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Optimizing the charging schedule 

of Battery Electric Vehicles to 
mitigate environmental impacts 

1 Introduction and Structure  

The energy sector and the transport sector were the largest and third-largest emitters of green-
house gases (GHG) in Germany in 2020 (Umweltbundesamt 2021). To reduce the emissions 
in the energy sector, it is forecasted that future electricity generation will be based on fluctuat-
ing renewable energy sources (Baumann et al. 2019). Both wind and solar energy are 
dependent on the local meteorological conditions. Consequently, with the expansion of renew-
able energies, the electricity market is increasingly determined by dynamic parameters that 
can hardly be influenced. In the transport sector, battery electric vehicles (BEVs) have great 
potential for reducing GHG emissions (Marmiroli et al. 2018). Detailed life cycle assessments 
(LCAs) for the environmental impacts of BEVs compared to internal combustion engine vehi-
cles already exist. Those assessments indicate that the climate change impact of a BEV is 
lower than that of an internal combustion engine vehicle, with the use phase presenting a large 
emission reduction potential (Bauer et al. 2015; Marmiroli et al. 2018). The main determinators 
of emissions in the use phase are the emissions attributed to the charging electricity, which 
can vary depending on the energy system configuration (Marmiroli et al. 2018). Marmiroli et al. 
(2018) analyzed 44 LCA studies examining the environmental impacts of electrified vehicles, 
with the global warming impact varying from 27.5 g CO2-eq/km to 326 g CO2-eq/km compared 
to an internal combustion engine with 308 g CO2-eq/km (Girardi et al. 2015). The authors found 
that 70% of the variability in the results is attributed to differences in the chosen electricity 
generation scenario. Furthermore, Cox et al. (2018) claim electricity generation is the largest 
source of uncertainty in the environmental assessment of BEVs. Against this background, sev-
eral further studies investigate the influence of different electricity generation scenarios 
(Ehrenberger et al. 2019; Filote et al. 2020; Kawamoto et al. 2019; Malandrino et al. 2020; 
Mendoza Beltran et al. 2018) and compare the electricity generation of different countries or 
evaluate future electricity generation scenarios in contrast to current electricity generation. 
They examine the composition of electricity generation based on mean values for the temporal 
and geographical references considered. However, due to the expansion of energy conversion 
technologies based on fluctuating renewable energy sources, the LCA results of BEVs will also 
be increasingly dependent on the time of charging. The current use of average, static electricity 
market data to draw up an LCA (Kiss et al. 2020; Munné-Collado et al. 2019; Nordelöf et al. 
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2014) will increase the existing uncertainty (Cox et al. 2018; Marmiroli et al. 2018). To respond 
to the new requirements of increasing fluctuations, a suitable method is needed that considers 
the composition of the purchased electricity in a time-differentiated manner. 

Facing the influence of fluctuating electricity generation, several studies use an hourly defined 
electricity supply when it comes to the environmental assessment of BEVs. Baumann et al. 
(2019) provide an approach that addresses the operational composition of electricity genera-
tion and show that the climate change impact of a BEV depends primarily on the charging time 
selected. Rovelli et al. (Rovelli et al. 2021) investigate based on an hourly defined model how 
the BEV’s interdependence with the electricity grid influences BEV environmental impacts. 
Having studied an hourly defined model of electricity generation in Hungary, Kiss et al. (Kiss 
et al. 2020) point out that the variability of the environmental impacts of electricity generation 
on a daily and seasonal basis increases with the rising share of renewable energy sources. 
Rupp et al. (Rupp et al. 2019) apply different charging scenarios to determine how charging 
time influences the global warming impact of electrified city buses. Based on a quarter-hourly 
defined carbon footprint of electricity generation, the authors highlight how charging time af-
fects the global warming impact compared to a combustion engine bus. Rangaraju et al. 
(Rangaraju et al. 2015) perform a case study with five BEVs charged according to peak or off-
peak charging profiles and conclude that off-peak charging reduces the environmental impact 
of BEVs, based on hourly defined electricity assessment. The chosen electricity mix is, how-
ever, characterized by a predominant share of nuclear energy. Consequently, the results 
cannot be transferred to regional electricity mixes with high shares of fluctuating energy 
sources, or to an electricity generation scenario after nuclear phase-out. All mentioned studies 
highlight the charging time’s influence on the final environmental impact of a BEV. Neverthe-
less, no study applied hourly optimized charging profiles based on real-world whereabouts 
profiles and hourly assessed electricity generation. The research question of this paper is thus: 
How can the BEV charging profiles’ mitigation potential on environmental impacts be quantified 
and optimized?  

