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Kapitel 1

Einleitung

Der Begriff Ereignisanalyse bezeichnet eine Reihe statistischer Verfahren, die
zur Untersuchung von Zeitintervallen zwischen aufeinander folgenden Ereig-
nissen oder Zustandswechseln verwendet werden. Die von den Untersuchungs-
einheiten - z.B. Parteien, Personen, Staaten oder Regierungen - eingenommen
Zustande sind in der Regel abzéhlbar, also nicht unendlich. Es handelt sich
also um einen diskreten Zustandsraum. Diese Zustédnde oder Ereignisse kon-
nen zu jedem beliebigen Zeitpunkt eintreten. Die Zeit, mit der wir es zu tun
haben ist folglich stetig.

Die Ereignisanalyse ist eine Methode mit einem breiten Anwendungsfeld.
Untersucht werden kann die Zeitdauer bis zu einem Regierungswechsel in
Land z oder der Wechsel der Parteipriferenz bei Person y. Uberlebenszeiten
von Patienten in medizinischen Studien, beispielsweise nach Herzoperatio-
nen oder Chemotherapie, die Dauer von Lernprozessen in der Psychologie,
die Zeitspanne bis zu einem transregionalen Umzug in der raumlichen Mobi-
litdtsanlyse, die Dauer der “Herrschaft” eines Lowen {iber sein Rudel in der
Biologie oder die Dauer von Arbeitslosigkeit in 6konomischen Untersuchun-
gen sind nur ein kleiner Ausschnitt moglicher Anwendungsfelder.

Die Statistik bietet heute eine grosse Anzahl an Mdglichkeiten zur Analyse
von Ereignisdaten. Sie umfassen:

e Deskriptive Verfahren: Sterbetafel-Methode oder Kaplan-Meier- Schét-
zung

e Semiparametrisches Regressionsmodell von Cox

e Parametrische Verfahren mit und ohne Zeitabhéangigkeiten: Exponen-
tialmodell, Piecewise-Constant-Modell, Gompertz- (Makeham-) Modell,
Weibull-Modell, log-logistisches-Modell
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Da die Ereignisanalyse in den letzten zwei Jahrzehnten sehr eng mit der Le-
bensverlaufsforschung verbunden gewesen ist, stehen dort die Verdnderung
und die Interaktion der verschiedenen Dimensionen des Lebenslaufs im Vor-
dergund. Es hat sich gezeigt, dass die Methoden der Ereignisanalyse beson-
ders geeignet sind, folgende drei konzeptionelle Dimensionen zu beschreiben:

1. Selbstreferentielle Prozesse: Der Verlauf der Entwicklung eines In-
dividuums in einem bestimmten Bereich bezieht sich immer auf in die-
sem Lebensbereich bereits kummulierte Erfahrungen. Die Vorgeschich-
te der Person ist also immer in die gerade aktuellen Entscheidungen
involviert. Vorerfahrungen und bereits in der Vergangenheit getroffe-
ne Entscheidungen begrenzen dabei den Spielraum der in der Zukunft
moglichen Ereignisse.

2. Multidimensionale Prozesse: Der Lebensverlauf entwickelt sich in
mehreren, wechselseitig aufeinander bezogenen Bereichen. Jeder Be-
reich ist ein Teilprozess des Lebensverlaufs, so beispielsweise die Bil-
dungskarriere, die Krankengeschichte, der Familienverlauf, der Erwerbs-
biographie oder das bisherige Wahlverhalten. Diese verschiedenen Le-
bensbereiche sind dabei in der Regel nicht unabhdngig voneinander.
Ein Beispiel hierfiir ist das Zusammenspiel von Erwerbsprozess und
Bildungskarriere oder Krankengeschichte. Der Lebensverlauf setzt sich
hier also nicht aus dem selbstreferentiellen Bezug auf frithere Zusténde
zusammen, sondern durch die parallele Interdependenz vieler verschie-
dener Lebensbereiche in der Vergangenheit. Auch die unterschiedliche
Gewichtung der einzelnen Bereiche im Hinblick auf das Alter einer
Person ist dabei nicht zu vernachléssigen. So ist ersichtlich, dass die
Krankengeschichte fiir einen jugendlichen oder “Twenty-something” im
Normalfall weniger bedeutend ist, als fiir eine Person jenseits der 70.

3. Gesellschaftliche Mehrebenenprozesse: Der Lebensverlauf ist in
solche hochgradig differenzierten Prozesse eingebettet. So haben bei-
spielsweise Einfluss:

e Andere Personen mit denen mehr oder weniger enge Interaktions-
beziehungen bestehen, beispielsweise Eltern, Lebenspartner, Kin-
der, Freunde etc.

e Verschiedene soziale Gruppen deren Mitglied man ist, also elterli-
che Familie, eigene Familie, Sport- oder sonstige Vereine, Bezugs-
gruppen, “Peer-Groups”

e Verdnderungen gesellschaftlicher Institutionen und sozialer Orga-
nisationen wie staatliche Institutionen, Arbeitsorganisationen etc.

4
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o Wandel der Lebensbedingungen, beispielsweise soziale oder regio-
nale Kontexte.

o Generelle Rahmenbedingungen, so die historisch gewachsenen, sich
verandernden gesellschaftlichen Strukturen, die die sozialkulturel-
len, politischen, rechtlichen, kulturellen und 6konomischen Rah-
menbedingungen fiir die Lebensorganisation darstellen.

Zusammengefasst lasst sich sagen, dass es sich bei Verlaufen (z.B. Lebensver-
laufe) um komplexe, nichtlineare Prozesse handelt, die durch Selbstreferenz,
zeitlich lokale Interdependenz sowie vertikale Interdependenz zwischen ver-
schiedenen sozialen Prozessen beeinflusst werden.




Kapitel 2

Grundlagen

2.1 Regression fiir Langschnittdaten?

Eine Annadherung an die Analyse von Ereignisdaten iiber das Standardverfah-
ren der multiplen Regression ist leider nicht unproblematisch. Nach Allison
(1984) fithren die bei Ereignisdaten vorhandenen Zensierungen und zeitver-
anderlichen unabhéngigen Variablen zu ernsten Problemen, wenn man sta-
tistische Standardverfahren anwenden mochte. Solche Verfahren koénnen zu
einem starken bias, oder zu enormen Datenverlust fiithren. Als Beispiel fiir
diese Probleme nennt Allison eine Studie iiber Ex-Héftlinge: In dieser Studie
wurde untersucht, ob Personen die aus dem Gefangnis entlassen wurden, in
einem KEin-Jahresintervall wieder im Gefangnis landen. Obwohl das exakte
Datum der Verhaftungen der in diesem Jahr riickféllig gewordenen bekannt
war, wurde fiir den gesamten Zeitraum ein Dummy als abhéngige Variable
gebildet, der angab, ob das entsprechende Individuum verhaftet wurde oder
nicht. Einmal davon abgesehen, dass die Verwendung einer multiplen Re-
gression bei dieser Art von abhéngiger Variable fragwiirdig erscheint (Stich-
wort logistische Regression), nimmt man durch die (willkiirlich) Bildung eines
Dummys viel Informationsverlust in Kauf. Beispielsweise lassen Individuen,
die direkt in der ersten Woche oder am ersten Tag nach der Entlassung wie-
der riickféllig werden theoretisch anders beschreiben, als jemand der nach 11
oder 12 Monaten riickfallig wird. Die Lange des Zeitintervalls von Freilassung
bis zur nichsten Verhaftung zu nutzen ist aber auch nicht unproblematisch,
da fiir alle Personen, die 12 Monate nach Entlassung nicht wieder im Ge-
féngnis gelandet sind die Informationen zensiert sind. Es zeigt sich, dass eine
grosse Anzahl von Zensierungen zu einem grossen bias fithrt. Selbst wenn
kein einziger Fall zensiert wire, wiirde sich das Problem, zeitverdnderliche
unabhéngige Variablen zu integrieren, als schwerwiegend erweisen.
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2.2 Unterscheidungen: A vs. B

2.2.1 Distributional- vs. Regressionsansatze

In den Anfiangen widmete sich die Ereignisanalyse vornehmlich der Vertei-
lung der Zeit vor einem Ereignis oder der Zeit zwischen zwei Ereignissen. Wie
wir noch sehen werden, ist dies die Hauptidee hinter der Life-Table Methode
. Mit der Weiterentwicklung der Ereignisanalytischen Verfahren ver-
schob sich der Focus immer mehr auf die Regressionsmodelle, in denen das
Auftreten eines Ereignisses von der Linearkombination einer oder mehrerer
erkldrender Variablen abhangt.

