{\Rightarrow} y \notin (M \cup N)^C\]

Wie schon im ersten Fall haben wir auch hier an das Element \(y\) keinerlei Forderung gestellt (außer das es in \(M^C \cap N^C\) liegt). Also gilt auch diese Aussage für jedes beliebige \(y \in M^C \cap N^C\) und damit die Behauptung.

\[\boxed{\blacksquare}\]

1.4 Die rationalen und die reellen Zahlen

Die Mathematik kennt natürlich unbeschreiblich viele Mengen, aber einige von ihnen sind so wichtig, dass sie einen speziellen Namen bekommen haben. Die Menge der natürlichen Zahlen haben wir bereits kennengelernt. Sie umfasst die sogenannten „Zählzahlen“, d. h. die Zahlen 1, 2, 3, 4, ..., insgesamt unendlich viele, so dass wir sie nicht alle aufschreiben können.\(^2\) Sie wird mit \(\mathbb{N}\) bezeichnet, also

\[\mathbb{N} := \{1, 2, 3, \ldots\},\]

und wir schreiben \(\mathbb{N}_0\), falls wir die natürlichen Zahlen zusammen mit der 0 meinen.

Merke: Die natürlichen Zahlen sind nach oben unbeschränkt. Das bedeutet; zu jeder positiven Zahl \(r\) existiert eine natürliche Zahl \(n\), die größer als \(r\) ist. Es gibt also keine größte natürliche Zahl.

\(^2\)Übrigens gibt es unter Mathematikern einen erbitterten Streit darüber, ob man die 0 zu den natürlichen Zahlen hinzu rechnen sollte oder nicht. In diesem Kurs jedenfalls gehört sie nicht dazu.
Bekanntlich können wir eine Gleichung der Form $a + x = b$ nur dann in \mathbb{N} lösen, wenn a kleiner als b ist. Andernfalls und auch wenn man z.B. die Punkte einer Ebene durch Paare von Zahlen beschreiben will, werden negative Zahlen nötig. Daher vervollständigen wir die Menge der natürlichen Zahlen durch Hinzunahme ihrer negativen Pendants zu den ganzen Zahlen

$$\mathbb{Z} := \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}.$$

Auch diese Menge reicht noch nicht aus um unsere Bedürfnisse zu befriedigen; es fehlen die „Brüche“ bzw. genauer gesagt die Menge der rationalen Zahlen

$$\mathbb{Q} := \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}.$$

Während aber das Rechnen mit ganzen Zahlen den allermeisten Studierenden einfach und schnell von der Hand geht, stellt Sie die „Bruchrechnung“ (dem Taschenrechner sei Dank) vor gravierende Probleme.

Bemerkung 1.4.1: Wir werden die Zahlenmengen \mathbb{N}, \mathbb{Z}, \mathbb{Q} und \mathbb{R} bis auf weiteres einfach benutzen. Für eine genauere Definition bzw. Konstruktion dieser Objekte ist ein Blick in eines der vielen Bücher zu diesem Thema empfehlenswert.

Man kann ein und dieselbe rationale Zahl auf verschiedene Arten schreiben; zum Beispiel ist

$$\frac{8}{14} = \frac{4}{7} = \frac{12}{21}.$$

Dabei wurde zunächst mit 2 „gekürzt“ und anschließend mit 3 „erweitert“, d.h.

$$\frac{8}{14} = \frac{4 \cdot 2}{7 \cdot 2} = \frac{4}{7} = \frac{4 \cdot 3}{7 \cdot 3} = \frac{12}{21}.$$

Merke: Brüche werden erweitert bzw. gekürzt indem Zähler und Nenner mit derselben von null verschiedenen reellen Zahl multipliziert bzw. durch dieselbe von null verschiedene Zahl dividiert werden. Ihr Wert bleibt dabei unverändert.

Definition 1.4.2: Für

$$\frac{p}{q} \in \mathbb{Q} \setminus \{0\}$$

heißt

$$\frac{q}{p} \in \mathbb{Q} \setminus \{0\}$$

der Kehrbruch zu $\frac{p}{q}$.

Auch mit Brüchen kann man (im Gegensatz zur weit verbreiteten Annahme) wunderbar rechnen, sofern man sich an die entsprechenden Regeln für den Umgang mit rationalen Zahlen erinnert. Sicherheitshalber wiederholen wir sie daher an dieser Stelle.

Definition 1.4.3: Zwei Brüche $\frac{p}{q} \cdot \frac{a}{b} \in \mathbb{Q}$

(a) heißen gleich (in Zeichen $\frac{p}{q} = \frac{a}{b}$), falls

$$pb = aq.$$
(b) werden addiert bzw. subtrahiert, indem sie zunächst auf den selben Nenner erweitert und anschließend die Zähler addiert bzw. subtrahiert werden, d. h.

\[
p \cdot a + b = \frac{p}{q} \cdot a + \frac{b}{q} = \frac{pb \pm aq}{qb}.
\]

(c) werden multipliziert, indem sowohl die Zähler als auch die Nenner multipliziert werden, d. h.

\[
p \cdot a \cdot b = \frac{p}{q} \cdot a = \frac{p \cdot a}{q \cdot b}.
\]

(d) werden dividiert, indem man zunächst den Kehrwert des Teilers bildet und die Brüche anschließend multipliziert, d. h.

\[
p \cdot a \div b = \frac{p}{q} \cdot a = \frac{p \cdot b}{q \cdot a}.
\]

(Natürlich muss dazu \(\frac{a}{b} \neq 0 \) sein.)

Beispiel 1.4.4:

\[
\begin{align*}
3 \div 4 &= 3 \cdot 14 \div 4 \cdot 27 = 3 \cdot 14 \div 2 \cdot 2 \cdot 9 = 7 \div 18 = 7 \div 18. \\
4 \div 3 &= 4 \cdot 3 \div 3 \cdot 8 \div 3 \cdot 8 = 32 \div 24 \div 24 = 23 \\
2 \div 3 &= 2 \cdot 3 \div 5 \cdot 1 \div 5 \cdot 3 \div 5 \cdot 3 = 2 \cdot 1 \div 15 = 2 \\
6 \div 121 &= 6 \frac{3}{11} = 6 \cdot 11 \div 121 \cdot 3 = 6 \cdot 11 \div 121 \cdot 3 = \frac{3}{2} \cdot 4 = \frac{2}{11}.
\end{align*}
\]

Konstruiert man über dem Einheitsintervall der Zahlengerade von 0 bis 1 ein Quadrat und schlägt um 0 einen Kreis, der durch die rechte obere Ecke des Quadrates geht, so schneidet dieser die Zahlengerade in keinem rationalen Punkt! Mit anderen Worten: Es gibt keine rationale Zahl \(r \) mit \(r^2 = 2 \).

Wie aber kommt man zu dieser Behauptung? Dazu nehmen wir einfach mal an, es gibt doch eine solche Zahl \(r \in \mathbb{Q} \). Dann können wir sie als Bruch in der Form \(r = \frac{p}{q} \) mit \(p, q \in \mathbb{Z}, q \neq 0 \).
schreiben. Insbesondere dürfen wir davon ausgehen, dass dieser Bruch maximal gekürzt und daher \(p \) und \(q \) teilerfremd (d. h. sie haben keinen gemeinsamen Teiler) sind. Wegen
\[
2 = r^2 = \left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2} \iff p^2 = 2 \cdot q^2,
\]
ist dann \(p^2 \) durch 2 teilbar, also eine gerade Zahl. Da aber das Quadrat einer geraden Zahl genau dann gerade ist, wenn die Zahl gerade ist (vgl. Übungen), ist auch \(p \) gerade und es gibt ein \(m \in \mathbb{Z} \) mit
\[
p = 2 \cdot m
\]
bzw.
\[
2q^2 = p^2 = (2 \cdot m)^2 = 4 \cdot m^2 \iff q^2 = 2 \cdot m^2.
\]
Folglich sind auch \(q^2 \) und damit \(q \) gerade Zahlen und es gibt \(n \in \mathbb{Z} \setminus \{0\} \), sodass
\[
q = 2 \cdot n.
\]
Zusammengenommen erhalten wir
\[
r = \frac{p}{q} = \frac{2 \cdot m}{2 \cdot n} = \frac{m}{n}
\]
im Widerspruch zur Annahme, dass \(r \) bereits maximal gekürzt war. Also führt unsere Annahme zu einem Widerspruch und muss daher falsch sein. Das bedeutet: Das Gegenteil ist richtig und es gibt tatsächlich kein \(r \in \mathbb{Q} \) mit \(r^2 = 2 \).

Nach obigem Satz ist also „\(\sqrt{2} \)“ eine *irrationale Zahl* (ebenso \(\sqrt{3}, \sqrt{7}, \ldots \)). Vervollständigen wir nun \(\mathbb{Q} \) durch Hinzunahme dieser irrationalen Zahlen, erhalten wir den Zahlenstrahl, also die Menge \(\mathbb{R} \) der reellen Zahlen. Offensichtlich gilt
\[
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R},
\]
doch selbst in \(\mathbb{R} \) gibt es keine Zahl \(x \) mit \(x^2 = -1 \). Die Lösung dieser Gleichung wird uns später auf die komplexen Zahlen \(\mathbb{C} \) führen.

Eine reelle Zahl ist rational, wenn ihre *Dezimalbruchdarstellung endlich oder ab einer gewissen Stelle periodisch* ist.

Beispiel 1.4.5:
- \(x = 0,71 \) und \(y = 1,2563 \) sind rational, da
 \[
x = \frac{71}{100} \text{ bzw. } y = \frac{12563}{10000}.
\]
- Auch \(a = 0,212121 \ldots := 0,\overline{21} \) und \(b = 0,9999 \ldots := 0,\overline{9} \) sind rationale Zahlen. Den jeweils zugehörigen Bruch \(p/q \) findet man hier durch einen kleinen Trick. Es gilt:
 \[
 100 \cdot 0,\overline{21} = 21,\overline{21} \\
 1 \cdot 0,\overline{21} = 0,\overline{21}
\]
 und nach Subtraktion der beiden Gleichungen
 \[
 99 \cdot 0,\overline{21} = 21 \iff 0,\overline{21} = \frac{21}{99} = \frac{7}{33}.
\]
 Insbesondere ist:
 \[
 10 \cdot 0,\overline{9} = 9,\overline{9} \\
 1 \cdot 0,\overline{9} = 0,\overline{9}
\]
 \[
 9 \cdot 0,\overline{9} = 9 \iff 0,\overline{9} = \frac{9}{9} = 1.
\]
\begin{center}
\textbf{Merke:} Die Dezimalbruchdarstellung einer Zahl ist nicht eindeutig!
\end{center}

\[0,\overline{5} = \frac{1}{2}. \]

1.4.6 In \(\mathbb{R} \) herrscht Ordnung

Innerhalb der reellen Zahlen sind gewisse Elemente als positiv ausgezeichnet (Schreibweise \(x > 0 \)). Genauer gesagt, existiert eine Teilmenge \(\mathbb{R}_+ \subset \mathbb{R} \) so dass folgende Axiome erfüllt sind:

1. (Trichotomie) Für jedes \(x \in \mathbb{R} \) gilt genau eine der drei Beziehungen

\[x \in \mathbb{R}_+, \quad x = 0, \quad -x \in \mathbb{R}_+. \]

2. (Abgeschlossenheit gegenüber der Addition) Für \(x, y \in \mathbb{R}_+ \) ist

\[x + y \in \mathbb{R}_+. \]

3. (Abgeschlossenheit gegenüber der Multiplikation) Für \(x, y \in \mathbb{R}_+ \) gilt

\[x \cdot y \in \mathbb{R}_+. \]

Diese ermöglichen uns die Definition einer „kleiner-Beziehung“ \(< \) und einer „größer-Beziehung“ \(> \).

\textbf{Definition 1.4.7:} Für zwei reelle Zahlen \(x, y \) definieren wir

(a) \(x > y \equiv y < x \iff x - y \in \mathbb{R}_+ \)

(b) \(x \geq y \equiv y \leq x \iff x > y \) oder \(x = y \)

Aus dieser Definition lassen sich einige nützliche Eigenschaften ableiten, die man häufig (insbesondere bei der Lösung von Ungleichungen) benötigt und daher ständig parat haben sollte.

\textbf{Satz 1.4.8:} Für \(x, y, z, a, b \in \mathbb{R} \) gilt:

1. \(x < y, y < z \implies x < z \)

2. \(x < y \) und \(a \leq b \implies x + a < y + b \)

3. \(x < y \) und \(a > 0 \implies ax < ay \)

4. \(x < y \) und \(a < 0 \implies ax > ay \)

5. \(0 \leq x < y \) und \(0 \leq a < b \implies ax < by \)

\textbf{Beweis.} Wir beweisen nur zwei der sieben Behauptungen. Die anderen folgen auf ähnliche Weise und sind eine gute Übung.

Zu (2): Direkt aus der Definition folgt

\[x < y \overset{\text{Def.}}{\implies} y - x \in \mathbb{R}_+ \quad a \leq b \overset{\text{Def.}}{\implies} b - a \in \mathbb{R}_+ \quad \forall \quad b = a, \]

und nach Charakterisierung von \(\mathbb{R}_+ \) somit

\[(y + b) - (x + a) = (y - x) + (b - a) \in \mathbb{R}_+ \iff x + a < y + b. \]
Zu (3): Auch hier nutzen wir nur die Definition und die zuvor eingeführten Axiome. Sind \(x, y, a \in \mathbb{R} \) mit \(x < y \) und \(a > 0 \), so gilt
\[
\begin{align*}
x < y & \implies y > x \implies y - x > 0 \\
& \implies a(y - x) > 0 \\
& \implies ay - ax > 0 \\
& \implies ay > ax \implies ax < ay.
\end{align*}
\]

Definition 1.4.9: Für \(a, b \in \mathbb{R} \) heißt

(a) \([a, b] := \{ x \in \mathbb{R} \mid a \leq x \leq b \} \) das abgeschlossene Intervall von \(a \) nach \(b \).

(b) \((a, b) := \{ x \in \mathbb{R} \mid a < x < b \} \) das nach rechts halboffene Intervall von \(a \) nach \(b \).

(c) \((a, b) := \{ x \in \mathbb{R} \mid a < x \leq b \} \) das nach links halboffene Intervall von \(a \) nach \(b \).

(d) \((a, b) := \{ x \in \mathbb{R} \mid a < x < b \} \) das offene Intervall von \(a \) nach \(b \).

Der (Absolut-)Betrag einer Zahl \(a \in \mathbb{R} \) ist
\[
|a| := \begin{cases}
 a & \text{für } a \geq 0, \\
 -a & \text{für } a < 0.
\end{cases}
\]

Offenbar gilt für alle \(a \in \mathbb{R} \)
\[
a \leq |a| \quad \text{und} \quad -a \leq |a|.
\]

Satz 1.4.10: Für \(a, b \in \mathbb{R} \) ist

(1) \(|a \cdot b| = |a| \cdot |b| \)

(2) \(|a + b| \leq |a| + |b| \) (Dreiecksungleichung)

(3) \(||a| - |b|| \leq |a + b| \) (inverse Dreiecksungleichung)

Beweis. siehe Übungen!
1.5 Supremum und Infimum

Wir nennen eine Menge \(M \subset \mathbb{R} \) "nach oben beschränkt", bzw. "nach unten beschränkt", falls eine obere Schranke \(C \in \mathbb{R} \) bzw. eine untere Schranke \(C \in \mathbb{R} \) existiert, so dass für alle Elemente \(x \in M \)

\[
x \leq C \quad \text{bzw.} \quad x \geq C
\]

gilt. Die kleinste obere Schranke nennen wir das Supremum von \(M \) und schreiben dafür \(\sup M \), während die größte untere Schranke mit \(\inf M \) bezeichnet wird und Infimum von \(M \) heißt.

Beispiel 1.5.1: Die Menge

\[
M = (0, 2) = \{ x \in \mathbb{R} \mid 0 < x < 2 \}
\]

ist sowohl nach oben als auch nach unten beschränkt, da für alle \(x \in M \) nach Definition ja gerade \(x \leq 2 \) und \(x \geq 0 \) gilt. Somit sind also \(b = 2 \) und \(a = 1 \) eine obere bzw. eine untere Schranke von \(M \). Diese sind aber auch die größte obere bzw. kleinste untere Schranke. Gäbe es nämlich zum Beispiel eine kleinere obere Schranke \(m \in \mathbb{R} \) von \(M \), so wäre einerseits

\[
0 < y := m + \frac{b - m}{2} = \frac{m + b}{2} < 2,
\]

also \(y \in M \) und andererseits auch

\[
y = \frac{m + b}{2} > \frac{m + m}{2} = m,
\]

ein Widerspruch! Also ist \(\sup M = 2 \) und analog sieht man, dass \(\inf M = 0 \).

Gehören das Supremum bzw. das Infimum selbst zur Menge \(M \), so nennen wir es das "Maximum" \(\max M \) bzw. "Minimum" \(\min M \) der Menge.

Beispiel 1.5.2: Für die Menge

\[
M = (-1, 2] \cup (3, 5] = \{ x \in \mathbb{R} \mid -1 < x \leq 2 \text{ oder } 3 < x \leq 5 \}
\]
sieht man leicht, dass \(\sup M = 5 \) und \(\inf M = -1 \). Da aber \(5 \in M \) und \(-1 \notin M \), ist \(\max M = \sup M = 5 \) zwar ein Maximum von \(M \), aber ein Minimum existiert nicht.

1.6 Das Prinzip der vollständigen Induktion

Das "Prinzip der vollständigen Induktion" ist das wichtigste Strukturmerkmal der natürlichen Zahlen. Es ist eine direkte Folgerung der sogenannten "Peano'schen Axiome" und besagt im Kern, dass man, wenn man bei 1 beginnend immer von einer natürlichen Zahl zur nächsten weitergeht, alle natürlichen Zahlen ohne Wiederkehr durchläuft. Genauer:

Für jedes natürliche \(n \) sei \(A(n) \) eine Aussage. Ist \(A(1) \) richtig ("Induktionsanfang") und folgt aus der Annahme, \(A(n) \) sei für irgendein \(n \in \mathbb{N} \) richtig ("Induktionsannahme"), dass dann auch \(A(n+1) \) gilt ("Induktionsschluss"), so ist \(A(n) \) für jedes \(n \in \mathbb{N} \) richtig.

\(^3\)Das Verfahren tauchte explizit erstmals 1654 in Blaise Pascal’s *Traité du triangle arithmétique* auf, wurde aber bis 1879 nur in der Zahlentheorie genutzt. Der Begriff leitet sich vom lateinischen inductio ab und bedeutet so viel wie Hinaufführung.
Die Induktion ist vergleichbar mit dem „Domino-Effekt“. Ist \(A(1) \) richtig, folgt aus dem Induktionsschritt, dass auch \(A(2) \) richtig ist. Daraus folgt nun aber (erneut mit dem Induktionsschritt), dass auch \(A(3) \) richtig ist und so weiter. Wie beim Domino-Effekt bringt also ein Stein den nächsten ins Rollen.

Für ein einfaches Beispiel betrachten wir den Term \(3^n - 3 \). Setzen wir nacheinander die ersten sechs natürlichen Zahlen ein

<table>
<thead>
<tr>
<th>(n)</th>
<th>(3^n - 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3^0 - 3 = 1 - 3 = -2</td>
</tr>
<tr>
<td>1</td>
<td>3^1 - 3 = 3^1 - 3 = 3 - 3 = 0</td>
</tr>
<tr>
<td>2</td>
<td>3^2 - 3 = 3^2 - 3 = 9 - 3 = 6</td>
</tr>
<tr>
<td>3</td>
<td>3^3 - 3 = 3^3 - 3 = 27 - 3 = 24</td>
</tr>
<tr>
<td>4</td>
<td>3^4 - 3 = 3^4 - 3 = 81 - 3 = 78</td>
</tr>
<tr>
<td>5</td>
<td>3^5 - 3 = 3^5 - 3 = 243 - 3 = 240</td>
</tr>
</tbody>
</table>

fällt auf, dass das Ergebnis für \(n \geq 1 \) durch sechs teilbar ist. Wir stellen daher die Vermutung auf, dass \(3^n - 3 \) für jedes \(n \geq 1 \) durch sechs teilbar ist, also

\[
\forall n \in \mathbb{N} : \quad 3^n - 3 = 6 \cdot m \quad \text{für ein } m \in \mathbb{Z}.
\]

Zum Beweis dieser Behauptung nutzen wir das eben eingeführte Prinzip der vollständigen Induktion. Demnach müssen wir die Behauptung zunächst für \(n = 1 \) zeigen:

\[
3^1 - 3 = 3 - 3 = 0 = 6 \cdot 0 \quad \text{und} \quad 0 \in \mathbb{Z} \implies \text{Die Behauptung stimmt für } n = 1.
\]

Um den Beweis nun abzuschließen müssen wir aus der Annahme, dass unsere Behauptung für irgendein \(n \geq 1 \) gilt, folgern, dass sie auch für \(n + 1 \) gilt. Nun ist aber

\[
3^{n+1} - 3 = 3 \cdot 3^n - 3 = 3 \cdot 3^n - 9 + 6 = 3 \cdot (3^n - 3) + 6
\]

und nach unserer Annahme \(3^n - 3 \) durch sechs teilbar, also \(3^n - 3 = 6 \cdot m \) für ein \(m \in \mathbb{Z} \), so dass

\[
3^{n+1} - 3 = 3 \cdot (3^n - 3) + 6 = 3 \cdot 6 \cdot m + 6 = 6 \cdot (3m + 1).
\]

Da für \(m \in \mathbb{Z} \) auch \(3m + 1 \in \mathbb{Z} \) ist, ist nach unserer Rechnung und der Induktionsannahme die Behauptung also auch für \(n + 1 \) richtig und unser Beweis damit zu Ende.

Satz 1.6.1: *Eine Menge, die \(n \) Elemente enthält, besitzt stets \(2^n \) Teilmengen.*

Beweis. Auch diese Behauptung können wir sehr einfach mit vollständiger Induktion beweisen:

Induktionsanfang \(n = 1 \):

Sei \(M = \{m\} \) eine Menge mit nur einem Element. Dann ist die Menge der Teilmengen von \(M \)

\[
\{\emptyset, \{m\}\}.
\]

Also hat \(M \) genau \(2 = 2^1 \) Elemente und die Behauptung \(A(n) \) stimmt für \(n = 1 \).

Induktionsannahme: Gelte \(A(n) \) für ein beliebiges \(n \in \mathbb{N} \), d.h. es gelte, dass jede \(n \)-elementige Menge genau \(2^n \) viele Teilmengen hat.

Induktionschluss \(n \to n + 1 \):

Sei nun

\[
M = \{m_1, m_2, \ldots, m_n, m_{n+1}\} = \{m_1, m_2, \ldots, m_n\} \cup \{m_{n+1}\}
\]
Wir betrachten die Menge aller Teilmengen von M. Diese Mengen können wir in zwei Teilmengen M_1 und M_2 unterteilen, von denen M_1 alle Teilmengen von M umfasst, die m_{n+1} enthalten, und M_2 alle Teilmengen von M, die m_{n+1} nicht enthalten. Dann sind in M_2 genau die Teilmengen der Menge $\{m_1, \ldots, m_n\}$ enthalten. Nach Induktionsvoraussetzung besitzt M_2 genau 2^n Elemente. Zu jeder dieser Teilmengen kann man das Element m_{n+1} zuzählen, d.h. die Anzahl der Elemente in M_1 ist ebenfalls 2^n. Insgesamt ist damit die Anzahl aller Teilmengen von M gegeben durch

$$2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$$

und die Behauptung bewiesen. ■

Bemerkung 1.6.2: Dass die Induktion bei $n = 1$ beginnt, ist natürlich nicht wesentlich. Man kann die vollständige Induktion auch auf Aussagen $A(n)$ anwenden, die erst ab einem bestimmten $n_0 \in \mathbb{N}$ gelten, beispielsweise ab $n_0 = 5$. Als Induktionsanfang muss dann gezeigt werden, dass $A(5)$ wahr ist.

1.7 Potenzen und Wurzeln

Für $n \in \mathbb{N}$ definieren wir die „n-te Potenz“ der reellen Zahl a rekursiv durch

$$a^1 := a \quad \text{und} \quad a^{n+1} := a \cdot a^n \quad \forall n \in \mathbb{N}^*$$

und setzen

$$a^0 := 1 \quad \forall a \in \mathbb{R} \quad \text{und} \quad a^{-n} := \frac{1}{a^n} \quad \forall a \in \mathbb{R} \setminus \{0\}.$$

Satz 1.7.1: Für $a, b \in \mathbb{R}$ und $m, n \in \mathbb{N}$ gilt

$$a^m \cdot a^n = a^{m+n}, \quad (a^m)^n = a^{m\cdot n}, \quad (a \cdot b)^m = a^m \cdot b^m$$

Beweis. Einen strengen Beweis dieser Aussage verschließen wir in die Übungen. Stattdessen begnügen wir uns mit einer Rechtfertigung. Für $a \in \mathbb{R}$ und $m, n \in \mathbb{N}$ ist

$$(a^m)^n = \left(\left(a \cdot a \cdot \ldots \cdot a \right)^{\frac{1}{m}} \right)^n = \left(a^{\frac{1}{m}} \cdot a^{\frac{1}{m}} \cdot \ldots \cdot a^{\frac{1}{m}} \right)^n = a^{m \cdot n} \quad \forall m, n \in \mathbb{N}$$

und somit (b) mit ziemlicher Sicherheit richtig. Die Aussagen (a) und (c) macht man sich nun leicht genauso plausibel. ■

Bemerkung 1.7.2:

• Sind a und b von null verschiedene reelle Zahlen, so gilt der Satz sogar für alle $m, n \in \mathbb{Z}$.

Beispiel 1.7.3:

• Für $a, b \in \mathbb{R}$ mit $b \neq 0$ und $m \in \mathbb{N}$ ist
 \[
 \left(\frac{a}{b} \right)^m = \left(a \cdot \frac{1}{b} \right)^m = \left(a \cdot b^{-1} \right)^m = a^m \cdot \left(b^{-1} \right)^m = a^m \cdot \frac{1}{b^m} = a^m \cdot b^{-m}.
 \]

• Für $x, y, z \in \mathbb{R}$ mit $x, y \neq 0$ ist
 \[
 \frac{x^4 y^3 z^3}{x^2 y^4} = \frac{x^4}{x^2} \cdot \frac{y^3}{y^4} \cdot \frac{z^3}{1} = x^{4-2} \cdot y^{3-4} \cdot z^3 = x^2 \cdot y^{-1} \cdot z^3 = \frac{x^2 z^3}{y}.
 \]

• Für $a, b, c \in \mathbb{R} \setminus \{0\}$ ist
 \[
 \left(\frac{a^3 c^{m-4}}{b^{n-3}} \right)^2 \cdot c^5 a = \frac{a^{23} c^{2(m-4)}}{b^{2(n-3)}} \cdot \frac{b^3}{c^5 a} = \frac{a^{23} c^{2m-8} b^3}{b^{2n-6} c^5 a} = a^{6-1} b^{8-5} = a^5 c^2 b^9 = a^{6-1} b^9 c^2 = a^5 c^2 b^9 = a^{6-1} b^9 c^2 = a^5 c^2 b^9.
 \]

Es lässt sich zeigen, dass für jedes $a \geq 0$ und $n \in \mathbb{N}$ die Gleichung
 \[
 x^n = a
 \]

genau eine nichtnegative Lösung in \mathbb{R} hat. Diese wird mit
 \[
 a^{\frac{1}{n}} \quad \text{oder} \quad \sqrt[n]{a}
 \]

bezeichnet und die „n-te Wurzel aus a genannt. Statt $\sqrt[n]{a}$ schreiben wir wie üblich \sqrt{a}.

Beispiel 1.7.4:

• Die Gleichung $x^2 = 4$ hat die einzige positive Lösung
 \[
 x = \sqrt{4} = \sqrt{4} = 2.
 \]

• $x^4 = 17$ hat die eindeutige positive Lösung
 \[
 x = \sqrt[4]{17}.
 \]

Merk: \sqrt{a} ist nur für $a \geq 0$ definiert und für $a > 0$ gilt stets $\sqrt{a} \geq 0$.

Somit ist $\sqrt{4} = 2$; aber niemals $\sqrt{4} = -2$!

Die Aussage $\sqrt{4} = \pm 2$ ist sinnlos!
Insbesondere gilt nach Definition der Wurzel für jedes $x \in \mathbb{R}$

$$\sqrt{x^2} = |x| = \begin{cases} x & \text{für } x \geq 0, \\ -x & \text{für } x < 0. \end{cases}$$

Schließlich wollen wir noch a^x für beliebige rationale Zahlen x und $a > 0$ erklären. Für $x = p/q \in \mathbb{Q}$ setzen wir

$$a^x = a^{\frac{p}{q}} := \sqrt[q]{a^p} \quad \text{und} \quad a^{-x} = a^{-\frac{p}{q}} := \frac{1}{\sqrt[q]{a^p}}.$$

Natürlich gelten auch für rationale Exponenten die üblichen Potenzgesetze aus Satz 1.7.

Beispiel 1.7.5:

\begin{itemize}
 \item $16^{\frac{3}{2}} = (2^4)^{\frac{3}{2}} = 2^3 = \sqrt[2]{2^3} = \sqrt{8}$.
 \item $\sqrt[3]{6 \cdot \sqrt{y}} = (6 \cdot y^{\frac{1}{2}})^{\frac{1}{3}} = 6^{\frac{1}{3}} \cdot y^{\frac{1}{6}} = \sqrt[6]{6} \cdot \sqrt[3]{y}$.
 \item $\sqrt[4]{16 \sqrt[3]{a^4}} = \left(16 \cdot (3a^4)^{\frac{1}{3}}\right)^{\frac{1}{4}} = 16^{\frac{1}{4}} \cdot a^{\frac{4}{12}} \cdot (3a^4)^{\frac{1}{12}} = 2 \cdot \sqrt[12]{3} \cdot a^{\frac{7}{12}} = 2 \cdot \sqrt[4]{3} \cdot \sqrt[3]{a^7}$.
\end{itemize}

Insbesondere gilt also für $a, b > 0$ und $m, n \in \mathbb{N}$:

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}, \quad \sqrt[n]{\sqrt[n]{a}} = m \sqrt[n]{a}, \quad \sqrt[n]{a^m} = \sqrt[n]{a^m},$$

aber im Allgemeinen ist

$$\sqrt[n]{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}.$$

Als abschließende Bemerkung sollten wir noch festhalten, dass sich Potenzen auch für reelle Exponenten erklären lassen. Ausdrücke wie

$$x^{\sqrt{2}} \quad \text{oder} \quad 4^{\sqrt{3}}$$

sind daher sinnvoll und wohldefiniert.

1.8 Summen und Produkte

In der Mathematik trifft man häufig auf große Summen der Form

$$a_0 + a_1 + a_2 + a_3 + \cdots + a_n$$

wie zum Beispiel

$$1 + 2 + 3 + \cdots + 1000 \quad \text{oder} \quad 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{25^2},$$

in denen die einzelnen Summanden alle von der gleichen Bauart sind. Zur Vereinfachung führt man daher eine kompaktere Notation, das sogenannte **Summenzeichen** \sum ein. Sind $m, n \in \mathbb{Z}$ mit $m \leq n$, so setzen wir

$$\sum_{k=m}^{n} a_k := a_m + a_{m+1} + \cdots + a_n.$$
Beispiel 1.8.1:

\[
\sum_{n=0}^{3} x^n = x^0 + x^1 + x^2 + x^3
\]
\[
\sum_{j=1}^{4} \frac{1}{j} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}
\]
\[
\sum_{l=1}^{n} l = 1 + 2 + 3 + \cdots + n
\]

Analog zum Summenzeichen für die Addition existiert auch für Produkte der Form

\[
a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n
\]
eine Kurzschreibweise mittels des sogenannten Produktzeichens \(\prod \):

\[
\prod_{k=m}^{n} a_k := a_m \cdot a_{m+1} \cdot \ldots \cdot a_n \quad m, n \in \mathbb{Z} \text{ mit } m \leq n.
\]

Beispiel 1.8.2:

\[
\prod_{j=1}^{n} j = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!
\]
\[
\prod_{k=0}^{2} (x^k + 1)^{k-1} = 2^{-1} \cdot (x + 1)^0 \cdot (x^2 + 1)^1 = \frac{1}{2} (x^2 + 1)
\]

Satz 1.8.3 (Die Binomischen Formeln): Für \(a, b \in \mathbb{R} \) ist

\[
(a + b)^2 = a^2 + 2ab + b^2, \quad (a - b)^2 = a^2 - 2ab + b^2, \quad (a - b) \cdot (a + b) = a^2 - b^2.
\]

Beweis. Der Beweis erfolgt durch direktes Nachrechnen. Wir überlassen ihn daher dem Leser zur Übung.

Dieser Satz lässt sich auf \((a + b)^n\) für \(n \in \mathbb{N} \) und \(a, b \in \mathbb{R} \) verallgemeinern:\[4\]

\[
(a + b)^n = \sum_{j=0}^{n} \binom{n}{j} a^{n-j} b^j \quad \text{und} \quad a^n - b^n = (a - b) \cdot a^{n-1} \cdot \sum_{j=0}^{n-1} \binom{n}{j} b^j.
\]

Dabei ist

\[
\binom{n}{j} := \frac{n \cdot (n-1) \cdots (n-j+1)}{1 \cdot 2 \cdot \ldots \cdot j} = \frac{n!}{j!(n-j)!}
\]
der Binomialkoeffizient \(n \) über \(j \) und

\[
n! := 1 \cdot 2 \cdot \ldots \cdot n, \quad 0! := 1,
\]
die Fakultät der Zahl \(n \in \mathbb{N} \). Die Binomialkoeffizienten lassen sich neben der direkten Auswertung gemäß der Definition auch über das sogenannte Pascal’sche Dreieck berechnen. Dabei beginnen wir mit einem Dreieck aus drei Einsen.

\[4\text{Man nennt diese Formeln auch den „binomischen Lehrsatz“}.

25
Die folgenden Zeilen beginnen und enden nun ebenfalls mit einer Eins und dazwischen liegen jeweils die Zahlen, die sich als Summe der beiden darüber liegenden Zahlen ergeben.

So kann das Dreieck beliebig weit fortgesetzt werden und die Binomialkoeffizienten kann man nun direkt ablesen; dabei entspricht die Variable \(n \) der Zeilennummer und die Variable \(k \) der Spaltennummer beginnend bei null.

