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A B S T R A C T

We present a ballistic model for the transport of electronic excitation energy induced by keV particle bom-
bardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is

employed to follow the evolution of the temporal and spatial distribution function → →
f r k t( , , ) describing the

occupation probability of an electronic state
→
k at position →r and time t. Three different initializations of the

distribution function are considered: i) a thermal distribution function with a locally and temporally elevated
electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic
distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport
direction. While the first initialization resembles a distribution function which may, for instance, result from
electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle
result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE,
we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space
resolved excitation energy distribution function, which is then analyzed in view of general transport char-
acteristics of the chosen model system.

1. Introduction

The excitation of the electronic degrees of freedom following the
impact of a keV particle onto a solid surface manifests in three different
experimentally accessible observables: the formation of secondary ions
within the flux of particles released (“sputtered”) from the surface [1],
the emission of electrons into the vacuum (“external” electron emis-
sion) [2,3] and the flux of excited charge carriers through a buried
internal energy barrier realized, for instance, by the insulating film of a
metal-insulator–metal junction (“internal” electron emission) [4]. In
order to understand the results of such measurements and arrive at a
prediction of those quantities, we proposed a model to calculate the
excitation of electronic degrees of freedom resulting from electronic
friction of moving particles and autoionization following close binary
collisions in a particle impact-induced atomic collision cascade [5–7].
As one of the essential ingredients of such a model, the rapid transport
of excitation energy away from the spot of its generation was described
in terms of a diffusive approach involving a nonlinear diffusion equa-
tion, where the electron energy diffusivity was coupled to the local and
temporal lattice disorder, yielding a four-dimensional excitation energy
density profile which may then be parametrized in terms of an elevated
time and position dependent electron temperature. The resulting

electron temperature profiles were then employed to obtain external
electron emission yields by means of a slightly modified Richardson-
Dushman approach [8,9] or to assign ionization probabilities to each
sputtered atom according to the so-called substrate excitation model
[10].

In contrast to the rather successful calculation of external electron
yields, a straightforward adoption of the thermionic emission approach
to calculate internal electron emission yields turned out to give results
underestimating experimental data by orders of magnitude [11]. This
discrepancy may be explained in terms of the large electron mean free
paths within the first femtoseconds after the projectile impact. Thus, the
applicability of the diffusion model must be put into question especially
at that particular time interval, which coincides with the period where
most of the (internal and external) electron emission is assumed to take
place.

Therefore, it was concluded that the ballistic nature of the transport
process probably has to be taken into account within the model. One
attempt was done in terms of a hybrid model [12] combining diffusive
and ballistic transport of the excited electrons. First, for a set of layers in
different depths below the surface, electron temperatures are calculated
according to the standard diffusion model. Then, each layer is regarded
as a source of hot electrons according to the Richardson-Dushman
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model. These hot electrons are now assumed to undergo a ballistic
transport, which is phenomenologically described via an effective mean
free path λ for inelastic energy losses preventing them from being able
to traverse the buried tunneling barrier. Depending on the traveling
length x towards the barrier, the probability to arrive at the meta-
l–insulator interface and contribute to the internal emission yield is
then described by −x λexp( / ). With this approach, it was shown that the
calculated internal electron emission yields are of the right order of
magnitude as measured experimentally. However, this hybrid model is
not capable of treating directional effects as induced, for instance, via a
variation of the projectile angle of incidence, arising from the extremely
anisotropic excitation spectra found in [13].