2.2.2 Repeated vs. nonrepeated events

In einigen Wissenschaften ist das interessierende Ereignis nicht wiederhol-
bar. So interessiert in der Biostatistic oftmals der Tod des Individuums, dass
natiirlich nur einmal sterben kann. In den Ingenieurwissenschaften ist die Le-
benszeit eines Bauteils von Interesse, das ebenso nur einmal “kaputt gehen”
kann, und danach ausgetauscht wird. Anders liegt der Fall in den Sozialwis-
senschaften. Auch hier gibt es Ereignisse, die nur einmalig auftreten konnen,
so wie die Geburt des ersten Kindes oder die erste Heirat. Aber wie man sich
an dieser Stelle schon denken kann, ist es durchaus moglich in seinem Leben
mehr als ein Kind zu bekommen oder 6fter als einmal zu heiraten. Diese Er-
eignisse sind also wiederholbar. Diese Modelle sind also fiir uns interessanter,
allerdings auch komplizierter.

2.2.3 Einzelne Ereignisse vs. multiple Falle von Ereig-
nissen

In manchen Analysen ist es nicht problematisch, alle Ereignisse gleich zu
behandeln. So ist es beispielsweise in einer medizinischen Studie moglich,
nur zwischen “Patient hat {iberlebt” und “Patient hat nicht {iberlebt” zu un-
terscheiden. Sollte die Fragestellung allerdings spezieller sein, dann ist es
sinnvoll, auch hier zu unterscheiden. Ist ein Patient beispielsweise nach ei-
ner neuen Chemotherapie an den Folgen der Behandlung, an Krebs oder
an einer damit nicht in Verbindung stehenden Krankheit wie einem Schlag-
anfall oder Herzinfarkt verstorben, oder ist die Todesursache vollkommen
anders wie ein Verkehrsunfall oder ein Verbrechen? In diesen Féllen spricht
man von “konkurrierenden Risiken” oder Competing Risks. Sofern diese von-
einander unabhéngig sind, ist ihre statistische Behandlung einfach: Bei der
Untersuchung der Uberginge in einen bestimmten Zielzustand werden alle
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anderen Ubergiinge als Zensierungen behalten, also als Beendigung der Be-
obachtungsdauer, ohne dass das untersuchte Zielereignis eingetreten wére.
Sind die verschiedenen Zielzusténde jedoch nicht unabhéngig (z.B.: Arbeits-
lose entscheiden sich umso mehr fiir eine Weiterbildung, je ldnger sie keinen
Job gefunden haben), ist dieses Verfahren nicht zuléssig. Eine addqute sta-
tistische Behandlung solcher abhingiger Risiken ist nach Mayerhofer noch
nicht moglich. In der Biostatistik wurden Modelle fiir konkurrierende Risi-
ken (competing risks) entwickelt. Auch diese Modelle sind komplizierter als
das Basismodell.

2.2.4 Parametrische vs. nichtparametrische Methoden

In der Biostatistik sind nichtparametrische Verfahren sehr beliebt, die kaum
oder keine Annahmen iiber die Verteilung der Eintrittszeitpunkte der Er-
eignisse machen. In der Sozialwissenschaft und den Ingeniuerwissenschaften
sind dagenen parametrische Verfahren, die genaue Angaben {iber diese Vertei-
lung macht, beliebt. Um diese Verteilung zu beschreiben, bedient man sich
besonderer Verteilungen aus der Mathematik, so beispielsweise der Gom-
pertzverteilung, der Weibullverteilung oder der Exponentialverteilung. Ei-
ne Briicke zwischen diesen beiden Anséitzen wird vom proportional hazards
Modell nach Cox (4.2)geschlagen. Dieser Ansatz ist insofern parametrisch,
als er ein Regressionsmodell mit funktionalem Term angibt, und in sofern
nicht-parametrisch, als es keine genauere Annahme iiber die Verteilung des
Eintretens der Ereignisse trifft.

2.2.5 Diskrete vs. stetige/kontinuierliche Zeit

Modelle die annehmen, dass die Zeit des Eintretens des Ereignisses exakt
gemessen ist, sind als continous-time modells oder Modelle mit stetiger Zeit
bekannt. In der Praxis sind diese Zeitpunkte immer diskret gemssen, egal
wie klein die Intervalle sind. Allerdings ist es moglich, bei feinen Intervallen
eine kontinuierliche Messung zu unterstellen. Sind die Intervalle in Mona-
ten oder Jahren gemessen, ist es angebrachter von einer diskreten Messung
auszugehen.

2.3 Begriffe

Um zu verstehen, welche Ideen hinter der Ereignisanalyse stehen, ist es un-
umgénglich, einige zentrale Grundbegriffe zu definieren:
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2.3.1 Zustande - State

Unter Zustdnden verstehen wir die Auspréagungen der abhéngigen Variablen.
Dafiir miissen wir festlegen, welche Zustdnde wir unterscheiden wollen. An
jedem Zeitpunkt nimmt jede Person exakt einen Zustand ein. Z.B. unter-
scheidet man in der Untersuchung von Heiratsverlaufen

e Nie verheiratet
e Verheiratet
e Geschieden

e Verwitwet

Das Set der moglichen Zustdnde wird auch Zustandsraum oder state space
genannt.

2.3.2 FEreignis - Event

Unter Ereignissen versteht man Verdnderungen von einem Zustand in einen
anderen, also von einem Ursprungszustand (origin state) in einen Zielzustand
(destination state). Erwdhnenswert ist, dass die Zahl der Ereignisse von der
Zahl der Zustédnde abhingt. Wenn nur zwischen verheiratet und verwitwet
unterschieden wird, gibt es das Ereigniss “Scheidung” sozusagen nicht.

2.3.3 Verweildauer - Duration

Die Verweildauer gibt an, wie lange ein Individuum in einem Zustand ver-
harrt, also z.B. wie lang eine Person Single ist und nicht heiratet, oder wie
lange eine Ehe dauert bis sich die Ehe geschieden wird, oder ein Partner
stirbt.

2.3.4 Risiko-Periode - Risk Period

Natiirlich konnen nicht alle Personen sédmtliche Zusténde zu jedem Zeitpunkt
einnehmen. Um eine bestimmte Verdnderung zu durchleben muss die Person
in dem Ursprungszustand sein, der den Wechsel in den Zielzustand erlaubt.
7.B. kann ein Single kein Witwer werden. Die Periode, in der ein Individuum
dem Risiko ausgesetzt ist, einen bestimmten Zustandswechsel durchzuma-
chen nennt man die Risiko-Periode. Ein eng verwandtes Konzept ist das
Risiko-Set. Es wird von der Zahl aller Individuen gebildet, die zu einem be-
stimmten Zeitpunkt dem Risiko ausgesetzt sind einen Zustandswechsel zu
erleben.
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2.3.5 Risikomenge - Risk Set

Die Anzahl der Fille, die an einem bestimmen Zeitpunkt (stetig) oder in
einem bestimmten Intervall (diskret) dem Risiko eines Ereignisses unterliegt.
Dies ist die Menge der “noch lebenden” Individuen, also derjenigen, denen
noch kein Ereignis wiederfahren ist. Beachtenswert ist, dass die Risikomenge
kontinuierlich abnimmt. Es ist also zwar auf den ertsen Blick verwunderlich,
dass die Hazardrate wachst, wihrend die Menge derjenigen Individuen, bei
denen ein Ereignis auftritt, kleiner wird. Auf den zweiten Blick ist es jedoch
einsichtig, dass dem so ist, da die Hazardrate steigt, aber die Menge der-
jenigen, fiir die ein Ereignis moglich ist, immer kleiner wird. In absoluten
Zahlen wird diese Menge kleiner, in relativen Zahlen wéchst aber der Anteil
derjenigen aus der Risikomenge, die ein Ereignis erlebt haben.