Beispiel 1.8.4: Es ist

\[
(a + b)^3 = \sum_{j=0}^{3} \binom{3}{j} a^{3-j} b^j
\]

\[
= \binom{3}{0} a^3 b^0 + \binom{3}{1} a^{3-1} b^1 + \binom{3}{2} a^{3-2} b^2 + \binom{3}{3} a^{3-3} b^3
\]
und nach einem Blick ins Pascal'sche Dreieck

\[
\binom{3}{0} = 1, \quad \binom{3}{1} = 3, \quad \binom{3}{2} = 3, \quad \binom{3}{3} = 1.
\]

Somit ist

\[(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.
\]

Neben den binomischen Formeln lassen sich auch für andere Summen und Produkte konkrete Berechnungsformeln ableiten. Ein Beispiel dafür ist die Gauß'sche Summenformel, die von Carl Friedrich Gauß im Alter von neun Jahren bei einer Schulstunde entdeckte. Seine Aufgabe war es, die Zahlen von 1 bis 100 zu addieren, also die Summe

\[1 + 2 + 3 + \ldots + 99 + 100 = \sum_{k=1}^{100} k\]

zu berechnen. Er entdeckte, dass die erste und die letzte Zahl (1 & 100), die zweite und die vorletzte Zahl (2 & 99) usw. zusammen immer 101 ergeben. Der Wert der gesuchten Summe ergibt sich so zu 50 mal 101. Übertragen auf die allgemeine Summe der ersten \(n\) Zahlen folgt

\[\sum_{k=1}^{n} k = \frac{n}{2} (n + 1).
\]

Aber stimmt diese Formel wirklich für beliebige \(n \in \mathbb{N}\)? Wirklich bewiesen haben wir (genauer gesagt er) diese Behauptung nur für \(n = 100\). Was ist aber mit allen anderen \(n \in \mathbb{N}\)? Gilt sie hier auch? Nachrechnen können wir es nicht, denn es gibt unendlich viele natürliche Zahlen \(n\), aber einem Beweis durch vollständiger Induktion steht nichts im Wege. Sei also \(A(n)\) die Aussage, dass die Gauß'sche Summenformel für \(n \in \mathbb{N}\) gilt.

Induktionsanfang \(n = 1\):

\[\sum_{k=1}^{1} k = \frac{1}{2} (1 + 1) \quad \text{stimmt!}
\]

Induktionsannahme: Gelte \(A(n)\) für ein beliebiges \(n \in \mathbb{N}\), d.h.

\[\sum_{k=1}^{n} k = \frac{n}{2} (n + 1)\]

für dieses \(n \in \mathbb{N}\).

Induktionschluss \(n \rightarrow n + 1\):

\[\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n + 1)
\]

Nach Induktionsannahme ist aber

\[\sum_{k=1}^{n} k = \frac{n}{2} (n + 1)
\]

und daher

\[\sum_{k=1}^{n} k + (n + 1) = \frac{n}{2} (n + 1) + (n + 1) = (n + 1) \cdot \left(\frac{n}{2} + 1\right) = \frac{n + 1}{2} (n + 2).
\]

Der junge Gauß lag mit seiner Vermutung also genau richtig.
Andere überaus nützliche Beispiele sind

(1) die „Teleskopsumme“:

\[\sum_{k=0}^{n} (a_{k+1} - a_k) = (a_1 - a_0) + (a_2 - a_1) + \ldots + (a_n - a_{n-1}) + (a_{n+1} - a_n) = a_{n+1} - a_0. \]

(2) das „Teleskopprodukt“:

\[\prod_{k=0}^{n} \frac{a_{k+1}}{a_k} = \frac{a_1}{a_0} \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdot \ldots \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \frac{a_n}{a_{n-1}} \cdot \frac{a_{n+1}}{a_n} = \frac{a_{n+1}}{a_0}. \]

(3) die insbesondere für die Rentenrechnung wichtige „geometrische Summe“

\[\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q} \quad \text{für} \quad q \in \mathbb{R} \setminus \{1\}. \]
Kapitel 2

Gleichungen
2.1 Äquivalenzumformungen

Ein zentraler Aspekt der Mathematik ist die Lösung verschiedenster „Gleichungen“; seien es algebraische Gleichungen, Differentialgleichungen oder Ungleichungen. Wir konzentrieren uns im folgenden Abschnitt auf die Lösung algebraischer Gleichungen und Ungleichungen und überlassen die Differentialgleichungen der Einführung ins mathematische Denken. Dabei ist eine Umformung der Gleichungen durch „Äquivalenzumformungen“, die die Lösungsmenge der Gleichung bzw. Ungleichung erhalten, wünschenswert, aber nicht immer möglich. Zum Beispiel folgt zwar stets aus \(x = 1 \), dass \(x^2 = 1 \), aber aus \(x^2 = 1 \) folgt nicht notwendigerweise, dass \(x = 1 \) ist (es könnte auch \(x = -1 \) sein). Offensichtlich sind die beiden Gleichungen \(x = 1 \) und \(x^2 = 1 \) nicht äquivalent zueinander und das „Quadrieren“ somit im Allgemeinen keine Äquivalenzumformung.

\[x = 1 \quad \text{und} \quad x^2 = 1 \]

nicht äquivalent zueinander und das „Quadrieren“ somit im Allgemeinen keine Äquivalenzumformung.

Merke: Bei nichtäquivalenten Umformungen einer Gleichung können sich sogennante „Pseudolösungen“ einschleichen, die keine Lösungen im eigentlichen Sinne sind.

2.2 Lineare Gleichungen

Definition 2.2.1: Eine lineare Gleichung lässt sich stets in die Form

\[ax + b = 0 \quad a, b \in \mathbb{R}, \ a \neq 0, \]

überführen.

Beispiel 2.2.2:

- \(3x + 4 = 5 \iff 3x - 1 = 0 \)
- \(2x - 6 = x + 10 \iff x - 16 = 0 \)
- \(x + 5 = 4 - 3x \iff 4x + 1 = 0 \)

Da stets \(a \neq 0 \) ist, besitzt eine lineare Gleichung stets die eindeutige Lösung

\[x = -\frac{b}{a}. \]

So ist zum Beispiel

\[
3x - 4 = 2x - 10 \quad | -2x \\
\iff x - 4 = -10 \quad | +4 \\
\iff x = -6
\]

also \(x = 6 \) die Lösung der Gleichung \(3x - 4 = 2x - 10 \).
2.3 Quadratische Gleichungen

Definition 2.3.1: Eine Gleichung die man in der Form

\[ax^2 + bx + c = 0 \quad a, b, c \in \mathbb{R}, \ a \neq 0 \]

schreiben kann, nennt man eine quadratische Gleichung.

\[D := \left(\frac{b}{2a} \right)^2 - \frac{c}{a} \]

heißt „Diskriminante“ der Gleichung.

Beispiel 2.3.2:

- \[3x^2 - 4 = 6x - x^2 \iff 4x^2 - 6x - 4 = 0; \text{ Diskriminante } D = \left(\frac{-6}{4} \right)^2 - \frac{-4}{4} = \frac{13}{4}. \]
- \[x^2 + 4x = 0; \text{ Diskriminante } D = \left(\frac{4}{2} \right)^2 = 4. \]
- \[6x^2 - 8x + 4 = 3x - 5 \iff 6x^2 - 11x + 9 = 0 \text{ Diskriminante } D = \left(\frac{-11}{6} \right)^2 - \frac{9}{6} = \frac{67}{36}. \]

Die Diskriminante erlaubt uns eine schnelle Analyse quadratischer Gleichungen, da sie Auskunft über die Zahl und Art ihrer Lösungen gibt..

Satz 2.3.3: Eine quadratische Gleichung

\[ax^2 + bx + c = 0 \quad \text{für } a, b, c \in \mathbb{R}, a \neq 0 \]

besitzt

(a) keine Lösung, falls \(D < 0 \) ist.
(b) genau eine Lösung, falls \(D = 0 \) ist.
(c) genau zwei Lösungen, falls \(D > 0 \) ist.

Ist die Gleichung lösbar, so sind die Lösungen durch die sogenannte „abc-Formel“ gegeben.

\[x = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a} \right)^2 - \frac{c}{a}}. \]

Beweis. Sei also

\[ax^2 + bx + c = 0 \]

mit \(a, b, c \in \mathbb{R} \) und \(a \neq 0 \) eine gegebene quadratische Gleichung. Dann gilt

\[ax^2 + bx + c = 0 \quad |: a \]

\[\iff \quad x^2 + \frac{b}{a} x + \frac{c}{a} = 0 \]

Hier fügen wir nun geschickt eine „0“ ein:

\[x^2 + \frac{b}{a} x + \frac{c}{a} = 0 \]
\[\iff x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = -6 \quad \mid + \left(\frac{b}{2a}\right)^2 - \frac{c}{a} = 0
\]

\[\iff x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}
\]

\[\iff \left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}
\]

\[\iff \left(x + \frac{b}{2a}\right)^2 = \mathcal{D}
\]

Man erkennt nun, dass die Diskriminante tatsächlich die Lösungsmenge bestimmt. Ist nämlich \(\mathcal{D} < 0\), so ist diese Gleichung für beliebige \(x \in \mathbb{R}\) bereits nicht mehr erfüllbar. Gehen wir davon aus, dass \(\mathcal{D} \geq 0\) ist, können wir die Wurzel ziehen und erhalten:

\[\left(x + \frac{b}{2a}\right)^2 = \mathcal{D} \iff \left|x + \frac{b}{2a}\right| = \sqrt{\mathcal{D}}\]

Je nachdem ob nun der Term innerhalb des Betrages positiv oder negativ ist bekommen wir eine andere Lösung:

\[x + \frac{b}{2a} = \sqrt{\mathcal{D}} \vee -\left(x + \frac{b}{2a}\right) = \sqrt{\mathcal{D}}\]

\[\iff x = -\frac{b}{2a} \pm \sqrt{\mathcal{D}}\]

\[\iff x = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}\]

Offensichtlich stimmen im Fall \(\mathcal{D} = 0\) beide Lösungen überein und wir erhalten genau eine Lösung der quadratischen Gleichung, nämlich

\[x = -\frac{b}{2a} .\]

Bemerkung 2.3.4: Man kann die Gleichung \(ax^2 + bx + c = 0\) auch zunächst in die Form \(x^2 + px + q = 0\) transformieren und dann die „p-q-Formel“

\[x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}\]

anwenden. Für die Diskriminante erhalten wir in dieser Form

\[\mathcal{D} = \left(\frac{p}{2}\right)^2 - q .\]

Beispiel 2.3.5:

- Gesucht wird die Lösungsmenge der Gleichung

\[x^2 - 2x = 6 - 3x .\]

Nun gilt

\[x^2 - 2x = 6 - 3x \iff x^2 + x - 6 = 0\]

und wir erhalten für die Diskriminante

\[\mathcal{D} = \left(\frac{1}{2}\right)^2 - (-6) = \frac{25}{4} > 0 .\]
Folglich gibt es zwei Lösungen und diese sind gegeben durch

\[x = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2} \right)^2 - q} = -\frac{1}{2} \pm \sqrt{\frac{25}{4}} = -\frac{1}{2} \pm \frac{5}{2}. \]

Die Lösungsmenge ist also

\[L = \{-3, 2\}. \]

• Als Lösung der Gleichung

\[\frac{1}{2} x^2 - 2x + 2 = 0 \]

erhalten wir wegen

\[\frac{1}{2} x^2 - 2x + 2 = 0 \iff x^2 - 4x + 4 = 0 \]

\[\iff (x - 2)^2 = 0 \iff |x - 2| = 0 \iff x = 2 \]

die Menge

\[L = \{2\}. \]

2.4 Kubische Gleichungen

Definition 2.4.1: Gleichungen, die man in die Form

\[ax^3 + bx^2 + cx + d = 0 \quad a, b, c, d \in \mathbb{R}, \ a \neq 0 \]

überführen kann, nennt man kurvische Gleichungen.

Auch für diese Gleichungen gibt es eine geschlossene Lösungsformel, die sogenannte „Cardanische Formel“, die allerdings nicht so intuitiv und einfach zu benutzen ist, wie die „p-q-Formel“. In vielen Fällen kann man die Lösungen allerdings auch durch Reduktion der Gleichung mit "Polynomdivision" bestimmen.

Beispiel 2.4.2: Die Lösungen der Gleichung

\[x^3 + 2x^2 = 5x + 6 \]

erhält man nun, indem man zunächst eine Lösung der Gleichung „rät“ und anschließend eine Polynomdivision durchführt. Wegen

\[x^3 + 2x^2 = 5x + 6 \iff x^3 + 2x^2 - 5x - 6 = 0 \]

\[^1 \text{Zur Erinnerung: Bei der schriftlichen Division von Zahlen dividiert man schrittweise von links nach rechts, multipliziert die aktuelle Ziffer zurück und zieht das Ergebnis von dem, was man noch hat, ab. Die Polynomdivision funktioniert ähnlich: Man richtet sich danach wie oft die höchste x-Potenz in den (verbliebenen) Ausdruck passt.} \]

33
und
\[2^3 + 2 \cdot 2^2 - 5 \cdot 2 - 6 = 0\]

ist \(x = 2 \) eine Lösung. Für die weiteren Lösungen müssen wir nun \(p(x) = x^3 + 2x^2 - 5x - 6 \) auf das Polynom \(q(x) \) reduzieren. Dazu nutzen wir die Bemerkung und folgern
\[q(x) = p(x) : (x - \lambda). \]

Nun gilt
\[
\begin{array}{c}
(x^3 + 2x^2 - 5x - 6) : (x - 2) = x^2 + 4x + 3 \\
-x^3 + 2x^2 \\
4x^2 - 5x \\
-4x^2 + 8x \\
3x - 6 \\
-3x + 6 \\
0
\end{array}
\]

und daher
\[0 = p(x) \iff x^3 + 2x^2 - 5x - 6 = 0 \iff (x - 2) \cdot (x^2 + 4x + 3) = 0.\]

Also erhalten wir die übrigen Lösungen durch Lösung der Gleichung
\[x^2 + 4x + 3 = 0.\]

Mit der „p-q-Formel“ folgt
\[x^2 + 4x + 3 = 0 \iff x = -2 \pm \sqrt{2^2 - 3} \iff x = -3 \lor x = -1,\]
sodass
\[\mathbb{L} = \{-3, -1, 2\}.\]

Die entscheidende Frage bei der Lösung kubischer Gleichungen scheint also die Frage nach der ersten Lösung zu sein. Gibt es einen Trick, wie man besonders einfach bzw. besonders schnell eine Lösung der Gleichung errät? Die Antwort ist: Ja, den gibt es!

Bemerkung 2.4.3: Ist
\[ax^3 + bx^2 + cx + d = 0\]
eine kubische Gleichung mit ganzzahligen Koeffizienten, d. h. \(a, b, c, d \in \mathbb{Z} \) mit \(a \neq 0 \), die eine ganzzahlige Lösung \(\lambda \) besitzt, so ist \(\lambda \) ein Teiler von \(d \).

Somit sind die ganzzahligen Teiler des Absolutgliedes die einzigen Kandidaten für ganzzahlige Lösungen einer kubischen Gleichung.

Die Polynomdivision muss nicht unbedingt aufgehen. Allgemein lässt sich zeigen, dass zu zwei Polynomen \(f \) und \(g \) immer zwei weitere Polynome \(q \) und \(r \) existieren, so dass
\[f(x) = q(x) \cdot g(x) + r(x)\]

ist. Diese Eigenschaft, die wir auch in vielen anderen Bereichen, wie etwa der Integralrechnung, als nützliches Hilfsmittel wieder aufgreifen werden, liefert auch eine Aussage über die Anzahl von Lösungen algebraischer Lösungen.
Merke: Eine algebraische Gleichung der Form

\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0 \]

mit \(n \in \mathbb{N} \) und \(a_i \in \mathbb{R}, a_n \neq 0 \) besitzt höchstens \(n \) Lösungen.

Beispiel 2.4.4: fehlt noch....

2.5 Gleichungen höherer Ordnung

Niels Henrik Abel konnte 1824 basierend auf den Arbeiten von Paolo Ruffini zeigen, dass bei Gleichungen höherer Ordnung, also Gleichungen der Form

\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0 \quad \text{mit} \quad n \in \mathbb{N}, n \geq 4, a_i \in \mathbb{R}, a_n \neq 0 \]

die Lösung im Allgemeinen nicht mehr berechnet sondern nur noch angenähert werden können. Dennoch kann man in einigen Spezialfällen zur Lösung solcher Gleichungen eine Mischung der bereits vorgestellten Methoden nutzen.

Beispiel 2.5.1: Gesucht sind die Lösungen der Gleichung

\[x^4 - 7x^2 + 12 = 0. \]

Identifizieren wir

\[z := x^2, \]

wird die Gleichung vierten Grades zu einer quadratischen Gleichung

\[x^4 - 7x^2 + 12 = 0 \quad \Longleftrightarrow \quad z^2 - 7z + 12 = 0. \]

Mit der \(p-q \)-Formel folgt

\[z^2 - 7z + 12 = 0 \quad \Longleftrightarrow \quad z = \frac{7}{2} \pm \sqrt{\left(\frac{7}{2}\right)^2 - 12} = \frac{7}{2} \pm \frac{1}{2} \quad \Longleftrightarrow \quad z = 3 \lor z = 4. \]

Wegen

\[x^2 = z \quad \Longleftrightarrow \quad |x| = \sqrt{z} \quad \Longleftrightarrow \quad x = -\sqrt{z} \lor x = \sqrt{z} \]

erhalten wir dann für die eigentliche Lösungsmenge

\[\mathbb{L} = \{ -2, -\sqrt{3}, \sqrt{3}, 2 \}. \]

Beispiel 2.5.2: Zur Lösung der Gleichung

\[x^4 - 9x^2 - 4x + 12 = 0 \]

bestimmen wir zunächst die ganzzahlichen Teiler des Absolutgliedes. Diese sind

\[\{-12, 12, -6, 6, -4, 4, -3, 3, -2, 2, -1, 1\}. \]

Setzen wir die eins ein, so folgt

\[1^4 - 9 \cdot 1^2 - 4 \cdot 1 + 12 = 0 \]

und damit ist \(x = 1 \) eine Lösung dieser Gleichung. Polynomdivision durch \(x - 1 \) liefert

35
\[
\begin{align*}
&\frac{x^4 - 9x^3 - 4x + 12}{-x^4 + x^3} \div \frac{x^3 - 9x^2}{-x^3 + x^2} = \frac{-8x^2 - 4x}{8x^2 - 8x} = \frac{-12x + 12}{12x - 12} = 0
\end{align*}
\]

also ein Polynom dritten Grades. Die übrigen Lösungen erhalten wir nun durch Lösen der Gleichung
\[x^3 + x^2 - 8x - 12 = 0.\]

Wegen\[(-2)^3 + (-2)^2 - 8 \cdot (-2) - 12 = -8 + 4 + 16 - 12 = 0,
\]
ist auch \(x = 2\) eine Lösung der Gleichung und wir erhalten durch erneute Polynomdivision
\[(x^3 + x^2 - 8x - 12) : (x + 2) = x^2 - x - 6,
\]
ein Polynom zweiten Grades, dessen Nullstellen wir mit der „p-q-Formel“ bestimmen:
\[x = -\frac{1}{2} \pm \sqrt{\left(\frac{-1}{2}\right)^2 + 6} = \frac{1}{2} \pm \sqrt{\frac{25}{4}} \iff x = 3 \vee x = -2.
\]

Die Lösungsmenge der Gleichung \(x^4 - 9x^2 - 4x + 12 = 0\) ist daher
\[L = \{-2, 1, 3\}.
\]

2.6 Betragsgleichungen

Gleichungen in denen die „Betragsfunktion“
\[|x| := \begin{cases} x & \text{für } x \geq 0, \\ -x & \text{für } x < 0. \end{cases}
\]
auftritt, heißen „Betragsgleichungen“. Zur Lösung dieser Gleichungen muss man den Betrag durch eine „Fallunterscheidung“ auflösen.

Beispiel 2.6.1: Wir suchen die Lösungen der Gleichung
\[|x + 3| + |x - 1| = 4.
\]

Da die beiden Beträge jeweils bei \(x = -3\) und \(x = 1\) „umschalten“ müssen wir die Fälle
\[(1) \ x < -3, \quad (2) \ -3 \leq x < 1, \quad (3) \ x \geq 1
\]
untersuchen.

Zu (1): Für \(x < -3\) sind
\[x + 3 < 0 \quad \text{und} \quad x - 1 < 0,
\]
und daher
\[|x + 3| + |x - 1| = 4\]
\(- (x + 3) - (x - 1) = 4 \quad \Leftrightarrow \quad -2x - 2 = 4 \quad | \quad + 2 \quad \Leftrightarrow \quad -2x = 6 \quad | \quad : (-2) \quad \Leftrightarrow \quad x = -3\).

Da wir aber vorausgesetzt hatten, dass \(x < -3\) ist, gilt somit für diesen Fall \(\mathbb{L}_1 = \emptyset\).

\textbf{Zu (2): Für \(-3 \leq x < 1\) sind}
\[x + 3 \geq 0 \quad \text{und} \quad x - 1 < 0,\]
und daher
\[|x + 3| + |x - 1| = 4 \quad \Leftrightarrow \quad x + 3 - (x - 1) = 4 \quad \Leftrightarrow \quad 4 = 4\]

Da diese Aussage offensichtlich wahr ist, ist die Gleichung für alle \(x \in \mathbb{R}\) erfüllt, die unsere Voraussetzung erfüllen. Also gilt
\[\mathbb{L}_2 = \{x \in \mathbb{R} : -3 \leq x < 1\} = [-3, 1)\.

\textbf{Zu (3): Für \(x \geq 1\) sind}
\[x + 3 > 0 \quad \text{und} \quad x - 1 \geq 0,\]
und daher
\[|x + 3| + |x - 1| = 4 \quad \Leftrightarrow \quad x + 3 + x - 1 = 4 \quad \Leftrightarrow \quad 2x + 2 = 4 \quad | \quad - 2 \quad \Leftrightarrow \quad 2x = 2 \quad | \quad : (2) \quad \Leftrightarrow \quad x = 1.\]

Nachdem wir aber vorausgesetzt hatten, dass \(x \geq 1\) ist, gilt somit für diesen Fall
\[\mathbb{L}_3 = \{1\}.

\textit{Insgesamt besitzt die Gleichung also die Lösungsmenge}
\[\mathbb{L} = \mathbb{L}_1 \cup \mathbb{L}_2 \cup \mathbb{L}_3 = [-3, 1) \cup \{1\} = [-3, 1].\]

\section*{2.7 Wurzelgleichungen}

Gleichungen in denen die Unbekannte unter einer Wurzel steht nennt man „Wurzelgleichungen“. Bei der Lösung dieser Gleichungen muss man beachten, dass das „Quadrieren“ keine Äquivalenzumformung ist und sich daher die Lösungsmenge verändert. Abschließend ist also eine Probe nötig um zu überprüfen, ob die gefundenen Lösungen tatsächlich auch Lösungen sind.

\textbf{Beispiel 2.7.1:} Gesucht ist die Lösungsmenge der Gleichung
\[\sqrt{2x + 6} + 1 = x.\]
Dann ist
\[
\sqrt{2x + 6} + 1 = x \quad \mid - 1
\]
\[\iff \quad \sqrt{2x + 6} = x - 1 \quad \mid ()^2
\]
\[\iff \quad 2x + 6 = (x - 1)^2
\]
\[\iff \quad 2x + 6 = x^2 - 2x + 1 \quad \mid - 2x - 6
\]
\[\iff \quad x^2 - 4x - 5 = 0 \quad \mid p-q-Formel
\]
\[\iff \quad x_{1,2} = \frac{4\pm \sqrt{(4)^2 + 5}}{2}
\]
\[\iff \quad x_{1,2} = 2 \pm \sqrt{9}
\]
\[\iff \quad x_1 = -1 \land x_2 = 5
\]

Eine Probe ergibt:
\[
\sqrt{2 \cdot -1 + 6} + 1 = \sqrt{4 + 1} = 3 \not= -1 \quad \implies \quad x_1 = -1 \text{ ist keine Lösung},
\]
\[
\sqrt{2 \cdot 5 + 6} + 1 = \sqrt{16 + 1} = 5 \quad \implies \quad x_2 = 5 \text{ ist eine Lösung}.
\]

Also gilt
\[L = \{5\}.
\]

2.8 Ungleichungen

„Ungleichungen“ wie
\[2x + 3 < x - 4, \quad \text{oder} \quad 3x - |x + 3| \geq 2x - 4,
\]
behandelt man in fast allen Punkten wie die entsprechenden Gleichungen; d.h. man nutzt zur Lösung ebenfalls Termumformungen, muss dabei aber beachten, dass sich der Ungleichungssinn bei Multiplikation oder Division mit negativen Zahlen umdreht. Insbesondere werden geschlossene Lösungsformeln wie die p-q- oder die abc-Formel ungültig.

Beispiel 2.8.1: Gesucht werden die Lösungen der Ungleichung
\[-x^2 + x + 6 < 2 - 2x.
\]
Es gilt
\[\iff \quad -x^2 + x + 6 < 2 - 2x \quad \mid - 2 + 2x
\]
\[\iff \quad -x^2 + 3x + 4 < 0 \quad \mid \cdot (-1)
\]
\[\iff \quad x^2 - 3x - 4 > 0
\]
\[\iff \quad x^2 - 3x + \left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 - 4 > 0 \quad \mid + 4 + \left(\frac{3}{2}\right)^2
\]
\[\iff \quad x^2 - 3x + \left(\frac{3}{2}\right)^2 > 4 + \frac{9}{4}
\]
\[\iff \quad \left(x - \frac{3}{2}\right)^2 > \frac{25}{4} \quad \mid \sqrt{}
\]
\[\iff \quad \left|x - \frac{3}{2}\right| > \frac{5}{2}
\]

38
\[\iff x - \frac{3}{2} > \frac{5}{2} \lor -\left(x - \frac{3}{2}\right) > \frac{5}{2}\]
\[\iff x > 4 \lor x < -1\]

Somit ist die Ungleichung für alle \(x\) in
\[\mathbb{L} = (-\infty, -1) \cup (4, \infty) = \mathbb{R} \setminus [-1, 4]\]

erfüllt.
Kapitel 3

Funktionen
3.1 Was ist eine Funktion?

Gleich nach den Mengen, die die Grundbausteine der Mathematik bilden, sind Abbildungen bzw. Funktionen die wichtigsten Objekte der Mathematik. Sie dienen dazu, verschiedene Mengen auf systematische Weise miteinander zu verbinden.

Unter einer „Funktion“ oder „Abbildung“ \(f \) versteht man eine Vorschrift, die jedem \(x \) aus einer Menge \(D \) genau ein Element \(y \) aus einer Menge \(W \) zuordnet. Den Wert \(y \), dem \(x \) zugeordnet wird, nennen wir den „Funktionswert“ der Funktion \(f \) an der Stelle \(x \). Ist \(f \) eine Abbildung von \(D \) nach \(W \) schreiben wir:

\[
f : D \longrightarrow W \\
\quad x \longmapsto y = f(x)
\]

\[\text{Abb. 3.1: Funktionen ordnen jedem Wert des Definitionsbereichs } D \text{ genau einen Wert des Wertebereichs } W \text{ zu. Allerdings muss nicht jeder Wert im Wertebereich auch tatsächlich getroffen werden.}\]

Bemerkung 3.1.1:

- \(D \) wird „Definitionsmenge“ oder „Urbild“ der Funktion \(f \) genannt.
- \(W \) heißt „Wertebereich“ oder „Zielmenge“ der Funktion \(f \).
- Man unterscheidet klar zwischen der Funktion \(f \) und dem Funktionswert \(f(x) \) der Funktion an der Stelle \(x \in D \). Aus der Schule bekannte Aussagen der Form „Die Funktion \(f(x) \) ...“

\[\text{sind also vollkommen sinnlos. Insbesondere müssen zur Definition einer Funktion (anders als in der Schule) drei verschiedene Daten angegeben werden:}\]

\[\text{die Definitionsmenge, den Wertebereich und die Zuordnungsvorschrift } x \longmapsto f(x).\]

Bei reellen Funktionen, d. h. Funktionen deren Wertebereich die reellen Zahlen sind, wird häufig der Definitionsbereich nicht ausdrücklich angegeben; insbesondere wenn die Funktion durch einen Term erklärt ist. In diesen Fällen ist es üblich, als Definitionsenge die maximal mögliche Teilmenge der Menge der reellen Zahlen zu definieren, für die sich beim Einsetzen in die Funktionsgleichung reelle Funktionswerte ergeben.
Beispiel 3.1.2:

- **Die Vorschrift**

 \[f : (0, 1) \rightarrow \mathbb{R}, \, x \mapsto x^2 \]

 ist eine Funktion, da jeder reellen Zahl \(x \in (0, 1) \) ihr eindeutiges Quadrat zugeordnet wird.

- **Ein Beispiel für eine Zuordnung, die keine Funktion ist, erhalten wir zum Beispiel indem wir jedem Menschen seine Geschwister zuordnen. Da es sicherlich Menschen gibt, die mehrere Geschwister haben, wird diesen Menschen mehr als nur ein Bruder bzw. mehr als nur eine Schwester zugeordnet.**

- **Die Zuordnung**

 \[F_V : \{ \text{Menge der Spieler in der 1. Fußballbundesliga} \} \rightarrow \{ \text{Menge der Vereine in der 1. Fußballbundesliga} \} \]

 \[\text{Spieler} \quad \mapsto \quad \text{Bundesligaverein in dem der Spieler spielt} \]

 ist ebenfalls eine Funktion, wenn man das Ausleihen von Spielern vernachlässigt.

Jedes Paar \((x, f(x))\) markiert einen Punkt im „kartesischen Koordinatensystem“\(^1\)

\[\mathbb{R}^2 := \mathbb{R} \times \mathbb{R} = \{ (x, y) \mid x, y \in \mathbb{R} \} \]

und ermöglicht somit die Darstellung der Funktion durch eine Punktmenge, den sogenannten „Graphen“ \(\Gamma_f\) der Funktion \(f\)

\[\Gamma_f := \{ (x, f(x)) \in \mathbb{R}^2 \mid x \in D \} \]

Dazu wählen wir zunächst zwei zueinander senkrechte, willkürliche Geraden und bezeichnen ihren Schnittpunkt mit \(O\). Auf jeder Geraden kennzeichnen wir nun die Punkte auf der einen Seite durch ihren Abstand zu \(O\) und auf der anderen Seite durch ihren Abstand multipliziert mit \(-1\).

Eine der Geraden nennen wir „\(x\) - Achse“, die andere „\(y\)-Achse“. Der Punkt \((x, y)\) entspricht nun dem Schnittpunkt der beiden Parallelen durch den Wert \(x\) auf der \(x\)-Achse und den Wert \(y\) auf der \(y\)-Achse.

Beispiel 3.1.3: Ein Händler verkauft auf dem Markt Himbeeren für einen Kilopreis von 2,50 €. Eine passende Tragetasche die wir in jedem Fall dazu kaufen kostet 0,50 € zusätzlich. Da zu jeder Portion Himbeeren genau ein bestimmtes Gewicht und damit genau ein Preis gehört, kann die Beziehung zwischen dem Preis \(y\) und dem Gewicht \(x\) der Himbeeren als Funktion aufgefasst werden.

Die Zuordnungsvorschrift lautet dabei:

\[\text{Preis} = \text{Kilopreis} \cdot \text{Gewicht} + \text{Tragetasche} \]

\[y = 2,5 \cdot x + 0,5 \]

\(^1\)nach Rene Descartes (1595-1650)
Darüber hinaus ist
\[D = \{ x \in \mathbb{R} \mid x \geq 0 \} = [0, \infty), \]
da es keine negativen Gewichte gibt und man (zumindest theoretisch) beliebig viele Himbeeren kaufen kann. Für den Wertebereich der Funktion müssen wir berücksichtigen, dass wir aufgrund der Tragetasche mindestens 0,50 € bezahlen müssen und dass der Preis mit steigender Himbeermenge (zumindest theoretisch) beliebig groß werden kann. Daher gilt:
\[W = \{ y \in \mathbb{R} \mid y \geq 0.5 \} = [0.5, \infty). \]

Um die Funktion nun in einem Koordinatensystem darstellen zu können, erstellen wir zunächst eine Wertetabelle und konstruieren daraus den Graphen der Funktion.

<table>
<thead>
<tr>
<th>Gewicht in kg</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preis in €</td>
<td>0.5</td>
<td>1.75</td>
<td>3</td>
<td>4.25</td>
<td>5.50</td>
<td>6.75</td>
<td>8</td>
<td>10.50</td>
<td>15.50</td>
</tr>
</tbody>
</table>

\[y = 2.5 \cdot x + 0.5 \]

Definition 3.1.4: Sind \(f : A \rightarrow B \) und \(g : X \rightarrow Y \) zwei Funktionen mit \(Y \subseteq A \), so heißt
\[f \circ g : X \rightarrow B \]

\[x \mapsto f(g(x)) \]

die „Komposition“ oder „Verkettung“ der Funktion \(f \) nach \(g \).

Beispiel 3.1.5:

(a) Für die Funktionen
\[f : \mathbb{R} \rightarrow \mathbb{R} \quad \text{und} \quad g : \mathbb{N} \rightarrow \mathbb{R} \]

\[x \mapsto \frac{1}{2} x^2 + 1 \quad \text{und} \quad n \mapsto \frac{1}{6} n + 2 \]

existiert zwar die Verkettung
\[f \circ g : \mathbb{N} \rightarrow \mathbb{R}, \quad x \mapsto f \left(g(x) \right) = f \left(\frac{1}{6} n + 2 \right) = \frac{1}{2} \left(\frac{1}{6} n + 2 \right)^2 + 1, \]

aber die Komposition \(g \circ f \) existiert nicht, da \(\mathbb{R} \not\subseteq \mathbb{N} \).
Merke: Bei der Komposition von Funktionen kommt es auf die Reihenfolge an; Die Verkettung der Funktion f nach g ist im Allgemeinen eine andere Funktion als die Verkettung von g nach f.

(b) Sei S die Menge der Studenten der Universität Duisburg-Essen. Die Zuordnung

$$M : S \rightarrow \mathbb{N} \quad s \mapsto \text{Matrikelnummer von } s$$

ist eine Abbildung von S in die natürlichen Zahlen \mathbb{N}. Nehmen wir nun die Abbildung

$$P : \mathbb{N} \rightarrow \{ x \in \mathbb{N} \mid x \leq 81 \} \quad n \mapsto \text{Quersumme von } n$$

hinzu und bilden die Verkettung

$$P \circ M : S \rightarrow \{ x \in \mathbb{N} \mid x \leq 81 \} \quad s \mapsto P(M(s))$$

so ordnet diese jedem Studierenden der Universität Duisburg-Essen die Quersumme seiner Matrikelnummer zu. Vor dem Zusammenschluss der beiden Universitäten Duisburg und Essen konnte man mit dieser Funktion überprüfen, ob man tatsächlich Student der Gesamthochschule Essen war. In diesem Fall musste $(P \circ M)(s) = P(M(s)) = 0$ sein.