To answer the research question, we develop a mixed-integer linear programming (MILP) 
model based on hourly defined environmental impacts of the electricity generation mix and 
representative user behavior in Germany. In this manner, the uncertainty of using yearly mean 
values is overcome. To face the uncertainty of future electricity generation, the approach is 
applied to prospective electricity generation scenarios for 2025, 2030, and 2050. A goal of the 
study is hence to calculate optimized charging schedules to minimize environmental impacts. 
Studies examining the environmental impact of a BEV imply that the electric energy supply for 
charging the battery in the use phase and the production of the battery is the main contributor 
to the BEV's global warming impact, and the vehicle body causes a minor impact (Bauer et al. 
2015; Baumann et al. 2019; Cox et al. 2018; Marmiroli et al. 2018; Nordelöf et al. 2014). Since 
it can be assumed that due to a longer life time and reduced production emissions, the contri-
bution of battery production to the environmental impacts of the BEV will decrease in the future 
(Hoekstra 2019), the question of whether a BEV has a lower global warming impact than an 
internal combustion engine vehicle depends significantly on the global warming impact of the 
fluctuating electricity generation itself, that provides the charging energy in the use phase (Cox 
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et al. 2018; Lombardi et al. 2017; Marmiroli et al. 2018; Mendoza Beltran et al. 2018; 
Petrauskienė et al. 2020). In this study, we therefore concentrate on modeling the charging 
energy, and exclude the production and end-of-life phase of the BEV and battery from the 
modeling. 

In this study the focus is on the potential of mitigating GHG emissions, as it is the focus of 
many studies analyzing the environmental impacts of BEVs (Marmiroli et al. 2018). However, 
the optimization is also performed for the remaining 15 environmental impact categories to 
provide the basis for a holistic decision process. Since many of the environmental impact cat-
egories are presumably in a conflicting relationship with each other, there is potentially no 
solution for holistically minimizing the environmental impacts of a charging profile. To deter-
mine a solution in multi-criteria decision making (MCDM) as it is in the context of independent 
environmental impact categories, a variety of approaches have been applied in the context of 
electricity generation (Kügemann/Polatidis 2020; Lee/Chang 2018; Martín-Gamboa et al. 
2017). Furthermore, Kägi et al. (2016) and Zanghelini et al. (2018) point out a growing interest 
in linking LCA with MCDM. Another approach is to use either directly aggregated endpoint 
categories that deal with areas of protection (human health, ecosystems, and resources avail-
ability) or a fully aggregated single score. The use of aggregated indicators is controversially 
discussed, as the grouping into three areas of protection or a single score increases the degree 
of uncertainty of the results and is afflicted by a subjective weighting (Kägi et al. 2016; Kalbar 
et al. 2017). Furthermore, in an aggregated assessment of the charging profile, the results 
cannot be attributed to the contributions of individual impact indicators. Since the weighting 
cannot be done objectively, the ISO 14040/44 standards refer to the use of only the midpoint 
impact assessment indicators (Kägi et al. 2016). 

Instead of focusing on a method that minimizes the overarching environmental impacts, which 
could lead to ambiguous results, we aim to analyze the competing impact categories by mini-
mizing the environmental impacts of a charging profile. Accordingly, the optimized profiles are 
evaluated regarding all other impact categories to measure the deviation between the environ-
mental objectives when it comes to minimizing the environmental impact of charging a BEV. 
With this approach, this study aims to add a holistic perspective on conflicting and non-con-
flicting impact categories to the debate about the environmental impacts of BEVs and electricity 
generation in general. 
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