2.4 Mathematische Grundlagen

Wir nehmen an, dass es sich bei 7" um eine stetige Zufallsvariable handelt.
Bei f(t) handelt es sich um die probability density function. Sie gibt an, wie
sich die Wahrscheinlichkeiten auf die mdéglichen Zufallsergebnisse verteilen.
Also beispielsweise wie wahrscheinlich es ist, dass eine Person einen 1(Q) von
120 besitzt.

F(t) bezeichnet die distribution function von T. Sie gibt also an, wieviele
Félle kumuliert in Relation zu allen Féllen bisher aufgetreten sind.

2.4.1 Dichtefunktion f(t) & Verteilungsfunktion F'(t)

Wenn es sich bei 7" um eine stetige Zufallsvariable handelt, kann die Vertei-
lung auch als Dichtefunktion (f(t)) beschrieben werden, die mit der Vertei-
lungsfunktion F'(¢) in folgendem Zusammenhang steht:

P(t<T <t+At) OF(1)
At—0 A a ot

t
F(t)=P(T <t) :/0 f(u)du

Die Dichte, also der Flacheninhalt wird iiber Integralrechnung angegeben.
Bilden wir die erste Ableitung des Integrals erhalten wir die Ausgangsglei-
chung. Also:

f(t) = F'(t)

10
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Verdeutlichen wir uns dies an Hand der uns bekannten Standardnormalvertei-
lung: In folgender Graphik sehen wir die Dichtefunktion f(z), die beriihmte
Gauss’sche Glockenkurve und die Verteilungsfunktion F'(z) der Standard-
normalverteilung. Sie hat keinen glockenférmigen Verlauf.
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Abbildung 2.1: f(x) & F(x)

wobei:

o= {3 (55) }
Flr) =~ 1% /_Zoexp {—% (x;N)Q}da

An der Dichtefunktion kénnen wir sehen, wie die Wahrscheinlichkeit fiir die
verschiedenen Auspriagungen verteilt sind. An unserer Verteilungsfunktion
F(z) konnen wir den grau eingefirbte Bereich ablesen, der uns hier angibt,
wie viele Falle von —oo bis in unserem Beispiel bis zum Z-Wert 1 liegen. In
der Z-Tabelle sind diese Werte tabelliert.

11
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2.4.2 Survivalfunktion S(t)

Die survival function oder survival probability gibt die Wahrscheinlichkeit
dafiir an, das vor dem Zeitpunkt ¢ kein Ereigniss eintritt. Individuen, denen
das Ereignis noch nicht wiederfahren ist haben “iiberlebt” (survived). Der
Begriff iiberlebt kommt aus der Biostatistik, wo das interessierende Ereignis
oftmals der Tod des Individuums ist. Bei S(¢) handelt es sich um eine fallende
Funktion von ¢, mit S(0) = 1 und S(¢) = 0 fiir £ — oo. Dies bedeutet ausge-
sprochen, dass wir die Analyse mit 100% “Uberlebenden” beginnen und sich
nach unendlich langer Zeit (t — o0) bei jedem Individuum ein Zustands-
wechsel vom Urzustand in den Zielzustand vollzogen hat. Sie ist definiert
als:

aw:1_F@:1_P@ngdwrzw:/wﬂ@m

Die distribution function ist also das Komplement der survival function. Sie
gibt die Wahrscheinlichkeit dafiir an, dass ein Ereignis vor dem Zeitpunkt
t statt findet. Folgender Zusammenhang besteht zwischen survival function

und distribution function, der in den Graphiken und verdeutlicht
werden soll:

F(t)+S(t)=1

P(T<t)+P(T >1) =PQ) =1

/Ot f(u)du + ZX F(u)du = /Ooo Flu)du = 1

[ 8 0 0 2 4 6 8 0 2 4
t t t

Abbildung 2.2: Eintrittswahrscheinlichkeit Ereignis

12
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8
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Abbildung 2.3: Fliacheninhalt unter Kurve = Integral: survival function &
distribution function

2.4.3 Hazardrate h(t)

Ein weiteres wichtiges Konzept ist die hazard rate oder hazard function.
Pt < T < t+ At|T > t) bezeichnet die Wahrscheinlichkeit dafiir, dass
ein Ereignis im Intervall mit dem Zeitpunkt ¢ als unterer Grenze und dem
Zeitpunkt ¢ + At als oberer Grenze statt findet, sofern dieses Ereignis nicht
schon vor dem Zeitpunkt ¢ statt gefunden hat. Es soll also eine Verdnderung
von einem Anfangszustand in einen Zielzustand stattfinden. Beispielsweise
von unverheiratet in verheiratet oder von verheiratet in geschieden. Sie gibt
das augenblickliche “Risiko” fiir solch einen Zustandswechsel an.

Pt <T <t+ At|T >t); wobei gilt t < ¢+ At

Dies ist die Wahrscheinlichkeit dafiir, dass ein Ereignis eintritt, unter der Be-
dingung, dass vorher kein Ereigniss (keine Zustandsénderung) eigetreten ist,
also im Intervall zwischen 0 und ¢. Ein Beispiel hierfiir ist, dass sich jemand
nur im interessierenden Intervall scheiden lassen kann, wenn er noch verhei-
ratet ist, und sich nicht in einem beliebigen anderen vorherigen Intervall hat
scheiden lassen. lim bedeutet, dass die Breite des Intervalls gegen Null geht,

t—0

da At gegen 0 strebt, also obere und untere Grenze unendlich Nahe beiein-
ander liegen. Dies ist moglich, da es sich bei T" um eine stetige Zufallsvariable
handelt. Das zeitliche Intervall wird also sehr kurz. Es zeigt sich jedoch das
Problem, dass die Wahrscheinlichkeit in einem infinitesimal kleinen Intervall
zu liegen Null ist.

lim P(t <T < At+4|T > ) =0

13
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Um dies zu umgehen betrachten wir die Ratio aus Ubergangswahrscheinlich-
keit und der Grosse des Intervalls. So kommen wir zu der Wahrscheinlichkeit
von Verdnderungen in der abhingigen Variable pro Zeiteinheit:

Pt <T < At +t|T >1t)
At
Dies erlaubt uns, folgenden Grenzwert zu definieren:

. PE<T<At+tT >1)
lim
At—0 At
Hier haben wir nun das zentrale Konzept der hazard rate oder auch transition
rate h(t) vor uns:

h(t) = lim Pt <T<t+At|T >t)
At—0 At
Der “hazard” gibt die Wahrscheinlichkeit an, dass das Ereigniss in einem sehr
kurzen zeitlichen Intervall - sofern das Ereignis nicht schon vorher eingetreten
ist - statt findet. Aus diesem Grund ist die hazard rate auch als “instantaneous
risk” bekannt. Der Term

Cumulative Hazard Function H (t)

wird cumulative hazard function genannt. Es gilt:

H(t) = — 10 S(t)

2.4.4 Verkniipfungen

Es ist moglich, die aufgefithrten Begriffe h(t), S(t), f(t) sowie F(t) durch die
jeweils anderen Begriffe auszudriicken. Es gilt

Pt <T <t+At)
P(T > 1)

PE<T <t+AlT >1t) =

Also kénnen wir h(t) wiefolgt umschreiben:

PUST<t+AT 28 . PUST<t+An) 1
= l1m
At—0 JAN At—0 At P(T Z t)

14



Seite: 15 KAPITEL 2. GRUNDLAGEN

_ )
S(t)
Ebenso ldsst sich also Ausdriicken:
. Pt <T<At+1)
h(t) — f@) _ A}flllo At
S(t) P(T >1)
Es gilt ebenfalls:
t
S(t) = exp {—/ h(u)du}
0
L F(t') — F(t) L p(t <T <t+ At)
1) = fim =~ = dm, Al

F£(#) = h(t) - S(t) = h(t) - exp { - /0 t h(u)du}

. Pt <T<t+At)
f(t) = Jim A

ARELINE0
F(t) = /0 () du

2.5 Zensierung

Beobachtungen von Ereignisgeschichten sind normalerwiese zensiert. Zensie-
rung bedeutet, dass die Information iiber die Verweildauer in einem Zustand
nicht vollstdndig ist. Man spricht von vollstdndiger Linkszensierung, wenn
der Beginn und das Ende einer Episode vor dem Beobachtungsfenster liegen.
Teilweise linkszensiert ist eine Episode wenn nur der Beginn vor dem Beob-
achtungsfenster liegt, aber wir nicht wissen, wann diese Episode begonnen
hat.

Zustand Linkszensierung

£t

¥y
¥ 1

Start der Beobachtung Ende der Beab aChtng;it

Abbildung 2.4: Teilweise linkszensiert
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Seite: 16 KAPITEL 2. GRUNDLAGEN

Linkszensierung ist ein schwerwiegendes methodischen Problem in der Ereig-
nisanalyse, da die Information der unbekannten Episode oder Verweildauer
nicht in das Modell mit einbezogen werden kann. Es entsteht ein Selektions-
problem, weil die Wahrscheinlichkeit, dass diese Episode beobachtet wird,
vom Beginn und der Dauer dieser Episode abhéngt. Es sind dann solche
Episoden systematisch unterreprasentiert, die entweder sehr kurz sind, oder
die lange vor der Beobachtung begonnen haben. Nach Blossfeld und Rohwer
sind nur solche Daten zu analysieren, bei denen die Annahme der Markov-
Eigenschaften -d.h. wenn der Prozess nur vom Ausgangszustand, nicht aber
von der Verweildauer im Ausgangszustand abhéngt- gerechtfertigt ist.

Der Normalfall in der Ereignisanalyse ist jedoch die Rechtszensierung. In
diesem Fall kennen wir den Anfang der Episode und deren Vorgeschichte,
das Ende jedoch ist nicht bekannt. Dies ist immer dann der Fall, wenn zum
Zeitpunkt der letzten Befragung die Episode noch nicht abgeschlossen war.

Zustand Rechtszensierung

v
Iy

-

v,

‘1

Start der Beobachtung Ende der Beobachtung Teit
Abbildung 2.5: Rechtszensierung

Dies ist zum Beispiel dann der Fall, wenn jemand zum Ende des Beobach-
tungsfensters noch immer verheiratet ist. In diesem Fall ist die Ehedauer
rechtszensiert. Da dieses rechtszensierende Ereignis im Normallfall unabhén-
gig vom beobachteten Prozess eintritt, ist die statistische Handhabung dieser
Rechtszensierungen methodisch unproblematisch.

Zustand Keine Zensierung

W
Jny

-

.

‘1

Start der Beobachtung Ende der Beobachtung Z;it

Abbildung 2.6: Keine Zensierung
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Kapitel 3

Diskrete Zeit

3.1 Discrete Time Logit Models

In discrete time logit models wird angenommen, dass die Ereignisse nur zu
bestimmten diskreten Zeitpunkten auftreten. Die Anwendung von discret
time models kann mehreren Zwecken dienen:

1. Durch Modelle mit diskreter Zeit kénnen Modelle mit stetiger Zeit ap-
proximiert werden.

2. Modelle mit diskreter Zeit nach Cox haben gegeniiber Modellen mit
stetiger Zeit Vorteile bei der Behandlung von Ties.

3. Der zu Grunde liegende Zeitprozess ist tatsidchlich diskret.

4. Ein bindrer Prozess -der bestimmten Anforderungen geniigt- wird an-
genommen und durch Daten einer Panelbefragung analysiert.

Zuerst fokussieren wir uns auf Ereignisse, die nicht wiederholbar sind, also
nur einmalig auftreten. Solche Ereignisse sind beispielsweis die Geburt des
ersten Kindes oder die erste Heirat. Die nachfolgende Beschreibung basiert
auf Cox und Brown

3.1.1 Approximation stetiger Zeit durch Modelle mit
diskreter Zeit

Drei Uberlegungen sind relevant fiir die Anwendung von Modellen mit dis-

kreter Zeit um damit Modelle fiir stetiger Zeit zu approximieren.

Erstens die Einheit der Zeitmessung. Die Ereignisse, die wir erhalten sind
hochst selten auf einer feinen Skala gemessen, sondern eher grob. So kennen

17



Seite: 18 KAPITEL 3. DISKRETE ZEIT

wir vielleicht das Alter eines Befragten in Jahren, aber nicht in Jahren, Mo-
naten und Tagen. In solchen Fillen ist es natiirlicher, diskrete Zeit zu Grunde
zu legen.

Zweitens spielt die Anzahl der Ties in der Analyse eine Rolle. Man spricht
von Ties, wenn die Ereignisse zweier oder mehrerer Personen gleichzeitig statt
finden. Sind viele Ties vorhanden, kann dies zu einem ernsthaften bias in den
Parameterschiatzungen fithren, wenn “Cox method for proportional hazards”
fiir stetige Zeit genutzt wird.

Drittens ist die Frage, ob es addquat ist, durch solche Modelle zu approxi-
mieren von Bedeutung. Dies hangt mit der bedingten Wahrscheinlichkeit, ein
Ereignis an einem diskreten Zeitpunkt zu beobachten, zusammen. Diskrete
Modelle sind nur geeignet Modelle mit stetiger Zeit zu approximieren, wenn
die bedingt Wahrscheinlichkeit angemessen klein ist.

3.2 Mathematische Konzepte

Nehmen wir an, bei T handelt es sich um eine diskrete Zufallsvariable, die
den Zeitpunkt eines Ereignisses angibt. T = ¢ bedeutet, dass das Ereignis
zum Zeitpunkt ¢ eintritt. Die Wahrscheinlichkeit eines Ereignisses ist gegeben
durch:

ft)=P(T=t),i=1,2,...

wobei t; mit t; <ty < ... den '*" diskreten Zeitpunkt bezeichnet.
Die Survivorfunktion ist gegeben durch

S(t:) = P(T > t;) = Z f(t;)

Sie gibt die Wahrscheinlichkeit an, vor dem Zeitpunkt ¢; kein Ereignis zu
erleben. Das Risiko zum Zeitpunkt ¢; ist als bedingte Wahrscheinlichkeit des
Eintretens des Ereignisses zum Zeitpunkt ¢;, unter der Bedingung, dass es
nicht schon vorher eingetreten ist, definiert.

f(t)
A —t|T >¢t) =
h(t;) =X = P(T =t;|T > ;) St
anders geschrieben:
i—1
S(t) = [T =x)
j=1

Jede parametrische Spezifikation der bedingten Wahrscheinlichkeit fiir A; ist
ein Hazardmodell mit diskreter Zeit.

18



Seite: 19 KAPITEL 3. DISKRETE ZEIT

3.3 Logitmodell fiir diskrete Zeit

Im ersten Schritt ist zu spezifizieren, wie die Hazardrate von den unabhén-
gigen Variablen abhéngt. P(t) bezeichnet hier die Wahrscheinlichkeit, dass
ein Individuum ein Ereignis zum Zeitpunkt 7' hat, sofern es das Ereignis
nicht schon vor T erlebt hat. Der Einfachheit halber nehmen wir an, dass
wir es mit zwei unabhéngigen Variablen zu tun haben. z; ist {iber die Zeit
konstant, z.B. in einem wissenschaftlichen Kontext das Prestige des beschéf-
tigenden Instituts, und z5(¢) kann mit den Zeitpunkten seinen Wert wechseln,
beispielsweise die Anzahl der Publikationen zum Zeitpunkt 7.