Abb. 3.3: Komposition der Funktion f nach g.
Definition 3.1.6: Eine Funktion \(f: D \to W \) heißt

(a) **surjektiv**, falls zu jedem \(y \in W \) ein \(x \in D \) existiert mit \(f(x) = y \).

(b) **injektiv**, falls für \(x, y \in D \) mit \(x \neq y \) stets auch \(f(x) \neq f(y) \) gilt.

(c) **bijektiv**, wenn sie surjektiv und injektiv ist.

Eine surjektive Funktion nimmt also jedes Element des Wertebereichs mindestens einmal als Wert an und eine injektive Funktion nimmt jeden Funktionswert höchstens einmal an. Bijektive Funktionen ordnen also jedem Element des Definitionsbereichs genau ein Element des Wertebereichs zu; sie sind daher „invertier-“ oder „umkehrbar“. Das bedeutet, wir können eine Funktion \(f^{-1} \) definieren, für die gilt:

\[y = f(x) \iff x = f^{-1}(y) . \]

\(f^{-1} \) heißt die eindeutige „Umkehrfunktion“ zur Funktion \(f \).

Beispiel 3.1.7:

(a) Sei \(c \in \mathbb{R} \). Die konstante Funktion

\[
\begin{align*}
\text{const} & : \mathbb{R} \to \mathbb{R} \\
x & \mapsto c
\end{align*}
\]

ist weder surjektiv noch injektiv, denn zum einen gibt es kein \(x \in \mathbb{R} \) mit \(f(x) = c + 1 \in \mathbb{R} \)

und zum anderen ist \(f(1) = f(-1) = c \) obwohl \(1 \neq -1 \).
(b) Die Funktion

\[f : [0, \infty) \rightarrow \mathbb{R} \quad x \mapsto x^2 \]

ist injektiv, denn für \(x_1, x_2 \in [0, \infty) \) ist

\[f(x_1) = f(x_2) \implies x_1^2 = x_2^2 \implies |x_1| = |x_2| \implies x_1 = x_2. \]

Durch Negation dieser Aussage folgt dann:

\[x_1 \neq x_2 \implies f(x_1) \neq f(x_2). \]

Sie ist aber nicht surjektiv, denn zum Beispiel gibt es zu \(-2 \in \mathbb{R}\) kein \(x \in [0, \infty) \) mit \(f(x) = x^2 = -2 \).

\[\textbf{Merke: Durch Einschränken des Definitions- und Wertebereichs lässt sich eine Funktion so modifizieren, dass das Ergebnis surjektiv, injektiv oder sogar bijektiv wird} \]

(c) Die Funktion

\[g : [0, \infty) \rightarrow [0, \infty) \quad x \mapsto x^2 \]

ist surjektiv, denn zu beliebigem \(y \in [0, \infty) \) wählen wir \(x = \sqrt{y} \in [0, \infty) \) und erhalten \(f(x) = \sqrt{y}^2 = y \). Darüber hinaus ist \(f \) auch injektiv, denn sind \(x_1, x_2 \) zwei Elemente in \([0, \infty)\) mit \(x_1 \neq x_2 \), so ist entweder \(x_1 > x_2 \) oder \(x_2 > x_1 \). In beiden Fällen folgt aber direkt

\[f(x_1) = x_1^2 > x_1 x_2 > x_2^2 = f(x_2) \quad \text{bzw.} \quad f(x_2) = x_2^2 > x_2 x_1 > x_1^2 = f(x_1) \]

und somit \(f(x_1) \neq f(x_2) \). Folglich ist \(f \) eine bijektive Funktion, für die wir eine Umkehrfunktion bestimmen können. Dazu vertauschen wir (gemäß obiger Merkregel) zunächst die Variablen \(x \) und \(y \) in der Gleichung \(y = g(x) = x^2 \) und erhalten so

\[x = g(y) = y^2. \]

Auflösen dieser Gleichung nach \(y \) ergibt dann \(y = \sqrt{x} \), sodass die Umkehrfunktion

\[g^{-1} : [0, \infty) \rightarrow [0, \infty) \quad x \mapsto \sqrt{x} \]

ist.

\[\textbf{Merke: Eine bijektive Funktion } f : D \rightarrow W, x \mapsto f(x) \text{ kann in eindeutiger Weise umgekehrt werden. Die Umkehrfunktion } f^{-1} \text{ erhält man, indem man} \]

(1) die Variablen \(x \) und \(y \) in \(y = f(x) \) vertauscht: \(x = f(y) \)

(2) die neue Beziehung nach \(y \) auflöst: \(y = f^{-1}(x) \)

(3) und abschließend Definitions- und Wertebereich vertauscht: \(D \leftrightarrow W \)

\[f^{-1} : W \rightarrow D \quad y \mapsto f^{-1}(y) \]

46
Abb. 3.4: Graphisch erhalten wir den Graphen von f^{-1} aus dem Graphen von f durch Spiegelung an der ersten Winkelhalbierenden $y = x$ erhalten.

3.2 Wichtige Eigenschaften einer Funktion

Die prägnanten Merkmale einer Funktion f mit Definitionsgebiet D und Wertebereich W werden im Folgenden kurz und trocken – inklusive der zugehörigen Definitionen – zusammengestellt.

1.) **Nullstellen:**

$x \in D$ heißt „Nullstelle“ von f genau dann, wenn gilt $f(x) = 0$.

2.) **Symmetrie:**

Eine Funktion $f : D \rightarrow W$ heißt „gerade“, falls:

$$f(-x) = f(x) \quad \forall x \in D,$$

sie heißt „ungerade“, falls:

$$f(-x) = -f(x) \quad \forall x \in D.$$

3.) **Monotonie:**

Eine Funktion $f : D \rightarrow W$ nennen wir

(a) „monoton wachsend“, falls

$$f(x_2) \geq f(x_1) \quad \forall x_1, x_2 \in D \text{ mit } x_2 > x_1.$$

(b) „streng monoton wachsend“, falls

$$f(x_2) > f(x_1) \quad \forall x_1, x_2 \in D \text{ mit } x_2 > x_1.$$

(c) „monoton fallend“, falls

$$f(x_2) \leq f(x_1) \quad \forall x_1, x_2 \in D \text{ mit } x_2 > x_1.$$

(d) „streng monoton fallend“, falls

$$f(x_2) < f(x_1) \quad \forall x_1, x_2 \in D \text{ mit } x_2 > x_1.$$
4.) **Periodizität:**
Eine Funktion f heißt "p-periodisch", falls für jedes $x \in D$

$$(x + p) \in D \quad \text{und} \quad f(x + p) = f(x)$$

ist.

Abb. 3.5: (a) Die Funktion f besitzt drei Nullstellen, g hat keine Nullstelle; (b) b ist eine ungerade, d eine gerade Funktion; (c) k ist monoton steigend, während h sogar streng monoton steigend ist; (d) die Funktion q ist p-periodisch.

Auch nicht-periodische Funktionen können als periodisch aufgefasst werden und zwar mit Periode $p = \infty$.
3.3 Lineare Funktionen

Definition 3.3.1: Eine lineare Funktion wird beschrieben durch

\[f : \mathbb{D} \rightarrow \mathbb{D}, \quad x \mapsto m \cdot x + b \quad \text{für} \quad m, b \in \mathbb{R}. \]

Man nennt \(m \) die „Steigung“ und \(b \) den „\(y \)-Achsenabschnitt“ der Funktion \(f \).

Der Graph \(\Gamma_f \) einer linearen Funktion ist (wie wir bereits gesehen haben) eine Gerade. Dabei kommt der Steigung \(m \) eine besondere Bedeutung zu; sind nämlich \(x_1 \) und \(x_2 \) zwei beliebige Elemente aus dem Definitionsbeiruch der Funktion \(f \), so gilt

\[f(x_2) - f(x_1) = m \cdot x_2 + b - (m \cdot x_1 + b) = m \cdot x_2 + b - m \cdot x_1 - b = m \cdot (x_1 - x_2). \]

Weichen wir also um den Faktor \(h = x_2 - x_1 \) von einem gegebenen Startwert \(x_1 \) ab, so weicht der Funktionswert an der Stelle \(x_2 \) um den Faktor \(m \cdot h \) vom Funktionswert an der Stelle \(x_1 \) ab. Folglich bestimmt die Steigung \(m \) das Verhalten der Funktion bzw. die Orientierung der Geraden \(\Gamma_f \). Ist die Steigung \(m \) positiv, so sprechen wir von einer steigenden Geraden und für negative \(m \) von einer fallenden Geraden. Ist \(m = 0 \) so ist der Graph eine Parallele zur \(x \)-Achse.

Satz 3.3.2: Für zwei beliebige Punkte \((x_1, y_1)\) und \((x_2, y_2)\) mit \(x_1 \neq x_2 \) gibt es genau eine lineare Funktion \(f \) mit

\[(x_1, y_1), (x_2, y_2) \in \Gamma_f. \]

Diese Funktion \(f \) ist gegeben durch

\[f(x) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1). \]

Beweis. Zunächst weisen wir die Existenz einer solchen Funktion \(f \) durch die Konstruktion einer Funktionsgleichung mit den gewünschten Eigenschaften. Nach Voraussetzung muss die Funktion die Eigenschaft

\[(x_1, y_1), (x_2, y_2) \in \Gamma_f \quad \iff \quad y_2 = f(x_2) \land y_1 = f(x_1) \]

erfüllen. Für die Steigung \(m \) von \(f \) bedeutet das nach obiger Überlegung, dass

\[y_2 - y_1 = f(x_2) - f(x_1) = m \cdot (x_2 - x_1) \iff m = \frac{y_2 - y_1}{x_2 - x_1} \]

ist. Da diese Gleichung bei einer linearen Funktion für beliebige \(x_1, x_2 \in \mathbb{R} \) erfüllt ist, gilt außerdem

\[f(x) - f(x_1) = m \cdot (x - x_1) \iff f(x) = f(x_1) + m \cdot (x - x_1) = y_1 + \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1). \]

Schreiben wir diese Gleichung ein wenig um, erhalten wir

\[f(x) = \frac{y_2 - y_1}{x_2 - x_1} \cdot x + \left(y_1 - \frac{y_2 - y_1}{x_2 - x_1} \cdot x_1 \right) = mx + b, \]

also tatsächlich die Funktionsgleichung einer linearen Funktion. Insbesondere gilt

\[f(x_1) = \frac{y_2 - y_1}{x_2 - x_1} \cdot x_1 + \left(y_1 - \frac{y_2 - y_1}{x_2 - x_1} \cdot x_1 \right) = y_1 \]

und

\[f(x_2) = \frac{y_2 - y_1}{x_2 - x_1} \cdot x_2 + \left(y_1 - \frac{y_2 - y_1}{x_2 - x_1} \cdot x_1 \right) = \frac{y_2 - y_1}{x_2 - x_1} \cdot (x_2 - x_1) + y_1 = y_2. \]
Für die Eindeutigkeit dieser Funktion, nehmen wir an es gäbe eine weitere Funktion g mit $g(x) = m' \cdot x + b'$ und

$$(x_1, y_1), (x_2, y_2) \in \Gamma_g.$$

Dann wäre

$$m \cdot x_1 + b = f(x_1) = y_1 = g(x_1) = m' \cdot x_1 + b' \iff (m - m') \cdot x_1 + b - b' = 0$$

und

$$m \cdot x_2 + b = f(x_2) = y_2 = g(x_2) = m' \cdot x_2 + b' \iff (m - m') \cdot x_2 + b - b' = 0.$$

Ziehen wir die beiden Gleichungen voneinander ab und bedenken, dass nach Voraussetzung $x_1 \neq x_2$, so gilt

$$(m - m') \cdot (x_1 - x_2) = 0 \iff m - m' = 0 \iff m = m'.$$

Eingesetzt in eine der beiden Gleichungen folgt dann sofort

$$b = b'$$

und somit $f = g$.

3.4 Quadratische Funktionen

Definition 3.4.1: Quadratische Funktionen sind Polynome zweiten Grades, also von der Form

$$f : D \rightarrow D, \ x \mapsto a_2 x^2 + a_1 x + a_0$$

für $a_2, a_1, a_0 \in \mathbb{R}$ mit $a_2 \neq 0$.

Der Graph einer quadratischen Funktion wird "Parabel" genannt; im Spezialfall $a_0 = a_1 = 0$ und $a_2 = 1$ erhalten wir die bereits bekannte Normalparabel. Alle anderen Parabeln lassen sich nun durch Streckung bzw. Stauchung, Spiegelung und Verschiebung der Normalparabel im Koordinatensystem konstruieren. Dazu transformiert man die Funktionsgleichung in die sogenannte "Scheitelpunktsform"

$$f(x) = \alpha \cdot (x - \beta)^2 + \gamma \quad \text{für} \quad \alpha, \beta, \gamma \in \mathbb{R}, \alpha \neq 0.$$

Dann gilt:

- Der Faktor α bewirkt für $|\alpha| < 1$ eine Stauchung und für $|\alpha| > 1$ eine Streckung der Normalparabel. Ist $\alpha < 0$, so muss die Parabel zusätzlich an der x-Achse gespiegelt werden.

- Die Subtraktion des Parameters β führt zu einer Verschiebung der Normalparabel entlang der x-Achse. Für $\beta > 0$ erfolgt die Verschiebung nach rechts, für $\beta < 0$ nach links.

- Die Addition der Konstanten γ bewirkt für $\gamma > 0$ eine Verschiebung in Richtung der positiven y-Achse und für $\gamma < 0$ eine Verschiebung in Richtung der negativen y-Achse.

- Der Punkt $S(\beta, \gamma)$ wird "Scheitelpunkt" der Parabel genannt und entspricht für $\alpha > 0$ dem kleinsten und für $\alpha < 0$ dem größten Funktionswert.

Beispiel 3.4.2:
Die Zuordnung

\[f : [-1,3] \rightarrow \mathbb{R} \]
\[x \mapsto \frac{1}{2}(x-1)^2 + \frac{1}{2} \]

ist die Einschränkung der quadratischen Funktion

\[f : \mathbb{R} \rightarrow \mathbb{R} \]
\[x \mapsto \frac{1}{2}(x-1)^2 + \frac{1}{2} \]
auf das Intervall \([-1,3]\). Ihr Graph ist daher eine um den Faktor 0,5 gestreckte, nach oben geöffnete und um eins nach rechts bzw. zwei nach oben verschobene Normalparabel, die nur über dem Intervall \([-1,3]\) existiert.

Betachten wir

\[f : \mathbb{R} \rightarrow \mathbb{R} \]
\[x \mapsto -2x^2 - 8x - 6 \]

so müssen wir, bevor wir über den Graphen dieser Funktion irgendeine Aussage treffen können, diesen zunächst in die Scheitelpunktsform transformieren. Dabei ist die quadratische Ergänzung wieder das entscheidende Hilfsmittel. Es gilt:

\[
\begin{align*}
 f(x) &= -2x^2 - 8x - 6 \\
 &= -2 \cdot (x^2 + 4x) - 6 \\
 &= -2 \cdot (x^2 + 4x + 2^2 - 2^2) - 6 \\
 &= -2 \cdot (x^2 + 4x + 2^2) + 8 - 6 = -2 \cdot (x + 2)^2 + 2
\end{align*}
\]

Der Graph dieser quadratischen Funktion ist somit eine um den Faktor 2 gestreckte, nach unten geöffnete und um zwei nach links bzw. um zwei nach oben verschobene Normalparabel. Ihr Scheitelpunkt liegt bei \(S(-2,2)\).

3.5 Rationale Funktionen

Definition 3.5.1: Eine rationale Funktion ist von der Form

\[f : D \rightarrow W, \ x \mapsto \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0} \]

für \(n,m \in \mathbb{N}\) und \(a_i, b_i \in \mathbb{R}\). Sie heißt „ganzrational“, falls \(m = 0\) und \(b_0 \neq 0\), „gebrochen-rational“ sonst.

Beispiel 3.5.2:
- Quadratische und lineare Funktionen sind ganzrationale Funktionen.
- \(f : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto x^2 + 3x^{16} - x^4\) ist eine ganzrationale Funktion.
- \(g : [3, \infty) \rightarrow \mathbb{R}, \ x \mapsto \frac{2x^3 - 5x + 1}{x - 2}\) ist eine gebrochen-rationale Funktion.

Merke: Eine gebrochen-rationale Funktion ist nur für diejenigen \(x \in \mathbb{R}\) definiert, die nicht zu den Nullstellen des Nenners gehören.
Definition 3.5.3: Für eine gebrochen-rationale Funktion f heißen die Nullstellen des Nenners, die sich durch Termumformungen aus der Funktion herauskürzen lassen, „hebbare Definitions- lücken“. Die anderen Nullstellen nennt man „Polstellen“ der Funktion f.

Beispiel 3.5.4:
- Die Zahl 2 ist eine hebbare Definitionsstelle der Funktion
 $$f : \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ x \mapsto x^2 - 4x - 2,$$
 da
 $$f(x) = \frac{x^2 - 4}{x - 2} = \frac{(x - 2) \cdot (x + 2)}{x - 2} = x + 2.$$

 Merke: Ändert man die Funktionsgleichung einer gebrochen-rationalen Funktion durch Heraus­kürzen der hebbaren Definitions­lücken, so nennt man die neu entstandene Funktion die „stetige Fortsetzung“ der Funktion f und bezeichnet Sie mit \tilde{f}. Es gilt:
 $$f \neq \tilde{f},$$
 d. h. \tilde{f} ist eine neue Funktion und nicht das selbe wie die Funktion f.

- $g : \mathbb{R} \setminus \{-1, 1\} \to \mathbb{R}, \ x \mapsto \frac{3x - 1}{x^2 - 1}$ besitzt die Polstellen -1 und 1, aber keine hebbaren Definitions­lücken.

3.6 Exponentialfunktion

Definition 3.6.1: Eine Funktion der Form
 $$f : \mathbb{R} \to (0, \infty), \ x \mapsto a^x \text{ für } a > 0$$
heißt Exponentialfunktion zur Basis a und wird mit \exp_a bezeichnet.

Beispiel 3.6.2:
- $\exp_2 : \mathbb{R} \to (0, \infty), \ x \mapsto 2^x$
- $g : \mathbb{R} \to \mathbb{R}, \ x \mapsto -3^x$

Für $a < 0$ sind Exponentialfunktionen nicht definiert, da man sonst Probleme wie zum Beispiel
 $$(-1)^\frac{1}{2} = \sqrt{-1}$$
bekäme.

Exponentialfunktionen erfüllen natürlich die bekannten Potenzgesetze und spielen eine sehr große Rolle bei der Beschreibung von Wachstumsprozessen jeglicher Art, wie zum Beispiel dem Bak­terienwachstum, dem Medikamentenabbau im Blut oder dem Zerfall radioaktiver Isotope. Insbesondere gibt es genau eine Exponentialfunktion (die wir mit \exp bezeichnen), die an der Stelle
 $$x = 0$$
die Steigung eins besitzt. Die zugehörige Basis $a > 0$ nennen wir e und schreiben
 $$\exp : \mathbb{R} \to (0, \infty), \ x \mapsto e^x.$$

Die Zahl e nennt man die „Euler’sche Zahl“; sie ist ebenso wie $\sqrt{2}$ irrational und hat näherungsweise den Wert
 $$e = 2.718281 \ldots.$$
Tatsächlich werden wir später sehen, dass \exp die einzige Funktion ist, für die ihre Steigung in jedem Punkt mit ihrem Funktionswert übereinstimmt.
3.7 Logarithmen

Exponentialfunktionen \(f(x) = a^x \) sind für \(a > 1 \) streng monoton wachsend und für \(0 < a < 1 \) streng monoton fallend und besitzen daher eine eindeutige Umkehrfunktion, die „Logarithmen“ genannt und mit \(\log_a \) bezeichnet werden

\[
\log_a : (0, \infty) \to \mathbb{R}, \ x \mapsto \log_a(x).
\]

Es gilt

\[
y = a^x \iff x = \log_a(y).
\]

![Graphen verschiedener Logarithmen](image)

Abb. 3.6: Die Graphen verschiedener Logarithmen

Speziell ist \(\log := \log_e \) der sogenannte „natürliche Logarithmus“ und \(\lg = \log := \log_{10} \) der sogenannte „dekadische Logarithmus“.

Satz 3.7.1: Für \(a, x, y \in (0, \infty) \) und \(z \in \mathbb{R} \) gilt

\[\log_a(x \cdot y) = \log_a(x) + \log_a(y), \quad \log_a(x/y) = \log_a(x) - \log_a(y), \quad \log_a(x^z) = z \cdot \log_a(x)\]

und insbesondere

\[\log_a(x) = \frac{\log_b(x)}{\log_b(a)} \quad a \neq 1.\]

Beweis. Seien \(a, x, y \in (0, \infty) \) und \(z \in \mathbb{R} \). Aus den Potenzgesetzen folgt für beliebige \(m_1, m_2 \in \mathbb{R} \)

\[a^{m_1+m_2} = a^{m_1} \cdot a^{m_2} \iff \log_a(a^{m_1+m_2}) = \log_a(a^{m_1} \cdot a^{m_2}) \iff m_1 + m_2 = \log_a(a^{m_1} \cdot a^{m_2}).\]

Da diese Aussage für beliebige \(m_1, m_2 \in \mathbb{R} \) gilt, gilt sie insbesondere auch für

\[m_1 := \log_a(x) \quad \text{und} \quad m_2 := \log_a(y).\]

Dann ist

\[m_1 + m_2 = \log_a(a^{m_1} \cdot a^{m_2})\]

\[\iff \log_a(x) + \log_a(y) = \log_a(a^{\log_a(x)} \cdot a^{\log_a(y)})\]

\[\iff \log_a(x) + \log_a(y) = \log_a(x \cdot y)\]

und daher die erste Behauptung korrekt. Für die zweite Behauptung beachte, dass für \(m, z \in \mathbb{R} \)

\[(a^m)^z = a^{m \cdot z}\]
ist. Dann gilt
\[\log_a ((a^m)^z) = \log_a (a^{m\cdot z}) \iff \log_a ((a^m)^z) = m \cdot z. \]

Wie oben wählen wir auch hier ganz speziell \(m := \log_a (x) \), so dass
\[\log_a ((a^m)^z) = m \cdot z \iff \log_a \left(\left(a^{\log_a (x)} \right)^z \right) = z \cdot \log_a (x) \iff \log_a (x^z) = z \cdot \log_a (x). \]

Nehmen wir nun die erste und die dritte Aussage, so folgt
\[\log_a \left(\frac{x}{y} \right) = \log_a (x \cdot y^{-1}) = \log_a (x) + \log_a (y^{-1}) = \log_a (x) - \log_a (y), \]
also Behauptung drei. Zum Schluss ist für \(a \neq 1 \) und \(x = a^m \) einerseits \(\log_a (x) = m \) und andererseits
\[\log_y (x) = \log_y (a^m) = m \cdot \log_y (a) \iff m = \frac{\log_y (x)}{\log_y (a)}, \]
also
\[\log_a (x) = m = \frac{\log_y (x)}{\log_y (a)}. \]

Beispiel 3.7.2: ….fehlt noch

Merk: Für \(x, a > 0 \) und \(y \in \mathbb{R} \) beliebig ist nach Definition des Logarithmus stets
\[a^{\log_a (x)} = x \quad \text{und} \quad \log_a (a^y) = y. \]
3.8 Trigonometrische Funktionen

Bei der Untersuchung rechtwinkliger Dreiecke stellt man fest, dass die Verhältnisse der Seitenlängen nur vom Maß der beiden anderen spitzen Winkel abhängen.

![Diagramm](https://example.com/diagram3.7.png)

Abb. 3.7: Seitenverhältnisse in einem rechtwinkligen Dreieck

Diese Beobachtung führt uns auf die sogenannten „trigonometrischen Funktionen“, die zu den wichtigsten Funktionen in den Naturwissenschaften gehören. Viele Phänomene lassen sich nämlich wunderbar durch diese Funktionen beschreiben. So zum Beispiel schwingende Gitarrensaiten, Wasserwellen oder die Brechung des Lichts, um nur einige zu nennen. Auch basieren viele Alltagsanwendungen wie z.B. HiFi-Equalizer oder Bildbearbeitungsprogramme ganz wesentlich auf den trigonometrischen Funktionen. Man definiert

\[
\cos(\varphi) = \frac{\text{Ankathete}}{\text{Hypothenuse}} = \frac{a}{c}, \quad \sin(\varphi) = \frac{\text{Gegenkathete}}{\text{Hypothenuse}} = \frac{b}{c},
\]

\[
\tan(\varphi) = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{b}{a}, \quad \cot(\varphi) = \frac{\text{Ankathete}}{\text{Gegenkathete}} = \frac{a}{b}.
\]

\[
\frac{G}{H} \quad \frac{A}{A} \quad \frac{G}{A} \quad \frac{A}{G}.
\]

Für die Messung von Winkeln gibt es zwei Möglichkeiten

- Das Gradmaß:

 Einteilung des Vollkreises in 360 beliebige „Winkelgrade“ (Vollkreis ≈ 360°); ein Winkelgrad besteht dann aus 60 „Bogenminuten“ (1° = 60′) und eine Bogenminute aus 60 „Bogensekunden“ (1′ = 60″).

Aufgrund der Willkür und Dimensionsbehaf- tung ist das Gradmaß in den Naturwissenschaften eher unüblich.

55
• Das Bogenmaß:

Der Kreisbogen s, der vom Winkel φ aufgespannt wird, ist ebenfalls ein Maß für die Größe des Winkels. Da er aber proportional zum Radius r wächst, definiert man

$$\varphi := \frac{s}{r} \quad (360^\circ = 2\pi).$$

Das Bogenmaß ist aufgrund der Dimensionsfreiheit in den Naturwissenschaften das Standardmaß für Winkel.

Merkе: $\varphi \text{ [im Gradmaß]} = \frac{360}{2\pi} \cdot \varphi \text{ [im Bogenmaß]}$

<table>
<thead>
<tr>
<th>$\varphi \text{ [im Gradmaß]}$</th>
<th>0</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>90</th>
<th>180</th>
<th>270</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi \text{ [im Bogenmaß]}$</td>
<td>0</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{4}$</td>
<td>$\frac{\pi}{3}$</td>
<td>$\frac{\pi}{2}$</td>
<td>π</td>
<td>$\frac{3}{2}\pi$</td>
<td>2π</td>
</tr>
</tbody>
</table>

Definition 3.8.1 (Trigonometrische Funktionen): Wir definieren

- die „Kosinusfunktion“ durch $\cos : \mathbb{R} \rightarrow [-1, 1], \quad x \mapsto \cos(x)$.
- die „Sinusfunktion“ durch $\sin : \mathbb{R} \rightarrow [-1, 1], \quad x \mapsto \sin(x)$.
- die „Tangensfunktion“ durch $\tan : \mathbb{R} \setminus \{ (2n + 1) \cdot \frac{\pi}{2} \mid n \in \mathbb{Z} \} \rightarrow \mathbb{R}, \quad x \mapsto \tan(x)$.

Die Graphen und Werte dieser Funktionen lassen sich mit Hilfe des sogenannten „Einheitskreises“ konstruieren: Dazu skizziert man zunächst einen Kreis mit Radius $r = 1$ im kartesischen Koordinatensystem um den Punkt $(-2, 0)$. Anschließend wird der rechtswärts horizontal abgetragene Radius als Bezugs- oder Nullrichtung festgelegt. Zur Konstruktion der Sinus- und Kosinusfunktion dreht man nun diesen Radius wie einen Fahrstrahl dem Uhrzeigersinn entgegengesetzt um einen Winkel α (in Abbildung 3.8 $\alpha = 45^\circ, 155^\circ$ und 240°).

Abb. 3.8: Konstruktion der Sinus- und Kosinusfunktion

Dadurch ergibt sich ein Punkt auf dem Kreisbogen. Das von diesem Punkt auf die Nullrichtung gefällte Lot stellt die Gegenkathete y des Drehwinkels α dar. Der Radius fungiert als Hypotenuse.

56
c mit Länge 1. Da dann \(\sin(\alpha) = y/1 = y \) gilt, ist die Länge \(y \) des geometrisch konstruierten Lotes gerade der gesuchte Funktionswert \(\sin(\alpha) \). Betrachten wir nicht die Länge des Lotes des um den Winkel \(\alpha \) gedrehten Radius, sondern die Länge der Projektion auf die \(x \)-Achse, so erhalten wir gerade \(\cos(\alpha) \). Die Graphen der Tangens- und Kotangensfunktion erhält man durch Division der bereits konstruierten Funktionswerte.

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\alpha & 0 & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} & \frac{2}{3}\pi & \frac{3}{4}\pi & \frac{5}{6}\pi & \pi \\
\hline
\sin(\alpha) & 0 & \frac{1}{2} & \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{3} & 1 & \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{2} & \frac{1}{2} & 0 \\
\hline
\cos(\alpha) & 1 & \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{2} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{3} & -1 \\
\hline
\tan(\alpha) & 0 & \frac{1}{3}\sqrt{3} & 1 & \sqrt{3} & \text{nicht definiert} & -\sqrt{3} & -1 & -\frac{1}{3}\sqrt{3} & 0 \\
\end{array}
\]

1. \textit{Wertetabelle:}

2. \textit{Nullstellen:}

\[
\begin{align*}
\cos(\alpha) &= 0 & \text{für } & \alpha = (2n + 1) \cdot \frac{\pi}{2}, & n \in \mathbb{Z} \\
\sin(\alpha) &= 0 & \text{für } & \alpha = n \cdot \pi, & n \in \mathbb{Z} \\
\tan(\alpha) &= 0 & \text{für } & \alpha = n \cdot \pi, & n \in \mathbb{Z}
\end{align*}
\]

\textbf{Abbildung 3.9:} Die Graphen der Tangens- und Kotangensfunktion

Nach einer vollen Umdrehung (\(\alpha = 2\pi \)) kann man diese Prozesse beliebig oft wiederholen, wobei mit jedem weiteren Durchlauf die Funktionswerte identisch bleiben; die trigonometrischen Funktionen sind also periodisch. Neben dieser, lassen sich aus der Konstruktion viele weitere Eigenschaften ableiten, die wir nun in einer kurzen Übersicht zusammenstellen wollen.
3. Periodizität:
\[
\cos(\alpha + 2\pi) = \cos(\alpha), \quad \sin(\alpha + 2\pi) = \sin(\alpha) \quad \text{und} \quad \tan(\alpha + \pi) = \tan(\alpha).
\]

Merk: Die Sinus- und die Kosinusfunktion sind 2π-periodisch und die Tangensfunktion π-periodisch.

4. Symmetrie:
\[
\cos(-\alpha) = \cos(\alpha), \quad \sin(-\alpha) = -\sin(\alpha) \quad \text{und} \quad \tan(-\alpha) = -\tan(\alpha).
\]

Merk: Die Sinus- und die Tangensfunktion sind ungerade, die Kosinusfunktion eine gerade Funktion.

5. Zusammenhang:
\[
\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}, \quad \sin^2(\alpha) + \cos^2(\alpha) = 1 \quad \text{und} \quad \sin\left(\alpha - \frac{\pi}{2}\right) = \cos(\alpha).
\]

Satz 3.8.2: Die Sinus- und die Kosinusfunktion erfüllen die folgenden „Additionstheoreme“
\[
\begin{align*}
\cos(\alpha + \beta) &= \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta) \\
\sin(\alpha + \beta) &= \sin(\alpha) \cdot \cos(\beta) + \sin(\beta) \cdot \cos(\alpha)
\end{align*}
\]

für beliebige $\alpha, \beta \in \mathbb{R}$.

Beweis. Aufgrund der Symmetrie und Periodizität der Sinus- und der Kosinusfunktion genügt es die Behauptung für $\alpha, \beta \in [0, \pi/2]$ zu beweisen. Wenn aber entweder α oder β oder beide den Wert 0 oder $\pi/2$ annehmen, prüft man leicht mit der Tabelle der Nullstellen, Maxima und Minima nach, dass die Additionstheoreme in diesen Fällen erfüllt sind. Somit bleibt uns nur die Behauptung für $\alpha, \beta \in (0, \pi/2)$ zu beweisen. Dazu betrachten wir die folgende Konstruktion

und zeigen zunächst, dass $\gamma = \alpha$ ist. In einem Dreieck ist die Summe der Innenwinkel immer 180°, so dass
\[
\text{im Dreieck } \triangle OAB: \quad 180^\circ = \alpha + \beta + 90^\circ + \gamma',
\]
im Dreieck $\triangle OAC$: $180^\circ = \beta + \gamma + 90^\circ + \gamma'$

und somit nach Subtraktion der beiden Gleichungen

\[0 = \alpha - \gamma \iff \gamma = \alpha. \]

Zurück zum eigentlichen Beweis zeigen wir zunächst das Additionstheorem für den Sinus.

