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1 Informationen

1.1 Literatur

1. Bergmann/Schäfer, Experimentalphysik Bd. 1

2. Walcher, Praktikum der Physik

3. Krötsch, Physikalisches Praktikum

1.2 Stichworte

• Spannung

• Dehnung

• Biegung

• Torsion

• Drehschwingung

• Trägheitsmoment

• Spannung-Dehnungs-Diagramm

• elastisches und anelastisches Verhalten
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2 Grundlagen

Das elastische Verhalten fester Körper (genauso wie das plastische Verhalten) ist in der
Praxis von außerordentlicher Bedeutung. Man erwartet von vielen mechanischen Bautei-
len gleich welcher Art (Brücken, Flugzeugtragflächen, Kränen), dass sie dauernden (oder
wechselnden) äußeren Kräften standhalten und nach Entlastung wieder ihre ursprüng-
liche Form annehmen, d.h. sich elastsich verhalten. Andererseits erwartet man auch,
dass z.B. Metalle und Legierungen durch Walzen oder Pressen in eine bestimmte Form
gezwungen werden können, d.h. sich auch plastisch verhalten können. In der Festkörper-
physik sind die dabei ablaufenden mikroskopischen Vorgänge im Prinzip gut verstanden.
Für das Verständnis der elastischen Prozesse kann man dabei vom sog. idealen Festkör-
per ausgehen. Für das Verständnis der plastischer Vorgänge bei der Verformung sind
Baufehler, sog. Versetzungen erforderlich. Dies soll hier jedoch nicht weiter betrachtet
werden.

Ein idealer Festkörper besteht aus einer regelmäßigen Anordnung von Atomen (Kristall-
gitter), die durch die Bindungskräfte (z.B. kovalente oder metallische Bindung) in ihren
Gleichgewichtslagen gehalten werden. Die Gleichgewichtslagen entsprechen den Minima
von Potenzialmulden (sog. Gitterpotenzial). Bei Einwirkung einer äußeren Kraft erfolgt
eine Verschiebung der Atome aus den Gleichgewichtslagen. Überschreitet dabei die äu-
ßere Kraft einen gewissen Grenzwert nicht (Streckgrenze), so dass die Atome nicht über
den Rand des Potenzialtopfes in einen benachbarten Potenzialtopf gezwungen werden
(das entspräche plastischer Verformung), so fallen sie nach entlastung wieder in ihre
ursprüngliche Gleichgewichtslage zurück.

Der bei geringer elastischer Verformung geltende lineare Zusammenhang zwischen der
angelegten Spannung σ und der auftretenden Dehnung ε wurde für Metalle schon 1665
von Robert Hooke erkannt:

σ = E · ε Hookesches Gesetz (2.1)

Hierbei sind z.B. für eine stabförmige Probe der Länge l die Dehnung ε gegeben durch
ε = ∆l

l , wobei ∆l der Zunahme der Länge durch die äußere Kraft entsprich. Die Spannung
σ ist gegeben durch den Quotienten, der zum Querschnitt q senkrecht stehenden äußeren
Kraft F und dem Stabquerschnitt q, also σ = F

q . Bei Dehnung ist ε > 0, bei Stauchung
ε < 0.

Der Proportionalitätsfaktor E heißt Elastizitätsmodul (kurz: E-Modul, Einheit: 1N·m−2;
üblich: 1GPa=1 · 109N·m−2. Der E-Modul ist eine materialspezifische Größe und seine
Kenntnis in der Technik und Materialkunde von großer Bedeutung.
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Das Gesetz von Hooke gilt in der angegebenen Form nur für sog. isotrope Stoffe, d.h.
Stoffe, bei denen die elastische Verformung von der Kristallrichtung unabhängig ist. Auch
dies ist in der Anwendung meist der Fall, weil die verwendeten Metalle und Legierungen
aus regellos orientierten Kristalliten bestehen (sog. Polykristallen) und sich anisotrope
Eigenschaften im Mittel nicht zeigen.

