

Prediction of deep core-level spectra of large systems with GW and beyond

Dr. Dorothea Golze

Faculty of Chemistry and Food Chemistry, TU Dresden

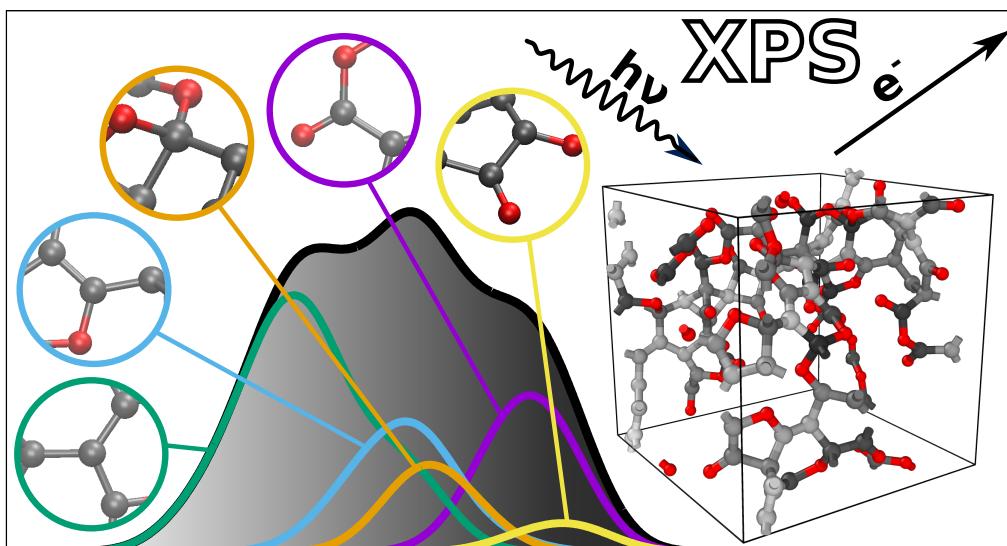


Figure: Core-electron binding energies in carbon-based materials: A machine-learning model combining density-functional theory and GW [4].

While the GW method is well-established for calculating valence photoemission spectra of solids and molecules [1], its application to deep core levels with excitation energies exceeding 100 eV is a more recent advancement. Core-level spectroscopy, which probes the local atomic environment without constraints on symmetry or periodicity, serves as a powerful technique for chemical analysis and materials characterization. We have demonstrated that GW yields accurate absolute and relative 1s core-level binding energies, with deviations of 0.3 eV and 0.2 eV from experimental values, respectively [2].

This talk covers our recent efforts to extend computations to: i) large systems and ii) shake-up satellites. For large systems, we focus on implementing low-scaling algorithms [3] combined with machine learning approaches [4]. For shake-up satellites, we explore the application of vertex corrections [5].

- [1] D. Golze, M. Dvorak, and P. Rinke. *Front. Chem.*, 7:377, 2019.
- [2] D. Golze, L. Keller, and P. Rinke. *J. Phys. Chem.*, 11:1840, 2020.
- [3] R. L. Panadés-Barrueta and D. Golze. *J. Chem. Theory Comput.*, 19:5450, 2023.
- [4] D. Golze, M. Hirvensalo, P. Hernández-León, A. Aarva, J. Etula, T. Susi, P. Rinke, T. Laurila, and M. A.. Caro. *Chem. Mater.*, 34(14):6240, 2022.
- [5] J. Kockläuner and D. Golze. *arXiv:2412.17132*, 2024.