Im Dreieck $\triangle OAB$ gilt wegen $OA = 1$ offensichtlich

\[\sin(\alpha + \beta) = \frac{\overline{AB}}{\overline{OA}} = \overline{AB}. \]

Die Idee ist nun die Strecke \overline{AB} anders darzustellen. Offenbar gilt

\[\overline{AB} = \overline{AE} + \overline{EB} = \overline{AE} + \overline{DC}. \]

Für die einzelnen Teilstrecke folgt nun:

- aus dem Dreieck $\triangle EAC$:

\[\cos(\alpha) = \frac{EA}{AC} \iff \overline{EA} = \cos(\alpha) \cdot \overline{AC} \]

und aus dem Dreieck $\triangle OAC$:

\[\sin(\beta) = \frac{\overline{AC}}{\overline{OA}} = \overline{AC}, \]

so dass

\[\overline{EA} = \cos(\alpha) \cdot \overline{AC} = \cos(\alpha) \cdot \sin(\beta). \]

- aus dem Dreieck $\triangle OCD$:

\[\sin(\alpha) = \frac{\overline{CD}}{\overline{OC}} \iff \overline{CD} = \sin(\alpha) \cdot \overline{OC}. \]

Das Dreieck $\triangle OAC$ liefert nun

\[\cos(\beta) = \frac{\overline{OC}}{\overline{OA}} = \overline{OC}, \]

sodass

\[\overline{CD} = \sin(\alpha) \cdot \overline{OC} = \sin(\alpha) \cdot \cos(\beta). \]

Zusammengenommen folgt

\[\sin(\alpha + \beta) = \overline{AB} = \overline{AE} + \overline{DC} = \cos(\alpha) \cdot \sin(\beta) + \sin(\alpha) \cdot \cos(\beta). \]

Für das Additionstheorem für den Kosinus gehen wir ähnlich vor. Im Dreieck $\triangle OAB$ gilt wegen $OA = 1$ offensichtlich

\[\cos(\alpha + \beta) = \frac{\overline{OB}}{\overline{OA}} = \overline{OB} \]

und auch diese Strecke können wir anders darstellen:

\[\overline{OB} = \overline{OD} - \overline{BD} = \overline{OD} - \overline{EC}. \]

Für die Teilstrecken erhalten wir:
aus dem Dreieck ΔEAC:

$$\sin(\alpha) = \frac{EC}{AC} \iff EC = \sin(\alpha) \cdot AC$$

also

$$EC = \sin(\alpha) \cdot AC = \sin(\alpha) \cdot \sin(\beta).$$

• aus dem Dreieck ΔOCD:

$$\cos(\alpha) = \frac{OD}{OC} \iff OD = \cos(\alpha) \cdot OC.$$

also

$$OD = \cos(\alpha) \cdot OC = \cos(\alpha) \cdot \cos(\beta).$$

Zusammengenommen folgt

$$\cos(\alpha + \beta) = \overline{OB} = \overline{OD} - \overline{BD} = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta).$$

Auch die trigonometrischen Funktionen sind eingeschränkt auf Teile ihres Definitionsbereichs streng monoton und somit invertierbar. Ihre Umkehrfunktionen sind ebenso wichtig wie die Funktionen selbst.

Definition 3.8.3:

1. **Die Funktion**

 $$\text{arcsin} : [-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 heißt „Arkussinus“ und ist definiert durch

 $$\text{arcsin}(y) = x \iff y = \sin(x).$$

2. **Die „Arkuskosinus“-Funktion**

 $$\text{arccos} : [-1, 1] \rightarrow [0, \pi]$$

 ist definiert durch

 $$\text{arccos}(y) = x \iff y = \cos(x).$$

3. **Die Funktion**

 $$\text{arctan} : \mathbb{R} \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

 heißt „Arkustangens“ und ist definiert durch

 $$\text{arctan}(y) = x \iff y = \tan(x).$$

4. **Die „Arkuskotangens“-Funktion**

 $$\text{arccot} : \mathbb{R} \rightarrow (0, \pi)$$

 ist definiert durch

 $$\text{arccot}(y) = x \iff y = \cot(x).$$
In seltenen Fällen ist man gezwungen auch trigonometrische Gleichungen zu lösen. Dazu transformiert man die Gleichung mit den Additionstheoremen stets auf eine Gleichung in der nur noch eine trigonometrische Funktion vorkommt. Dabei kann man insbesondere auch zwei trigonometrische Funktionen zu einer zusammenführen. Zum Beispiel ist

\[
A \cdot \cos(\varphi) + B \cdot \sin(\varphi) = C \cdot \sin(\varphi + \varphi_0)
\]
\[
\iff A \cdot \cos(\varphi) + B \cdot \sin(\varphi) = C \cdot (\sin(\varphi) \cdot \cos(\varphi_0) + \sin(\varphi_0) \cdot \cos(\varphi))
\]
\[
\iff A \cdot \cos(\varphi) + B \cdot \sin(\varphi) = C \cos(\varphi_0) \cdot \sin(\varphi) + C \sin(\varphi_0) \cdot \cos(\varphi)
\]
\[
\iff A = C \cos(\varphi_0) \land B = C \sin(\varphi_0)
\]

und daher

\[
A^2 + B^2 = C^2 \sin^2(\varphi_0) + C^2 \cos^2(\varphi_0) = C^2 \iff C = \sqrt{A^2 + B^2}.
\]

sowie

\[
\sin(\varphi_0) = \frac{A}{C} = \frac{A}{\sqrt{A^2 + B^2}} \implies \varphi_0 = \arcsin\left(\frac{A}{\sqrt{A^2 + B^2}}\right).
\]

Beispiel 3.8.4: Gesucht ist die Lösung der Gleichung

\[-3 \sin(\varphi) + 4 \cos(\varphi) = 6.\]

Mit obiger Rechnung ist

\[-3 \sin(\varphi) + 4 \cos(\varphi) = c \cdot \sin(\varphi + \varphi_0)\]

für

\[C = \sqrt{(-3)^2 + 4^2} = 5 \quad \text{und} \quad \varphi_0 = \arcsin\left(\frac{-3}{\sqrt{(-3)^2 + 4^2}}\right) = -0,564.\]

Dann ist

\[-3 \sin(\varphi) + 4 \cos(\varphi) = 6 \iff C \cdot \sin(\varphi + \varphi_0) = 6 \iff \varphi = \arcsin\left(\frac{5}{6}\right) - \varphi_0 = 1,549.\]
Kapitel 4

Die komplexen Zahlen
4.1 Die Lösung von $x^2 + 1 = 0$

Während man Gleichungen wie $x^2 - 3 = 0$ oder $x^2 - 3x = 4$ problemlos in den reellen Zahlen lösen kann, gelingt das schon bei der einfachen Gleichung $x^2 + 1 = 0$ nicht mehr. Die Idee der komplexen Zahlen ist es nun eine neue, sogenannte „imaginäre Einheit“ i einzuführen, für die

$$i^2 = -1$$

ist. Diese neue Konstante ist natürlich keine reelle Zahl (weil das Quadrat einer reellen Zahl nie negativ ist) und führt somit zu einer Erweiterung unserer bisherigen Zahlenvorräte. Was aber ist nun dieses i?

Definition 4.1.1: Wir betrachten die Menge $\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$ und definieren auf ihr eine Addition und eine Multiplikation durch

$$(x,y) + (u,v) = (x+u,y+v) \quad \text{bzw.} \quad (x,y) \cdot (u,v) = (xu-yv, xv+yu).$$

Setzen wir nun $i := (0,1)$ und $1 := (1,0)$, so definieren wir die Menge der komplexen Zahlen durch

$$\mathbb{C} := \{z = x \cdot 1 + y \cdot i \mid x,y \in \mathbb{R}\}.$$

Statt $z = x \cdot 1 + y \cdot i$ schreibt man abkürzend $z = x + iy$.

Wir nennen $z = x + iy$ die „Normaldarstellung“, $\Re\{z\} := x$ den „Realteil“ und $\Im\{z\} := y$ den „Imaginärteil“ der komplexen Zahl z. Ist $\Im\{z\} = 0$, so nennen wir z reell und identifizieren sie mit der reellen Zahl x. Auf diese Weise wird die Menge der komplexen Zahlen \mathbb{C} zu einer echten Erweiterung der reellen Zahlen \mathbb{R} und es gilt $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Satz 4.1.2 (Die imaginäre Einheit):

$$i^2 = -1.$$

Beweis. Nach Definition ist

$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1.$$

Eine komplexe Zahl $z = x + iy$ wird im Wesentlichen durch ihre zwei reellen Komponenten x und y charakterisiert. Daher bietet es sich an, sie geometrisch in einem „kartesischen Koordinatensystem“ darzustellen. Die komplexe Zahl $z = x + iy$ entspricht dann dem Punkt (x,y) in diesem Koordinatensystem. Diese Darstellung nennt man auch die „Gauß'sche Zahlenebene“.

Beispiel 4.1.3:

(a) Wegen

$$z^2 = -81 \iff z = \pm \sqrt{81i^2} = \pm 9i$$

ist die Lösungsmenge der Gleichung $z^2 + 81 = 0$:

$$L = \{-9i, 9i\}.$$
(b) Für $x^2 + 2x + 5 = 0$ liefert die $p - q$-Formel

$$x = \frac{-p}{q} \pm \sqrt{\left(\frac{p}{q}\right)^2 - q} = \frac{-2}{2} \pm \sqrt{\left(\frac{2}{2}\right)^2 - 5} = -1 \pm \sqrt{4i^2} = -1 \pm 2i.$$

Folglich ist die Lösungsmenge der Gleichung $x^2 + 2x + 5 = 0$:

$$L = \{ -1 - 2i, -1 + 2i \}.$$

Wie obige Beispiele implizieren, ist mit Hilfe der komplexen Zahlen tatsächlich jede quadratische Gleichung lösbar. Mehr noch: es lässt sich sogar ganz allgemein zeigen, dass eine Polynomgleichung n-ten Grades genau n komplexe Lösungen besitzt. Die wichtigsten Anwendungen der komplexen Zahlen liegen aber in der Physik und den Ingenieurwissenschaften, vor allem in der Signalverarbeitung, wo sie etwa bei Musikaufnahmen zum Zuge kommen. So werden harmonische Schwingungen (Töne) durch $f(t) = \sin(\omega t + \phi)$ dargestellt, wobei ω die Kreisfrequenz, a die Amplitude und ϕ die Phase ist. In komplexer Form kann stattdessen $f(t) = Ae^{i\omega t}$ mit komplexer Amplitude geschrieben werden, in die die reelle Amplitude a und die Phase ϕ eingehen. Auch die Beschreibung von Wellen ist im Kalkül der komplexen Zahlen besonders elegant.

Bemerkung 4.1.4: In den obigen Beispielen sind wir ganz naiv davon ausgegangen, dass wir wie gewohnt auch ganz einfach Wurzeln aus komplexen Zahlen ziehen können. Tatsächlich zeigt aber die (offensichtlich falsche) Rechnung

$$1 = \sqrt{1} = \sqrt{(-1) \cdot (-1)} = \sqrt{-1} \cdot \sqrt{-1} = i \cdot i = i^2 = -1,$$

dass es gar nicht so einfach ist die Wurzel einer komplexen Zahl zu definieren. Wir werden später darauf zurückkommen, wollen aber hier eine sehr deutliche Warnung aussprechen.

Definition 4.1.5: Zu einer komplexen Zahl $z = x + iy$ definieren wir die „konjugiert komplexe Zahl“ \overline{z} durch

$$\overline{z} := x - iy$$

und ihren „Betrag“ durch

$$|z| := \sqrt{a^2 + b^2}.$$
(a) \(\overline{z} \) entsteht durch Spiegelung der komplexen Zahl \(z \) an der waagerechten Achse.

(b) Der Betrag \(|z| \) entspricht dem Abstand der komplexen Zahl \(z \) zum Ursprung (Satz des Pythagoras).

Beispiel 4.1.6: Der Realteil der komplexen Zahl \(z = 4 + 3i \) ist \(\Re\{z\} = 4 \), der Imaginärteil \(\Im\{z\} = 3 \) und der Betrag

\[|z| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5. \]

Für die konjugiert komplexe Zahl erhalten wir

\[\overline{z} = 4 - 3i. \]

Satz 4.1.7: Für \(z, w \in \mathbb{C} \) gilt:

1. \(z + w = \overline{z} + \overline{w} \) und \(\overline{z - w} = \overline{z} \cdot \overline{w} \)
2. \(-|z| \leq \Re z \leq |z| \)
3. \(|z \cdot w| = |z| \cdot |w| \)
4. \(|z + w| \leq |z| + |w| \) (Dreiecksungleichung)
5. \(||z| - |w|| \leq |z + w| \) (inverse Dreiecksungleichung)

Beweis. Sie Aussagen (1) und (3) sind sehr leicht zu verifizieren und wir überlassen sie daher dem Leser zur Übung.

Zu (2): Sei \(z = x + iy \in \mathbb{C} \) beliebig. Dann unterscheiden wir zwei Fälle:

1. Fall: \(x \geq 0 \). Dann ist offensichtlich

\[-|z| \leq 0 \leq x = \Re\{z\} \]

und außerdem gilt

\[x^2 \leq x^2 + y^2 = |z|^2 \iff \Re\{z\} = x \leq |z|. \]

2. Fall: \(x \leq 0 \). Dann gilt

\[\Re\{z\} \leq 0 \leq |z| \]

und zudem auch \(\Re\{-z\} = -x \geq 0 \). Genauso wie im ersten Fall erhalten wir dann

\[\Re\{-z\} \leq | -z | = |z| \iff \Re\{z\} \geq -|z|. \]

1 In der Literatur findet man diesen Sachverhalt unter dem Stichwort „Fundamentalsatz der Algebra“.
Zu (4): Ist \(z + w = 0 \), so ist die Aussage klar. Falls \(z + w \neq 0 \) so ist

\[
1 = \frac{z}{z + w} + \frac{w}{z + w}.
\]

Nehmen wir nun auf beiden Seiten den Realteil, so erhalten wir

\[
1 = \Re\left\{ \frac{z}{z + w} \right\} + \Re\left\{ \frac{w}{z + w} \right\} \leq \left| \frac{z}{z + w} \right| + \left| \frac{e}{z + w} \right| = \frac{|z|}{|z + w|} + \frac{|e|}{|z + w|}.
\]

Zu (5): Wir haben

\[
|z| = |z + w - w| \leq |z + w| + |-w| = |z + w| + |w| \iff |z| - |w| \leq |z + w|
\]

und durch Vertauschen von \(z \) und \(w \) ebenso

\[
|w| - |z| \leq |z + w|.
\]

4.2 Die Polardarstellung komplexer Zahlen

Bisher haben wir komplexe Zahlen immer durch ihre Normalform charakterisiert und über kartesische Koordinaten dargestellt. Allerdings gibt es noch eine weitere Möglichkeit; statt eine komplexe Zahl \(z \) durch \((\Re\{z\}, \Im\{z\})\) zu beschreiben, kann man auch ihren Betrag \(|z| \) und den Winkel \(\varphi \) (das „Argument arg\(z \)“ von \(z \)) angeben, den sie mit der positiven \(x \)-Achse einschließt. Damit diese Zuordnung eindeutig wird, müssen wir den Winkel \(\arg z \) einschränken

\[
0 \leq \arg z < 2\pi.
\]

Abb. 4.2: Die Polardarstellung komplexer Zahlen

Hat nun eine komplexe Zahl \(z = a + bi \) den Betrag \(|z| = r \) und das Argument \(\arg z = \varphi \), folgt aus der Definition der trigonometrischen Funktionen

\[
x = r \cdot \cos(\varphi) \quad \text{und} \quad b = r \cdot \sin(\varphi),
\]

also

\[
z = r \cdot (\cos(\varphi) + i \sin(\varphi)).
\]

Zusammen mit der 1748 von Leonhard Euler bewiesenen und nach ihm benannten „Euler‘ schen Formel“

\[
e^{i\varphi} = \cos(\varphi) + i \sin(\varphi), \quad \varphi \text{ im Bogenmaß},
\]
erhält man so die „Polardarstellung“
\[z = r \cdot e^{i\varphi} \]
der komplexen Zahl z.

Merkze: Aus der Euler’schen Formel erhält man für \(\varphi = \pi \) die Gleichung
\[e^{i\pi} + 1 = 0. \]
Diese (eigentlich sehr triviale) Aussage nennt man auch die „Weltformel der Mathematik“, da sie alle in der Mathematik auftretenden Naturkonstanten \(e, i, \pi, 0 \) und 1 in sich vereint.

Satz 4.2.1: Die Exponentialfunktion \(\exp \) ist \(2\pi i \)-periodisch, d.h.
\[e^z = e^{z+2\pi i} \quad \forall \ z \in \mathbb{C}. \]

Beweis. Für \(z \in \mathbb{C} \) ist
\[e^{z+2\pi i} = e^z \cdot e^{2\pi i} = e^z \cdot (e^{i\pi})^2 = e^z. \]

Merkze: Ist \(z \neq 0 \) in der Normaldarstellung \(z = x + iy \) gegeben, erhält man ihren Betrag \(|z| \) durch
\[|z| = \sqrt{x^2 + y^2} \]
und ihr Argument \(\arg z \) durch
\[\arg z = \begin{cases} \arccos \left(\frac{x}{r} \right) & \text{für } y > 0, \\ 2\pi - \arccos \left(\frac{x}{r} \right) & \text{für } y < 0. \end{cases} \]

4.3 Multiplikation und Wurzeln
Grundsätzlich rechnen wir mit komplexen Zahlen wie gewohnt, allerdings stets unter der Berücksichtigung, dass \(i^2 = -1 \) ist. Zum Beispiel gilt für die Addition und Multiplikation zweier komplexer Zahlen \(z = x + iy \) und \(w = u + iv \):
\[z + w = (x + iy) + (u + iv) = (x + u) + i(y + v) \]
und
\[z \cdot w = (x + iy) \cdot (u + iv) = ux + iuy + ivx + i^2vy = (ux - vy) + i(uy + vx). \]

Natürlich können wir in \(\mathbb{C} \) auch subtrahieren und dividieren, wobei wir bei letzterem (ähnlich zur Bruchrechnung) einen kleinen Umweg machen müssen:
\[\frac{z}{w} = \frac{x + iy}{u + iv} = \frac{(x + iy) \cdot (u - iv)}{(u + iv) \cdot (u - iv)} = \frac{ux + iuy - ivx - i^2vy}{u^2 - i^2v^2} = \frac{ux + vy}{u^2 + v^2} + i \frac{uy - vx}{u^2 + v^2}. \]
Merke: Zwei komplexe Zahlen z und w werden dividiert, indem man den zugehörigen Bruch mit dem komplex konjugierten des Nenners erweitert:

$$\frac{z}{w} = \frac{z \cdot \overline{w}}{w \cdot \overline{w}} = \frac{z \cdot \overline{w}}{|w|^2}.$$

Aufgrund der Polardarstellung der komplexen Zahlen können wir die Multiplikation auch geometrisch interpretieren. Für $z = re^{i\varphi}$ und $z' = se^{i\psi}$ ist nämlich

$$z \cdot z' = re^{i\varphi} \cdot se^{i\psi} = rs \cdot e^{i(\varphi + \psi)},$$

d. h. bei der Multiplikation werden die Beträge multipliziert und die Argumente addiert. Das Argument muss man dann natürlich wieder auf den Winkelbereich $[0, 2\pi)$ einschränken.

Abb. 4.3: Die Multiplikation komplexer Zahlen in Polardarstellung

Bemerkung 4.3.1: Hier versteckt sich in gewisser Weise auch eine Legimitation für die Definition der imaginären Einheit i. Da eine Multiplikation mit -1 einer Drehung um den Winkel π entspricht, entspricht eine Multiplikation von i (wegen $i^2 = -1$) einer Drehung um $\pi/2$. Möchte man alle Drehungen mit einer Multiplikation identifizieren, muss man zwangsläufig die reellen Zahlen auf die komplexen Zahlen erweitern.

Beispiel 4.3.2:

(a) Seien $z = 2 - i$ und $w = 3 + 2i$. Dann ist

$$\frac{z}{w} = \frac{2 - i}{3 + 2i} = \frac{(2 - i)(3 - 2i)}{(3 + 2i)(3 - 2i)} = \frac{6 - 3i - 4i + 2i^2}{9 - 4i^2} = \frac{6 - 7i}{13} = \frac{4}{13} - \frac{7}{13}i.$$

(b) Gesucht ist die Normaldarstellung der Zahl

$$z = i^{49} + i^{50} + i^{51} + i^{52}.$$

Wegen

$$i^{49} + i^{50} + i^{51} + i^{52} = i^{49} \cdot (1 + i + i^2 + i^3) = i^{49} \cdot (1 + i - 1 - i) = 0$$

ist $z = 0$.

(c) Für $z = 3e^{\pi i}$ und $w = -1 - i$ suchen wir das Produkt $z \cdot w$. Dazu transformieren wir w zunächst in ihre Polardarstellung. Für den Betrag erhalten wir

$$|w| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

und da $\text{Im}\{w\} = -1 < 0$ berechnen wir das Argument gemäß

$$\arg z = 2\pi - \arccos \left(\frac{-1}{\sqrt{2}} \right) = 2\pi - \arccos \left(-\frac{1}{2}\sqrt{2} \right) = \frac{5}{4}\pi,$$

sodass

$$w = \sqrt{2} \cdot e^{\frac{5}{4}\pi i}.$$

Dann gilt

$$z \cdot w = 3e^{\pi i} \cdot \sqrt{2}e^{\frac{5}{4}\pi i} = 3\sqrt{2} \cdot e^{\frac{9}{4}\pi i} = 3\sqrt{2} \cdot e^{\frac{1}{4}\pi i + 2\pi i} = 3\sqrt{2} \cdot e^{\frac{1}{4}\pi i}.$$

Nun können wir uns die Frage stellen, wie wir die Wurzel aus einer komplexen Zahl z definieren können. Ist es überhaupt sinnvoll die Wurzel aus z zu ziehen? Ausgangsproblem hierbei ist es Lösungen der Gleichung

$$x^2 - a = 0$$

zu finden. Schon in \mathbb{R} hatten wir dabei einige Schwierigkeiten. Ist a eine positive reelle Zahl, so gibt es zwei mögliche Lösungen der Gleichung, eine positive und eine negative. Nenne wir die positive b, dann ist die negative $-b$ und wir hatten uns darauf geeinigt $\sqrt{a} := b$ zu definieren. Tatsächlich hätten wir aber es aber auch anders herum machen können. Für negative a gab es überhaupt keine Lösung.

Sei nun $z \in \mathbb{C}$ mit $z \neq 0$ fest. Gibt es nun Zahlen $w \in \mathbb{C}$ für die $w^2 = z$ ist? Für die Antwort auf diese Frage nutzen wir die Polardarstellung und schreiben $z = |z|e^{i\varphi}$ und $w = |w|e^{i\psi}$ mit $\varphi, \psi \in [0, 2\pi)$. Dann ist $w^2 = |w|^2e^{2i\psi}$ und für $w^2 = z$ muss

$$|w| = \sqrt{|z|}$$

gelten (hier meinen wir die übliche Wurzel aus \mathbb{R}), sowie

$$2\psi = \varphi + 2k\pi$$

für ein $k \in \mathbb{Z}$ sein. Da aber nach Voraussetzung $\varphi, \psi \in [0, 2\pi)$ sind, kann k hier nur 0 oder 1 sein und wir erhalten

$$w_1 := \sqrt{|z|}e^{\frac{\varphi}{2}i} \quad \text{und} \quad w_2 := \sqrt{|z|}e^{\frac{\varphi}{2}i + \pi i} = -w_1$$

als Lösungen für $w^2 = z$. Zu jeder komplexen Zahl $z \neq 0$ gibt es wie auch in \mathbb{R} genau zwei Möglichkeiten für die Definition einer Wurzel. Da aber im Gegensatz zu \mathbb{R} die komplexen Zahlen \mathbb{C} nicht angeordnet werden können (d. h. im Wesentlichen, dass es keine Begriffe wie „positiv“oder „negativ“gibt), können wir aber keine der beiden Lösungen der anderen vorziehen. Daher nennen wir beide Lösungen eine Wurzel von z.

Merk: Die komplexe Wurzel ist keine Funktion, d. h. sie beschreibt keine eindeutige Zuordnung zwischen einer komplexen Zahl z und den Lösungen w der Gleichung $w^2 = z$. Daher spricht man in \mathbb{C} nie von „der“ Wurzel einer komplexen Zahl!
Satz 4.3.3 (Wurzeln in \mathbb{C}): Für jedes $z \in \mathbb{C}$ und jedes $n \in \mathbb{N}$ existiert ein $w \in \mathbb{C}$ so dass $w^n = z$.

Ist $z \neq 0$ gibt es genau n Lösungen von $w^n = z$ mit $z = |z| \cdot e^{i\varphi}$, $\varphi \in [0, 2\pi)$:

$$w_k := \sqrt[n]{|z|} \cdot e^{\frac{k}{n}(\varphi+2k\pi)}, \quad k = 0, 1, \ldots, n-1.$$

Diese w_k nennt man auch die n-ten Wurzeln von z.

Beweis. Ist $z = 0$ nehme $w = 0$. Anderfalls gilt:

$$w_k^n = \left(\sqrt[n]{|z|} \cdot e^{\frac{1}{n}(\varphi+2k\pi)} \right)^n = |z| \cdot e^{i(\varphi+2k\pi)} = |z| \cdot e^{i\varphi} \cdot e^{2k\pi i} = |z| \cdot e^{i\varphi}.$$

Aufgrund der $2\pi i$-Periodizität der Exponentialfunktion sind dies alle n-ten Wurzeln und sie sind alle verschieden.

Beispiel 4.3.4: Gesucht sind die Lösungen der Gleichung

$$w^4 = i.$$

Dazu transformieren wir i zunächst in seine Polardarstellung; für den Betrag erhalten wir

$$|i| = \sqrt{0^2 + 1^2} = 1$$

und für das Argument

$$\arg i = \arccos(0) = \frac{\pi}{2},$$

sodass

$$i = e^{\frac{i}{2} \pi}. $$

Dann sind die Lösungen der Gleichung gegeben durch

$$w_0 = e^{\frac{i}{4}(\frac{\pi}{2}+0)} = e^{\frac{\pi i}{4}} = \frac{\sqrt{2} + \sqrt{2}}{2} + i \frac{\sqrt{2} - \sqrt{2}}{2}$$

$$w_1 = e^{\frac{i}{4}(\frac{\pi}{2}+2\pi)} = e^{\frac{5}{4}\pi i} = -\frac{\sqrt{2} - \sqrt{2}}{2} + i \frac{\sqrt{2} + \sqrt{2}}{2}$$

$$w_2 = e^{\frac{i}{4}(\frac{\pi}{2}+4\pi)} = e^{\frac{9}{4}\pi i} = -\frac{\sqrt{2} + \sqrt{2}}{2} - i \frac{\sqrt{2} - \sqrt{2}}{2}$$

$$w_3 = e^{\frac{i}{4}(\frac{\pi}{2}+6\pi)} = e^{\frac{13}{4}\pi i} = \frac{\sqrt{2} - \sqrt{2}}{2} - i \frac{\sqrt{2} + \sqrt{2}}{2}$$
Kapitel 5

Folgen, Grenzwerte und Stetigkeit
5.1 Folgen reeller oder komplexer Zahlen

Eine der wichtigsten Aufgaben der Mathematik ist die Untersuchung und Charakterisierung von Funktionen einer oder mehrerer Variablen. Ganz essentiell ist dabei die Theorie der Grenzwerte unendlicher Folgen, denn auf ihr beruhen die Berechnung von Grenzwerten von Funktionen, die Definition der Ableitung (Differentialquotient als Grenzwert einer Folge von Differenzenquotienten) und auch der Riemann'sche Integralbegriff.

Definition 5.1.1: Eine Zuordnung, die jeder natürlichen Zahl \(n \in \mathbb{N} \) eine reelle (komplexe) Zahl \(a_n \) zuordnet, heißt „reelle (komplexe) Zahlenfolge“. Statt

\[
f : \mathbb{N} \longrightarrow \mathbb{R} \quad n \mapsto a_n
\]

schreiben wir kürzer \(\{a_n\}_{n \in \mathbb{N}} \) und nennen \(a_n \) das „n-te Folgenglied“ und \(n \) den „Folgenindex“.

Folgen lassen sich auf verschiedene Art und Weise beschreiben:

(1) **explizit:** Bei dieser Methode definiert man die Folge durch eine Formel, aus der jedes beliebige Folgenglied sofort berechnet werden kann.

Beispiel 5.1.2:

- \(\{a_n\}_{n \in \mathbb{N}} \) wird definiert durch \(a_n := n^2 - 1 \). Dann ist
 \[
a_5 = 5^2 - 1 = 24 \quad \text{und} \quad a_{100} = 100^2 - 1 = 9999.
 \]
- \(\{c_n\}_{n \in \mathbb{N}} \) wird definiert durch \(c_n := (-1)^n \). Dann ist
 \[
c_5 = (-1)^5 = -1 \quad \text{und} \quad a_{100} = (-1)^{100} = 1.
 \]

(2) **rekursiv:** Bei dieser Methode gibt man das erste Glied der Folge und eine Formel an, mit der man aus einem beliebigen Folgenglied das nachfolgende Folgenglied berechnen kann.

Beispiel 5.1.3:

- \(\{a_n\}_{n \in \mathbb{N}} \) wird definiert durch \(a_1 := -1 \) und \(a_{n+1} := -a_n \). Möchte man nun \(a_4 \) berechnen, so folgt aus der Definition
 \[
a_4 = a_3 + 1 = -a_3.
 \]
 Man benötigt also zunächst das Folgenglied \(a_3 \). Analog benötigt man zur Berechnung von \(a_3 \) das Folgenglied \(a_2 \) und zur Berechnung von \(a_2 \) das Folgenglied \(a_1 \). Es ist
 \[
a_2 = -1 \implies a_3 = 1 \implies a_4 = -1
 \]
 und man kann zeigen, dass \(\{a_n\}_{n \in \mathbb{N}} \) mit der Folge \(\{c_n\}_{n \in \mathbb{N}} \) von oben übereinstimmt.
- \(\{b_n\}_{n \in \mathbb{N}} \) mit
 \[
b_1 := 2 \quad \text{und} \quad b_{n+1} := \frac{1}{2} \left(b_n + \frac{2}{b_n} \right).
 \]
 Dann ist
 \[
b_2 = \frac{1}{2} \left(2 + \frac{2}{2} \right) = 1.5
 \]
 Also
 \[
b_3 = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right) = \frac{17}{12}
 \]
 Also
 \[
b_4 = \frac{1}{2} \left(\frac{17}{12} + \frac{24}{17} \right) = \frac{577}{204} \quad \text{usw.}
 \]
Merkte: Bei einer rekursiv definierten Folge benötigt man (anders als bei einer explizit definierten Folge) alle Folgenglieder a_1, a_2, \ldots, a_n um das Folgenglied a_{n+1} zu berechnen.

Bemerkung 5.1.4: Eine Folge $\{a_n\}_{n \in \mathbb{N}}$ muss nicht immer bei dem Index $n = 1$ beginnen. Wir lassen natürlich auch Folgen zu, die erst bei $n = m \in \mathbb{N}$ beginnen und schreiben dann $\{a_n\}_{n \geq m}$.

5.2 Grenzwerte und Konvergenz

Definition 5.2.1: Eine Folge $\{a_n\}_{n \in \mathbb{N}}$ heißt „konvergent gegen $a \in \mathbb{R}$ ($a \in \mathbb{C}$), fall zu jedem $\varepsilon > 0$ ein Index $n_0 = n_0(\varepsilon) \in \mathbb{N}$ existiert, so dass
\[\forall n > n_0 : |a_n - a| < \varepsilon. \]
Man schreibt dann
\[a_n \rightarrow a \quad \text{für} \quad n \rightarrow \infty \quad \text{oder} \quad \lim_{n \rightarrow \infty} a_n = a \]
und nennt a den „Grenzwert“ von $\{a_n\}_{n \in \mathbb{N}}$.

Für eine konvergente Folge gibt es also zu jeder (noch so kleinen) Zahl ε einen Index $n \geq n_0$, so dass der Abstand $|a_n - a|$ aller darauffolgenden Folgenglieder a_n zum Grenzwert a kleiner als ε ist. Man sagt auch:

Abb. 5.1: ...

Nur endlich viele Folgenglieder liegen außerhalb des „ε-Schlauchs“ um a. Je kleiner ε wird, umso größer ist im Allgemeinen das n_0 zu wählen, d.h. umso mehr Folgenglieder liegen außerhalb des ε-Schlauchs.

Bemerkung 5.2.2:
(a) Der Grenzwert a einer konvergenten Folge $\{a_n\}_{n \in \mathbb{N}}$ ist eindeutig bestimmt.
(b) Statt „$a_n \rightarrow a$ für $n \rightarrow \infty$“ schreiben wir auch abkürzend
\[a_n \xrightarrow{n \to \infty} a. \]

Beispiel 5.2.3:
(a) Jede konstante Folge, d.h. jede Folge \(\{a_n\}_{n \in \mathbb{N}} \) mit \(a_n = c \) für alle \(n \in \mathbb{N} \), ist konvergent gegen \(c \in \mathbb{R} \). Ist nämlich \(\varepsilon > 0 \) vorgegeben, können wir \(n_0 := 1 \in \mathbb{N} \) wählen und erhalten für alle \(n \in \mathbb{N} \) mit \(n > n_0 \):
\[
|a_n - c| = |c - c| = 0 < \varepsilon.
\]

(b) Es gilt:
\[
\frac{1}{n} \to 0 \quad \text{für} \quad n \to \infty.
\]
Sei dazu wieder \(\varepsilon > 0 \) vorgegeben. Dann wählen wir \(n_0 \in \mathbb{N} \), so dass \(n_0 \geq \varepsilon ^{-1} \) (möglich, da die natürlichen Zahlen nach oben unbeschränkt sind) und erhalten für alle \(n > n_0 \):
\[
|a_n - 0| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{n_0} \leq \frac{1}{\varepsilon ^{-1}} = \varepsilon.
\]

(c) Die Folge \(\{(-1)^n\}_{n \in \mathbb{N}} \) konvergiert nicht. Denn angenommen \(a \in \mathbb{R} \) wäre der Grenzwert dieser Folge, so gäbe es zu \(\varepsilon = 1 \) ein \(n_0 \in \mathbb{N} \), so dass für alle \(n > n_0 \):
\[
|a_n - a| < 1.
\]
Dann wäre aber auch
\[
2 = |a_n - a_{n+1}| = |a_n - a + a - a_{n+1}| \leq |a_n - a| + |a_{n+1} - a| < 1 + 1 = 2.
\]
Ein Widerspruch!

Merkle: Eine Folge muss nicht konvergieren. Nicht-konvergente Folgen heißen „divergent“.

Satz 5.2.4: Sind \(\{a_n\}_{n \in \mathbb{N}} \) und \(\{b_n\}_{n \in \mathbb{N}} \) zwei Folgen mit
\[
\lim_{n \to \infty} a_n = a \quad \text{und} \quad \lim_{n \to \infty} b_n = b,
\]
dann gilt:
\[
\lim_{n \to \infty} a_n + b_n = a + b, \quad \lim_{n \to \infty} a_n \cdot b_n = a \cdot b, \quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b},
\]
wobei die letzte Konvergenz nur für \(b \neq 0 \) sinnvoll ist.