Greift eine Kraft parallel zum Querschnitt q eines Körpers an, dann wird er durch die
Kraft abgeschert, seine zuvor senkrechten Kanten werden um den Winkel γ gekippt (vgl.
Abb. 2.2). Nennen wir τ = F

q die Schubspannung, so gilt bei kleinen Belastungen ein dem
Hookeschen Gesetz analoger Zusammenhang:

τ = G · γ (2.2)

wobei G das Schubmodul ist (Einheit wie E-Modul).

2.1 Methoden zur Bestimmung der elastischen Konstanten

Es gibt verschiedene Methoden zur Bestimmung der elastischen Größen (Elastizitätsmo-
dul, Schubmodul) eines Festkörpers. Die bekannteste Methode ist der Zugversuch, bei
dem der Elastizitätsmodul direkt mit Hilfe des Hookeschen Gesetzes bestimmt werden
kann.

Im Praktikum wird z.B. die Dehnung eines vertikal aufgehängten Stahldrahtes bei varia-
bler Zugspannung bestimmt. Das obere Drahtende ist ortsfest eingespannt, während am
unteren Ende eine Schale hängt, welche mit Gewichten verschiedener Massen m belastet
wird. Die Höhenänderung einer in der Nähe des unteren Drahtendes angebrachten Mar-
kierung wird mit einem im Abstand von ca 1 bis 2 m aufgestellten Kathetometer mittels
eines Messfernrohrs bestimmt, dessen verstellbare Höhe auf einer Skala abgelesen wird.
Auf diese Weise kann eine Lagenänderung des Drahtes auf ca. 0,02 mm genau bestimmt
werden.

Eine weitere Methode ist der Biegeversuch. Es liegt z.B. ein Stab mit recheckigem Quer-
schnitt in der Nähe seiner beiden Enden auf schneidenförmigen Stützen L in gleicher
Höhe, also Horizontal auf (s. Abb. 2.1). Wirkt auf den Stab in der Mitte zwischen den
Stützen nach unten eine Kraft F, z.B. durch ein angehängtes Gewicht, so wird er sich
der Kraft entsprechend durchbiegen. Dabei wird er in seinem oberen Querschnittsteil
gestaucht und im unteren gedehnt.
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Abbildung 2.1: Biegeversuch:
Stab auf Schneidlagern L im Abstand l
Messuhr M zur Bestimmung dur Durchbiegung z infolge der Kraft F

In mittlerer Höhe des Stabquerschnitts existiert eine Schicht, die sog. neutrale Faser, die
weder Stauchung noch Dehnung erfährt. Die maßgebende elastische Konstante im Fall
der Biegung ist also der Elastizitätsmodul (Druckspannung im oberen Teil, Zugspannung
im unteren Teil des Stabquerschnitts). Die genaue Berechnung ergibt für einen Stab mit
rechteckigem Querschnitt einen Ausdruck für die (geringe) Durchbiegung z in der Form:

z =
l3F

4Ebh3
(2.3)

Hierbei sind:

z = Höhenänderung des Stabes in der Mitte zwischen den Auflagepunkten
l = Abstand der Auflagepunkte
h = Höhe des Stabquerschnitts
b = Breite des Stabquerschnitts
F = Kraft senkrecht zur Auflageebene
E = Elastizitätsmodul

(Für eine Herleitung der Gl. 2.3 s. Bergmann-Schäfer, Bd.1)

Die Bestimmung des Schubmoduls ist z.B. aus dem Torsionsverhalten eines zylinder-
förmigen Festkörpers möglich. Betrachten wir zunächst die Torsion eines Hohlzylinders
(s. Abb.2.2) um den Winkel φ, so deformiert sich die in der Abb. 2.2. herausgegriffene
prismatische Säule in der gezeichneten Weise um den Scherwinkel α, wenn wir sie am
unteren Ende festgehalten denken und oben tangential die Kraft dF wirkt.