In order to tackle this problem and take the treatment of electronic
excitation transport one step further, the present work employs the
classical Boltzmann transport equation (BTE) enabling a more funda-
mental investigation of the ballistic transport characteristics of elec-
tronic excitation energy generated in the first few femtoseconds after
the projectile impact. Different initial distribution functions

→ →
=f r k t( , , 0) for the occupation probability density of an electronic

state with wave number
→
k at position →r and time t are implemented

representing different excitation mechanisms such as electronic friction
(generating a thermal-like distribution [14–17] and electron promotion
(generating single electron excitations above the Fermi level [7,18]).
The latter, which in the following will be referred to as “‘peak excita-
tion”’, is considered to model the fate of a single electron excitation and
investigate the competition between ballistic transport and thermali-
zation via electron–electron scattering. The temporal and spatial evo-
lution of the distribution function → →

f r k t( , , ) obtained this way can be
analyzed with respect to the transport of excitation energy, and the
results will be compared to the formerly used diffusive transport model.

2. Model

Once excitation energy has been generated within an atomic colli-
sion cascade, we can model its dynamics by means of the Boltzmann
transport equation (BTE)
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for the distribution function → →
f r k t( , , ) describing the occupation prob-

ability density of an electronic state with wave vector
→
k . The left hand

side of Eq. (1) represents the variation of → →
f r k t( , , ) in space and time

due to ballistic transport, whereas the right hand side of Eq. (1) takes
into account the changes of the distribution function due to electro-
n–electron scattering. Note that electron phonon collisions are ne-
glected here, since the relevant timescale for these interactions is of the
order of picoseconds [19], whereas the typical timescale of electron
emission which is targeted here is only a few femtoseconds [8,9].

In detail, the variation of f due to electron–electron scattering,
where electrons with initial wave vectors

→
k and

→
k1 are scattered into

states with wave vectors
→
k2 and

→
k3 and vice versa, is given by
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In Eq. (2), Mee denotes the electron–electron scattering matrix ele-
ment in the k-space and Ω is the volume of an individual discretization
cell. The essential physical input entering Mee is the Fourier transform
of a screened Coulomb electron–electron interaction potential
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with κ denoting the characteristic inverse screening length as the only
free parameter of the model. For simplicity, we use the Thomas–Fermi
screening length [20]
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yielding =κ 3.6 Å−1 for the electron density n given below. A more
sophisticated determination of the screening length would be a self
consistent calculation of this quantity according to the equation
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We checked the influence of κ on the calculated diffusion coefficient
D (see below) in a range of − −[2 Å ,5 Å ]1 1 and find diffusion coefficients
varying from 14.7 to 15.3 cm2/s, indicating a rather weak influence with
regard to the goal of the present work.

Using a plane wave approach for the electrons we obtain
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k k k k kΔ 1 2 3 denoting the transfer of momentum between
the electrons.

The delta-function ∊
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δ k k k k( ( ) ( ) ( ) ( ))1 2 3 entering Eq. (2)
ensures that in the sum over all mathematically possible collisions only
those collisions are considered, which are in accordance with energy
conservation. In addition, according to Pauli’s principle the transition
from an initial electronic state with wave vector

→
ki to a different final

electronic state with wave-vector
→
kf scales with the probability that the

initial state is occupied and the final state is unoccupied, leading to an
additional factor

→
−

→
f k f k( )(1 (i f )).

The numerical integration of this six-dimensional Boltzmann equa-
tion turns out to be computationally too expensive. Therefore, we re-
strict our calculations to one dimension in real space and two dimen-
sions in the k-space, where one direction of the k-space is oriented along
the transport direction in real space (x-axis) and the other direction is
perpendicular to the transport direction. Note that this refers to a two-
dimensional treatment in k-space, and therefore the characteristics of a
two-dimensional electron gas need to be used in order to describe the
ground state properties of the electronic system. The real space is dis-
cretized in cells of length =xΔ 3 Å in the space domain, and the k-space
is discretized into 61× 61 k-vectors per spatial cell with

=kΔ 0.054 Å−1. This discretization is a trade-off between cpu-power
and the resolution of the k-space. Note that kΔ is small compared to the
inverse screening length =κ 3.6 Å−1 of the screened Coulomb poten-
tial. Due to the finite spacing of the k-grid, fluctuations of the totatl
energy in the system may occur. We have therefore repeated a few
calculations using a finer spacing and found no significant differences
with respect to the presented results.