Beweis. Wie üblich müssen wir auch hier für jede der Folgen \(\{a_n + b_n\}_{n \in \mathbb{N}}, \{a_n \cdot b_n\}_{n \in \mathbb{N}} \) und \(\{a_n/b_n\}_{n \in \mathbb{N}} \) zeigen, dass sie die Eigenschaften aus der Definition der Konvergenz besitzen. Sei also \(\varepsilon > 0 \) vorgegeben. Dann müssen wir zunächst zeigen, dass ein \(n_0 \in \mathbb{N} \) existiert, so dass
\[
\forall n > n_0 : \quad |(a_n + b_n) - (a + b)| < \varepsilon.
\]
Nach Voraussetzung wissen wir, dass \(n_a, n_b \in \mathbb{N} \) existieren, so dass
\[
\forall n > n_a : |a_n - a| < \frac{\varepsilon}{2} \quad \text{und} \quad \forall n > n_b : |b_n - b| < \frac{\varepsilon}{2}.
\]
Wählen wir nun für \(n_0 \) den größeren der beiden Werte \(n_a \) und \(n_b \), also \(n_0 = \max\{n_a, n_b\} \), so folgt für alle \(n > n_0 \)
\[
|(a_n + b_n) - (a + b)| \leq |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]
und damit
\[
a_n + b_n \to a + b \quad \text{für} \quad n \to \infty.
\]
Die beiden fehlenden Behauptungen folgen auf ähnliche Weise. ■
Beispiel 5.2.5: Für die Folge $\{a_n\}_{n \in \mathbb{N}}$ mit

$$a_n = \frac{n^4 - 75n^2 + 12n - 6}{3n^7 + 2n^5 - 14n^3 + 2n - 19}$$

gilt

$$a_n = \frac{n^7 \left(\frac{1}{n^3} - \frac{75}{n^5} + \frac{12}{n^6} - \frac{6}{n^7} \right)}{n^7 \left(3 + \frac{2}{n^2} - \frac{14}{n^4} + \frac{2}{n^6} - \frac{19}{n^7} \right)} = \frac{1}{n^3} - \frac{75}{n^5} + \frac{12}{n^6} - \frac{6}{n^7}$$

Nach dem Satz und Beispiel 5.2.3 folgt nun:

$$\frac{1}{n^3} = \left(\frac{1}{n} \right)^3 \rightarrow 0^3 = 0, \quad \frac{2}{n^2} = 2 \cdot \left(\frac{1}{n} \right)^2 \rightarrow 2 \cdot 0^2 = 0$$
$$\frac{12}{n^6} = 12 \cdot \left(\frac{1}{n} \right)^6 \rightarrow 12 \cdot 0^6 = 0, \quad \frac{14}{n^4} = 14 \cdot \left(\frac{1}{n} \right)^4 \rightarrow 14 \cdot 0^4 = 0$$
$$\frac{6}{n^7} = 6 \cdot \left(\frac{1}{n} \right)^7 \rightarrow 6 \cdot 0^7 = 0, \quad \frac{19}{n^7} = 19 \cdot \left(\frac{1}{n} \right)^7 \rightarrow 19 \cdot 0^7 = 0$$

für $n \to \infty$ und somit

$$a_n \rightarrow \frac{0 - 0 + 0 - 0}{3 + 0 - 0 + 0 - 0} = 0 \quad für \quad n \to \infty.$$
Definition 5.2.6: Eine reelle Zahlenfolge \(\{a_n\}_{n \in \mathbb{N}} \) heißt

(a) „uneigentlich konvergent gegen \(\infty \)“, falls zu jedem \(M \in \mathbb{R} \) ein \(n_0 \in \mathbb{N} \) existiert, so dass
\[a_n > M \quad \text{für alle } n > n_0. \]

(b) „uneigentlich konvergent gegen \(-\infty \)“, falls zu jedem \(M \in \mathbb{R} \) ein \(n_0 \in \mathbb{N} \) existiert, so dass
\[a_n < M \quad \text{für alle } n > n_0. \]

Beispiel 5.2.7: Die Folge \(\{a_n\}_{n \in \mathbb{N}} \) mit \(a_n = n \) ist uneigentlich konvergent gegen \(\infty \). Ist nämlich \(M \in \mathbb{R} \) vorgegeben, können wir ein \(n_0 \in \mathbb{N} \) finden, so dass \(n_0 > M \) (möglich, da die natürlichen Zahlen nach oben unbeschränkt sind). Dann gilt aber auch für alle \(n > n_0 \):
\[a_n = n > n_0. \]

Definition 5.2.8 (Teilfolge): Sei \(\{a_n\}_{n \in \mathbb{N}} \) eine Folge und \(\varphi : \mathbb{N} \rightarrow \mathbb{N} \) streng monoton steigend. Dann heißt die Folge \(\{a_{\varphi(k)}\}_{k \in \mathbb{N}} \) „Teilfolge“ der Folge \(\{a_n\}_{n \in \mathbb{N}} \).

Bemerkung 5.2.9:

- Setzt man \(n_k := \varphi(k) \) für \(k \in \mathbb{N} \), so erhält man die für die Teilfolge \(\{a_{\varphi(k)}\}_{k \in \mathbb{N}} \) gebräuchlichere Schreibweise \(\{a_{n_k}\}_{k \in \mathbb{N}} \).

- Prinzipiell erhält man Teilfolgen durch Wegstreichen einiger Folgenglieder. Die Nummerierung der Folgenglieder wird dabei nicht verändert.

Beispiel 5.2.10:

(a) Sei \(\{a_n\}_{n \in \mathbb{N}} = \{(-1)^n\}_{n \in \mathbb{N}} \). Dann ist die Teilfolge mit \(n_k = \varphi(k) := 2k \) gegeben durch
\[\{a_{2k}\}_{k \in \mathbb{N}} = \{(-1)^{2k}\}_{k \in \mathbb{N}} = \{1\}_{k \in \mathbb{N}}, \]
also durch die Folge, die konstant 1 ist.

(b) Für \(\{b_n\}_{n \in \mathbb{N}} \) mit
\[b_n = \left(1 + \frac{1}{n}\right)^n, \]
ist die Teilfolge mit \(n_k = \varphi(k) := 2k + 1 \) die Folge
\[\{b_{2k+1}\}_{k \in \mathbb{N}} \text{ die Folge } \left\{ \left(1 + \frac{1}{2k+1}\right)^{2k+1}\right\}_{k \in \mathbb{N}}. \]

Satz 5.2.11: Ist \(\{a_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R} \) eine gegen \(a \in \mathbb{R} \) konvergente Folge, so konvergiert auch jede Teilfolge dieser Folge gegen \(a \).

Beweis. Sei \(\varepsilon > 0 \) vorgegeben und \(\{a_{\varphi(n)}\}_{n \in \mathbb{N}} \) eine Teilfolge der Folge \(\{a_n\}_{n \in \mathbb{N}} \). Dann existiert nach Voraussetzung ein \(n_0 \in \mathbb{N} \), so dass \(|a_n - a| < \varepsilon \). Da \(\varphi \) monoton wachsend ist, folgt
\[\varphi(n) \geq n \quad \forall \ n \in \mathbb{N}. \]
und somit
\[|a_{\varphi(n)} - a| < \varepsilon \quad \forall \ \varphi(n) \geq n > n_0. \]

76
Nach unseren bisherigen Überlegungen müssen wir den Grenzwert a einer Folge $\{a_n\}_{n \in \mathbb{N}}$ bereits kennen oder zumindest eine Vermutung haben, was der Grenzwert ist, bevor wir die Konvergenz einer Folge zeigen können. In der Regel kann man einer Folge ihren Grenzwert (sofern er existiert) aber nicht ansehen. In diesem Abschnitt stellen wir daher einige nützliche Sätze zusammen, die uns mit zusätzlichen Kriterien für Konvergenz versorgen. Anfangen werden wir mit dem sogenannten „Quetschlemma“.

Satz 5.2.12 (Einschließungskriterium): Seien $\{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}}$ zwei Folgen mit

$$\lim_{n \to \infty} a_n = a = \lim_{n \to \infty} b_n,$$

und $\{z_n\}_{n \in \mathbb{N}}$ eine weitere Folge mit $a_n \leq z_n \leq b_n \quad \forall \ n \in \mathbb{N}$, so gilt

$$\lim_{n \to \infty} z_n = a.$$

Beweis. Sei $\varepsilon > 0$ beliebig. Dann existieren $n_a, n_b \in \mathbb{N}$, so dass

$$\forall \ n > n_a : |a_n - a| < \varepsilon$$

und

$$\forall \ n > n_b : |b_n - b| < \varepsilon.$$

Wählen wir nun für n_0 den größeren der beiden Werte n_a und n_b, also $n_0 = \max\{n_a, n_b\}$, so folgt für alle $n > n_0$

$$-\varepsilon < -|a_n - a| \leq -(a - a_n) = a_n - a \leq z_n - a \leq b_n - a \leq |b_n - a| < \varepsilon,$$

also

$$|z_n - a| < \varepsilon.$$

Beispiel 5.2.13:

(a) Betrachten wir die Folge $\{a_n\}_{n \in \mathbb{N}}$ mit $a_n = \sqrt[3]{n^3 + 4^n}$, so folgt

$$4 \xrightarrow[n \to \infty]{\sim} \sqrt[4]{4^n} \leq \sqrt[3]{n^3 + 4^n} \leq \sqrt[4]{4^n + 4^n} = 4 \cdot \sqrt[4]{2} \xrightarrow[n \to \infty]{\sim} 4.$$

(b) Es gilt:

$$\frac{1}{2^n} \binom{n}{k} \to 0 \quad \text{für} \quad n \to \infty,$$

denn für $n > k$ ist

$$0 \leq \frac{1}{2^n} \binom{n}{k} = \frac{1}{2^n} \frac{n!}{k!(n-k)!} = \frac{1}{2^n} \cdot \frac{n \cdot (n-1) \cdot (n-2) \cdots (n-k+2) \cdot (n-k+1)}{k \text{ Terme}} \leq \frac{1}{2^n} \cdot \frac{n^n \cdot \underbrace{n \cdot n \cdot \cdots \cdot n}_{k \text{ Terme}}}{2^n} = \frac{n^k}{2^n} \xrightarrow[n \to \infty]{\sim} 0.$$

Definition 5.2.14: Wir nennen eine reelle Zahlenfolge $\{a_n\}_{n \in \mathbb{N}}$

(1) „nach oben beschränkt“, falls ein $M \in \mathbb{R}$ existiert, so dass $a_n \leq M \forall \ n \in \mathbb{N}$.

(2) „nach unten beschränkt“, falls ein $m \in \mathbb{R}$ existiert, so dass $a_n \geq m \forall \ n \in \mathbb{N}$.
(3) „beschränkt“, falls sie nach oben und nach unten beschränkt ist.

Beispiel 5.2.15:

(a) Die Folge \(\{a_n\}_{n \in \mathbb{N}}\) mit \(a_n := 2n - 1\) ist nach unten aber nicht nach oben beschränkt. Zum Beispiel ist nämlich
\[
2n - 1 \geq -2 \quad \forall n \in \mathbb{N},
\]
aber für jedes \(M \in \mathbb{R}\) existiert (da die natürlichen Zahlen nach oben unbeschränkt sind) ein \(n_0 \in \mathbb{N}\) mit
\[
n_0 > \frac{M + 1}{2},
\]
also ein Folgenglied \(a_{n_0}\) mit
\[
a_{n_0} = 2n_0 - 1 > M.
\]

(b) Sei \(\{b_n\}_{n \in \mathbb{N}}\) die Folge definiert durch
\[
b_n := \frac{2n - 3}{4n + 1}.
\]
 Dann gilt
\[
-1 \leq b_n \leq 1 \quad \forall n \in \mathbb{N},
\]
denn für \(n \in \mathbb{N}\) ist
\[
\frac{2n - 3}{4n + 1} = -\frac{(4n + 1) + (6n - 2)}{4n + 1} = -1 + \frac{6n - 2}{4n + 1} \geq -1
\]
und
\[
\frac{2n - 3}{4n + 1} = \frac{4n + 1 - (2n + 4)}{4n + 1} = 1 - \frac{2n + 4}{4n + 1} \leq 1.
\]
Also ist die Folge \(\{b_n\}_{n \in \mathbb{N}}\) beschränkt.

Satz 5.2.16: Konvergente Folgen sind beschränkt.

Beweis. Sei \(\{a_n\}_{n \in \mathbb{N}}\) eine konvergente Folge mit \(a_n \to a\) für \(n \to \infty\). Dann gibt es nach Definition zu \(\varepsilon = 1\) ein \(n_0 \in \mathbb{N}\) so dass \(|a_n - a| < 1\) für alle \(n > n_0\) und nach der inversen Dreiecksungleichung
\[
|a_n| - |a| \leq ||a_n| - |a|| \leq |a_n - a| < 1 \equiv -1 - |a| < a_n < 1 + |a| \quad \forall n \geq n_0.
\]
Sind nun \(a_M\) der größte und \(a_m\) der kleinste Wert aus der Menge
\[
\{a_1, a_2, \ldots, a_{n_0}, a_{n_0+1}, 1 + |a|, -1 - |a|\}
\]
gilt offensichtlich
\[
\forall n \in \mathbb{N} : a_m < a_n < a_M.
\]

\[\boxed{\textbf{Merk}: \text{Uneigentlich konvergente Folgen sind per Definition unbeschränkt und somit divergent.}}\]
Definition 5.2.17: Wir nennen eine reelle Zahlenfolge \(\{a_n\}_{n \in \mathbb{N}} \)

(1) „monoton steigend“, falls \(a_n \leq a_{n+1} \ \forall \ n \in \mathbb{N} \).
(2) „streng monoton steigend“, falls \(a_n < a_{n+1} \ \forall \ n \in \mathbb{N} \).
(3) „monoton fallend“, falls \(a_n \geq a_{n+1} \ \forall \ n \in \mathbb{N} \).
(4) „streng monoton fallend“, falls \(a_n > a_{n+1} \ \forall \ n \in \mathbb{N} \).

Satz 5.2.18 (Konvergenzkriterium von Bolzano-Weierstraß): Sei \(\{a_n\}_{n \in \mathbb{N}} \) monoton (wachsend oder fallend) und beschränkt. Dann ist \(\{a_n\}_{n \in \mathbb{N}} \) konvergent.

Beweis. Der Beweis übersteigt unsere Möglichkeiten und wir überlassen ihn daher der Mathematik-Vorlesung im ersten Semester.

Beispiel 5.2.19:

(a) Wie man mit einigem Aufwand nachrechnet ist \(\{a_n\}_{n \in \mathbb{N}} \) mit

\[
a_n := \left(1 + \frac{1}{n}\right)^n
\]

beschränkt und monoton (siehe Knobelaufgabe, Übung 7), also konvergent. Ihr Grenzwert ist die „Euler’sche Zahl“

\[e = 2,71828182846 \ldots . \]

(b) Wir untersuchen die Folge \(\{b_n\}_{n \in \mathbb{N}} \) mit

\[b_1 := 4 \quad \text{und} \quad b_{n+1} := \frac{b_n}{2}. \]

Berechnen wir die ersten Glieder

\[b_1 = 4 \implies b_2 = 2 \implies b_3 = 1 \implies b_4 = \frac{1}{2} \implies \ldots \]

fällt auf das die Folgenglieder kleiner werden, aber stets positiv bleiben. Daher vermuten wir, dass \(\{b_n\}_{n \in \mathbb{N}} \) monoton fallend und

\[\forall \ n \in \mathbb{N} : 0 \leq b_n \leq 4 \]

ist. Für den Beweis nutzen wir die vollständige Induktion:

Induktionsanfang \(n = 1 \):

\[0 \leq b_1 = 4 \leq 4 \quad \text{stimmt!} \]

Induktionsannahme: Gelte \(0 \leq b_n \leq 4 \) für ein beliebiges \(n \in \mathbb{N} \).
Induktionschluss \(n \to n + 1 \): Es ist

\[b_{n+1} = \frac{a_n}{2} \leq \frac{4}{2} = 2 \leq 4, \]

\[b_{n+1} = \frac{b_n}{2} \geq \frac{0}{2} = 0, \]

und daher \(0 \leq b_{n+1} \leq 4 \).
Also ist \(\{b_n\}_{n \in \mathbb{N}} \) beschränkt. Zudem ist für \(n \in \mathbb{N} \)
\[
\frac{a_{n+1}}{a_n} = \frac{a_n}{2} \cdot \frac{1}{a_n} = \frac{1}{2} < 1 \iff a_{n+1} < a_n,
\]
und somit \(\{a_n\}_{n \in \mathbb{N}} \) eine monotone und (da sie zusätzlich beschränkt ist) auch konvergente Folge. Setzen wir
\[
b := \lim_{n \to \infty} b_n,
\]
so konvergiert auch \(\{b_{n+1}\}_{n \in \mathbb{N}} \) gegen \(b \) und wir erhalten
\[
b_{n+1} = \frac{b_n}{2} \quad n \to \infty \Rightarrow b = \frac{b}{2} \iff b = 0.
\]

5.3 Stetige Funktionen

Definition 5.3.1: Sei \(f : D \to W \) eine Funktion und \(a \in D \). Dann heißt \(f \) „stetig in \(a \)“, falls für jede Folge \(\{a_n\}_{n \in \mathbb{N}} \subseteq D \) mit \(a_n \to a \) für \(n \to \infty \) gilt:
\[
f(a_n) \to f(a) \quad \text{für} \quad n \to \infty.
\]
f heißt stetig, falls \(f \) in jedem Punkt \(a \in D \) stetig ist.

Anschaulich gesprochen bedeutet Stetigkeit einer Funktion \(f \), dass hinreichend kleine Änderungen des Argumentes zu beliebig kleinen Änderungen des Funktionswertes führen; eine stetige Funktion macht also keine „Sprünge“. Daher sind stetige Funktionen von besonderem Interesse für die Naturwissenschaften; stellen Sie sich einfach einmal vor die Funktion, die den Zustand ihrer niegel-nagel neuen Schuhe, wäre unstetig. Dann könnten Sie 100 Schritte in den Schuhen machen ohne auch nur das kleinste Anzeichen von Abnutzung festzustellen, aber beim 101 Schritt könnten ihre Schuhe zu Staub zerfallen.

Beispiel 5.3.2:

(a) Offensichtlich ist jede konstante Funktion \(f : \mathbb{R} \to \mathbb{R}, \ x \mapsto c \ (c \in \mathbb{R}) \) stetig. Ist nämlich \(a \in \mathbb{R} \) und \(\{a_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R} \) eine Folge mit \(a_n \to a \) für \(n \to \infty \), so folgt
\[
\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} c = c = f(a).
\]

(b) Die Funktion
\[
f : \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2
\]
ist stetig, denn ist \(a \in \mathbb{R} \) und \(\{a_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R} \) eine Folge mit \(a_n \to a \) für \(n \to \infty \), so folgt aus den Rechenregeln für konvergente Folgen
\[
\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n^2 = a^2 = f(a).
\]

(c) Sei \(f : \mathbb{R} \to \{0,1\} \) die sogenannte „Heavyside-Funktion“ gegeben durch
\[
f(x) = \begin{cases}
0 & \text{für } x < 0, \\
1 & \text{für } x \geq 0.
\end{cases}
\]
Dann ist H im Punkt $0 \in \mathbb{R}$ unstetig, da zwar
\[-\frac{1}{n} \rightarrow 0 \text{ für } n \rightarrow \infty, \]
aber
\[\lim_{n \rightarrow \infty} f \left(-\frac{1}{n} \right) = \lim_{n \rightarrow \infty} 0 = 0 \neq 1 = f(0). \]

Satz 5.3.3: Sind $f : D \rightarrow \mathbb{R}$ und $g : D \rightarrow \mathbb{R}$ stetige Funktionen, so sind auch

\[f + g : D \rightarrow \mathbb{R}, \quad f \cdot g : D \rightarrow \mathbb{R} \quad \text{und} \quad \frac{f}{g} : D \rightarrow \mathbb{R} \]

stetig, wobei wir im letzten Punkt $g(x) \neq 0$ für alle $x \in D$ voraussetzen müssen.

Beweis. Sei $a \in D$ und $\{a_n\}_{n \in \mathbb{N}} \subseteq D$ mit $a_n \rightarrow a$ für $n \rightarrow \infty$. Dann folgt mit den Rechenregeln für konvergente Zahlenfolgen
\[
\lim_{n \rightarrow \infty} (f + g)(a_n) = \lim_{n \rightarrow \infty} f(a_n) + g(a_n) = f(a) + g(a) = (f + g)(a)
\]
und
\[
\lim_{n \rightarrow \infty} (f \cdot g)(a_n) = \lim_{n \rightarrow \infty} f(a_n) \cdot g(a_n) = f(a) \cdot g(a) = (f \cdot g)(a).
\]

Ist zusätzlich $g(x) \neq 0$ für alle $x \in D$, so ist
\[
\lim_{n \rightarrow \infty} \left(\frac{f}{g} \right)(a_n) = \lim_{n \rightarrow \infty} \frac{f(a_n)}{g(a_n)} = \frac{f(a)}{g(a)} = \left(\frac{f}{g} \right)(a).\]

Satz 5.3.4: Sind $f : X \rightarrow \mathbb{R}$ und $g : Y \rightarrow \mathbb{R}$ stetige Funktionen mit
\[g(X) := \{ g(x) \mid x \in X \} \subseteq Y, \]
so ist auch die Komposition $f \circ g : X \rightarrow \mathbb{R}$ stetig.

5.4 Grenzwerte von Funktionen

Die Definition der Stetigkeit motiviert eine Erweiterung des Grenzwertbegriffs für Folgen auf Funktionen. Wie sich schon im nächsten Abschnitt herausstellen wird

Definition 5.4.1: Sei $f : D \rightarrow W$ eine Funktion und $a \in D$ oder $a_n \rightarrow a$ für eine Folge $\{a_n\}_{n \in \mathbb{N}} \subseteq D$ mit $a_n \neq a$ für alle $n \in \mathbb{N}$. Dann heißt $b \in \mathbb{R}$ „Grenzwert der Funktion f bei a“ und wir schreiben
\[\lim_{x \rightarrow a} f(x) = b, \]
falls für jede Folge $\{x_n\}_{n \in \mathbb{N}}$ mit $x_n \rightarrow a$ für $n \rightarrow \infty$ gilt:
\[f(x_n) \rightarrow b \text{ für } n \rightarrow \infty. \]

Bemerkung 5.4.2:

- Wir verwenden die Schreibweise
\[\lim_{x \rightarrow a} f(x) = b \]
außerdem für $b = \pm \infty$, wenn $f(a_n) \rightarrow \pm \infty$ im Sinne der uneigentlichen Konvergenz aus 5.2.6.
• Beschränken wir uns in obiger Definition auf Folgen \(\{a_n\}_{n \in \mathbb{N}} \) mit \(a_n > a \) bzw. \(a_n < a \), so nennen wir \(b \) den „rechtssseitigen“ bzw. „linksseitigen“ Grenzwert und schreiben
\[
\lim_{x \searrow a} f(x) = b \quad \text{bzw.} \quad \lim_{x \nearrow a} f(x) = b.
\]

Dann existiert der Grenzwert der Funktion \(f \) bei \(a \) genau dann wenn der linksseitige und der rechtsseitige Grenzwert existieren und übereinstimmen
\[
\lim_{x \searrow a} f(x) = b = \lim_{x \nearrow a} f(x).
\]

• Mit dem Grenzwertbegriff für Funktionen können wir eine alternative Charakterisierung der Stetigkeit angeben: \(f : D \rightarrow \mathbb{R} \) ist genau dann stetig in \(a \in D \), wenn
\[
\lim_{x \to a} f(x) = f(a)
\]

ist.

Beispiel 5.4.3:

(a) Wir berechnen den Grenzwert der Funktion
\[
f : \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R}, \quad x \mapsto \frac{x^2 - 1}{x - 1}
\]
an der Stelle \(x = 1 \). Ist \(\{a_n\}_{n \in \mathbb{N}} \) eine Folge in \(\mathbb{R} \setminus \{1\} \) mit \(a_n \rightarrow 1 \) für \(n \to \infty \). Dann gilt:
\[
\lim_{n \to \infty} \frac{a_n^2 - 1}{a_n - 1} = \lim_{n \to \infty} \frac{(a_n - 1)(a_n + 1)}{a_n - 1} = \lim_{n \to \infty} a_n + 1 = 1 + 1 = 2.
\]

(b) Betrachten wir
\[
f : \mathbb{R} \setminus \{-1, 1\} \rightarrow \mathbb{R}, \quad x \mapsto \frac{x^2 + 2x - 3}{x^2 - 1},
\]
so ist
\[
f(x) = \frac{x^2 + 2x - 3}{x^2 - 1} = \frac{x^2 - 1 + 2x - 2}{x^2 - 1} = \frac{x^2 - 1}{x^2 - 1} + 2 \cdot \frac{x + 1}{x^2 - 1} = 1 + \frac{2}{x - 1}
\]
und somit
\[
\lim_{x \nearrow 1} f(x) = \lim_{x \nearrow 1} 1 + \frac{2}{x - 1} = 0, \quad \lim_{x \searrow 1} f(x) = \lim_{x \searrow 1} 1 + \frac{2}{x - 1} = -\infty,
\]
\[
\lim_{x \searrow -1} f(x) = \lim_{x \searrow -1} 1 + \frac{2}{x - 1} = 0, \quad \lim_{x \nearrow -1} f(x) = \lim_{x \nearrow -1} 1 + \frac{2}{x - 1} = \infty.
\]
Kapitel 6

Differentialrechnung
6.1 Die Ableitung einer Funktion

Die zugrundeliegende Idee der Differentialrechnung ist eine möglichst gute „lineare Approximation“ einer gegebenen Funktion \(f : [a, b] \rightarrow \mathbb{R} \). Das bedeutet wir suchen eine lineare Funktion

\[
g : [a, b] \rightarrow \mathbb{R}, \; x \mapsto m \cdot x + b,
\]

den Graph \(\Gamma_g \) sich in einem Punkt \((\xi, f(\xi)) \) möglichst gut an den Graphen von \(f \) „anschmiegt“. Diese Funktion \(g \) nennen wir die „Tangente“ der Funktion \(f \) an der Stelle \(\xi \).

Da wir mit \((\xi, f(\xi)) \) bereits einen Punkt der Tangente gegeben haben, benötigen wir zur Festlegung der Funktionsgleichung nur noch die Steigung der Tangente. Anschaulich gesprochen erhalten wir sie, indem wir die Steigung \(m \) der Geraden durch die Punkte \((x, f(\xi)) \) und \((\xi + h, f(\xi + h)) \) bestimmen

\[
m = \frac{\Delta y}{\Delta x} = \frac{f(\xi + h) - f(\xi)}{\xi + h - \xi} = \frac{f(\xi + h) - f(\xi)}{h}
\]

und anschließend den Abstand \(h \) „gegen null laufen lassen“.

Abb. 6.1: In der Differentialrechnung versuchen wir eine gegebene Funktion in der Umgebung eines Punktes \((\xi, f(\xi)) \) möglichst exakt durch eine lineare Funktion zu approximieren. Dazu betrachten wir die Gerade durch die Punkte \((x, f(\xi)) \) und \((\xi + h, f(\xi + h)) \) und untersuchen, was beim Grenzübergang \(h \rightarrow 0 \) passiert.

Mathematisch exakt formuliert müssen wir den Grenzwert

\[
\lim_{h \to 0} \frac{f(\xi + h) - f(\xi)}{h}
\]

bestimmen.

Definition 6.1.1: Eine Funktion \(f : (a, b) \rightarrow \mathbb{R} \) heißt differenzierbar bei \(\xi \in (a, b) \), falls der Grenzwert

\[
f'(\xi) := \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi} = \lim_{h \to 0} \frac{f(\xi + h) - f(\xi)}{h}
\]

existiert. In diesem Fall heißt \(f'(\xi) \) die erste Ableitung der Funktion \(f \) in \(\xi \) und entspricht der Steigung der Tangente an die Funktion \(f \) im Punkt \(\xi \). Ist \(f \) in allen \(\xi \in (a, b) \) differenzierbar, so nennen wir \(f \) differenzierbar und die Funktion

\[
f' : (a, b) \rightarrow \mathbb{R}, \; x \mapsto f'(x)
\]

die Ableitung von \(f \).
Häufig wird für die Ableitung auch die von Gottfried Wilhelm Leibniz (1646-1716) stammende Schreibweise
\[
\frac{d}{dx} f(\xi) := f'(\xi)
\]
benutzt. Dies ist insbesondere dann zweckmäßig, wenn f von mehreren Variablen abhängt, weil dann klargestellt ist, nach welcher Variablen abgeleitet wird.

Beispiel 6.1.2:

1. Jede konstante Funktion ist differenzierbar mit Ableitung \(f' = 0 \). Ist nämlich

\[
f : (a,b) \rightarrow \mathbb{R}, \ x \mapsto c
\]

für ein festes \(c \in \mathbb{R} \), so folgt für beliebige \(\xi \in (a,b) \)

\[
\lim_{h \to 0} \frac{f(\xi + h) - f(\xi)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0.
\]

2. Auch die Funktion

\[
f : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto x
\]

ist differenzierbar, denn

\[
\lim_{h \to 0} \frac{f(\xi + h) - f(\xi)}{h} = \lim_{h \to 0} \frac{\xi + h - \xi}{h} = \lim_{h \to 0} \frac{h}{h} = 1
\]

und somit ist ihre Ableitungsfunktion gegeben durch

\[
f' : \mathbb{R} \rightarrow \mathbb{R}, \ x \mapsto 1.
\]

3. Die Betragsfunktion

\[
|\cdot| : (a,b) \rightarrow \mathbb{R}, \ x \mapsto |x|,
\]

dagegen ist in \(\xi = 0 \) nicht differenzierbar. Ist nämlich \((h_n)_{n \in \mathbb{N}} \subseteq (a,b) \) mit \(h_n > 0 \) für alle \(n \in \mathbb{N} \) und \(h_n \to 0 \), so gilt

\[
\lim_{h \to 0 \atop h > 0} \frac{f(h) - f(0)}{h} = \lim_{n \to \infty} \frac{|h_n|}{h_n} = \lim_{n \to \infty} \frac{h_n}{h_n} = \lim_{n \to \infty} 1 = 1.
\]

Betrachten wir dagegen Folgen \((h_n)_{n \in \mathbb{N}} \subseteq (a,b) \) mit \(h_n < 0 \) für alle \(n \in \mathbb{N} \) und \(h_n \to 0 \), so folgt

\[
\lim_{h \to 0 \atop h > 0} \frac{f(h) - f(0)}{h} = \lim_{n \to \infty} \frac{|h_n|}{h_n} = \lim_{n \to \infty} \frac{-h_n}{h_n} = \lim_{n \to \infty} -1 = -1.
\]

Zusammenge nommen haben wir also gezeigt, dass

\[
\lim_{n \to \infty} \frac{f(0 + h_n) - f(0)}{h_n}
\]

nicht für jede gegen null konvergente Folge gegen denselben Wert konvergiert und damit der Grenzwert des Differentialquotienten nicht existiert.

4. Die Wurzelfunktion

\[
\sqrt{\cdot} : (0, \infty) \rightarrow \mathbb{R}, \ x \mapsto \sqrt{x}
\]
ist differenzierbar. Für \(\xi \in (0, \infty) \) folgt nämlich

\[
\lim_{h \to 0} \frac{f(\xi + h) - f(\xi)}{h} = \lim_{h \to 0} \frac{\sqrt{\xi + h} - \sqrt{\xi}}{h} = \lim_{h \to 0} \frac{(\sqrt{\xi + h} - \sqrt{\xi})(\sqrt{\xi + h} + \sqrt{\xi})}{h(\sqrt{\xi + h} + \sqrt{\xi})} = \lim_{h \to 0} \frac{\xi + h - \xi}{h(\sqrt{\xi + h} + \sqrt{\xi})} = \lim_{h \to 0} \frac{1}{h(\sqrt{\xi + h} + \sqrt{\xi})} = \frac{1}{2\sqrt{\xi}}
\]

und somit

\[f'(\xi) = \frac{1}{2\sqrt{\xi}} \quad \forall \, \xi \in (0, \infty).\]

Wie das letzte Beispiel bereits andeutet, sind differenzierbare Funktionen anschaulich gesprochen „glatte“ Funktionen. Ihr Graph \(\Gamma_f \) besitzt keine „Ecken“.

Satz 6.1.3: Sei \(f : D \to \mathbb{R} \) eine in \(\xi \in D \) differenzierbare Funktion. Dann ist \(f \) in \(\xi \) stetig.

Beweis. Sei \(\{a_n\}_{n \in \mathbb{N}} \subseteq D \) eine Folge mit \(a_n \to \xi \) für \(n \to \infty \). Dann gilt:

\[
\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(a_n) - f(\xi) + f(\xi) = \lim_{n \to \infty} f(a_n) - f(\xi) - \lim_{n \to \infty} (a_n - \xi) + f(\xi) = \lim_{n \to \infty} \frac{f(a_n) - f(\xi)}{a_n - \xi} \cdot (a_n - \xi) + f(\xi) = f'(\xi) \cdot 0 + f(\xi) = f(\xi),
\]

also

\[f(a_n) \to f(\xi) \text{ für } n \to \infty.\]

Umgekehrt ist eine stetige Funktion nicht zwangsläufig differenzierbar, wie das obige Beispiel der Betragsfunktion deutlich zeigt. Allerdings vererbt sich wie die Stetigkeit auch die Differenzierbarkeit auf Verknüpfungen von Funktionen, für die wir nun die aus der Schule bekannten Ableitungsregeln zusammenstellen wollen.

Satz 6.1.4: Seien \(f, g : (a, b) \to \mathbb{R} \) differenzierbare Funktionen und \(\lambda \in \mathbb{R} \). Dann sind auch die Funktionen \(f + g, \lambda \cdot f, f \cdot g \) und für \(g \neq 0 \) auch \(f/g \) differenzierbar mit
* \((f + g)'(x) = f'(x) + g'(x),\) \((\text{Summenregel})\)

* \((\lambda \cdot f)'(x) = \lambda \cdot f'(x),\) \((\text{Faktorregel})\)

* \((f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x),\) \((\text{Produktregel})\)

* \(\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2},\) \((\text{Quotientenregel})\)

für \(x \in \mathbb{R}.\)

Beweis. Wir beschränken uns auf den Beweis der Produktregel; die anderen folgen dann auf ähnliche Weise. Sei also \(\xi \in (a, b)\) und \(h > 0\) so klein, dass \(\xi + h \in (a, b).\) Dann folgt

\[
(f \cdot g)'(\xi) = \lim_{h \to 0} \frac{(f \cdot g)(\xi + h) - (f \cdot g)(\xi)}{h} \\
= \lim_{h \to 0} \frac{f(\xi + h) \cdot g(\xi + h) - f(\xi) \cdot g(\xi)}{h} \\
= \lim_{h \to 0} \frac{f(\xi + h) \cdot g(\xi + h) - f(\xi) \cdot g(\xi) + f(\xi) \cdot g(\xi + h) - f(\xi) \cdot g(\xi)}{h} \\
= \lim_{h \to 0} \frac{(f(\xi + h) - f(\xi)) \cdot g(\xi + h) + f(\xi) \cdot (g(\xi + h) - g(\xi))}{h} \\
= \lim_{h \to 0} \left[g(\xi + h) \frac{f(\xi + h) - f(\xi)}{h} + f(\xi) \cdot \frac{g(\xi + h) - g(\xi)}{h} \right] \\
= g(\xi) \cdot f'(\xi) + f(\xi) g'(\xi).
\]

\[\blacksquare\]

Beispiel 6.1.5:

(a) Für \(n \in \mathbb{N}\) ist die Funktion

\[
f : \mathbb{R} \rightarrow \mathbb{R} \quad \quad x \mapsto x^n
\]

differenzierbar mit

\[
f'(x) = n \cdot x^{n-1} \quad \forall x \in \mathbb{R}.
\]

(b) Sei \(f : D \rightarrow \mathbb{R}\) eine ganzrationale Funktion, also

\[
f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = \sum_{k=0}^{n} a_k x^k,
\]

mit \(a_i \in \mathbb{R}\) für \(i = 1, 2, \ldots, n.\) Dann ist \(f\) nach obigem Satz und Beispiel (a) differenzierbar mit

\[
f'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \ldots + a_1
\]

Die mit Abstand wichtigste Ableitungsregel ist die sogenannte Kettenregel.