Als erste Anndherung (fiir ¢ Zeitpunkte) konnen wir P(t) als Linearkombi-
nation der unabhéngigen Variablen schreiben:

P(t) =a+ bl.CL’l -+ bQLEQ(t)

Problematisch ist hier, dass a+b;x1+boxo(t) jeden beliebigen Wert annehmen
kann, P(t) jedoch auf den Wertebereich 0 < P(t) < 1 eingeschrént ist. Was
also tun? Das Logitmodell fiir diskrete Zeit nutzt das Konzept des Logit
oder der log-Odds. Unter Odds versteht man die Ratio zweier wechselseitig
exklusiven Zustdnde. Die Odds fiir die Wahrscheinlichkeit P(t) sind wie folgt
definiert:

P
11— P

Man kann erkennen, dass je grosser P(t) auf dem Bruchstrich wird, 1 — P(t)
unter dem Bruchstrich immer kleiner wird. Da P(¢) immer noch auf den
oben angegebenen Wertebereich beschrénkt ist, also nicht negativ werden
kann, sind die Odds auf das Intervall zwischen 0 und +oc0 fesgelegt. Um den
kompletten Wertebereich von —oo bis +o00 zu erschliessen, muss also noch
ein Schritt getan werden. An dieser Stelle kommt der Begriff des Logit ins
Spiel:

Odds

P(t
Logits sind als logarithmierte Odds definiert, also Log-Odds. Wir verwenden
aber nicht irgendeinen Logarithmus, sonder den Logrithmus Naturalis. Dies
ist die Bezeichnung des Logarithmus zur Basis e, also log. = In.

Also:

In {15—(1?(15)} = a + bz + boxo(t)
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Diese Transformation ist nicht die einzige, die zu diesem Ergebnis fiihrt, aber
sie ist die géngigste. Die Koeffizienten b; und by geben die Verdnderung des
Logit fiir jede Anderung von z; oder z, um eine Einheit an.

Dieses Modell schriinkt uns immer noch ein, da es annimmt, dass Anderun-
gen in der Hazardrate unter Einfluss von x; und x5 auftreten. Oftmals ist
es aber sinnig anzunehmen, dass die Hazards sich autonom iiber die Zeit
verandern. Bei Jobwechseln kann man erwégen, dass der Hazard eines Wech-
sels mit verstreichender Zeit abnimmt. Dies lasst sich folgendermafen in die
Gleichungen einbauen:

In {15—%} = a(t) + blflfl + bQZL‘Q(t)

Das Intercept, oder anders gesprochen die Regressionskonstante wird an je-
dem Zeitpunkt (¢) einfach neu geschétzt.

Die Notation unterscheidet sich leider von Lehrbuch zu Lehrbuch. Da das zu
Grunde liegende Konzept soweit klar sein sollte wird ab hier dies ausfiihr-
lichere, aber auch verwirrendere Notation von Yamaguchi ibernommen. So
definiert Yamaguchi (1991) das Logitmodell folgendermafen:

A(ti; X) Ao(s)
= br X,
NG X) 1= o) P ZI; ke
Fiir mich scheinen diese beiden Notationen fogendermafsen in Einklang zu

bringen zu sein:
Zuerst exponieren wir die einzelnen Komponenten.

A(ti; X) Ao(t:)
Inqd———7=In¢ ——— 1 E b X
n{l—A(ti;X)} n{l—)\O(ti) A =
Beim Logarithmus Naturalis handelt es sich um den Logarithmus zur Basis

e, also der Eulerschen Zahl (In = log,). Dies ist die Umkehrfunktion zu
exp {z} = e”. Es folgt also:

m{%} — 1%%} +;kak

An einer spéteren Stelle des Buches schreibt Yamaguchi selber, dass sich

At X) Ao(s)
1—A(t; X)) 1- )\O(ti)+exp {Zk:kak}

auch in Form einer logistischen Regression darstellen lasst, und zwar:

20
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S QA A e’ N QU X
“{1—A<ti;x>} %t D b
)\O(ti)

wobei a; = In = (i) also eine einfache Substitution.

Eine Herleitung der logistischen Regressionsgleichtung finden wir im Appen-
dix auf Seite [63]

Wenn die Kovariate alle zeitunabhéngig sind, also sich iiber die Zeit nicht
andern, liegt ein proportional Odds model vor. In diesem Fall bilden die

Odds (li\sf(’tf())()) , dass ein Ereignis eintritt eine konstante Ratio
Ao(t;)

l—Ao(ti)

wobei A(t;; X) die bedingte Wahrscheinlichkeit angibt, ein Ereignis zum Zeit-
punkt ¢; fiir einen bestimmten Kovariatvektor X = (X7, ..., X}) zu erhalten.
bei by, k=1, ..., K handelt es sich um Parameter. Die baseline hazard func-
tion Ao(t;) mit ¢ = ¢,...,I ist durch die bedingte Wahrscheinlichkeit der
Fille charakterisiert, fiir die X = 0 gilt. Ebenso kann man hier sehen, dass
die Wahrscheinlichkeit, ein Ereignis zu erleben, fiir jeden Fall, der nicht zur
baseline group gehort an jedem Zeitpunkt um exp {), by X} } hoher liegt, da
dieser Term in der baseline group wegen X = 0 wegfillt.

Bei immer feiner werdenden Messungen der Zeit wird die Ratio zweier Odds

Substituieren wir In { } durch a erhalten wir:

A(ti;X)
1=A(t:;X)
A0 (tz)
1-Xo (tl)

der Ratio zweier Raten immer dhnlicher:

A(ti; X)

Ao(t;)
und néahert sich einem proportional hazards model fiir stetige Zeit an. Also:
wenn die bedingten Wahrscheinlichkeiten geniigend klein sind, dann liefert

uns das Logit-Modell eine Approximation des proportional hazards model
fiir stetige Zeit.

3.4 Deskriptiv: Nichtparametrische Verfahren

Nichtparametrische Verfahren sind Verfahren, bei denen keine Annahmen
iiber die Verteilung der Wartezeit gemacht wird. Hierzu zéhlen die Life Ta-
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ble Method (“Sterbetafelschitzung”) als auch die Kaplan-Meier-Schitzung
(Product-Limit Estimation). Die Life-Table Methode hat ihren Ursprung in
der Demographie und zahlt zu den bekanntesten und lange Zeit beliebtesten
Methoden der Ereignisanalyse. Erwahnenswert ist, dass eine der bekanntes-
ten Regressionsmethoden fiir Ereignisdaten (Die Regression nach Cox (4.2)))
von der Grundidee hinter der Life-Table Methode inspiriert ist.

Der wesentlicher Unterschied zwischen diesen beiden nichtparametrischen ex-
plorativen Verfahren ist, dass die Sterbetafel-Schatzung fiir gruppierte War-
tezeiten und die Produkt-Limit-Schétzung fiir exakte Wartezeiten konzipiert
ist. Neben einer ersten allgemeinen Beschreibung des Veranderungsprozesses
besteht auch die Moglichkeit, anhand eines Vergleichs der geschétzten Uber-
lebensfunktionen und Hazardraten einzelner Subgruppen, einen Uberblick
iiber mogliche Erklarungsfaktoren zu gewinnen.