Für kleine Torsionswinkel φ gilt für den Scherwinkel α:
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α =
r · φ
l

(2.4)

mit l = Länge, r = Radius des Zylinders

Die Torsion wird durch die Scherungskraft dF hervorgerufen. Somit ist die Schubspan-
nung τ des Hohlzylinders für kleine Scherwinkel α mit Gleichungen 2.2 und 2.4 gegeben
durch:

τ =
dF

2πrdr
= G · α =

Grφ

l
(2.5)

Abbildung 2.2: Torsion eines Hohlzylinders

Die Kraft dF bewirkt ein Drehmoment dM (vgl. Versuch A8). Mit dM⃗ = r⃗ × dF⃗ , hier
dM = r dF und Gleichung 2.5 folgt:

dM =
2πr3 ·G · φ

l
dr (2.6)

Für das auf einen Vollzylinder (Radius R) wirkende Drehmoment M müssen die Beiträge
dM aller Hohlzylinder von r = 0 bis r = R aufsummiert werden, d.h. Gleichung 2.6 muss
in diese Grenzen integriert werden. Dies liefert:
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M =
2πGφ

l

∫ R

0
r3dr =

πR4Gφ

2l
(2.7)

Da die Torsion des Zylinders bewirkende Drehmoment ist im Gleichgewicht mit dem (die
Torsion) rücktreibende Moment M = Dφ. Hieraus ergibt sich (vgl. Versuch A8) für die
sog. Winkelrichtgröße D :

D =
πR4G

2l
(2.8)

Die Eigenschwingdauer eines Torsionspendels (vgl. Versuche A4, A8) - zylinderförmiger
Draht, Drehmasse mit Trägheitsmoment I0 - ist gegeben durch:

T0 = 2π

√
I0
D

(2.9)

Einsetzen der Gleichung 2.9 in Gleichung 2.8 liefert:

G =
8πl

R4
· I0

T0
2 (2.10)

Da das im Versuch verwendete Torsionspendel (eine Scheibe einschl. Befestigungsstange
mit Flügelschrauben) keine einfache geometrische Form hat, sich also ihr Trägheitsmo-
ment I0 nicht ohne weiteres berechnen lässt, geht man in folgender Weise vor (gergl.
Versuch A4):

Man bringt Zusatzscheiben mit den Massen m1 und m2 und den Radien ri (Loch) und
ra (außen) an. Dann folgt bei l Zusatzscheibe bzw. 2 Zusatzscheiben aus Gleichung 2.10:

G =
8πl

R4
·
I0 +

1
2m1

(
ri

2 + ra
2
)

T1
2 bzw. G =

8πl

R4
·
I0 +

1
2(m1 +m2)

(
ri

2 + ra
2
)

T2
2 (2.11)

Dabei sind T1 und T2 die entsprechenden Schwingungszeiten. Mit Gleichung 2.10 kann
I0 in Gleichung 2.11 eliminiert werden und man erhält:

G =
4πl

R4
·
m1

(
ri

2 + ra
2
)

T1
2 − T0

2 bzw. G =
4πl

R4
·
(m1 +m2)

(
ri

2 + ra
2
)

T2
2 − T0

2 (2.12)
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3 Aufgabenstellung

3.1 1. Aufgabe

Bestimmen Sie den E-Modul eines Stahldrahts durch Messung der Dehnung.

3.2 2.Aufgabe

Bestimmen Sie den E-Modul von vier verschiedenen Metallstäben (Messing, Kupfer, Alu-
minium und Stahl) aus der Biegung.

3.3 3. Aufgabe

Bestimmen Sie den Schubmodul eines Stahldrahtes aus der Torsionsschwingung.
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4 Versuchsdurchführung

4.1 E-Modul-Bestimmung aus Dehnungsmessung

Nach Messung der Länge l des unbelasteten Drahtes (l = Länge vom oberen Einklemm-
punkt bis zur Markierung) visiere man mittels des Messfernrohrs die Markierung an.
Durch vertikales Verstellen des Fernrohrs wird das Fadenkreuz bzw. die Nullmarke des
Okulars mit der Markierung des Drahtes zur Deckung gebracht. Man bestimme die Hö-
henänderung ∆l des Drahtes für verschiedene Lasten F = mg. Die Massen m werden in
Schritten von ≈500 g bis zu einer maximalen Masse von 4 kg erhöht . Den Durchmesser d
des Drahtes bestimme man an 5 verschiedenen Stellen mittels einer Mikrometerschraube.