Satz 6.1.6 (Kettenregel): Sind \(f : (a, b) \rightarrow \mathbb{R}\) und \(g : (c, d) \rightarrow (a, b)\) differenzierbar. Dann ist auch die Komposition \(f \circ g\) differenzierbar mit Ableitung

\[
(f \circ g)'(x) = f'(g(x)) \cdot g'(x) \quad \forall x \in (c, d).
\]
Beweis. Da \(g \) differenzierbar ist und daher insbesondere stetig, folgt für \(\xi \in (c,d) \)

\[
g(\xi + h) - g(\xi) \rightarrow 0 \quad \text{für} \quad h \rightarrow 0
\]

und somit

\[
\begin{aligned}
\lim_{h \to 0} \frac{(f \circ g)(\xi + h) - (f \circ g)(\xi)}{h} &= \lim_{h \to 0} \frac{f(g(\xi + h)) - f(g(\xi))}{h} \\
&= \lim_{h \to 0} \frac{f(g(\xi + h)) - f(g(\xi)) \cdot g(\xi + h) - g(\xi)}{h} \\
&= \lim_{h \to 0} \frac{f(g(\xi + h)) - f(g(\xi))}{g(\xi + h) - g(\xi)} \cdot \lim_{h \to 0} \frac{g(\xi + h) - g(\xi)}{h} \\
&= f'(g(\xi)) \cdot g'(\xi).
\end{aligned}
\]

Bevor wir uns nun einer wichtigen Anwendung der Kettenregel, der Ableitung der Umkehrfunktion, widmen, stellen wir kurz die Ableitungen einiger elementarer Funktionen in einer Tabelle zusammen.

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(x^n)</th>
<th>(\sqrt{x})</th>
<th>(\exp(x))</th>
<th>(\sin(x))</th>
<th>(\cos(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>(nx^{n-1})</td>
<td>(\frac{1}{2\sqrt{x}})</td>
<td>(\exp(x))</td>
<td>(\cos(x))</td>
<td>(-\sin(x))</td>
</tr>
</tbody>
</table>

Satz 6.1.7 (Ableitung der Umkehrfunktion): Sei \(f : (a,b) \rightarrow (c,d) \) bijektiv und differenzierbar. Ist \(\xi \in (a,b) \) mit \(\eta = f'(\xi) \neq 0 \), so ist die Umkehrfunktion \(f^{-1} \) differenzierbar in \(\eta \) mit der Ableitung

\[
f^{-1}(\eta) = \frac{1}{f'(\xi)} = \frac{1}{f'(f^{-1}(\eta))}.
\]

Beweis. Für \(y \in (c,d) \) ist:

\[
\begin{aligned}
\lim_{y \to \eta} \frac{f^{-1}(y) - f^{-1}(\eta)}{y - \eta} &= \lim_{y \to \eta} \frac{f^{-1}(y) - \xi}{f(f^{-1}(y)) - f(\xi)} \\
&= \lim_{y \to \eta} \frac{1}{y - \eta} \frac{f(\xi) - f^{-1}(\eta)}{f^{-1}(y) - f^{-1}(\eta)} \\
&= \frac{1}{f'(\xi)}
\end{aligned}
\]

Beispiel 6.1.8:

(a) Der Logarithmus

\[
\log : (0, \infty) \rightarrow \mathbb{R}, \quad x \mapsto \log(x)
\]

ist differenzierbar mit Ableitung

\[
\log'(x) = \frac{1}{\exp'(\log(x))} = \frac{1}{\exp(\log(x))} = \frac{1}{x}.
\]

(b) Für \(a > 0 \) ist die Exponentialfunktion

\[
\exp_a : \mathbb{R} \rightarrow (0, \infty), \quad x \mapsto a^x
\]

88
differenzierbar, denn für $x \in \mathbb{R}$ ist
\[a^x = \exp(\log(a^x)) = \exp(x \log(a)), \]
also
\[(a^x)' = \exp'(x \log(a)) \cdot (x \log(a))' = \exp(x \log(a)) \cdot \log(a) = a^x \cdot \log(a) \quad \forall x \in \mathbb{R}. \]

(c) Die n-te Wurzel
\[f : (0, \infty) \rightarrow \mathbb{R}, \quad x \mapsto n \sqrt[n]{x} \]
ist differenzierbar mit Ableitung
\[f'(x) = \frac{1}{n} \cdot \frac{1}{\sqrt[n]{x}^{n-1}} \quad \forall x \in (0, \infty). \]

Eine zentrale Anwendung findet die Differentialrechnung in der Berechnung bisher unbestimmbarer Grenzwerte über die Regel von l'Hospital.

Satz 6.1.9 (Regel von l'Hospital): Sind $f, g : (a,b) \rightarrow \mathbb{R}$ differenzierbar mit $-\infty \leq a < b \leq \infty$ und $g' \neq 0$. Existiert der Grenzwert
\[\lim_{x \to a} \frac{f'(x)}{g'(x)}, \]
zumindest als uneigentlicher Grenzwert, so gilt für
\[(i) \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad oder \quad (ii) \lim_{x \to a} g(x) = \infty, \]
dass
\[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}. \]

Beweis. Der Beweis erfordert tiefere Einblicke in die Differentialrechnung und wir überlassen ihn daher der Mathematik Vorlesung im ersten Semester.

Die Regel von l'Hospital gilt auch wenn wir die Grenzwerte durch die einseitigen Grenzwerte $x \searrow a$ und $x \nearrow a$ ersetzen.
Beispiel 6.1.10:

(a) Es ist:
\[
\lim_{t \to 0} t \cdot \log(t) = \lim_{t \to 0} \log(t) = \lim_{t \to 0} \frac{t}{t-1} = \lim_{t \to 0} t^{-1} = \lim_{t \to 0} t - 1 = 0.
\]

(b) Die Regel von l’Hospital kann auch mehrfach angewendet werden:
\[
\lim_{x \to 0} \frac{x - \sin(x)}{x \cdot \sin(x)} = \lim_{x \to 0} \frac{1 - \cos(x)}{1 \cdot \sin(x) + x \cdot \cos(x)} = \lim_{x \to 0} \frac{\sin(x)}{\cos(x) + 1 \cdot \cos(x) - x \cdot \sin(x)} = 0,
\]
\[
\lim_{x \to 0} x^2 = \lim_{x \to 0} \exp(\log(x^2)) = \lim_{x \to 0} \exp(x \cdot \log(x)) = \exp(\lim_{x \to 0} x \cdot \log(x)) = \exp(0) = 1.
\]

(c) Aus der Stetigkeit der Exponentialfunktion und Beispiel (a) folgt:
\[
\lim_{x \to 0} x \cdot \log(x) = \lim_{x \to 0} t \cdot \log(t) = \lim_{t \to 0} t^{-1} = \lim_{t \to 0} t - 1 = 0.
\]

Definition 6.1.11: Sei \(f : D \to \mathbb{R} \) eine differenzierbare Funktion. Ist ihre Ableitung \(f' \) erneut differenzierbar, so heißt \(f'' := (f')' \), die „zweite Ableitung von \(f \). Allgemein definiert man die „\(k \)-te Ableitung von \(f \)“ durch
\[
f^{(k+1)} := \frac{d}{dx} f^{(k)}.
\]

Falls \(f \) \(k \)-mal differenzierbar ist, so sind nach Satz 6.1.3 die Ableitungen \(f, f^{(1)}, f^{(2)}, \ldots, f^{(k+1)} \) stetig. Falls auch noch \(f^{(k)} \) stetig ist, nennen wir \(f \) „\(k \)-mal stetig differenzierbar“.

6.2 Taylorentwicklung und lokale Extrema

Satz 6.2.1: Sei \(f : D \to \mathbb{R} \) eine \((n + 1) \)-mal stetig differenzierbar. Für \(a, x \in D \) existiert ein \(\delta = \delta(x, a) \) zwischen \(a \) und \(x \), so dass
\[
f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k + \frac{f^{(n+1)}(\delta)}{(n + 1)!} (x - a)^{n+1}.
\]

Man nennt \(a \) den Entwicklungspunkt und
\[
T_{f,n,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k
\]
das \(n \)-te Taylorpolynom von \(f \) in \(a \).

Beweis. Der Beweis ist sehr technisch, so dass wir ihn hier nicht bringen sondern auf die Mathematik-Vorlesung im ersten Semester verweisen.

In einer Umgebung des Entwicklungspunktes \(a \) können wir also den Wert der Funktion \(f(x) \) näherungsweise durch den Wert des Taylorpolynoms \(T_{f,n,a}(x) \) berechnen und weichen dabei um
\[
R_{f,n,a} := \frac{f^{(n+1)}(\delta)}{(n + 1)!} (x - a)^{n+1}
\]
vom exakten Wert ab. Je weiter wir uns dabei vom Entwicklungspunkt \(a \) entfernen, desto größer wird der Fehler den wir bei der Näherung machen.
Beispiel 6.2.2:

Gesucht ist eine Näherung für den Wert $\sqrt[4]{2}$. Dazu berechnen wir das Taylorpolynom zweiten Grades der Funktion

$$\begin{align*}
f & : (-1, \infty) \rightarrow \mathbb{R} \\
x & \mapsto \sqrt[4]{1 + x}
\end{align*}$$

am Entwicklungspunkt $a = 0$ und werten dieses an der Stelle $x = 1$ aus. Da

$$T_{f,2,0} = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} (x - 0)^k = f(0) + f'(0) \cdot x + \frac{1}{2} f''(0) \cdot x^2,$$

benötigen wir also die erste und die zweite Ableitung der Funktion f:

$$f(x) = \sqrt[4]{1 + x} \quad \implies \quad f(0) = \sqrt[4]{1} = 1,$$

$$f'(x) = \frac{1}{4} \left(\sqrt[4]{1 + x} \right)^3 \quad \implies \quad f'(0) = \frac{1}{4 \left(\sqrt[4]{1} \right)^3} = \frac{1}{4},$$

$$f''(x) = -\frac{3}{16} \left(\sqrt[4]{1 + x} \right)^7 \quad \implies \quad f''(0) = -\frac{3}{16 \left(\sqrt[4]{1} \right)^7} = -\frac{3}{16}.$$

Somit ist

$$T_{f,2,0} = f(0) + f'(0) \cdot x + \frac{1}{2} f''(0) \cdot x^2 = 1 + \frac{1}{4} x - \frac{3}{32} x^2,$$

also

$$\sqrt[4]{2} = \sqrt[4]{1 + 1} \approx 1 + \frac{1}{4} \cdot 1 - \frac{3}{32} \cdot (1)^2 = \frac{37}{32} = 1.15625.$$

Abb. 6.2: Taylorapproximation der Funktion $\sqrt[4]{1 + x}$ im Entwicklungspunkt $a = 0$; je weiter wir uns vom Entwicklungspunkt entfernen desto schlechter wird die Näherung, aber je höher wir die Ordnung des Taylorpolynoms wählen desto besser wird sie.

Nach Definition der Taylorformel gilt für den Fehler $|T_{f,2,0}(\xi) - f(\xi)|$, den wir dabei machen:

$$|T_{f,2,0}(1) - f(1)| = |R_{f,2,0}(1)| = \frac{f^{(3)}(\delta)}{3!} |1|^3, \quad \text{für } \delta \in (0, 1).$$
Da

\[f^{(3)}(x) = \frac{7}{1024 (\sqrt{1 + x})^3} \leq \frac{7}{1024}, \quad \text{für } x \in (0, 1), \]

folgt

\[|T_{f,2,0}(1) - f(1)| = \frac{f^{(3)}(\delta)}{3!} |1|^3 \leq \frac{1}{3!} \cdot \frac{7}{1024} = \frac{7}{1024} \approx 0,0068359375. \]

Der errechnete Wert 1,15625 weicht also um weniger als \(10^{-2}\) von \(\sqrt[4]{1 + x}\) ab, ist also bis auf die zweite Nachkommastelle exakt.

Definition 6.2.3: Sei \(f : D \rightarrow \mathbb{R}\) eine Funktion. Dann besitzt \(f\) bei \(\xi \in D\)

(a) ein „lokales Minimum“, falls es eine Umgebung \((\xi - \varepsilon, \xi + \varepsilon) \subseteq D\) gibt, so dass

\[f(x) \geq f(\xi) \quad \forall \, x \in (\xi - \varepsilon, \xi + \varepsilon). \]

(b) ein „lokales Maximum“, falls es eine Umgebung \((\xi - \varepsilon, \xi + \varepsilon) \subseteq D\) gibt, so dass

\[f(x) \leq f(\xi) \quad \forall \, x \in (\xi - \varepsilon, \xi + \varepsilon). \]

(c) ein „(globales) Minimum“, falls

\[f(x) \geq f(\xi) \quad \forall \, x \in D. \]

(d) ein „(globales) Maximum“, falls

\[f(x) \leq f(\xi) \quad \forall \, x \in D. \]

(e) ein „lokales Extremum“, falls die Funktion dort ein lokales Minimum oder ein lokales Maximum hat.

(f) ein „globales Extremum“, falls die Funktion dort ein globales Minimum oder ein globales Maximum hat.

Satz 6.2.4: Sei \(f : (a,b) \rightarrow \mathbb{R}\) differenzierbar. Hat \(f\) in \(\xi \in (a,b)\) ein lokales Extremum, so gilt \(f'(\xi) = 0\).

Beweis. Ohne Einschränkung habe \(f\) in \(\xi \in (a,b)\) ein lokales Minimum (andernfalls verwende statt \(f\), \(-f\)). Nach Definition gibt es dann eine Umgebung \((\xi - \varepsilon, \xi + \varepsilon) \subseteq (a,b)\) so dass

\[f(x) \geq f(\xi) \quad \forall \, x \in (\xi - \varepsilon, \xi + \varepsilon). \]

Sind dann \(\{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}} \subseteq (\xi - \varepsilon, \xi + \varepsilon)\) zwei Folgen mit \(a_n < \xi\) und \(b_n > \xi\) für alle \(n \in \mathbb{N}\) sowie

\[\lim_{n \to \infty} a_n = \xi = \lim_{n \to \infty} b_n, \]

so folgt einerseits

\[0 \geq \frac{f(a_n) - f(\xi)}{a_n - \xi} \rightarrow f'(\xi) \quad \Rightarrow \quad f'(\xi) \leq 0 \]

und andererseits

\[0 \leq \frac{f(a_n) - f(\xi)}{a_n - \xi} \rightarrow f'(\xi) \quad \Rightarrow \quad f'(\xi) \geq 0, \]

also \(f'(\xi) = 0\).
Satz 6.2.5: Sei \(f : (a,b) \rightarrow \mathbb{R} \) eine differenzierbare Funktion. Dann ist \(f \) auf \((a,b)\)

(a) streng monoton wachsend, falls \(f'(x) > 0 \) für alle \(x \in (a,b) \).

(b) monoton wachsend, falls \(f'(x) \geq 0 \) für alle \(x \in (a,b) \).

(c) streng monoton fallend, falls \(f'(x) < 0 \) für alle \(x \in (a,b) \).

(d) monoton fallend, falls \(f'(x) \leq 0 \) für alle \(x \in (a,b) \).

Daraus erhalten wir sofort ein hinreichendes Kriterium für Extrema.

Satz 6.2.6: Sei \(f : (a,b) \rightarrow \mathbb{R} \) differenzierbar und \(f' (\xi) = 0 \) für ein \(\xi \in (a,b) \). Gilt dann \(f' \leq 0 \) auf \((a,\xi)\) und \(f' \geq 0 \) auf \((\xi,b)\), so hat \(f \) bei \(\xi \) ein lokales Minimum. Ist dagegen \(f' \geq 0 \) auf \((a,\xi)\) und \(f' \leq 0 \) auf \((\xi,b)\), so hat \(f \) bei \(\xi \) ein lokales Maximum.

Beispiel 6.2.7: noch zu machen...

Ist eine Funktion \(f \) sogar mehr als einmal differenzierbar, kann man auch das folgende hinreichende Kriterium verwenden.

Satz 6.2.8: Sei \(f : (a,b) \rightarrow \mathbb{R} \) \(n \)-mal stetig differenzierbar und

\[
f'(\xi) = f''(\xi) = \ldots = f^{n-1}(\xi) = 0,
\]

aber \(f^n(\xi) \neq 0 \) für \(\xi \in (a,b) \). Ist \(n \) ungerade, so ist \(\xi \) keine Extremstelle von \(f \). Ist \(n \) gerade, so hat \(f \) bei \(\xi \) ein lokales Maximum, falls \(f^n(\xi) < 0 \) und ein lokales Minimum, falls \(f^n(a) > 0 \).

Beispiel 6.2.9: Gesucht werden die Extrema der Funktion

\[
f : \mathbb{R} \rightarrow \mathbb{R}, \quad x \mapsto (x-3)^2(x+1)^2.
\]

Da per Definition jedes globale Extremum auch ein lokales Extremum ist, suchen wir zunächst die lokalen Extremstellen der Funktion \(f \). Als Produkt ganzzahliger Funktionen ist \(f \) differenzierbar mit Ableitung (Produktregel)

\[
f'(x) = 2 \cdot (x-3)(x+1)^2 + (x-3)^2 \cdot 2(x+1)
= 2(x-3)(x+1)(x+1+x-3)
= 4(x-3)(x+1)(x-1) = 4(x-3)(x^2-1) = 4x^3-12x^2-4x+12
\]

Die Ableitung ist also selbst wieder eine ganzz rationale Funktion und somit \(f \) sogar zweimal differenzierbar. Für die zweite Ableitung erhalten wir

\[
f''(x) = 12x^2 - 24x - 4.
\]

Setzen wir die Argumentation so fort, folgt dass \(f \) viermal differenzierbar ist und die Ableitungen durch

\[
f'(x) = 4(x-3)(x+1)(x-1)
\]

93
\[f''(x) = 4(3x^2 - 6x - 1) \]
\[f^{(3)}(x) = 24(x - 1) \]
\[f^{(4)}(x) = 24 \]

gegeben sind. Nach Satz 6.2.4 muss jede lokale Extremstelle \(\xi \) die Bedingung \(f'(\xi) = 0 \) erfüllen.
Suchen wir also lokale Extrema genügt es die Nullstellen der ersten Ableitung zu untersuchen.
Wegen
\[f'(x) = 0 \iff 4(x - 3)(x + 1)(x - 1) = 0 \iff x = 3 \vee x = -1 \vee x = 1 \]
sind also \(\xi = -1 \), \(\xi = 1 \) und \(\xi = 3 \) unsere einzigen Kandidaten. Nun folgt mit Satz 6.2.8
\[
\begin{align*}
\xi = -1 : & \quad f'(\xi) = 0 \land f''(\xi) > 0 \implies f \text{ hat bei } \xi = -1 \text{ ein lokales Minimum.} \\
\xi = 1 : & \quad f'(\xi) = 0 \land f''(\xi) < 0 \implies f \text{ hat bei } \xi = 1 \text{ ein lokales Maximum.} \\
\xi = 3 : & \quad f'(\xi) = 0 \land f''(\xi) > 0 \implies f \text{ hat bei } \xi = 3 \text{ ein lokales Minimum.}
\end{align*}
\]
Ferner ist
\[
\lim_{x \to -\infty} f(x) = \infty \quad \text{und} \quad \lim_{x \to -\infty} f(x) = \infty
\]
und somit \(f \) nach oben unbeschränkt. Daher existiert kein globales Maximum, aber ein globales Minimum, das nach unserer anfänglichen Bemerkung dem kleineren der beiden lokalen Minima entspricht. Wegen \(f(-1) = f(3) = 0 \) ist das globale Minimum der Funktion \(f \) also null.

Definition 6.2.10: Sei \(f : (a, b) \to \mathbb{R} \) differenzierbar und \(\xi \in (a, b) \). Besitzt \(f \) bei \(x_0 \) kein lokales Extremum, obwohl \(f'(\xi) = 0 \) ist, so nennen wir \((\xi, f(\xi)) \in \Gamma_f\) einen „Sattelpunkt“ von \(f \).

Beispiel 6.2.11: Die Funktion
\[
\begin{align*}
f : \mathbb{R} & \to \mathbb{R} \\
x & \mapsto -\frac{2}{5}x^3 + 4x^2 - 4x + \frac{1}{5}
\end{align*}
\]
hat nach Satz ?? bei \(x = 2 \) einen Sattelpunkt, da
\[
\begin{align*}
f'(x) &= -2x^2 + 8x - 4 \\
f'(2) &= 0 \\
f''(x) &= -4x + 8 \\
f''(2) &= 0 \\
f^{(3)}(x) &= -4 \\
f^{(3)}(2) &= -4 \neq 0.
\end{align*}
\]
Vorgehensweise zur Bestimmung von lokalen und globalen Extrema:

1) Bestimme die Menge K_f der Punkte ξ mit $f'(\xi) = 0$ und die Menge N_f der Punkte an denen f nicht differenzierbar ist.

2) Überprüfe ob die Punkte in K_f eines der gegebenen hinreichenden Kriterien erfüllt und bestimme gegebenenfalls die Art des lokalen Extremums. Für die Punkte in N_f überprüfe ob die Definition für lokale Extrema erfüllt ist.

Satz 6.2.12: Seien $a,b \in \mathbb{R} \cup \{-\infty, \infty\}$ mit $a < b$ und $f : (a,b) \rightarrow \mathbb{R}$ stetig. Existieren die Grenzwerte

$$\alpha := \lim_{x \searrow a} f(x) \quad \text{und} \quad \beta := \lim_{x \nearrow b} f(x)$$

zumindest uneigentlich, so hat f ein globales Maximum bzw. ein lokales Minimum, falls

$$f(\xi) \geq \alpha \ \land \ f(\xi) \geq \beta \quad \text{bzw.} \quad f(\xi) \leq \alpha \ \land \ f(\xi) \leq \beta$$

4) Hat f ein globales Maximum bzw. Minimum, so ist dieses der größte bzw. kleinste Funktionswert der Punkte in K_f und N_f.

95
Kapitel 7

Integralrechnung
7.1 Die Fläche unter einer Funktion

Seien a und b zwei reelle Zahlen mit $a < b$ und $f : [a, b] \rightarrow \mathbb{R}$ eine stetige Funktion. Ziel dieses Kapitels ist die Berechnung der Fläche A zwischen dem Graphen dieser Funktion und der x-Achse, welche uns auf den von dem deutschen Mathematiker Bernhard Riemann (1862-1866) in seiner Habilitation eingeführten Integralbegriff führen wird.

Im einfachsten Fall können wir dabei eine konstante Funktion f mit $f(x) = c$ (c eine feste reelle Zahl) für alle $x \in [a, b]$ betrachten. Dann ist die Fläche zwischen der x-Achse und dem Graphen der Funktion f ein Rechteck, dessen Flächeninhalt bekannt und durch

$$A = c \cdot (b - a)$$

gegeben ist.

Abb. 7.1: Flächeninhalte für spezielle Funktionen - links: konstante Funktionen, rechts: stückweise konstante Funktionen oder auch Treppenfunktionen

Ausgehend von diesem Spezialfall wollen wir uns nun schrittweise an kompliziertere Fälle herantasten und betrachten als ersten Schritt eine auf $[a, b]$ stückweise konstante Funktion

$$f : [a, b] \rightarrow \mathbb{R}, \quad f(x) = \begin{cases}
 c_1 : \text{für } x \in [a, a_1) \\
 c_2 : \text{für } x \in [a_1, a_2) \\
 c_3 : \text{für } x \in [a_2, b]
\end{cases}$$

1Man beachte, dass auch $c < 0$ zugelassen ist und somit der Flächeninhalt A negativ sein kann.
Solche Funktionen nennt man wegen ihrer Form auch *Treppenfunktion*. Die Gesamtfläche unter dem Graphen erhält man nun ganz leicht indem man jeweils die Länge der Teilintervalle mit dem jeweiligen Funktionswert multipliziert:

\[A = c_1(a_1 - a) + c_2(a_2 - a_1) + c_3(a_3 - a_2). \]

Die Idee zur Berechnung des Flächeninhalts für allgemeine Funktionen \(f \) auf dem Intervall \([a, b]\) besteht nun darin, ihren Graphen durch geeignete Treppenfunktionen, also vereinfacht gesagt, geeignete Rechtecke zu überdecken bzw. auszuschöpfen. Bei Verfeinerung der Unterteilung wird diese Näherung gegen den Flächeninhalt unter dem Graphen von \(f \) konvergieren.

7.2 (Riemann-)Integrierbare Funktionen

Zur Approximation der Fläche unter einer Funktion \(f : [a, b] \to \mathbb{R} \), zerlegen wir das Intervall \([a, b]\) in \(n \) (\(n \in \mathbb{N} \)) gleich lange Teilintervalle

\[I_j := \left[a + \frac{j-1}{n}(b-a), a + \frac{j}{n}(b-a) \right], \quad j = 1, 2, \ldots, n \]

und bestimmen für jedes Teilintervall \(I_j \) das Supremum \(M_j \) sowie das Infimum \(m_j \)

\[M_j := \sup_{x \in I_j} f(x) := \sup \{ f(x) \mid x \in I_j \}, \quad m_j := \inf_{x \in I_j} f(x) := \inf \{ f(x) \mid x \in I_j \} \]

von \(f \) auf diesem Intervall. Konstruieren wir nun auf jedem Intervall \(I_j \) ein Rechteck mit der Höhe \(M_j \) bzw. \(m_j \), erhalten wir durch

\[O_n(f) := \frac{b-a}{n} \sum_{j=1}^{n} M_j \quad \text{und} \quad U_n(f) := \frac{b-a}{n} \sum_{j=1}^{n} m_j. \quad (7.1) \]

(die „Ober-“ und die „Untersumme“ der Funktion \(f \)) eine obere bzw. untere Schranke für den gesuchten Flächeninhalt.

Abb. 7.2: Approximation des Flächeninhalts - links: Obersumme, rechts: Untersumme

Bei hinreichend feiner Unterteilung sollten die Ober- und Untersumme einer Funktion mit der Fläche unter dem Graphen der Funktion \(f \) übereinstimmen, was uns zu folgender Definition führt.
Definition 7.2.1: Seien $-\infty < a < b < \infty$ und $f : [a,b] \to \mathbb{R}$ eine Funktion. Dann heißt f „integrierbar“, falls
\[
\lim_{n \to \infty} O_n(f) = \lim_{n \to \infty} U_n(f).
\]
In diesem Fall nennen wir den gemeinsamen Grenzwert von Ober- und Untersumme das „Integral von f in den Grenzen von a bis b“ und schreiben
\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} O_n(f) = \lim_{n \to \infty} U_n(f).
\]
Diese Definition des Integralbegriffs ist weder die genaueste noch die allgemeinste. Es gibt sehr viel allgemeinere Integralbegriffe, wie das „Lebesgue-Integral“ oder das „Riemann-Stieltjes-Integral“. Der hier präsentierte, sehr spezielle Integralbegriff ist eine spezielle Variante des Riemann-Integrals und wird aber für nahezu alle praktischen Zwecke ausreichen.

Die Schreibweise
\[
\int_a^b f(x) \, dx
\]

Bemerkung 7.2.2:

(a) Die Definition des (Riemann-)Integrals erlaubt auch negative Funktionen, also Funktionen $f : [a,b] \to \mathbb{R}$ mit $f(x) < 0$ für $x \in [a,b]$. Die Konsequenz ist, dass das Integral einen „orientierten“ Flächeninhalt liefert, also Flächen unterhalb der x-Achse negativ gezählt werden. Möchten wir also den Flächeninhalt zwischen dem Graphen einer Funktion mit wechselnden Vorzeichen und der x-Achse im Intervall $[a,b]$ bestimmen, so müssen wir
\[
A = \int_a^b |f(x)| \, dx
\]
berechnen.
(b) Man setzt
\[
\int_a^a f(x) \, dx = 0 \quad \text{und} \quad \int_a^b f(x) \, dx := -\int_b^a f(x) \, dx.
\]
Nach all diesen Vorbemerkungen ist es nun an der Zeit, ein Integral zu berechnen.

Beispiel 7.2.3: Gesucht ist die Fläche unter dem Graphen der Funktion
\[
f : [0,1] \to \mathbb{R}, \ x \mapsto x^3,
\]
das heißt (sofern es existiert) das Integral
\[
\int_0^1 x^3 \, dx.
\]
Dazu müssen wir nach Definition zunächst die Ober- und Untersumme der Funktion f berechnen und auf Konvergenz untersuchen. Für $n \in \mathbb{N}$ zerlegen wir das Intervall $[0,1]$ in n gleich große Intervalle
\[
I_j = \left[\frac{j-1}{n}, \frac{j}{n} \right], \quad j = 1, 2, \ldots, n.
\]
Da

\[f(x) = x^3 > x^2 \cdot y > x \cdot y^2 > y^3 = f(y) \quad \text{für} \quad x > y > 0 \]

ist \(f \) streng monoton wachsend und es gilt

\[\inf_{x \in I_j} f(x) = f \left(\frac{j-1}{n} \right) = \left(\frac{j-1}{n} \right)^3 \quad \text{und} \quad \sup_{x \in I_j} f(x) = f \left(\frac{j}{n} \right) = \left(\frac{j}{n} \right)^3. \]

Es folgt

\[O_n(f) = \frac{b-a}{n} \sum_{j=1}^{n} \sup_{x \in I_j} f(x) = \frac{1}{n} \sum_{j=1}^{n} \left(\frac{j}{n} \right)^3 = \frac{1}{n^4} \sum_{j=1}^{n} j^3 \]

und mit Aufgabe vom Übungsblatt

\[O_n(f) = \frac{1}{n^4} \sum_{j=1}^{n} j^3 = \frac{1}{n^4} \left(\frac{n(n+1)}{2} \right)^2 = \frac{n^2 + 2n + 1}{4n^2} \rightarrow \frac{1}{4} \quad \text{für} \quad n \rightarrow \infty, \]

sowie analog für die Untersumme

\[U_n(f) = \frac{1}{n^4} \sum_{j=1}^{n} (j-1)^3 = \frac{1}{n^4} \left(\frac{n(n-1)}{2} \right)^2 = \frac{n^2 - 2n + 1}{4n^2} \rightarrow \frac{1}{4} \quad \text{für} \quad n \rightarrow \infty. \]

Also ist \(f \) tatsächlich integrierbar und es gilt

\[\int_{0}^{1} x^3 \, dx = \frac{1}{4}. \]

Das Beispiel zeigt bereits deutlich, dass die Berechnung von Integralen nur mittels der Definition mühsam, wenn nicht gar unmöglich ist. Wir müssen uns daher nach besseren Kriterien und Berechnungsmethoden für Integrale umsehen. Als elementares Hilfsmittel wird sich dabei der Begriff der Stammfunktion erweisen.

Definition 7.2.4 (Stammfunktionen): Sei \(f : [a, b] \rightarrow \mathbb{R} \) eine Funktion. Eine differenzierbare Funktion \(F : [a, b] \rightarrow \mathbb{R} \) heißt „Stammfunktion der Funktion \(f \), falls \(F'(x) = f(x) \) für \(x \in [a, b] \).

Da Konstanten beim Differenzieren wegfallen, ist für \(c \in \mathbb{R} \) mit \(F \) auch \(F + c \) eine Stammfunktion zu \(f \). Folglich ist die Stammfunktionen \(F \) einer Funktion \(f \) nur bis auf Addition einer Konstanten eindeutig bestimmt.

Satz 7.2.5 (Hauptsatz der Differential- und Integralrechnung): Sei \(f : [a, b] \rightarrow \mathbb{R} \) stetig. Dann ist \(f \) integrierbar und besitzt eine Stammfunktion \(F : [a, b] \rightarrow \mathbb{R} \). Ferner gilt:

\[\int_{a}^{b} f(x) \, dx = F(b) - F(a) = : F(x) \bigg|_{a}^{b}. \]

Beweis. Der Beweis übersteigt unsere Möglichkeiten und wir überlassen ihn daher der Mathematik-Vorlesung im ersten Semester.

Der Hauptsatz der Differential- und Integralrechnung liefert uns also zumindest für stetige Funktionen \(f \) eine effizientere Methode um Integrale zu berechnen. Dazu müssen wir lediglich die Stammfunktion \(F \) der Funktion \(f \) berechnen, also im Wesentlichen den Prozess der Differentiation umkehren. Da wir die Ableitung einiger Funktionen bereits kennen, liefert uns die Ableitungstabelle aus Kapitel 7 bereits eine Liste einiger Stammfunktionen.
Beispiel 7.2.6: Kehren wir zu unserem Beispiel 7.2.3 zurück. Die Funktion \(f : [0, 1] \to \mathbb{R}, x \mapsto x^3 \) ist stetig und somit auch integrierbar. Darüber hinaus ist
\[
F : [0, 1] \to \mathbb{R}, x \mapsto \frac{1}{4} x^4
\]
ist in (0,1) differenzierbar mit \(F'(x) = x^3 \) und daher
\[
A = \int_{0}^{1} |f(x)| \, dx = \int_{0}^{1} x^3 \, dx = \frac{1}{4} \cdot 1^4 - \frac{1}{4} \cdot 0^4 = \frac{1}{4}.
\]

Definition 7.2.7 (Das unbestimmte Integral): Ist \(F : [a, b] \to \mathbb{R} \) eine Stammfunktion zu \(f : [a, b] \to \mathbb{R} \), so schreiben wir
\[
F(x) = \int f(x) \, dx
\]
und behalten ihre Uneindeutigkeit bezüglich der Addition von Konstanten stets im Hinterkopf. Wir nennen den Ausdruck auf der rechten Seite der Gleichung auch „unbestimmtes Integral“.