The ground state properties of the system were set to describe a
generic two-dimensional electron gas with a Fermi energy of

=E 5.0F eV, corresponding to an electron density of = ×n 2.1 1019 m−2

and a wave vector =k 1.2F Å−1, which are approximately characteristic
for silver at temperature =T 0 K. In order to describe a localized ex-
citation of the system, two types of initial conditions for the distribution
function → →

f r k t( , , ) are implemented at a particular point in real space,
namely i) a Fermi–Dirac-distribution at different elevated electron
temperatures and ii) a 0 K Fermi–Dirac distribution additionally ex-
hibiting one or more non-thermal single electron excitations in terms of
selected k-states occupied above EF .
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3. Results

The x-axis was discretized into 35 cells indexed with numbers from
1 to 35. In order to minimize the influence of boundary conditions at
both ends of the cell array, the excitation energy was fed into the center
of the array at cell #18. In all other cells a ground state distribution
function at =T 0 K was initialized. The Boltzmann equation was solved
numerically using a time step of 0.01 fs. This timestep meets two con-
ditions necessary to ensure the numerical stability of the Boltzmann
equation by preventing the complete depopulation of states during a
single timestep, namely i) <tΔ x

v
Δ

| |max
and ii) <t fΔ df

dt . It should be
noted at this point, that the small timestep required by these conditions
may not be long enough to ensure that an electron–electron scattering
event is completed within one single timestep. Therefore, the Markov
chain approximation which forms the basis for the validity of the
Boltzmann equation might in principle be violated. Moreover, the time-
energy uncertainty precludes the exact energy conversation during one
timestep. Both points question the collision integral as calculated by Eq.
(2). There is, however, no easy way to improve these points within the
classical Boltzmann equation formalism used here.

In detail, the following different initial excitation distributions have
been studied:

• six thermal excitations with electron temperatures between 3000
and 20,000 K,

• six isotropic peak excitations with peak energies between 6.0 and
8.5 eV,

• three peak excitations with k-vectors preferentially orientated along
the transport direction

• three peak excitations with k-vectors preferentially orientated per-
pendicular to the transport direction

3.1. Thermal excitation

In the following, a thermal excitation energy distribution as as-
sumed, for instance, to result from electronic friction processes will be
investigated. Therefore, a hot Fermi distribution which can be seen in
Fig. 1 was initialized in cell #18, while the system was assumed to be in
its ground state with =T 0 K in all other cells at the start of the

simulation. The evolution of the distribution function is then calculated
by Eq. (1) with reflecting boundary conditions set at the two ends of the
cell array. To obtain the starting excitation energy contained in cell #18
at =t 0, the total energy density of an electron gas at temperature T
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In order to obtain the excitation energy, one has to subtract the
ground state energy density
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π
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and multiply the difference by the cell volume =Ω (3 Å)2. For a specific
temperature of 7000 K, this results in a total excitation energy of
1.45 eV, which at =t 0 is exclusively located in cell #18 and will in the
following be referred to as Eexc

0 . The excitation energy distribution at
later times is then obtained by calculating the energy exchange between
neighboring cells as determined by the time evolution of the distribu-
tion function f. In order to obtain the energy exchange of one cell with
its neighboring cells the product

→
−

→
−

→
f x k t f x k t t E k( ( , , ) ( , , Δ )) ( ) is in-

tegrated numerically over all
→
k .