4.2 E-Modul-Bestimmung aus der Biegung

Man bestimme die Dimension b und h der vorliegenden Metallstäbe, sowie den Abstand l
der Auflager. Die Durchbiegung z ermittle man mit der Messuhr. Die Belastung m erhöhe
man schrittweise um 0,5 kg bis max. 3 kg. Bei jeder Belastung sind zwei Ablesungen
vorzunehmen. Da die Messuhr bei geringer Höhenänderung der Messspitze eine Hemmung
aufweist, wird empfohlen, eine Messung nach zunehmender, die andere nach abnehmender
Last vorzunehmen. Hierfür wird das Gewicht vor der Messung jeweils leicht angehoben
bzw. heruntergezogen.

4.3 Schubmodul-Bestimmung aus Torsionsschwingung

Die Massen der anzubringenden Scheiben sind auf ihnen (in g) angegeben. Die Länge
l des Drahtes bestimmt man mit Hilfe eines Maßstabs, den Radius R mit Hilfe einer
Mikrometerschraube (5 Messungen an verschiedenen Stellen. Mittelwert!), ri und ra der
Scheiben sind mit einer Schieblehre zu messen. Die Schwingungszeiten T0, T1 und T2

bestimmt man aus je zwei Messungen zu 20 Schwingungen (Mittelwert!).
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5 Auswertung

5.1 E-Modul-Bestimmung aus Dehnungsmessungen

Man ermittle den mittleren Durchmesser d des Drahtes. Die Längenänderung ∆l des
Drahtes ist als Funktion von m auf Millimeterpapier oder mit einer geeigneten Software
aufzutragen. Aus der Steigung a einer Ausgleichsgeraden ist E gemäß Gleichung 2.1 zu
bestimmen, d.h.:

E =
4gl

aπd2
(5.1)

Beachten Sie bei der Ausgleichsgeraden, dass für keine bzw. kleine Last der Draht gebogen
ist d.h. Gleichung 2.1 nicht gelten muss.

Schätzen Sie den relativen Größtfehler voon E nach dem Fehlerfortpflanzungsgesetz ab.
Hierbei ist der Fehler in der Längenmessung (∆l0 =1mm) und der Dickenmessung
(∆d =0.01mm) des Drahtes und aus der Auftragung ∆l(m) der Fehler ∆a in der Steigung
der Ausgleichsgeraden zu berücksichtigen.

5.2 E-Modul-Bestimmung aus der Biegung

Man berechne aus den Mittelwerten der Messuhranzeigen die Durchbiegung z und trage
sie als Funktion von m für alle Stäbe gemeinsam auf Millimeterpapier auf. Aus den
Steigungen a der Ausgleichsgeraden ermittle man gem. Gleichung 2.3 den jeweiligen E-
Modul, also

E =
gl3

4abh3
(5.2)

Schätzen Sie den relativen Größenfehler von E ab, indem Sie dei Fehler ∆l = 1mm,
∆b = ∆h = 0, 1mm annehmen und aus der jeweiligen Auftragung z(m) den Fehler ∆a
bestimmen.

5.3 Schubmodulbestimmung aus Torsionsschwingungen

Man berechne aus den jeweils zwei Ergebnissen für T0, T1 und T2 die Mittelwerte und
bestimme entsprechend Gleichung 2.12 den Mittelwert des Schubmoduls G. Bei der
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Abschätzung des relativen Größtenfehlers von G ist ein Fehler ∆l =1mm und ∆R =
0.005mm anzunehmen, die anderen Messfehler werden vernachlässigt.

Vergleichen Sie in der Abschlussdiskussion der Messungen Ihre Ergebnisse für E und G
mit den Literaturdaten.

13



6 Fragen zur Selbstkontrolle

1. Was versteht man unter elastischem Verhalten eines Festkörpers?

2. Was bedeuten die Größen Elastizitätsmodul, Schubmodul und Torsionsmodul?

3. Sind die Module von der Temperatur abhängig? Wenn ja, warum?

4. Wie ist das Trägheitsmoment eines Festkörpers definiert?

5. Wie lautet die Schwingungsgleichung für ein Torsionspendel?

6. Beschreiben Sie ein typisches Spannungs-Dehnungsdiagramm eines Festkörpers.
Was passiert, wenn man den elastischen Bereich verlässt?
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