3.4.1 Life Table Methode: Verweildauer in Intervallen

Wie bereits erwéahnt, sind bei der Life-Table Methode keine Annahmen tiber
die Verteilung von T notwendig. Errechnet werden die Survivorfunktionen
zu Beginn des jeweiligen Intervalls sowie fiir jedes Intervall die Dichte- und
Hazardfunktion (und deren Standardfehler). Nachteile dieser Methode sind,
dass diskrete Zeitintervalle notig sind und dass sie eine grosse Anzahl an
events bendtigt, um reliable zu sein. Um die diskreten Intervalle zu erhalten,
wird die Zeitachse punktweise aufgesplittet.

Il . 172 . I.} . IL oC

0 <71 < 79 < 79 < -+ < T Tl
Abbildung 3.1: Einteilung in diskrete Intervalle

Mit der Konvention: 7,7 = oo existieren L Intervalle, von denen jedes die
linke Grenze beinhaltet, aber nicht die Rechte. Es gilt:

L={tn<T<mun}t, l=1,---,L
Terminologie:
e N; Zahl der Félle, die in Intervall I; eintreten.
e E; Zahl der Ereignisse / Ubergéinge im Intervall I;

e 7, Zahl der Zensierungen im intervall J;
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e R, Risk Set / Risikomenge im Intervall
e R; Zahl der Elemente in R,

Wenn wir die Zahl der Falle, die im jeweiligen Intervall ein Ereignis (Uber—
gang in den Zielzustand) erfahren, mit F; benennen und die Zahl der Fille
mit Zensierungen in einem Intervall mit Z;, so lasst sich zunéchst die Risi-
komenge R, also die Zahl der Fille, die im jeweiligen Intervall dem Risiko
eines Ereignisses unterliegt, berechnen. Hier wird wiederum die Zahl der Fal-
le benétigt, die zu Beginn eines Intervalls noch nicht ausgeschieden ist (durch
ein Ereignis oder durch Zensierung). Diese ist fiir das erste Intervall gleich
N (der Gesamtzahl der Félle), fiir alle folgenden Intervalle gilt:

Rekursive Bestimmung von N;. Es gilt fiir das erste Intervall:

N, =N

Fir das zweite Intervall:

Ny=N,—FE, — 7
Generell gilt:

Ni=Niy— By — 21

Berticksichtigung von Zensierung in [;: Zur Berechnung der Risikomenge sind
nun Annahmen iiber die Verteilung der zensierten Fille wahrend des Inter-
valls zu machen. Ublicherweise wird angenommen, dass die Zensierungen
gleichméfig tiber das gesamte Intervall verteilt sind; daraus folgt, dass die
Zahl der Falle zu Beginn des Intervalls um die Hélfte der Zensierungen wah-
rend dieses Intervalls zu reduzieren ist, um die Risikomenge zu erhalten. Die
Risikomenge R wird also folgendermafsen bestimmt:

1
RlzNz—§'Zl

Wird dies nicht angenommen gilt allgemein folgendes:

Rl:Nl—w-Zl,w:(nggl)

wobei fiir w = % die vorherige annahme wieder gilt.

Die bedingte Wahrscheinlichkeit fiir einen Ubergang im Intervall I; ist wie
folgt definiert:
Ey

Ql:E
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Folglich lautet die bedingte Wahrscheinlichkeit fiir keinen Ubergang im In-
tervall [}, also das Intervall zu iiberleben:

Die Uberlebenswahrscheinlichkeit zu Beginn von 1, also die Survivorfunktion
lautet:
Si=1;, Sy =p1-5-1

die durchschnittliche Uberlebenswahrscheinlichkeit im Intervall I, ist wie

folgt definiert:

5 — S +251+1

Die durchschnittliche Wahrscheinlichkeitsdichte im Intervall I; ergibt sich
durch

S — S
f=2 = L—1
T — Ti+1
sowie die Hazard-Rate
=t
! S,
die auch in anderer Form dargestellt werden kann:
1 q 1 E

hy = -

: : .
Tm—7n 1-% 7mp-7m R-2

Life-Tables sind fiir den Vergleich mehrerer Gruppen anwendbar. In nachfol-
gender Graphik 3.2 sehen wir ein Beispiel aus Arias (2003) iiber die Anwen-
dung von Life Tables.

= White male =—— White female Black male Black female
100

80 [~

60 [~

Percent

40 -

20 [~

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 B8O 85 90 95 100
Years of age

Fiaure 2. Percent survivina bv aae, race, and sex: United States, 2003

Abbildung 3.2: Vergleich mehrerer Gruppen
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Hier wurden vier Subgruppen gebildet, die nun untereinander hinsichtlich
ihrer Lebenserwartung verglichen werden kénnen. Allerdings wird oftmals
betont, dass die Interpretation von Life Table Tabellen nicht immer einfach
ist, und sich daher Graphiken zur Erleichterung anbieten.

Im Unterschied zur Sterbetafelschétzung verwendet der Kaplan-Meier-Schétzer
direkt die Wartezeiten; eine Klassifizierung in Intervalle und eine Annahme
iiber die Verteilung der Ereignisse und Rechtszensierungen pro Intervall wird
nicht vorgenommen.

3.4.2 Product-Limit Estimation / Kaplan-Meier

Der Unterschied zu der Life-Table Methode ist die direkte Verwendung der
Wartezeiten. Es ist also unnotig, eine Zusammenfassung der Zeit in Interval-

len vorzunehmen. Statt dessen wird die Risikomenge fiir jeden Zeitpunkt, an

dem ein Ereignis statt findet, berechnet. Graphik zeigt ein Beispiel, ent-
mommen aus , http://www.thieme-connect.com/ejournals/pdf/dmw /doi/10.1055/s-
2002-32819.pdf. Eine Sortierung der Zeitpunkte mit Ereignissen ist erforder-

lich:

TMM<To<T13<-:---<TL
wobei 77 den Zeitpunkt bezeichnet, an dem das erste Ereignis stattfindet, m

den Zeitpunkt, an dem das zweite Ereignis staffindet, und so weiter.
Terminologie:

e [ Zahl der Episoden mit Ereignissen zum Zeitpunkt 7;. Es gilt: 79 = 0

e /; Zahl der Zensierugen im Intervall 7,_; <t < 7;. Dies bedeutet, dass
wenn Zensierung und Ereigniss zum selben Zeitpunkt stattfinden wird,
angenommen, dass die Zensierung etwas spéter statt findet.

e R, Risikomenge zum Zeitpunkt 7;, d.h.: mit einer Startzeit tsiae < 1t
und einer Endzeit tgpqe > t
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27(28=0,964 ® Nicht zensiert

1.04 17 0.964x0,963 (0,963=26/27) ® Zensiert

- 1://0.%“0.953;0.952 (0,962=25/26)

e 0,91 -i'r/o.gmxo.963;:0.902;:0.920 (0,920=23/25)
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Uberlebenszeit (Wochen)
Abb.1 Kaplan-Meier Kurve fiir die Uberlebenszeit der 28 Zungen-

krebspatienten mit diploidem Tumor. Es wird die Wahrscheinlichkeit
gezeigt, dass ein Patient eine Zeit (in Wochen) (iberlebt.

Abbildung 3.3: Beispiel: Kaplan-Meier Kurve

Die Risikomenge R; zum Zeitpunkt 7; enthélt Episoden, die zu diesem Zeit-
punkt zensiert sind. Es wird angenommen, dass eine zensierte Episode die
Information enthélt, dass, inklusive des Endzeitpunktes kein Ereignis auf-
getreten ist. Nach Blossfeld und Rohwer wird in der Literatur oftmals da-
von ausgegangen, dass die Zensierung einen infinitesimalen Betrag rechts der
Endzeit der Beobachtung statt findet.