Satz 7.2.8: Die lange Liste bereits bekannter Ableitungen liefert:

1. für \(n \in \mathbb{N} \) und \(x \in \mathbb{R} \):
\[
\int x^n \, dx = \frac{1}{n+1} x^{n+1},
\]
2. für \(x \neq 0 \):
\[
\int \frac{1}{x} \, dx = \log(|x|),
\]
3. für \(a \in (0, \infty) \) mit \(a \neq 1 \) und \(x \in \mathbb{R} \):
\[
\int a^x \, dx = \frac{1}{\log(a)} a^x,
\]
4. für \(x \in \mathbb{R} \):
\[
\int \sin(x) \, dx = -\cos(x) \quad \text{und} \quad \int \cos(x) \, dx = \sin(x).
\]

Beweis.

Zu (1): Die Funktion \(F : \mathbb{R} \to \mathbb{R} \) definiert durch
\[
F(x) = \frac{1}{n+1} x^{n+1}
\]
ist differenzierbar mit
\[
F'(x) = \frac{1}{n+1} \cdot (n+1)x^{n+1-1} = x^n.
\]

Zu (2): Sei \(F : \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \log(|x|) \). Dann ist \(F \) differenzierbar mit
\[
x > 0 : \quad F'(x) = \left(\log(|x|) \right)' = \left(\log(x) \right)' = \frac{1}{x}
x < 0 : \quad F'(x) = \left(\log(|x|) \right)' = \left(\log(-x) \right)' = \frac{1}{-x} \cdot (-1) = \frac{1}{x}.
\]
Zu (3): $F : (0, \infty) \setminus \{1\} \rightarrow \mathbb{R}$ definiert durch

$$F(x) = \frac{1}{\log(a)} a^x$$

ist differenzierbar mit

$$F'(x) = \frac{1}{\ln(a)} \cdot a^x \cdot \log(a) = a^x.$$

Zu (4): $F : (0, \infty) \setminus \{1\} \rightarrow \mathbb{R}$ definiert durch

$$F(x) = \frac{1}{\log(a)} a^x$$

ist differenzierbar mit

$$F'(x) = \frac{1}{\log(a)} \cdot a^x \cdot \log(a) = a^x.$$

Zu (5): $F : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sin(x)$ und $G : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto -\cos(x)$ sind differenzierbar mit

$$F'(x) = \cos(x) \text{ und } G'(x) = -\left(-\sin(x)\right) = \sin(x).$$

7.3 Integrationsregeln

Satz 7.3.1 (Linearität): Sind $f, g : [a, b] \rightarrow \mathbb{R}$ stetig und $\lambda \in \mathbb{R}$, so sind $\lambda \cdot f$ und $f + g$ integrierbar und es gilt:

$$\int_a^b \lambda \cdot f(x) \, dx = \lambda \cdot \int_a^b f(x) \, dx,$$

$$\int_a^b f(x) + g(x) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx.$$

Beispiel 7.3.2: Jede ganzrationale Funktion $f : [a, b] \rightarrow \mathbb{R}$ mit

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 = \sum_{j=1}^{n} a_j x^j, \quad a_j \in \mathbb{R}$$

ist nach Kapitel ?? stetig und damit integrierbar. Für die Stammfunktion folgt aus der Linearität des Integrals

$$\int f(x) \, dx = \int \sum_{j=1}^{n} a_j x^j \, dx = \sum_{j=1}^{n} \int a_j x^j \, dx = \sum_{j=1}^{n} a_j \int x^j \, dx = \sum_{j=1}^{n} \frac{a_j x^{j+1}}{j+1}.$$

Satz 7.3.3 (Partielle Integration): Seien $f, g : [a, b] \rightarrow \mathbb{R}$ stetig, $F : [a, b] \rightarrow \mathbb{R}$ eine zugehörige Stammfunktion und $g : [a, b] \rightarrow \mathbb{R}$ stetig differenzierbar. Dann ist $f \cdot g$ integrierbar und es gilt:

$$\int_a^b f(x) \cdot g(x) \, dx = F(x) \cdot g(x) \bigg|_a^b - \int_a^b F(x) \cdot g'(x) \, dx.$$
Beweis. Nach Voraussetzung ist $F \cdot g$ differenzierbar mit

$$(F \cdot g)'(x) = F'(x) \cdot g(x) + F(x) \cdot g(x)' \quad \iff \quad F(x) \cdot g(x) = (F \cdot g)'(x) - F(x) \cdot g'(x).$$

Integration dieser Identität liefert:

$$\int_a^b f(x) \cdot g(x) \, dx = \int_a^b (F \cdot g)'(x) \, dx - \int_a^b F(x) \cdot g'(x) \, dx$$

$$= F(x) \cdot g(x) \bigg|_a^b - \int_a^b F(x) \cdot g'(x) \, dx.$$

Beispiel 7.3.4: Wir berechnen das Integral

$$\int_0^{\pi/2} e^x \cos(x) \, dx.$$

Wählen wir dazu $f = \exp$ und $g = \cos$, folgt

$$\int_0^{\pi/2} e^x \cos(x) \, dx = e^x \cos(x) \bigg|_0^{\pi/2} - \int_0^{\pi/2} e^x (-\sin(x)) \, dx$$

$$= e^{\pi/2} \cos(\pi/2) - e^0 \cos(0) + \int_0^{\pi/2} e^x \sin(x) \, dx$$

$$= -1 + \int_0^{\pi/2} e^x \sin(x) \, dx.$$

Das Integral auf der rechten Seite ist allerdings nun nicht wesentlich einfacher, als das auf der linken. Daher integrieren wir noch einmal partiell mit $f = \exp$ und $g = \sin$:

$$\int_0^{\pi/2} e^x \cos(x) \, dx = -1 + \int_0^{\pi/2} e^x \sin(x) \, dx$$

$$= -1 + \left[e^x \sin(x) \bigg|_0^{\pi/2} - \int_0^{\pi/2} e^x \cos(x) \, dx \right]$$

$$= -1 + e^{\pi/2} \sin(\pi/2) - e^0 \sin(0) - \int_0^{\pi/2} e^x \cos(x) \, dx$$

$$= e^{\pi/2} - 1 - \int_0^{\pi/2} e^x \cos(x) \, dx.$$

Das gesuchte Integral taucht also auf der rechten Seite wieder auf. Stellen wir nun die Gleichung um, ergibt sich für das gesuchte Integral

$$2 \int_0^{\pi/2} e^x \cos(x) \, dx = e^{\pi/2} - 1 \quad \iff \quad \int_0^{\pi/2} e^x \cos(x) \, dx = \frac{e^{\pi/2} - 1}{2}.$$

Satz 7.3.5 (Substitution): Ist $f : [a, b] \to \mathbb{R}$ stetig und $g : [c, d] \to [a, b]$ bijektiv und differenzierbar, so gilt

$$\int_a^b f \left(g(x)\right) \cdot g'(x) \, dx = \int_{g(a)}^{g(b)} f(t) \, dt.$$

Beweis. Sei $F : [a, b] \to \mathbb{R}$ eine Stammfunktion von f. Dann folgt aus der Kettenregel

$$(F \circ g)'(x) = (F' \circ g)(x) \cdot g'(x) = F' \left(g(x)\right) \cdot g'(x) = f \left(g(x)\right) \cdot g'(x)$$
und daher
\[\int_a^b f(g(x)) \cdot g'(x) \, dx = \int_a^b (F \circ g)'(x) \, dx = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(t) \, dt, \]
was zu zeigen war.

Beispiel 7.3.6: Gesucht ist der Wert des Integrals
\[\int_0^1 \sqrt{1-x^2} \, dx. \]

Dazu setzen wir
\[f : [0,1] \rightarrow \mathbb{R} \quad \text{und} \quad g : [0, \frac{\pi}{2}] \rightarrow [0,1] \]
\[x \mapsto \sqrt{1-x^2} \quad \text{und} \quad x \mapsto \sin(x) \]
und benutzen die Substitution von rechts nach links:
\[\int_0^1 \sqrt{1-x^2} \, dx = \int_0^1 f(x) \, dx = \int_{g^{-1}(0)}^{g^{-1}(1)} f(g(t)) \cdot g'(t) \, dt = \int_{\arcsin(0)}^{\arcsin(1)} \sqrt{1-(\sin(t))^2} \cdot \cos(t) \, dt = \int_0^{\pi/2} (\cos(t))^2 \, dt. \]

Nun folgt aus den Additionstheoremen für trigonometrische Funktionen
\[\cos(2t) = \left(\cos(t) \right)^2 - \left(\sin(t) \right)^2 = \left(\cos(t) \right)^2 - \left[1 - \left(\cos(t) \right)^2 \right] = 2 \left(\cos(t) \right)^2 - 1, \]
also
\[\left(\cos(t) \right)^2 = \frac{1}{2} \left(1 + \cos(2t) \right). \]

Folglich gilt:
\[\int_0^1 \sqrt{1-x^2} \, dx = \int_0^{\pi/2} \left(\cos(x) \right)^2 \, dx = \frac{1}{2} \int_0^{\pi/2} 1 + \cos(2t) \, dt = \frac{1}{2} \left(t - \frac{1}{2} \sin(2t) \right) \bigg|_0^{\pi/2} = \frac{\pi}{4}. \]

Bemerkung 7.3.7: In der Praxis nutzt man die Substitutionsregel meistens in der „Physiker-Version“. Dabei ersetzt man im Integral einen komplizierten Ausdruck in x durch t. Dann berechnet man die Ableitung von t nach x und erinnert sich daran, dass man für die Ableitung t’ auch dx/dt schreiben kann. Die so entstehende Gleichung löst man formal nach dx auf und erhält so eine formale Regel zum Ersetzen von dx. Ein einfaches Beispiel soll das Vorgehen noch einmal verdeutlichen: Gesucht ist der Wert des Integrals
\[\int_0^1 xe^{x^2-2} \, dx. \]

Wir substituieren \(t = x^2 - 2 \), bilden die Ableitung \(t' \) und lösen formal nach dx auf
\[\frac{dt}{dx} = t' = (x^2 - 2)' = 2x \quad \Rightarrow \quad dx = \frac{1}{2x} \, dt. \]
Dann ist
\[
\int_0^1 x e^{x^2 - 2} \, dx = \int_{t_1}^{t_2} x e^t \cdot \frac{1}{2x} \, dt = \frac{1}{2} \int_{t_1}^{t_2} e^t \, dt.
\]
und wir müssen nur noch die neuen Grenzen \(t_1 \) und \(t_2 \) bestimmen. Dazu setzen wir die alten Grenzen in den Term für \(t \) ein und folgern
\[
\int_0^1 x e^{x^2 - 2} \, dx = \frac{1}{2} \int_{t_1}^{t_2} e^t \, dt = \frac{1}{2} \int_{0^2 - 2}^{t_2} e^t \, dt = \frac{1}{2} \int_{-2}^{-1} e^t \, dt = \frac{1}{2} \cdot e^t \Big|_{-2}^{-1} = \frac{1}{2} \left(\frac{1}{e} - \frac{1}{e^2} \right).
\]
Kapitel 8

Lineare Algebra und Analytische Geometrie

8.1 Lineare Gleichungssysteme

Hinter der Lösung vieler alltäglicher Probleme steckt im Kern die Suche nach der Lösung eines linearen Gleichungssystems. Elektrische Netzwerke zum Beispiel gehören inzwischen zu den elementarsten Bausteinen der modernen Welt und sind eng mit der Lösbarkeit linearer Gleichungssysteme verknüpft. Betrachten wir etwa das folgende einfache elektrische Netzwerk,

so folgt unter Beachtung des

- *Kirchhoffschen Stromgesetzes*: Die Summe der zufließenden Ströme in einem elektrischen Knotenpunkt ist gleich der Summe der abfließenden Ströme.

- *Kirchhoffschen Spannungsgesetzes*: Alle Teilspannungen einer Schleife in einem elektrischen Netzwerk addieren sich zu Null.

- *Ohmschen Gesetzes*: Die an einem elektrischen Leiter angelegte Spannung entspricht dem hindurchfließenden elektrischen Strom multipliziert mit dem Widerstand des Leiters.

Gegeben ist eine dreieckige Netzmasche mit den ohmschen Widerständen

\[R_1 = 1 \Omega, \ R_2 = 2 \Omega, \ R_3 = 5 \Omega \]

und der Quellspannung \(U_q = 19 \text{ V} \). Die in den Knotenpunkten A und C zufließenden Ströme betragen

\[I_A = 2 \text{ A} \text{ und } I_C = 1 \text{ A} \]

Gesucht sind der im Knotenpunkt B abfließende Strom \(I_B \) und die Zweigströme \(I_1, I_2, \text{ und } I_3 \).

für die gesamte Netzmasche

\[I_A + I_C = I_B \quad \text{und} \quad U_1 - U_2 - U_3 = U_q \]

und für die beiden unabhängigen Knotenpunkte A und B

\[I_1 + I_3 = I_A \quad \text{und} \quad I_1 + I_2 = I_B. \]
Mit dem ohmschen Gesetz erhalten wir daraus das lineare Gleichungssystem

\[
\begin{align*}
I_1 + I_3 &= I_A \\
I_1 + I_2 - I_B &= 0 \\
I_B &= -I_C - I_A \\
R_1I_1 - R_2I_2 - R_3I_3 &= U_g
\end{align*}
\]

Natürlich sind viel allgemeinere Gleichungssysteme denkbar, die mehr Variablen und mehr Gleichungen enthalten. Zudem können auch mehr Gleichungen als Unbekannte oder aber weniger Gleichungen als Unbekannte auftreten. Im folgenden geht es darum solche Gleichungssysteme möglichst effektiv zu lösen.

Definition 8.1.1: Ein „lineares Gleichungssystem“ (LGS) mit \(m\) Gleichungen und \(n\) Unbekannten ist ein System von Gleichungen der Form

\[
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
\vdots \hspace{2cm} \vdots \hspace{2cm} \vdots \hspace{2cm} \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m
\]

wobei \(a_{ij}, b_i \in \mathbb{R}\) gegeben sind. Sind alle \(b_i = 0\), so heißt das lineare Gleichungssystem homogen, andernfalls inhomogen. Unter einer Lösung eines linearen Gleichungssystems verstehen wir ein \(n\)-Tupel \((x_1, x_2, \ldots, x_n)\) von Zahlen, die simultan alle Gleichungen in (8.1) erfüllen.

Betreffend die Lösungen eines solchen Gleichungssystems machen wir sofort die folgenden Beobachtungen:

Proposition 8.1.2: Gegeben sei ein lineares Gleichungssystem. Dann gilt:

1. Ist dieses LGS homogen und sind \((x_1, x_2, \ldots, x_n)\) und \((y_1, y_2, \ldots, y_n)\) zwei Lösungen, so sind auch

\[
(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \quad \text{und} \quad (\lambda \cdot x_1, \lambda \cdot x_2, \ldots, \lambda \cdot x_n), \quad \lambda \in \mathbb{R} \text{ beliebig}
\]

Lösungen des LGS.

2. Die Differenz zweier Lösungen des inhomogenen LGS löst das zugehörige homogene LGS.

Beweis. Seien zunächst \((x_1, x_2, \ldots, x_n)\) und \((y_1, y_2, \ldots, y_n)\) zwei Lösungen eines homogenen linearen Gleichungssystems mit \(m\) Gleichungen und \(n\) Unbekannten (vgl. (8.1)). Dann gilt für jedes \(i \in \{1, 2, \ldots, m\}\) (also jede Zeile) und \(\lambda \in \mathbb{R} \text{ beliebig}

\[
a_{i1}x_1 + a_{i2}x_2 + \ldots a_{in}x_n = 0 \text{ bzw. } a_{i1}y_1 + a_{i2}y_2 + \ldots a_{in}y_n = 0.
\]

Somit folgt

\[
a_{i1}(x_1 + y_1) + a_{i2}(x_2 + y_2) + \ldots a_{in}(x_n + y_n) \\
= a_{i1}x_1 + a_{i1}y_1 + a_{i2}x_2 + a_{i2}y_2 + \ldots + a_{in}x_n + a_{in}y_n \\
= (a_{i1}x_1 + a_{i2}x_2 + \ldots a_{in}x_n) + (a_{i1}y_1 + a_{i2}y_2 + \ldots + a_{in}y_n) = 0 + 0 = 0,
\]

sowie

\[
a_{i1}(\lambda \cdot x_1) + a_{i2}(\lambda \cdot x_2) + \ldots a_{in}(\lambda \cdot x_n) \\
= \lambda \cdot a_{i1}x_1 + \lambda \cdot a_{i2}x_2 + \ldots + \lambda \cdot a_{in}x_n \\
= \lambda \cdot (a_{i1}x_1 + a_{i2}x_2 + \ldots a_{in}x_n) = \lambda \cdot 0 = 0.
\]
Also sind auch \((x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)\) bzw. \((\lambda \cdot x_1, \lambda \cdot x_2, \ldots, \lambda \cdot x_n)\) Lösungen. Sind nun andererseits \((x_1, x_2, \ldots, x_n)\) und \((y_1, y_2, \ldots, y_n)\) Lösungen eines inhomogenen linearen Gleichungssystems mit \(m\) Gleichungen und \(n\) Unbekannten, so gilt:

\[
a_{i1}x_1 + a_{i2}x_2 + \ldots a_{in}x_n = b_i \text{ bzw. } a_{i1}y_1 + a_{i2}y_2 + \ldots a_{in}y_n = b_i
\]

und es folgt

\[
a_{i1}(x_1 - y_1) + a_{i2}(x_2 - y_2) + \ldots a_{in}(x_n - y_n)
= a_{i1}x_1 - a_{i1}y_1 + a_{i2}x_2 - a_{i2}y_2 + \ldots + a_{in}x_n - a_{in}y_n
= (a_{i1}x_1 + a_{i2}x_2 + \ldots a_{in}x_n) - (a_{i1}y_1 + a_{i2}y_2 + \ldots + a_{in}y_n) = b_i - b_i = 0.
\]

Also löst die Differenz \((x_1 - y_1, x_2 - y_2, \ldots, x_n - y_n)\) das zugehörige homogene lineare Gleichungssystem.

Nehmen wir nun an, das \((x_1, x_2, \ldots, x_n)\) eine Lösung eines inhomogenen linearen Gleichungssystems ist. Die allgemeine Lösung eines inhomogenen LGS ergibt sich also aus der Summe der allgemeinen Lösung des zugehörigen homogenen LGS und einer speziellen Lösung des inhomogenen LGS.

Beispiel 8.1.3: Suchen wir etwa die Lösungen des linearen Gleichungssystems

\[
\begin{align*}
3x_1 + x_2 + x_3 &= 1 \\
-x_1 + 2x_2 - x_3 &= 2
\end{align*}
\]

so können wir leicht nachrechnen, dass \((0, 1, 0)\) eine spezielle Lösung des inhomogenen LGS ist. Betrachten wir nun das zugehörige homogene LGS

\[
\begin{align*}
3x_1 + x_2 + x_3 &= 0 \\
-x_1 + 2x_2 - x_3 &= 0
\end{align*}
\]

stellen die zweite Gleichung nach \(x_1\) um

\[
\begin{align*}
3x_1 + x_2 + x_3 &= 0 \\
+ & \quad x_1 = 2x_2 - x_3
\end{align*}
\]

und setzen diese in die erste Gleichung ein, erhalten wir

\[
3 \cdot (2x_2 - x_3) + x_2 + x_3 = 0 \iff 7x_2 - 2x_3 = 0 \iff x_3 = \frac{7}{2}x_2.
\]

Folglich gibt es keine eindeutige Lösung, da eine Variable unbestimmt bleibt. Setzen wir etwa \(x_2 = t \in \mathbb{R}\), so sind

\[
x_3 = \frac{7}{2}t \quad \text{und} \quad x_1 = 2x_2 - x_3 = 2t - \frac{7}{2}t = -\frac{1}{2}t
\]

und somit jede Lösung des homogenen LGS gegeben durch:

\[
(-0.5t, t, 3.5t), \ t \in \mathbb{R}
\]

Gemäß Proposition 8.1.3 ist die Lösungsmenge des inhomogenen LGS also gegeben durch

\[
L = \{(0, 1, 0) + (-0.5t, t, 3.5t) \mid t \in \mathbb{R}\} = \{(-0.5t, 1 + t, 3.5t) \mid t \in \mathbb{R}\}
\]

108
Das Beispiel zeigt bereits, dass wir lineare Gleichungssysteme durch sukzessives Auflösen nach x_i und anschließendes Einsetzen lösen können. Leider ist diese Methode jedoch sehr aufwendig und unübersichtlich, so dass wir an effektiveren Lösungsstrategien interessiert sind. Die folgende zentrale Beobachtung spielt dabei eine entscheidende Rolle.

Satz 8.1.4: Die Lösungsmenge eines linearen Gleichungssystems bleibt unter den folgenden Operationen unverändert:

1. Vertauschung von zwei Gleichungen
3. Addition einer Gleichung zu einer anderen.

Unser Ziel ist nun, mittels solcher Umformungen ein systematisches Lösungsschema für lineare Gleichungssysteme abzuleiten. Dazu müssen wir uns jedoch zunächst um eine übersichtlichere Notation für lineare Gleichungssysteme kümmern. Dazu schauen wir uns das lineare Gleichungssystem

\[
\begin{align*}
2x_1 - 3x_2 + x_3 &= 2 \\
-x_2 + 2x_3 &= 1 \\
-x_1 + x_2 + x_3 &= 4
\end{align*}
\]

einmal genauer an. Natürlich sind die Namen der Unbekannten in einem solchen System nicht entscheidend. Haben wir uns einmal auf eine bestimmte Reihenfolge der Unbekannten festgelegt, wird die Lösungsmenge dieses Systems durch die insgesamt 12 Zahlen vor den Unbekannten und hinter dem Gleichheitszeichen, also den Zahlen

\[
\begin{pmatrix}
2 & -3 & 1 & 2 \\
0 & -1 & 2 & 1 \\
-1 & 1 & 1 & 4
\end{pmatrix}
\]

bestimmt. Ein solches Zahlenschema nennen wir *Matrix* und diese spezielle Matrix nennen wir *erweiterte Koeffizientenmatrix* des linearen Gleichungssystems.

8.1.5 Matrizen zur Lösung linearer Gleichungssysteme

Eine $m \times n$-Matrix A über \mathbb{R} ist ein Zahlenschema der Form

\[
A = (a_{ij}) := \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]

mit $a_{ij} \in \mathbb{R}$. Die Menge aller $m \times n$-Matrizen über \mathbb{R} bezeichnen wir mit $\mathcal{M}(m \times n, \mathbb{R})$. Ist $n = m$ so nennen wir die Matrix quadratisch.

Beispiel 8.1.6:

\[
A = \begin{pmatrix}
1 & -2 \\
0 & -1
\end{pmatrix} \in \mathcal{M}(2 \times 2, \mathbb{R}), \quad B = \begin{pmatrix}
1 & -2 \\
-2 & -1 \\
-1 & 0
\end{pmatrix} \in \mathcal{M}(3 \times 2, \mathbb{R})
\]

Eine Matrix lässt sich natürlich auch über anderen Zahlenbereichen bilden. Zum Beispiel sind

\[
\begin{pmatrix}
1 & 0 \\
0 & -2
\end{pmatrix} \in \mathcal{M}(2 \times 2, \mathbb{Z}), \quad \begin{pmatrix}
i & -1 \\
0 & -1 - 3i \\
2 + i & 1
\end{pmatrix} \in \mathcal{M}(2 \times 3, \mathbb{C}).
\]
Definition 8.1.7: Sind $A = (a_{ij})$, $B = (b_{ij}) \in \mathcal{M}(m \times n, \mathbb{R})$ und $C = (c_{ij}) \in \mathcal{M}(n \times r, \mathbb{R})$, so definieren wir die transponierte Matrix $A^T \in \mathcal{M}(n \times m, \mathbb{R})$ durch:

$$A^T = (a_{ji}) = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix},$$

die Summe $A + B \in \mathcal{M}(m \times n, \mathbb{R})$ zweier Matrizen durch:

$$A + B := (a_{ij} + b_{ij}) = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix},$$

das Produkt $\lambda \cdot A \in \mathcal{M}(m \times n, \mathbb{R})$ einer Matrix mit einer Zahl $\lambda \in \mathbb{R}$ durch

$$\lambda \cdot A := (\lambda \cdot a_{ij}) = \begin{pmatrix} \lambda \cdot a_{11} & \lambda \cdot a_{12} & \cdots & \lambda \cdot a_{1n} \\ \lambda \cdot a_{21} & \lambda \cdot a_{22} & \cdots & \lambda \cdot a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda \cdot a_{m1} & \lambda \cdot a_{m2} & \cdots & \lambda \cdot a_{mn} \end{pmatrix},$$

und das Produkt $A \cdot C \in \mathcal{M}(m \times r, \mathbb{R})$ zweier Matrizen durch

$$A \cdot C := \left(\sum_{j=1}^{n} a_{ij}c_{jk} \right) = \begin{pmatrix} a_{11}b_{11} + \cdots + a_{1n}b_{n1} & \cdots & a_{11}b_{1r} + \cdots + a_{1n}b_{nr} \\ a_{21}b_{11} + \cdots + a_{2n}b_{n1} & \cdots & a_{21}b_{1r} + \cdots + a_{2n}b_{nr} \\ \vdots & \vdots & \vdots \\ a_{m1}b_{11} + \cdots + a_{mn}b_{n1} & \cdots & a_{m1}b_{1r} + \cdots + a_{mn}b_{nr} \end{pmatrix}.$$

Das Produkt ist also nur definiert, falls die erste Matrix so viele Spalten hat, wie die zweite Matrix Zeilen. Das Element in der i-ten Zeile und j-ten Spalte des Produktes ist dann das Produkt der i-ten Zeile der ersten Matrix mit der j-ten Zeile der zweiten Matrix.

Beispiel 8.1.8: Gegeben seien die Matrizen

$$A = \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \quad \text{und} \quad C = \begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 0 & 1 \end{pmatrix}$$

Dann ist

$$A + B = \begin{pmatrix} 1 + (-1) & -2 + (-2) \\ 2 + 0 & 0 + 1 \end{pmatrix} = \begin{pmatrix} 0 & -4 \\ 2 & 1 \end{pmatrix},$$

und

$$A \cdot B = \begin{pmatrix} 1 \cdot (-1) + (-2) \cdot 0 & 1 \cdot 2 + (-2) \cdot 1 \\ 2 \cdot (-1) + 0 \cdot 0 & 2 \cdot 2 + 0 \cdot 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -2 & 4 \end{pmatrix},$$

sowie

$$C \cdot B = \begin{pmatrix} 1 \cdot (-1) + 1 \cdot 0 & 1 \cdot 2 + 1 \cdot 1 \\ 2 \cdot (-1) + (-2) \cdot 0 & 2 \cdot 2 + (-2) \cdot 1 \\ 0 \cdot (-1) + 1 \cdot 0 & 0 \cdot 2 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -2 & 2 \\ 0 & 1 \end{pmatrix},$$

aber $A \cdot C$ ist nicht definiert.
Das Beispiel deutet bereits an, dass nicht alle unserer bekannten Rechenregeln auch für Matrizen gelten. Es ist nämlich
\[B \cdot A = \begin{pmatrix} -1 \cdot 1 + 2 \cdot 2 & -1 \cdot (-2) + 2 \cdot 0 \\ 0 \cdot 1 + 1 \cdot 2 & 0 \cdot (-2) + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \]
und somit \(B \cdot A \neq A \cdot B \).

Merk: Die Matrizenmultiplikation ist nicht kommutativ, d.h. im Allgemeinen ist \(A \cdot B \neq B \cdot A \).

Satz 8.1.9: Für Matrizen gilt:

1. Die Addition von Matrizen ist assoziativ und kommutativ, d.h. für \(A, B, C \in M(m \times n, \mathbb{R}) \) gilt:
 \[(A + B) + C = A + (B + C) \quad \text{und} \quad A + B = B + A. \]

2. Die Multiplikation von Matrizen ist assoziativ und distributiv, d.h. für \(A \in M(m \times n, \mathbb{R}), B \in M(n \times r, \mathbb{R}) \) und \(C \in M(r \times s, \mathbb{R}) \) gilt:
 \[(A \cdot B) \cdot C = A \cdot (B \cdot C), \]
sowie für \(A \in M(m \times n, \mathbb{R}), B, C \in M(n \times r, \mathbb{R}) \)
 \[A \cdot (B + C) = A \cdot B + A \cdot C \]
und \(A, B \in M(m \times n, \mathbb{R}) \) und \(C \in M(n \times r, \mathbb{R}) \)
 \[(A + B) \cdot C = A \cdot C + B \cdot C. \]

3. Die Skalarmultiplikation kommutiert mit der Matrizenmultiplikation, d.h. für \(A \in M(m \times n, \mathbb{R}), B \in M(n \times r, \mathbb{R}) \) und \(\lambda \in \mathbb{R} \) gilt:
 \[A \cdot (\lambda \cdot B) = \lambda \cdot (A \cdot B). \]

Beweis. Die Eigenschaften folgen direkt aus den entsprechenden Eigenschaften der reellen Zahlen und lassen sich einfach nachrechnen. Wir überlassen ihn daher dem interessierten Leser zur Übung.

Ist nun ein lineares Gleichungssystem der Form
\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
&\vdots \quad \vdots \quad \ddots \quad \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]
gegeben, so entspricht die Lösungsmenge dieses Systems der Lösungsmenge der Matrizengleichung
\[A \cdot x = \frac{b}{111} \]
wobei \(A = (a_{ij}) \) die sogenannte *Koeffizientenmatrix* ist und \(b = (b_i) \) die rechten Seiten sowie \(x = (x_j) \) die Variablen zusammenfasst. Darüber hinaus nennt man

\[
(A|b) := \begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \ldots & a_{2n} & b_2 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn} & b_m
\end{pmatrix}
\]

die erweiterte *Koeffizientenmatrix*.

Das Ziel ist nun ein systematisches Verfahren, einen sogenannten Algorithmus zu entwickeln, um lineare Gleichungssystem möglichst einfach zu lösen. Zur Motivation betrachten wir das Gleichungssystem

\[
\begin{align*}
2x_1 + x_2 &= 2 \\
-x_2 + 2x_3 &= 0 \\
x_3 &= 1
\end{align*}
\]

Wir sehen sofort, dass \(x_3 = 1 \) und wir erhalten durch sukzessives Einsetzen:

\[
x_2 = 2x_3 = 2 \cdot 1 = 2 \quad \text{und} \quad x_1 = \frac{1}{2} \cdot (2 - x_2) = \frac{1}{2} \cdot (2 - 2) = 0.
\]

Es scheint also das ein LGS, in dem unter der Diagonalen nur Nullen auftreten besonders einfach zu lösen ist. Tatsächlich können wir aber jedes LGS in eine sogar noch günstigere Form bringen, in die sogenannte *reduzierte Zeilenstufenform*.

Satz 8.1.10: Die erweiterte Koeffizientenmatrix \((A|b)\) eines linearen Gleichungssystems \(A \cdot x = b\) lässt sich mit den elementaren Umformungen aus Satz 8.1.4 auf die reduzierte Zeilenstufenform

\[
\begin{pmatrix}
1 & 0 & \ldots & 0 & \tilde{a}_{1k+1} & \ldots & \tilde{a}_{1n} & \tilde{b}_1 \\
0 & 1 & \ldots & 0 & \tilde{a}_{2k+1} & \ldots & \tilde{a}_{2n} & \tilde{b}_2 \\
0 & 0 & 1 & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & 1 & \tilde{a}_{1k+1} & \ldots & \tilde{a}_{kn} & \tilde{b}_k \\
0 & \ldots & 0 & \ldots & 0 & 0 & \ldots & 0 & \tilde{b}_{k+1} \\
\vdots & \vdots \\
0 & \ldots & 0 & \ldots & 0 & 0 & \ldots & 0 & \tilde{b}_m
\end{pmatrix}
\]

Beweis. Der Beweis ist etwas aufwendiger und basiert im Wesentlichen auf der Anwendung des weiter unten angegebenen Gauß-Algorithmus. Wir überlassen ihn daher der Mathematik-Vorlesung im ersten Semester.

Korollar 8.1.11: Ist die erweiterte Koeffizientenmatrix des linearen Gleichungssystems \(A \cdot x = b \) in reduzierter Zeilenstufenform und \(k = \text{rk}(A|b) < m \) und eines der \(\tilde{b}_i \neq 0 \) für \(i \in \{k + 1, \ldots, n\} \), so besitzt das Gleichungssystem keine Lösung. Andernfalls ist das LGS lösbar. Für jede der Gleichungen „0=“ können wir dann eine Unbekannte frei wählen, erhalten also unendlich viele Lösungen. Ist \(k = m = n \), so besitzt das Gleichungssystem genau eine Lösung.
Beispiel 8.1.12: Das lineare Gleichungssystem

\[
\begin{align*}
 x_1 - 5x_2 + 2x_3 &= -2 \\
 2x_1 + x_2 - 4x_3 &= 1 \\
 3x_1 - 4x_2 - 2x_3 &= 3
\end{align*}
\]

hat keine Lösung, denn nach Umschreiben in die erweiterte Koeffizientenmatrix und Anwendung der elementaren Zeilenumformungen aus 8.1.4 erhalten wir:

\[
\begin{bmatrix}
 1 & -5 & 2 & -2 \\
 2 & 1 & -4 & 1 \\
 3 & -4 & -2 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & -5 & 2 & -2 \\
 0 & 11 & -8 & 5 \\
 0 & 11 & -8 & 9
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & -5 & 2 & -2 \\
 0 & 11 & -8 & 5 \\
 0 & 0 & 0 & 4
\end{bmatrix}
\]

Das lineare Gleichungssystem

\[
\begin{align*}
 x_1 - 5x_2 + 2x_3 &= -2 \\
 2x_1 + x_2 - 4x_3 &= 1 \\
 3x_1 - 4x_2 - 2x_3 &= -1
\end{align*}
\]

dagegen hat sogar unendlich viele Lösungen, da wir nach Umschreiben in die erweiterte Koeffizientenmatrix und Anwendung der elementaren Zeilenumformungen

\[
\begin{bmatrix}
 1 & -5 & 2 & -2 \\
 2 & 1 & -4 & 1 \\
 3 & -4 & -2 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & -5 & 2 & -2 \\
 0 & 11 & -8 & 5 \\
 0 & 11 & -8 & 5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & -5 & 2 & -2 \\
 0 & 11 & -8 & 5 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

erhalten. Daher dürfen wir eine Unbekannte frei wählen. Setzen wir etwa \(x_3 = t \), so folgt aus der zweiten Zeile:

\[
11x_2 - 8x_3 = 5 \iff 11x_2 = 5 + 8t \iff x_2 = \frac{5}{11} + \frac{8}{11}t.
\]

Aus Zeile eins folgt dann:

\[
x_1 - 5x_2 + 2x_3 = -2 \iff x_1 = -2 + 5x_2 - 2x_3 = -2 + 5 \cdot \left(\frac{5}{11} + \frac{8}{11}t \right) - 2t = \frac{3}{11} + \frac{18}{11}t.
\]

Für jedes \(t \in \mathbb{R} \) ist daher

\[
\left(\frac{3}{11} + \frac{18}{11}t, \frac{5}{11} + \frac{8}{11}t, t \right)
\]

eine Lösung des linearen Gleichungssystems.