The time dependent excitation energy distribution calculated this
way will then be analyzed in view of the energy transport character-
istics. In Fig. 2, this distribution is plotted versus depth at times t=0.2,
0.6, 1.0, 1.4 and 1.8 fs after the start of the simulation, respectively. In
this and all following similar plots, the excitation energy contained in a
specific cell is normalized to the initial value Eexc

0 that was originally fed
into the central cell at =x 51 Å. At about =t 2 fs, the fastest electrons
reach the end of the cell array and would be reflected back into the
array. To avoid effects of the reflective boundary conditions, the

Fig. 1. Occupation probability versus the two-dimensional
k-vector components kx and ky for a hot electron gas at

=T 7000 K, which is taken as the initial excitation dis-
tribution at a depth of 51Å.
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simulation is therefore limited to 1.8 fs. At =t 0, there is one δ-like peak
at 51Å, reflecting the local excitation in the central cell, which exhibits
a fast decrease with increasing simulation time and broadens during the
first femtosecond to a width of approximately 34Å. After 1.4 fs, the
peak is observed to separate into two peaks, with one peak moving left
and one peak moving right. We assume that the shifting of these peaks
reflects the ballistic transport characteristics, whereas the broadening
of the peaks is partly a result of the collisions between the electrons and
partly caused by a dispersion effect due to the different components of
the initial k-vectors in the transport direction. The peak in the center is
due to the k-vectors which are preferrably oriented perpendicular to the
transport direction. As the collisions are responsible for diffusive be-
havior and diffusion would lead to a gaussian distribution of the ex-
citation energy, the data are fitted by a three-gaussian fitting curve:
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This fit function has ten fitting parameters: A A A w w w x a b, , , , , , , ,l r m l m r 0
and c, thus giving many combinations of values which all describe the
data comparably well. In order to reduce the number of parameters, a
few symmetry arguments need to be considered. The symmetry of the
initial distribution function does not prefer any direction (left or right),
which means that the broadening (represented by the parameters wl
and wr), the height (represented by Al and Ar and the shift (represented
by the parameters a c, and x0) of the peaks moving left and right should
be same, yielding to = = =w w w A A,l r out l r and = −a c. The same
symmetry argument may be employed to set the parameter =b 0.
Assuming a constant velocity for the shifting of the peaks (an as-
sumption which will be examined later), the shift x0 may be inter-
polated from the excitation energy profile at the timesteps of 0.2 fs and
1.8 fs. With these assumptions, the number of free parameters can be
reduced and a reliable fit becomes possible. The resulting fitting curves
are shown as dotted lines in Fig. 2. The central data point at

=x 51 Å represents the remainder of the initial δ-peak and is caused by
electrons with initial k-vectors pointing perpendicular to the transport
direction, which have not undergone any scattering with other elec-
trons yet and therefore cannot contribute to energy transport in the x-

direction. This data point, which clearly falls out of the observed
gaussian peaks, was therefore excluded from the fits. From wout, the half
width xΔ can be evaluated by =x wΔ 2 2·ln(2) · out. In Fig. 3, the width

xΔ obtained this way is plotted versus time in a double logarithmic
manner for different initial excitation temperatures.

For a purely diffusive transport, the width should satisfy the equa-
tion

=x D t(Δ ) 2 ·2 (9)

yielding a slope of 1/2 in a double logarithmic plot of xΔ vs. t.
Therefore, linear fits were performed to the data displayed in Fig. 3,

yielding the slopes listed in Table 1. It is seen that the obtained values
exhibit rather good agreement with the diffusive prediction of 0.5. It
should be stressed at this point, however, that this does not imply a real
diffusive transport, which would require many electron–electron colli-
sions as a necessary prerequisite, but rather constitutes the observation
that the mixed dispersive and collision induced spread of excitation
calculated by the BTE can at least phenomenologically be treated in
terms of a diffusion equation.

From the intercept with the vertical axis at =t t0, a value of the
apparent diffusivity D that should be used in such an approximative
treatment can be estimated. In order to arrive at more realistic values,
additional fits were performed where the slope was fixed to 0.5. the
resulting fit curves are indicated as dotted lines in Fig. 3. The resulting
“apparent diffusivity” extracted from these fits is shown as a function of
temperature in Fig. 4. The first observation is that the apparent diffu-
sion coefficient obtained this way, ranging between =D 17 cm2/s and

=D 25 cm2/s, is of the same order as the value of =D 20 cm2/s that
was used in our earlier work employing the diffusive transport model
[6]. Second, it is found that the apparent diffusivity slightly increases
with increasing electron temperature of the initial excitation. This
finding may be rationalized in terms of

Fig. 2. Excitation energy contained in different cells versus cell depth x for different
timesteps. The data were normalized to the initial excitation energy fed into the central
cell at =t 0 and =x 51 Å. The lines represent a three-gaussian fit to the data as explained
in the text. Note, that data points at =x 51 Å have been excluded from the numerical
fitprozedure.