Es gilt fiir einen Zeitpunkt mit Ereignis:

sowie flir einen Zeitpunkt ohne Ereignis:

ql:() plzl—qlzl
Der Product-Limit-Estimator fiir S(¢) ist definiert als:
. E,
S<t>:p1.p2‘p3”"p171: leznl——
L <t L <t

Noch einmal: bei E; handelt es sich um die Zahl der Episoden mit Ereignis
zum Zeitpunkt 7. Anders gesprochen handelt es sich hierbei um die Anzahl
der Personen, die in diesem Intervall “ausfallen”. Bei R; handelt es sich um
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die Risikomenge zum Zeitpunkt 7;, also die Personen die “noch leben”, und
nicht zensiert wurden. Zur Verdeutlichung hier ein kurzes Beispiel, zur Ver-
deutlichung fallen hier jeweils mehrere Personen an einem Zeitpunkt aus der
Analyse, storen wir uns nicht daran:

Wir starten mit n=125 Personen. Zum ersten Zeitpunkt, an dem ein Ereig-
nis stattfindet, fallen 5 Personen gleichzeitig aus. Also: ﬁ = 0.04. Diesen
relativen Antell der Ausfille ziehen wir nun von der Gesamtheit ab, also von
1. Wenn wir diese Zahlen mit 100 multiplizieren, bekommen wir Prozentwer-
te heraus. Also sind von 100% (125 Personen) am ersten Zeitpunkt 4% (5
Personen) ausgefallen. Zum zweiten Zeitpunkt fallen 10 Personen aus. Also
120 = 0.083. Es sind also zum zweiten Zeitpunkt von der Anzahl der Personen
vom ersten Zeltpunkt 8.3% nicht mehr “dabei”. Im dritten Schritt fallen 15
Personen aus, also —>- 110 = 0.136. In jedem Schritt wird also der relative Anteil
der Ausfille, gemessen an der Anzahl der Verbliebenen zum Zeitpunkt 7
angegeben.

~

S(t) =DPo- P11 P2 P3

St)=(1—q) (1—q) (1 —q)-(1—gs)
-5 -5 (-2) (-2
) G2 (-2 (-5

(

S(t)=(1-0)-(1—0.04)- (1 —0.083) - (1 —0,136)

wobei:

S(t)=1-0.96-0.916 - 0,863

Dies bedeutet nun inhaltlich: Zum Zeitpunkt 0, also am Anfang sind al-
le Personen “lebend”. Da wir den Wert 1 erhalten, kann man diesen Zeit-
punkt also bedenkenlos wegfallen lassen. Zum Zeitpunkt des ersten Ereig-
nisses bleiben 0,96 oder 96% iibrig. Zum zweiten Zeitpunkt bleiben 91.6%
der Uberlebenden des ersten Zeitpunktes erhalten. Die Berechnung fiir von
91.6% von 96% erfolgt iiber 0.96 - 0.916 ~ 0.879. Fiir den dritten Zeitpunkt
multipliziert man dieses Ergebnis mit dem Wert des dritten Zeitpunktes:
0.879 - 0.863 ~ 0.96 - 0.916 - 0.863 ~ 0.759. Kiirzer geschrieben:

. E
St)=p1-p2-p3-p1= le: H 1-2

i<t i<t
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Hierbei handelt es sich um eine Treppenfunktion mit den Stufen zu den
Zeitpunkten ;.

Zusatzlich zur Schétzung der Survivor-Funktion bietet die Product-Limit-
Estimation eine simple Schétzung fiir die cumulated hazard rate:

H(t) = —log(S(1))

wobei:

H(t) = /0 h(u)du

S(t) = /too Fu)du = exp {—/Oth(u)du}
H(t) = —log(S)t))
/0 () = —log exp {— /0 t h(u)du}
/Ot h(u)du = (—1) <— /Ot h(u)du)
/0 ()i — /0 h(w)du

Die cumulated hazard rate ist wiederum eine Treppenfunktion. Sie ist niitz-
lich fiir einfache graphische Uberpriifungen der Verteilungsannahmen und der
zu Grunde liegenden Verweildauern. Leider bietet sie keine direkte Schétzung
der hazard rate. Man konnte den Zusammenhang

und demnach:

h(t) = H'(t)
als moglichen Weg nutzen, da generell folgender Zusammenhang zwischen
Funktionen gilt: Wenn F'(z) die Stammfunktion der Funktion f(z) ist, die
iber Integration ermittelt wird, dann ist die erste Ableitung (f'(x)) der
Stammfunktion (F”(x)) mit der Ursprungsfunktion identisch. Dafiir muss
die Treppenfunktion jedoch erst gegléittet werden.

3.4.3 Nachteile nichtparametrischer Verfahren

Mit der Anwendung nichtparametrischen Verfahren treten diverse Probleme
auf.

Erstens wird mit einer wachsenden Anzahl von Subgruppen schnell ein Punkt
erreicht, an dem ein Vergleich der survivor functions S(¢) nicht mehr sinnvoll
ist, da n in den verschiedenen Subgruppen zu klein wird.
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Zweitens ist selbst wenn n in den verschiedenen Gruppen grofs genug, und
wir fiir eine grosse Anzahl wichtiger Subgruppen Survivorfunktionen schitzen
koénnen, so ist der Vergleich dieser Funktionen schnell sehr komplex und die
Interpretation dufserst schwierig.

Drittens ist es im Fall quantitativer Variablen notwendig, diese zu gruppie-
ren, um die Survivorfunktionen schatzen zu kénnen. Beispielsweise wird eine
metrische Einkommensvariable in eine neue Variable mit weniger Auspré-
gungen eingeteilt, z.B. Trichotom (niedriges - mittleres - hohes Einkommen)
oder Dichotom (niedriges - hohes Einkommen). Der Informationsverlust ist
dementsprechend grofs.
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Kapitel 4

Stetige Zeit

Im wesentlichen kénnen Zeitverdndliche Raten auf drei Wegen modelliert
werden:

1. durch Aufnahme von Polynom-Termen fiir die Zeit,

2. durch Modellierung perioden- oder zeitabschnitts-spezifischer Regres-
sionskonstanten (gegebenenfalls auch periodenspezifischer Einfliisse)

3. durch Wahl einer geeigneten Verteilung fiir die Hazardrate.

Nur der erste Weg ist sowohl fiir stetige als auch fiir diskrete Verweildauern
moglich. Alle iibrigen Verfahren sind nur fiir stetige Zeit ausformuliert. Wir
werden uns auf die zwei letztgenannten konzentrieren.

4.1 Parametrische Modelle der Zeitabhangig-
keit

Obwohl die Modelle mit diskreter Zeit einen breiten Anwendungsbereich ha-
ben wird doch zum grossten Teil mit Modellen fiir stetige Zeit gearbeitet.
Dabei sind die parametrischen Modelle popular. Sie werden so genannt, weil
in ihnen jeder Aspekt des Modells spezifiziert ist, ausser den zu schitzen-
den Parametern. Es ist wichtig, sich vor Augen zu fiithren, dass die Wahl der
Verteilung die Hazardrate determiniert(ebenso die Zeit bis zu einem Ereig-
nis oder zwischen zwei Ereignissen), da diese in einem engen Zusammenhang
stehen.
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4.1.1 Exponential Hazard Rate Models

Hierbei handelt es sich um das einfachste Hazard-Rate Modell, das auch
unter dem Namen Exponential Transition Rate Model bekannt ist. Die ange-
nommene Dauer von 7" kann von einer Exponentialverteilung angegeben wer-
den. Im Exponential-Modell wird also die Verweildauer bis zu einem Ereignis
durch eine Exponentialverteilung beschrieben. Das Risiko, dass ein Ereignis
eintritt, ist von den im Modell beinhalteten Kovariaten abhéngig, ist aber
iiber alle Zeitpunkte unverdndert konstant. Ein einziger Parameter -b- de-
terminiert das Modell. Die Schiatzung erfolgt iiber die Maximum-Likelihood
Methode.

Es gilt:

Basic Exponential Model

f(t)=b-exp{-bt}, b>0
h(t) =10
Achtung! Die Hazardrate ist Konstant iiber die Zeit.