Schließlich wollen wir mit dem sogenannten „Gauß-Algorithmus“ noch ein Verfahren angeben, mit dem jedes lineare Gleichungssystem der Form \(A \cdot x = b \) effektiv gelöst werden kann. Dazu wenden wir sukzessive die folgenden Schritte auf die Koeffizientenmatrix \((A|b) \) an:

1. Vertausche die Zeilen der Koeffizientenmatrix \((A|b) \) bis das Element \(\alpha \) oben links von Null verschieden ist.
2. Ziehe von allen Zeilen unterhalb der ersten das \(\beta_i/\alpha \)-fache der ersten Zeile ab, wobei \(\beta_i \) das erste von Null verschiedene Element der \(i \)-ten Zeile ist.
3. Ignoriere die erste Zeile und erste Spalte und wiederhole Schritt (1) - (2) auf den Rest der Matrix an.

Ist dieses Verfahren vollständig durchgeführt, sind die Elemente der unterhalb der Diagonalen alle Null. Nun führen wir analoge Schritte durch um die oberen Nullen zu erzeugen.
Beispiel 8.1.13: Wir lösen das lineare Gleichungssystem

\[
\begin{align*}
x_1 - 2x_2 + 3x_3 &= -1 \\
2x_1 + x_2 - 4x_3 &= 3 \\
3x_1 + 2x_2 - 5x_3 &= 7
\end{align*}
\]

Wie der Gauß-Algorithmus vorgibt erzeugen wir zunächst die Nullen in der ersten Spalte.

\[
\begin{pmatrix}
1 & -2 & 3 \\
2 & 1 & -4 \\
3 & 2 & -5
\end{pmatrix}
\]

(II) \rightarrow -2 \cdot (I) \quad \Rightarrow \quad \begin{pmatrix}
1 & -2 & 3 \\
0 & 5 & -10 \\
3 & 2 & -5
\end{pmatrix}

(III) \rightarrow -3 \cdot (I) \quad \Rightarrow \quad \begin{pmatrix}
1 & -2 & 3 \\
0 & 5 & -10 \\
0 & 8 & -14
\end{pmatrix}

10

Nun ignorieren wir die erste Zeile und Spalte und erzeugen die Nullen in der zweiten Spalte.

\[
\begin{pmatrix}
1 & -2 & 3 \\
0 & 1 & -2 \\
0 & 4 & -7
\end{pmatrix}
\]

(III) \rightarrow 4 \cdot (II) \quad \Rightarrow \quad \begin{pmatrix}
1 & -2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{pmatrix}

Jetzt erzeugen wir die Nullen über der Diagonalen und starten analog zu unserem bisherigen Vorgehen in der dritten Spalte.

\[
\begin{pmatrix}
1 & -2 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{pmatrix}
\]

(I) \rightarrow 3 \cdot (III) \quad \Rightarrow \quad \begin{pmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}

(II) \rightarrow 2 \cdot (III) \quad \Rightarrow \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}

Schließlich konstruieren wir die Nullen in Spalte zwei und erhalten die reduzierte Zeilenstufenform

\[
\begin{pmatrix}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

(II) \rightarrow 2 \cdot (III) \quad \Rightarrow \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}

Somit ist der Rang des linearen Gleichungssystems \(\text{rk}(A|b) = 3 \), das LGS also eindeutig lösbar und die Lösungsmenge

\[L = \{(2, 3, 1)\} \].

8.1.14 Determinanten und die Inverse Matrix

Der Gauß-Algorithmus ist nicht das einzige Verfahren um lineare Gleichungssysteme zu lösen. In dem Spezialfall, dass \(A \in M(n \times n, \mathbb{R}) \) eine quadratische Matrix ist können wir zur Lösung von \(A \cdot x = b \) auch versuchen die sogenannte inverse Matrix \(A^{-1} \) zu nutzen. Angenommen es ist \(n = 1 \), dann ist \(A \in M(n \times n, \mathbb{R}) = \mathbb{R} \) einfach eine Zahl und unser Gleichungssystem \(A \cdot x = b \) wird zu einer linearen Gleichung mit Zahlen \(A, b \) und \(x \). Wäre \(A \neq 0 \), so würden wir dann einfach durch \(A \) teilen und bekämen:

\[A \cdot x = b \quad \iff \quad x = \frac{b}{A} = A^{-1} \cdot b. \]

Die Idee der „inversen Matrix“ ist nun diese Rechnung auf quadratische Matrizen mit \(n > 1 \) zu übertragen, also grob gesagt eine „Division“ für Matrizen einzuführen. Da es aber nun mal Gleichungssysteme mit unendlich vielen oder sogar gar keinen Lösungen gibt, können wir so eine Division sicher nicht für jede Matrix \(A \in M(m \times n, \mathbb{R}) \) definieren.

Definition 8.1.15: Eine quadratische Matrix \(A \in M(n \times n, \mathbb{R}) \) heißt invertierbar, falls es eine Matrix \(A^{-1} \in M(n \times n, \mathbb{R}) \) gibt, so dass

\[A \cdot A^{-1} = A^{-1} \cdot A = E_n \]
gilt. Dabei ist
\[
E_n = \begin{pmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \end{pmatrix} \in M(n \times n, \mathbb{R})
\]
die sogenannte „n-dimensionalene Einheitsmatrix“. Die Matrix \(A^{-1} \) nennen wir, sofern sie existiert,
die zu \(A \) inverse Matrix.

Um die zu \(A \) inverse Matrix \(A^{-1} \) zu berechnen, müssen wir also die Matrizengleichung \(A \cdot X = E_n \) in der Unbekannten \(X \) lösen. Setzen wir \(X = (x^j) \) und \(E_n = (e^j) \), wobei \(x^j \) bzw. \(e^j \) die \(j \)-te Spalte von \(X \) bzw. \(E_n \) bezeichnen, müssen wir also die \(n \) linearen Gleichungssysteme:
\[
A \cdot x^1 = e^1, \quad A \cdot x^2 = e^2, \quad A \cdot x^3 = e^3, \quad \ldots, \quad A \cdot x^n = e^n
\]
lösen. Anstatt jedes dieser Gleichungssysteme einzeln zu lösen, tun wir dies simultan und überführen das Matrizenpaar \((A|E_n) \) durch elementare Zeilenumformungen in \((E_n|\ast) \). Dann ist \(X = \ast \).

Beispiel 8.1.16: Gesucht wird die zu
\[
A = \begin{pmatrix} -1 & 3 & 2 \\ 2 & -1 & 1 \\ 3 & -2 & 3 \end{pmatrix}
\]
inverse Matrix. Wie bereits beschrieben, überführen wir dazu das Matrizenpaar \((A|E_3) \) durch elementare Zeilenumformungen in \((E_3|\ast) \). Dann ist \(A^{-1} = \ast \).

\[
\begin{pmatrix}
-1 & 3 & 2 & 0 & 1 & 0 \\
2 & -1 & 1 & 1 & 0 & 0 \\
3 & -2 & 3 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{(\text{III})+3\cdot(\text{I})}
\begin{pmatrix}
-1 & 3 & 2 & 0 & 1 & 0 \\
2 & -1 & 1 & 1 & 0 & 0 \\
3 & -2 & 3 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{(\text{II})+2\cdot(\text{I})}
\begin{pmatrix}
-1 & 3 & 2 & 0 & 1 & 0 \\
0 & 5 & 5 & 1 & 2 & 0 \\
0 & 7 & 9 & 0 & 3 & 1
\end{pmatrix}
\]

\[
\xrightarrow{\frac{1}{5}\cdot(\text{II})}
\begin{pmatrix}
-1 & 3 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 1/5 & 2/5 & 0 \\
0 & 0 & 2 & -7/5 & 1/5 & 1
\end{pmatrix}
\]

\[
\xrightarrow{\frac{1}{3}\cdot(\text{III})-\frac{2}{5}\cdot(\text{II})}
\begin{pmatrix}
-1 & 3 & 0 & 7/5 & 4/5 & -1 \\
0 & 1 & 0 & 9/10 & 3/10 & -1/2 \\
0 & 0 & 2 & -7/5 & 1/5 & 1
\end{pmatrix}
\]

\[
\xrightarrow{(\text{I})-3\cdot(\text{II})}
\begin{pmatrix}
-1 & 0 & 0 & -13/10 & -1/10 & 1/2 \\
0 & 1 & 0 & 9/10 & 3/10 & -1/2 \\
0 & 0 & 1 & -7/10 & 1/10 & 1/2
\end{pmatrix}
\]

\[
\xrightarrow{\frac{1}{2}\cdot(\text{III})}
\begin{pmatrix}
1 & 0 & 0 & 13/10 & 1/10 & -1/2 \\
0 & 1 & 0 & 9/10 & 3/10 & -1/2 \\
0 & 0 & 1 & -7/10 & 1/10 & 1/2
\end{pmatrix}
\]

Somit ist
\[
A^{-1} = \frac{1}{10} \cdot \begin{pmatrix} 13 & 1 & -5 \\ 9 & 3 & -5 \\ -7 & 1 & 5 \end{pmatrix}
\]

Ist nun \(A \cdot x = b \) ein lineares Gleichungssystem und \(A \in M(n \times n, \mathbb{R}) \) invertierbar, so können wir die Lösung durch Multiplikation mit der inversen Matrix berechnen. Es ist
\[
A \cdot x = b \iff A^{-1} \cdot A \cdot x = A^{-1} \cdot b \iff E_n \cdot x = A^{-1} \cdot b \iff x = A^{-1} \cdot b.
\]
Beispiel 8.1.17: Gesucht ist die Lösung des linearen Gleichungssystems

\[
\begin{align*}
-x_1 + 3x_2 + 2x_3 &= -10 \\
2x_1 - x_2 + 1x_3 &= 10 \\
3x_1 - 2x_2 + 3x_3 &= -20
\end{align*}
\]

Mit dem Ergebnis aus Beispiel 8.1.16 erhalten wir:

\[
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} 13 & 1 & -5 \\ 9 & 3 & -5 \\ -7 & 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} -10 \\ 10 \\ -20 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ -2 \end{pmatrix}
\]

und somit:

\[\mathbb{L} = \{ (-2, 4, -2) \} \]

Bei unseren bisherigen Überlegung haben wir allerdings noch so gut wie keinen Gedanken darauf verschwendet, wie wir herausfinden können ob eine gegebene quadratische Matrix überhaupt invertierbar ist. Eine schnelle und einfache Antwort liefert die Determinante.

Definition 8.1.18: Sei \(A = (a_{ij}) \in \mathcal{M}(n \times n, \mathbb{R}) \) eine gegebene Matrix. Dann definieren wir die Determinante \(\text{det}(A) \) der Matrix induktiv durch

- \(n = 1 \):
 \[\text{det}(A) = \text{det}(a_{11}) = a_{11}. \]

- \(n = 2 \):
 \[\text{det}(A) = \text{det} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}. \]

- \(n \geq 3 \):
 \[\text{det}(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \text{det}(A_{ij}), \quad i, j = 1, \ldots, n \text{ beliebig} \]

wobei \(A_{ij} \) die Matrix ist, die durch Streichen der \(i \)-ten Zeile und \(j \)-ten Spalte von \(A \) entsteht.

Beispiel 8.1.19: Gegeben seien die Matrizen

\[
A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 2 & 1 & -1 \\ 0 & -2 & 2 \\ 3 & 1 & 5 \end{pmatrix}
\]

Dann ist gemäß Definition 8.1.18 die Determinante von \(A \) leicht zu berechnen:

\[\text{det}(A) = 2 \cdot 2 - 3 \cdot (-1) = 7. \]

Für die Determinante der Matrix \(B \) müssen wir dagegen schon etwas mehr leisten. Zunächst wählen wir eine Zeile \(i \) oder Spalte \(j \) entlang der wir die Determinante entwickeln wollen. Sagen wir zum Beispiel: \(j = 2 \). Dann gilt also nach obiger Definition:

\[
\text{det}(B) = \sum_{i=1}^{3} (-1)^{i+j} b_{ij} \text{det}(B_{ij})
\]

\[= -b_{12} \text{det}(A_{12}) + b_{22} \text{det}(B_{22}) - b_{32} \text{det}(B_{32}) \]
\[-b_{12} \cdot \det \begin{pmatrix} 0 & 2 \\ 3 & 5 \end{pmatrix} + b_{22} \cdot \det \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix} - b_{32} \cdot \det \begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix} \]
\[= -1 \cdot (0 \cdot 5 - 3 \cdot 2) - 2 \cdot (2 \cdot 5 \cdot 3 \cdot (-1)) - 1 \cdot (2 \cdot 2 - 0 \cdot (-1)) = -24 \]

Satz 8.1.20: Die Determinante erfüllt die folgenden Rechenregeln:

1. Vertauschen wir zwei Zeilen der Matrix, ändert die Determinante ihr Vorzeichen.
2. \(A \in \mathcal{M}(n \times n, \mathbb{R}) \) ist genau dann invertierbar, wenn \(\det(A) \neq 0 \).
3. Sind \(A \in \mathcal{M}(n \times m, \mathbb{R}) \) und \(B \in \mathcal{M}(m \times n, \mathbb{R}) \), so ist
 \[\det(A \cdot B) = \det(A) \cdot \det(B) \]
4. Ist \(A \) eine quadratische Matrix, die unterhalb der Diagonalen nur Nullen enthält, so ist \(\det(A) \) das Produkt der Diagonalelemente.

Beweis.

Beispiel 8.1.21: Invertierbar - Ja oder nein?

Zum Abschluß lernen wir noch eine dritte Methode zur Lösung linearer Gleichungssysteme kennen; die Cramersche Regel.

Satz 8.1.22: Ist \(A \in \mathcal{M}(n \times n, \mathbb{R}) \) invertierbar, so gilt für die Lösung \(x = (x_1, x_2, \ldots, x_n) \) von \(A \cdot x = b \):

\[x_i = \frac{\det(A_i)}{\det(A)} \]

wobei \(A_i \) diejenige Matrix ist, die entsteht, wenn man die \(i \)-te Spalte von \(A \) durch \(b \) ersetzt.

Beweis.

Beispiel 8.1.23:

Im Allgemeinen ist der Rechenaufwand für den Gauß-Algorithmus aber viel geringer als für die Cramersche Regel.

8.2 Vektoren und Vektorräume

Definition 8.2.1: Ein (reeller) Vektorraum \(V \) ist ein Tripel \((V, +, \cdot)\) bestehend aus einer Menge \(V \), einer Addition

\[+: V \times V \rightarrow V, (v, w) \mapsto v + w \]
und einer skalaren Multiplikation
\[\cdot : \mathbb{R} \times V \longrightarrow V \quad (\lambda, w) \mapsto \lambda w, \]

für die folgende Eigenschaften gelten:

(V1) Für alle \(v \in V \) ist \(1 \cdot v = v \).

(V2) Es gibt ein Element \(0 \in V \) so dass für alle \(v \in V \) \(v + 0 = 0 + v = v \).

(V3) Zu jedem \(v \in V \) gibt es ein \(-v \in V \) mit \(v + (-v) = 0 \).

(V4) Kommutativgesetz: Für alle \(v, w \in V \) ist:
\[v + w = w + v. \]

(V5) Assoziativgesetze: Für alle \(u, v, w \in V \) und \(\lambda, \mu \in \mathbb{R} \) gilt:
\[u + (v + w) = (u + v) + w, \quad \lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v. \]

(V6) Distributivgesetze: Für alle \(u, v \in V \) und \(\lambda, \mu \in \mathbb{R} \) ist
\[\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w, \quad (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v. \]

Ein Vektor \(v \) ist aus mathematischer Sicht nun einfach ein Element \(v \) eines Vektorraums \(V \). Somit ist er ein viel allgemeineres Objekt als die Beschreibung „gerichtete Größe“; die in den Naturwissenschaften und auch im Ingenieurjargon üblich ist, vermuten lässt. Definieren wir etwa die Addition bzw. skalare Multiplikation zweier Funktionen \(f \) und \(g \) durch
\[(f + g)(x) := f(x) + g(x) \quad \text{bzw} \quad (\lambda \cdot f)(x) := \lambda \cdot f(x) \]
so ist auch der Raum aller Funktionen \(F := \{ f \mid f \text{ ist eine Funktion} \} \) zusammen mit dieser Addition und Multiplikation ein Vektorraum und somit jede Funktion ein Vektor. Für eine Funktion \(f \) macht es allerdings keinen Sinn von einer „Richtung“ zu sprechen.

Dennoch ist die Beschreibung der Vektoren als Größe, deren Wert sowohl durch eine Zahl, als auch eine Richtung festgelegt wird, nicht vollkommen falsch. Vielmehr bezieht sich diese naturwissenschaftliche Beschreibung von Vektoren auf einen speziellen Vektorraum; den \(\mathbb{R}^3 \).

8.3 Der Vektorraum \(\mathbb{R}^n \)

Für \(n \geq 2 \) verstehen wir unter dem \(\mathbb{R}^n \) die Menge aller reellen n-Tupel, d. h. die Menge
\[\mathbb{R}^n := \left\{ \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \mid x_i \in \mathbb{R} \text{ für } i = 1, \ldots, n \right\}. \]

Zusammen mit der durch
\[\vec{x} + \vec{y} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{und} \quad \lambda \cdot \vec{x} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} := \begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix} \]

118
definierten Addition und und skalaren Multiplikation wird \mathbb{R}^n zu einem Vektorraum. Der Spezialfall $n = 3$ ist dabei von besonderer Bedeutung, da die Natur- und Ingenieurwissenschaften den \mathbb{R}^3 als mathematisches Modell für den uns vertrauten dreidimensionalen Anschauungsraum verwenden. Im Zuge dieser Interpretation werden Vektoren des \mathbb{R}^3 geometrisch auf zwei verschiedene Arten aufgefasst:

- als "Ortsvektor", der die Lage von Punkten im Raum gegenüber einem festgelegten Koordinatenursprung O festlegt.

- als "Verschiebung", die die Lage eines Punktes gegenüber eines anderen Punktes charakterisiert. Sind etwa A und B zwei Punkte im Raum, so nennen wir den Vektor der von A nach B zeigt \overrightarrow{AB} und den Vektor, der von B nach A zeigt \overrightarrow{BA}.

In diesem Sinne entspricht dann die skalare Multiplikation eines Vektors \vec{a} mit einer Zahl λ einer Streckung bzw. einer Stauchung von \vec{a} um diesen Faktor λ. Ist λ negativ, so kehrt sich zusätzlich die Richtung des Vektors um, d. h. der Vektor $-\vec{a} = -1 \cdot \vec{a}$ zeigt also genau in die zu \vec{a} entgegengesetzte Richtung.

Abb. 8.1: Skalare Multiplikation von Vektoren im \mathbb{R}^n.

Die Addition zweier Vektoren \vec{a} und \vec{b} entspricht geometrisch dem Aneinanderhängen der Pfeile und die Subtraktion $\vec{a} - \vec{b}$ wird einfach als Addition der Vektoren \vec{a} und $-\vec{b}$ aufgefasst. An dieser Stelle sollten wir noch einmal daran erinnern, dass nach Definition eines Vektorraums die Vektoren im \mathbb{R}^n die üblichen von den reellen Zahlen bekannten Rechengesetze erfüllen, d. h.: Für $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^n$ und $\lambda, \mu \in \mathbb{R}$ gelten

- das Kommutativgesetz:

 $$\vec{a} + \vec{b} = \vec{b} + \vec{a},$$

- das Assoziativgesetz:

 $$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c},$$

1 Aus streng mathematischer Sicht ist dieses Modell allerdings falsch. Genau genommen entspricht unser drei-dimensionaler Anschauungsraum einem sogenannten "affinen" Raum.
• und das Distributivgesetz:

\[(\lambda + \mu) \cdot \vec{a} = \lambda \cdot \vec{a} + \mu \cdot \vec{b},\]

bzw.

\[\lambda \cdot (\vec{a} + \vec{b}) = \lambda \cdot \vec{a} + \lambda \cdot \vec{b}.\]

Definition 8.3.1: Für einen Vektor \(\vec{v} \in \mathbb{R}^n\) definieren wir seinen „Betrag“ \(\|\vec{v}\|\) durch

\[\|\vec{v}\| = \left\| \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \right\| := \sqrt{\sum_{i=1}^{n} v_i^2} = \sqrt{v_1^2 + v_2^2 + v_3^2 + \ldots + v_n^2}\]

Mit dem Satz des Pythagoras sieht man sehr leicht, dass der Betrag eines Vektors im \(\mathbb{R}^2\) oder \(\mathbb{R}^3\) gerade seiner „Länge“ entspricht.

Abb. 8.2: Der Betrag entspricht geometrisch der Länge des Vektors (Satz des Pythagoras).

Definition 8.3.2: Für \(\vec{a}, \vec{b} \in \mathbb{R}^n \) definieren wir ihr „Skalarprodukt“ \(\vec{a} \cdot \vec{b} \) durch

\[
\langle \vec{a}, \vec{b} \rangle = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array} \right) \cdot \left(\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_n \end{array} \right) := \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n.
\]

Das Skalarprodukt liefert als Ergebnis also keinen Vektor, sondern (daher der Name) eine Zahl.

Beispiel 8.3.3:

\[
\langle \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \rangle = 2 \cdot (-1) + 1 \cdot 2 + (-2) \cdot 3 = -6
\]

Auch für das Skalarprodukt gelten ein paar nützliche Rechenregeln:

Satz 8.3.4: Für \(\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^n \) und \(\lambda \in \mathbb{R} \) gelten

(i) \(\langle \vec{a}, \vec{b} \rangle = \langle \vec{b}, \vec{a} \rangle \),
(ii) \(\langle \vec{a}, \vec{b} + \vec{c} \rangle = \langle \vec{a}, \vec{b} \rangle + \langle \vec{a}, \vec{c} \rangle \),
(iii) \(\langle \lambda \vec{a}, \vec{b} \rangle = \lambda \langle \vec{a}, \vec{b} \rangle \).

Beweis. Für den Beweis dieser drei Beziehungen reicht es die entsprechenden Gleichungen gemäß der Definition des Skalarproduktes nachzurechnen und wir überlassen ihn daher dem Leser.

In dem Spezialfall, dass \(n = 2 \) oder \(n = 3 \) ist, können wir das Skalarprodukt auch geometrisch interpretieren. Ist nämlich \(\alpha \) der Winkel zwischen zwei Vektoren \(\vec{a} \neq \vec{0} \) und \(\vec{b} \neq \vec{0} \), so gilt sofort

\[
\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \cos(\alpha).
\]

Abb. 8.3: Ist \(\|\vec{a}\| = 1 \), so entspricht \(\langle \vec{a}, \vec{b} \rangle \) der „Länge des senkrechten Schattens von \(\vec{b} \) auf \(\vec{a} \)“. Tatsächlich definieren wir, motiviert durch diese Interpretation, auch für Vektoren \(\vec{a}, \vec{b} \in \mathbb{R}^n \) mit \(n > 3 \) den Winkel \(\alpha \) zwischen diesen Vektoren durch

\[
\alpha := \arccos \left(\frac{\langle \vec{a}, \vec{b} \rangle}{\|\vec{a}\| \cdot \|\vec{b}\|} \right) \in [0, \pi).
\]

Vektoren für die \(\langle \vec{a}, \vec{b} \rangle = 0 \) gilt, stehen also anschaulich gesprochen „senkrecht“ aufeinander. Solche Vektoren nennen wir „orthogonal“.

121
Beispiel 8.3.5: Gegeben sei das Dreieck ΔABC mit $A = (2/ -3/4), B = (-1/1/4)$ und $C = (4/ -1/3)$.

Dann erhalten wir für die Seitenlängen

\begin{align*}
\|BC\| &= \sqrt{5^2 + (-2)^2 + (-1)^2} = \sqrt{30} \\
\|CA\| &= \sqrt{(-2)^2 + (-2)^2 + 1^2} = 3 \\
\|AB\| &= \sqrt{(-3)^2 + 4^2 + 0^2} = 5
\end{align*}

und die Innenwinkel

\begin{align*}
\alpha &= \arccos \left(\frac{\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle}{\| \overrightarrow{AB} \| \cdot \| \overrightarrow{AC} \|} \right) \\
\beta &= \arccos \left(\frac{\langle \overrightarrow{BA}, \overrightarrow{BC} \rangle}{\| \overrightarrow{BA} \| \cdot \| \overrightarrow{BC} \|} \right) \\
\gamma &= \arccos \left(\frac{\langle \overrightarrow{CA}, \overrightarrow{CB} \rangle}{\| \overrightarrow{CA} \| \cdot \| \overrightarrow{CB} \|} \right)
\end{align*}

Im \mathbb{R}^3 führen wir zusätzlich zur Skalarmultiplikation noch eine weitere Art der Multiplikation zwischen Vektoren ein; das sogenannte „Vektorprodukt“.

Definition 8.3.6: Für $\vec{a}, \vec{b} \in \mathbb{R}^3$ definieren wir das „Vektorprodukt“ oder auch „Kreuzprodukt“ durch

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

Beispiel 8.3.7:

Das Kreuzprodukt zweier Vektoren liefert also einen neuen, dritten Vektor. Dieser Vektor hat wichtige geometrische Eigenschaften. Für zwei Vektoren $\vec{a}, \vec{b} \in \mathbb{R}^n \setminus \{0\}$ ist nämlich

- der Vektor $\vec{a} \times \vec{b}$ stets orthogonal zu \vec{a} und zu \vec{b}. Skizze
- der Betrag des Vektors $\vec{a} \times \vec{b}$ gleich dem Flächeninhalt des von \vec{a} und \vec{b} aufgespannten Parallelogramms, d. h.

$$\| \vec{a} \times \vec{b} \| = \| \vec{a} \| \cdot \| \vec{b} \| \cdot \sin (\angle(\vec{a}, \vec{b}))$$

Skizze

Zudem bilden die Vektoren $u, v, u \times v \in \mathbb{R}^3$ (in dieser Reihenfolge) ein Rechtssystem, das heißt sie stehen so zueinander wie Daumen, Zeigefinger und Mittelfinger der rechten Hand.

Satz 8.3.8: Das Kreuzprodukt ist:
(a) distributiv, d. h. für $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ und $\lambda \in \mathbb{R}$ gilt:
\[
\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}, \quad (\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w},
\]
\[
(\lambda \cdot \vec{u}) \times \vec{v} = \lambda \cdot (\vec{u} \times \vec{v}) = \vec{u} \times (\lambda \cdot \vec{v}).
\]

(b) antisymmetrisch, d. h. für $\vec{u}, \vec{v} \in \mathbb{R}^3$ gilt:
\[
\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}.
\]

(c) nicht assoziativ, erfüllt aber die Grassmann-Identität
\[
\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{v}) \cdot \vec{w} - (\vec{u} \cdot \vec{v}) \cdot \vec{w}
\]

sowie die Jacobi-Identität
\[
\vec{u} \times (\vec{v} \times \vec{w}) + \vec{v} \times (\vec{q} \times \vec{u}) + \vec{q} \times (\vec{u} \times \vec{v}) = 0.
\]

Beweis. ■

8.4 Lineare Unabhängigkeit und Basen

Sind $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ beliebige Vektoren aus dem \mathbb{R}^n, so nennen wir einen Ausdruck der Form
\[
\sum_{i=1}^m \lambda_i \cdot \vec{v}_i = \lambda_1 \cdot \vec{v}_1 + \lambda_2 \cdot \vec{v}_2 + \ldots + \lambda_m \cdot \vec{v}_m \quad \text{mit} \quad \lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}
\]
eine „Linearkombination“ der Vektoren $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ und bezeichnen die Menge aller Linearkombinationen dieser Vektoren
\[
\text{span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m) = \left\{ \sum_{i=1}^m \lambda_i \cdot \vec{v}_i \mid \lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R} \right\}
\]
as die „lineare Hülle“ der Vektoren $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$.

Beispiel 8.4.1:

Definition 8.4.2: $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \in \mathbb{R}^n$ heißen „linear abhängig“, falls sich mindestens ein \vec{v}_i als Linearkombination der übrigen Vektoren darstellen lässt, also Zahlen $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$ existieren mit
\[
\lambda_1 \cdot \vec{v}_1 + \lambda_2 \cdot \vec{v}_2 + \ldots + \lambda_m \cdot \vec{v}_m = \sum_{i=1}^m \lambda_i \cdot \vec{v}_i = 0
\]
und mindestens einem $\lambda_i \neq 0$. Andernfalls nennen wir sie linear unabhängig“. Allgemeiner nennen wir eine Menge M von Vektoren als linear unabhängig wenn jede endliche Teilmenge von M aus linear unabhängigen Vektoren besteht.

Skizze! Linear abhängige Vektoren sind anschaulich gesprochen Vektoren, die sich durch geeignete Streckungen zu einem geschlossenen Vektorzug zusammensetzen lassen.

Beispiel 8.4.3: $=-$-Vektor

Definition 8.4.4: Sei V ein Vektorraum und $B := \{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \} \subset V$. Dann heißt B „Erzeugendensystem“ von V, falls
\[
V = \text{span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n).
\]

Aus den Eigenschaften einer Basis ergibt sich sofort, dass jeder Vektor \(\vec{v} \in V \) eindeutig als Linearkombination der Vektoren \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) in der Basis dargestellt werden kann. Anschaulich entspricht daher die Wahl einer Basis der Wahl eines Koordinatensystems und die Vektoren innerhalb der Basis geben die Richtung des Koordinatenachsen vor.

Satz 8.4.5: Sei \(V \) ein Vektorraum und \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in V \). Dann sind äquivalent:

1. \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \} \) ist ein minimales Erzeugendensystem, d. h. fehlt einer der Vektoren, so erzeugen die restlichen \(V \) nicht.
2. \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \} \) ist eine Basis.
3. \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \} \) ist maximal linear unabhängig, d. h., nimmt man einen weiteren Vektor \(w \in V \) hinzu, so sind \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n, w \) linear abhängig.

Beweis. Wir benutzen einen sogenannten Ringschluß, d. h. wir zeigen:

\[(1) \implies (2) \implies (3) \implies (1)\].

Beispiel 8.4.6:

8.5 Geraden und Ebenen im \(\mathbb{R}^3 \)

Geraden treten sowohl im \(\mathbb{R}^2 \) als auch im \(\mathbb{R}^3 \) auf und ihr Konzept lässt sich problemlos auf den allgemeinen Fall des \(\mathbb{R}^n \) übertragen. Geometrisch gesehen ist eine Gerade eine (unendlich lange) gerade Linie durch den Raum, während sie aus algebraischer Sicht einer besonderen Punktmenge mit unendlich vielen Elementen entspricht.

Definition 8.5.1: Eine Gerade \(g \) in \(\mathbb{R}^n \) ist ein eindimensionaler affiner Unterraum des \(\mathbb{R}^n \), das heißt es ist:

\[g := \vec{v} + \text{span}(\vec{w}) = \{ \vec{v} + t \cdot \vec{w} \mid t \in \mathbb{R} \} \]

für Vektoren \(\vec{v} \in \mathbb{R}^n, \vec{w} \in \mathbb{R}^n \setminus \{0\} \). Wir nennen \(\vec{v} \) den Stützvektor und \(\vec{w} \) den Richtungsvektor von \(g \).

Diese sogenannte Punkt-Richtungs-Form einer Geraden kann man sich wie eine Wegbeschreibung vorstellen. Der Stützvektor \(\vec{v} \) gibt als Ortsvektor an, wie wir vom Koordinatenursprung auf die Gerade \(g \) gelangen und der Richtungsvektor \(\vec{w} \) gibt die Richtung vor, in die wir laufen dürfen, wenn wir nicht wieder von der Geraden herunterfallen wollen.

Beispiel 8.5.2: Gerade im \(\mathbb{R}^2 \) und im \(\mathbb{R}^3 \) mit Skizze.

Mit den bereits vorgestellten Werkzeugen können wir zudem auch die gegenseitige Lage zweier Geraden untersuchen und genauer charakterisieren.

Beispiel 8.5.3: Abstand und Winkel

Auch das Konzept einer Ebene als geometrisch gesehen (unendlich weite) Fläche lässt sich auf den Raum \(\mathbb{R}^n \) verallgemeinern.

Definition 8.5.4: Eine Ebene \(E \) ist ein zweidimensionaler affiner Unterraum des \(\mathbb{R}^n \), das heißt es gibt \(\vec{u} \in \mathbb{R}^n \) beliebig und \(\vec{v}, \vec{w} \in \mathbb{R}^3 \) linear unabhängig, so dass

\[E = \vec{u} + \text{span}(\vec{v}, \vec{w}) = \{ \vec{u} + s \cdot \vec{v} + t \cdot \vec{w} \mid s, t \in \mathbb{R} \} \].

\(\vec{u} \) heißt Stützvektor, \(\vec{v}, \vec{w} \) heißen Richtungsvektoren von \(E \).
Beispiel 8.5.5:

Neben der \textit{Punkt-Richtungs-Form} oder auch \textit{Normalform} einer Ebene aus Definition 8.5.4 können wir Ebenen auch in der sogenannten \textit{Normalform} darstellen.

\textbf{Satz 8.5.6:} Jede Ebene im \mathbb{R}^n lässt sich eindeutig durch

$$E = \{ \vec{x} \in \mathbb{R}^n \mid \langle \vec{n}, \vec{x} - \vec{v} \rangle = 0 \}$$

mit $\vec{n} \neq 0$ und ihrem Stützvektor \vec{v} charakterisieren. Wir nennen \vec{n} den Normalenvektor der Ebene.

Skizze

\textit{Beweis.} machen

Beispiel 8.5.7: Winkel zw. Ebene und Ebene, Winkel zwischen Gerade und Ebene.