Fig. 3. Width wout of the outer peaks as given from the triple-gaussian fits to the data
shown in Fig. 2 plotted vs time for several electron temperatures in the initial cell. Dotted
lines: linear fits to the data with a fixed slope of 0.5. The errors bars are obtained from the
standard deviation of the fitting parameter wout (the Eq. (8) and following text) as given
by the fitting function.

Table 1
Slopes obtained from fits to the data in Fig. 3.

Inital Temperature (K) Slope

3000 0.45
5000 0.52
7000 0.47
10000 0.51
15000 0.53
20000 0.54
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• higher average energy of the excited electrons associated with
higher velocities

• larger velocity difference between slowest and fastest electrons
leading to stronger dispersion.

• higher electron–electron scattering rate since more k-vectors are
available for collisions.

3.2. Isotropic peak excitation

In these calculations, the excitation was equally distributed over all
available k-states with energies in a small range =EΔ 0.02 eV around a
specific electron energy E. Six peak energies of =E 6.0, 6.5, 7.0, 7.5, 8.0
and 8.5 eV were chosen, which correspond to excitation states with
excess energies between 1.0 and 3.5 eV above the Fermi level. Ideally,
one would want to include a large number of k-vectors with the same
absolute value but randomly oriented directions in order to describe a
truly isotropic excitation. Due to the discretization of the k-lattice,
however, only specific k-vectors are allowed within the energy range

EΔ around E. Thus, the resulting k-distributions are not completely
isotropic, and possible directions of k-vectors belonging to occupied
states depend on the chosen energy E. The resulting occupation char-
acteristics will in the following be referred to as “quasi-isotropic” and
are shown in Fig. 5.

It is seen that the initial configuration for excitation at 6.0, 6.5 and
7.0 eV clearly differs from that at 7.5, 8.0 and 8.5 eV, respectively. For 6
to 7 eV, all of the occupied k-vectors are oriented nearly diagonal to the
transport direction, whereas for 7.5 to 8.5 eV half of the occupied k-
vectors are orientated rather perpendicular and parallel to x-axis. To

calculate the total excitation energy density corresponding to the start
configuration, just the states above the Fermi level have to be con-
sidered by multiplying the different occupation numbers with the cor-
responding energy. For the following timesteps, the excitation energy
spread is again calculated from the modification of the distribution
function f.

The resulting excitation energy profile is shown as a function of time
in Fig. 6 for an initial peak excitation at 6.0 and 7.5 eV, respectively. At
0.8 fs after a 6 eV excitation, one finds that the energy profile is not
centered anymore, but has spread into two symmetrically shaped peaks
moving away from the original point of excitation. In case of the 7.5 eV
excitation, on the other hand, the distribution remains centered around
the initial spot of excitation. Although not shown, we note that the
profiles calculated for 6.5 and 7 eV excitation resemble that displayed
in Fig. 6a, while the ones calculated for 8.0 and 8.5 eV are similar to the
profile displayed in Fig. 6b. The strong decay of the energy density at
the point of the initial excitation which is observed in Fig. 6 can be
rationalized in terms of the direction of the inital k-vectors belonging to
the start configuration as displayed in Fig. 5. In the context of the
dispersive ballistic energy transport, the important quantity is the
kx-component of an excited electron’s k-vector along the transport di-
rection. For 7.5 eV, 8.0 eV and 8.5 eV excitation, there are electrons
with initial k-vectors featuring kx-components close to zero. These
electrons can only contribute to the energy transport along the x-di-
rection via collisions with other electrons, thereby generating the cen-
tered peak visible in the distribution of Fig. 6b. Those k-vectors which
are essentially oriented along the transport direction, on the other hand,
generate the two additional peaks moving away from the original point
of excitation, which are clearly visible both in Fig. 6a and b. For the
lower energy excitations, all excited electrons start with a considerable
kx-component along the transport direction, so that the central peak is
missing in Fig. 6a.

Again, three gaussian functions are fitted to the excitation profiles
as indicated by the dotted lines, with the goal to obtain the width of the
peaks moving away from the spot of initial excitation. The obtained
widths are shown as a function of time in Fig. 7. For 7.5–8.5 eV ex-
citation, the widths again follow the t dependence given by Eq. 9. For
6.0–7.0 eV excitation, on the other hand, the broadening of the widths
does not follow the time-dependence typical for diffusive transport very
well. In addition, the uncertainty is extremely high especially in the first
sub-femtosecond regime after the initialization, as the peaks in the plot
are not really separable from each other.

Straight line fits to these data yield the slope values listed in Table 2,
which exhibit a larger scatter but are still centered around the value of
0.5 as predicted by Eq. 9. Fitting linear curves to the data with a fixed
slope of 0.5, the obtained intersections with the =t t/ 10 axis are used to
calculate diffusivities as described above. The resulting values are
shown in Fig. 8.

Noticeable is the rise from about 10.6 to 15.2 cm2/s between 6 and
7 eV excitation, in contrast to the decrease from 27.6 to 24.8 cm2/s
from 7.5 to 8.5 eV excitation. Particularly the jump between the two
groups clearly shows the strong effect of the different symmetry of the
initial k-vector distribution onto the calculated excitation energy
transport characteristics.

3.3. Anisotropic excitations

In order to get a better insight into the influence of the primary k-
vector orientation, the calculations were repeated for a completely
anisotropic excitation distribution, which was realized in form of two
different initial k-vector distributions. First, eight initial k-vectors were
orientated nearly perpendicular to the x-axis (green points in Fig. 9),
where the kx component is close to zero and therefore both the ballistic
transport along this axis as well as dispersive broadening should be
greatly reduced. In the second case, all excited k-vectors were or-
ientated nearly along the x-axis (blue points in Fig. 9), thereby fully

Fig. 4. Apparent diffusivities estimated from the broadening of the excitation energy vs.
depth spectra as a function of the initial excitation temperature.

Fig. 5. Quasi-isotropic start distribution of k-vectors for peak excitations with different
electron energies. Up to an energy of 5 eV (Fermi level, marked with green line), all states
are fully occupied, for energies above 5 eV, just the states marked with a star are partly
occupied with =f 0.125.
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contributing to the ballistic transport and dispersion. Both cases were
calculated for three different peak excitation energies.

For each case, one characteristic excitation energy profile is shown
in Fig. 10a and b, respectively.

In case 1 (Fig. 10a) (initialization perpendicular to the transport
direction), the excitation energy profile shows one peak symmetric to
the point of the initial excitation, the width of which grows with time.
Of note is the fact that already after 0.2 fs there is a small amount of
excitation visible at about 12Å away from the original feeding point,
corresponding to a transport velocity of about 60Å/fs. In comparison,

the highest initial k-vector component along the transport direction is
about 0.54 Å−1, corresponding to a ballistic velocity of 6.26 Å/fs. Ob-
viously, electron–electron collisions take place already during the first
0.2 fs, where electrons are scattered into the transport direction. A
careful analysis of the curve plotted for =t 1.8 fs reveals that the peak
shows a kind of shoulder, which cannot be represented by a single
gaussian. This shoulder originates from a rising number of scattered
electrons with kx-components into transport direction, again building
one peak moving to the right and one peak moving to the left, re-
spectively. Therefore, the triple gaussian function (Eq. (8)) is again
employed to fit the data. The widths obtained that way are plotted in
Fig. 11.

Except the point at 0.4 fs obtained for 8 eV excitation, the data can
be reasonably fitted by straight lines with the slopes listed in Table 3.
Fitting again straight lines with a fixed slope of 0.5, on the other hand,
one finds a systematic deviation towards higher slope at larger times.
From the corresponding lines indicated in Fig. 11a, however, we can
still calculate effective diffusion coefficients which are plotted in
Fig. 12.

For case 2 (initialization in transport direction) only one peak can
be seen, which moves to the right as expected from the initial k-vectors
pointing into the positive x-direction. After 0.8 fs, the peak is no longer
symmetric but shows a shoulder at the left side. The existence of ex-
citation energy at <x 51 Å(where the original excitation is fed into the
system) is clear evidence for the action of electron–electron collisions,
as there are initially no excited electrons with a velocity component in
the negative x-direction. In order to consider this shoulder, the fol-
lowing two-gaussian fit function was employed:
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From the corresponding fits, the widths wr of the main peaks on the
right hand side were determined and are shown in Fig. 11. In the first
femtosecond, the slopes for all energies seem to be significantly larger
than 0.5, so that no apparent diffusivity can be estimated for this time
interval. In fact, a purely ballistic transport of the excited electrons
would yield a slope of 1.0, which indeed seems to be closely approxi-
mated during the first femtosecond. At later times, however. the data
points are better approximated by a linear fit with the slope 0.5, al-
lowing again the determination of effective diffusion coefficients as
displayed in Fig. 12. It is seen that the diffusivity values induced by an
anisotropic peak excitation again range between 6 and 23 cm2/s and
show a consistent increase with increasing peak energy. Interestingly,

)b()a(
Fig. 6. Excitation energy contained in different cells versus cell depth x for different times after a quasi-isotropic peak excitation at =E 6 eV (a) and =E 7.5 eV (b). The data were
normalized to the initial excitation energy fed into the central cell at =t 0 and =x 51 Å. The lines represent a three-gaussian fit to the data as explained in the text.

Fig. 7. Half widths of the outer peaks in the excitation profile plotted versus the time for
the different initial excitation energies. Again, the error bars are obtained from the
standard deviation of the parameter wout as given by the fitting procedure. The dotted
lines represent least square fits to the data with the slope being fixed at 0.5 (see text).

Table 2
Slopes obtained from fits to the data in Fig. 7.

Peak excitation energy (eV) Slope

6.0 0.36
6.5 0.48
7.0 0.69
7.5 0.47
8.00 0.50
8.5 0.47
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the influence of the initial k-vector orientation appears to be rather
weak. In view of this finding, it is of interest to take a closer look at the
drift velocity of the excitation peaks found in Figs. 2, 6 and 10. As an
example, we show the position of the peak maxima identified in
Fig. 10b as a function of time in Fig. 13.

It is obvious that the excitation is moving through the system with a
constant drift velocity, which from the slope of the indicated straight
line fit is determined as =v 14D Å/fs. Interestingly, this value is found
to be essentially independent of the peak excitation energy. In parti-
cular, the observed drift velocity does not reflect the initial k-vectors of
the excited electrons added to the system at =t 0, which correspond to
electron velocities of 14.5, 15.6 and 16.8Å/fs at peak energies of 6, 7
and 8 eV, respectively. In contrast, the value appears to correspond
nicely with the Fermi velocity =v 13.9F Å/fs. If the same analysis is
repeated for the data displayed in Figs. 6, 7 and 11, however, one finds
drift velocities in the range 6.3…8.5Å/fs for anisotropic excitation
perpendicular to the transport direction and 9.0…10.7Å/fs for a quasi-
isotropic peak excitation. In all cases, the drift velocity does not show
any significant dependence on the peak excitation energy outside the
experimental error. For thermal excitation, we find drift velocities

ranging from 9.5 to 7.3Å/fs, which exhibit a consistent decrease with
increasing excitation temperature. Note that all of these values are
significantly below the Fermi velocity of the model system employed
here. At present, we therefore do not have a simple explanation for the
observed drift velocity.

4. Conclusion

We present a microscopic model describing the transport of elec-
tronic excitation energy in a generic metallic system via solution of the
Boltzmann transport equation. The results show that both the random
transport via electron–electron scattering and more directional trans-
port components induced by ballistic motion of excited electrons need
to be taken into account to understand the extremely fast transport of a
localized excitation away from its original point of generation. These
results are important particularly in view of the transient excitation
generated by a localized particle impact onto a solid surface. As the
only material parameters entering the description are the Fermi energy
and the electron density, the model should be applicable to all metals
where the assumption of a free electron gas is valid. In these cases,

Fig. 8. Diffusivity values obtained from the fit curves dis-
played in Fig. 7 for quasi-isotropic peak excitation at dif-
ferent peak energies.

Fig. 9. Initial k-vector distributions for anisotropic peak
excitation at different peak energies. Up to an energy of 5 eV
(Fermi level, marked with green line), all states are fully
occupied, for energies above 5 eV, just the states marked
with a star are partly occupied with =f 0.125.
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electronic excitation generated via electronic stopping of either the
projectile itself or target atoms recoiling after (elastic or inelastic)
collisions with the projectile is originally localized within a distance of
only a few Angstroms around the moving particle. The further fate of
the bombarded solid then critically depends on the speed at which these
excitations are spread in the system. In cases where the electronic ex-
citation remains localized for a long enough time to allow significant
nuclear motion, it may, for instance, strongly influence the excitation
state of particles released (“sputtered”) from the surface as a con-
sequence of a projectile-induced atomic collision cascade. In other
cases, it may act to heat the lattice via electron–phonon coupling,
thereby leading to so-called “electronic” sputtering even in high energy
impact events where the initial energy transfer is completely dominated
by electronic excitation. In this context, the electronic transport is so far
practically always modeled in terms of a diffusive approach, using the
effective diffusivity of the excitation energy as a free fitting parameter.
The present data allows to go one step beyond the simple diffusion
approach, but is far too computationally expensive to permit a full trace
of the electronic excitation within an atomic collision cascade, which
typically extends over spatial dimensions of the order of 10 nm and

times of several picoseconds. Therefore, the analysis presented here
appears helpful since it allows to judge the validity of and error in-
troduced by the diffusive treatment on one hand, but at the same time
provides a means to estimate the effective diffusivity parameter which
should be introduced into such an approximative model. More speci-
fically, the results obtained here lend more credibility to our previous
selection of this parameter, which was based on somewhat shaky ar-
guments involving approximative dependencies of electron mean free
paths on parameters like electron and lattice (phonon) temperature, in
connection with the assumption of an instantaneously elevated lattice
temperature after a projectile impact. In that respect, we feel that the

)b()a(
Fig. 10. Excitation energy contained in different cells versus cell depth x for different times after an anisotropic peak excitation at =E 8 eV with the initial k-vectors oriented per-
pendicular to (a) and along (b) the transport direction. The data were normalized to the initial excitation energy fed into the central cell at =t 0 and =x 51 Å. The lines represent a three-
gaussian (a) respectively two gaussian (b) fit to the data as explained in the text.

)b(a)(
Fig. 11. Widths of the gaussian peaks fitted to the excitation energy profiles in Fig. 10 versus time. x0 and t0 are chosen as before. Again, the error bars are obtained from the standard
deviation of the parameter wout as given by the fitting procedure.

Table 3
Slopes obtained from fits to the data in Fig. 11.

Peak energy (eV) Slope

6.0 0.39
7.0 0.42
8.00 0.48
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data obtained here, even for the restricted system that is presently
tractable, provide a useful basis for further insights and developments
regarding the transport of localized electronic excitations in solids.
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