S(t) = exp {—bt}
wobei b = exp{fy + 51.X1 + ... + B Xk}, also:

h(t) = exp{Bo + i X1 + ... + B Xy}
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0
0 1 2 3 4 5

Abbildung 4.1: Dichte- & Survivor-Funktion im Exponential Hazard Rate
Modell

b=05 ) =05

0 0 i
0 0s 1 15 4 0 08

Abbildung 4.2: Survivorfunktion (variabel) und Hazardrate (konstant)

Die generelle Definition des Modells fiir Uberginge vom Ursprungszustand j
in den Zielzustand k ist:

Tjk(t) = Tjk = exXp {6jk0 + Bjklﬁjkl + .. } = exXp {Bjkﬂjk}

rjr — Zeitkonstante hazard rate vom Ursprungszustand j in den Zielzustand
k Die exit rate (Rate des Verlassens des Ursprungszustand j in einen anderen

Zielzustand k) ist definiert als:
-y

kGDj

32



Seite: 33 KAPITEL 4. STETIGE ZEIT

wobei D; das Set aller moglichen Zielzustande bezeichnet, die von j aus
erreichbar sind.

Die Survivorfunktion S(¢) fiir die Verweildauer im Ursprungszustand j kann
durch die exit rate ausgedriickt werden:

S;(t) = exp {— /Ot rjdr} = exp {—tr;}

Annahme: 7;;(t) kann zwischen verschiedenen Konstellationen von Kovaria-
ten variieren, aber ist zeitkonstant. Mit anderen Worten: Es wird angenom-
men, dass der Prozess nicht Zeit-abhéngig ist.

Der Zusammenhang zwischen der hazard rate und dem (Zeilen-) Vektor der
Kovariaten Aj;, ist als ist log-linear spezifiziert um sicherzustellen, dass die
Schéatzungen der hazard rate nicht negativ werden.

Der (Spalten-) Vektor der unbekannten Parameter a;;, und der Vektor der
beobachteten Kovariaten Aj; sind spezifiziert im Hinblick auf den Ursprungs-
zustand j und den Zielzustand k. Im Vektor der Parameter ist ein Term oo
enthalten, der auch dann geschitzt werden kann, wenn keine Kovariaten im
Modell enthalten sind. Ein Modell ohne Kovariate wird geschétzt {iber:

r(t) =r =exp{fo}

Solch ein simples Modell behandelt die Daten als ein Sample homogener
Episoden. Es wird also von allen Merkmalen abstrahiert, die die Individuen
unterscheiden, sie heterogen machen. Wir sind aber daran interessiert, Un-
terschiede zwischen verschiedenen Konstellationen von Merkmalen vereint in
ihren Tragern zu entdecken. Der einfachste Weg dies zu erreichen ist, zeitkon-
stante Kovariaten mit ein zu beziehen. Bei zeitkonstanten Kovariaten sind die
Werte dieser Kovariate fiir jedes Individuum iiber die Zeit unverénderlich. Es
gibt zwei Arten zeitkonstanter Kovariaten: erstens solche, die -normalerweise-
im Leben des Individuums konstant sind wie beispielsweise Geschlecht, so-
ziale oder ethnische Herkunft (ascribed statuses). Zweitens solche, die vorher
erlangt wurden und danach konstant bleiben, so wie beispielsweise hochster
Bildungsabscluss oder Alter bei erster Heirat (statuses attained prior to).

4.1.2 Piecewise Constant Exponential Models

Hierbei handelt es sich um eine Abwandlung des einfachen Exponentialm-
odells, dass in der Anwendung &usserst niitzlich sein kann. Nach Blossfeld
und Rohwer (2002) ist seine Anwendung in zwei Féllen besonders in Betracht
zu ziehen. Erstens, wenn der Forscher nicht in der Lage ist, wichtige zeitab-
héngige erkldrende Variablen zu messen und in das Modell mit einzubeziehen
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oder zweitens, wenn keine klare Vorstellung iiber die Form der Zeitabhangig-
keit des Prozesses vorliegt. In dieser Art von Modell sind die Hazardraten
stiickweise konstant. Das bedeutet, dass die kontinuierliche Zeitachse in ver-
schiedene, abzdahlbare Intervalle zerlegt wird. Innerhalb dieser Intervalle sind
die Hazardraten jeweils konstant, unterscheiden sich jedoch in der Regel (aber
nicht notwendiger Weise) zwischen den Intervallen.

In diesem Modell werden verschiedene intervallspezifische Konstanten ge-
schétzt. Es gilt also:

Piecewise Constant Exponential Models
h(t;) = exp {Bo + 51 X1 + ... + Br Xy}
wobei der Index [ anzeigt, dass fiir beliebige vom Anwender anzugeben-
de Intervalle | jeweils eine spezifische Konstante geschétzt wird, die die
“Basishohe” der Hazardrate in diesem Intervall angibt.

Es wird angenommen, dass die Hazardraten piecewise constant, also frei
iibersetzt stiickweise konstant sind. Dies bedeutet, dass konstant in jedem
Intervall eines Sets aus Zeitintervallen.

Modelle mit Periodenspezifischen Effekten

Modelle mit Periodenspezifischen Effekten
h(t;) = exp{Bu + BuXi + ... + BuXr}

Hier werden fiir jedes Intervall [ neben einer eigenen Regressionskonstante
auch die Regressionskoeffizienten geschétzt.
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0.0 0.5 1.0 15 20 25 3.0
X

Abbildung 4.3: Beispiel einer Piecewise-Funktion

4.1.3 Weibull-Modell

In diesem Modell kann die Hazardrate nur auf eine ganz bestimmte Art
monoton fallen oder steigen (siehe Graphik . In single transition Fallen
wird dieses Modell durch Annahme einer Weibull-Verteilung fiir die Dauer
der Episoden erlangt.

Weibull Modell
f(t) = ab*t* texp {—(bt)*} , a,b>0

h(t) = ab®t*!

S(t) = exp {—(bt)"}

fiir a=1 erhalten wir das Exponentialmodell.
wobei b = exp {0y + /1 X1 + ... + B X}, also:

h(t) = a - exp {ﬁo aF ﬁle A oo A ﬂka}a ta_l
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a=2.0
a=1.6
a=13
25 1 a=1.0
a=(5
a=075

15

0 05 1 15 2

Abbildung 4.4: Hazardrate im Weibull-Modell

Bei a > 1 liegt eine steigende Hazardrate vor, bei a < 1 fallt sie. Ist a = 1
erhalten wir das Exponentialmodell, dass iiber eine Konstante Hazardrate
verfiigt.

4.1.4 Gompertz-Makeham Modell

Auch in diesem Modell kann die Hazardrate {iber die Zeit nur auf eine be-
stimmte Art monoton steigen oder fallen. Dies war auch schon beim Weibull-
Modell der Fall. In Graphik [4.5] schen wir den Unterschied. Beide Hazardra-
ten, im Gompertz-Makeham Modell kénnen nur monoton steigen oder fallen.
Trotzdem sehen sie sich nicht gerade dhnlich. Das Modell ist definiert tiber:
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Gompertz-Makeham Modell

f(t) = exp {—bt - %(exp {ct}) — 1} (b+ aexp{ct})

h(t) = b+ aexp {ct}

S(t) = exp {—bt . %(exp {et}) — 1}

fir ¢ = 0 reduziert sich das Gompertz-Makeham Modell zum einfachen
Exponentialmodell mit

f(t)=b-exp{-bt}, b>0

S(t) = exp {—bt}
wobei b = exp {fy + 51.X1 + ... + Bk Xk}, also:

h(t) =exp{fo+ (1 X1+ ...+ B Xy} + aexp{ct}

=03 —
c=01

c=03 —
c=08 ——

0 1 2 3 4 [

Abbildung 4.5: Hazardrate im Gompertz-Makeham-Modell

Fir b < 0 fallt die Hazardrate, fiir b > 0 steigt die Hazardrate, fiir b = 0
erhalten wir das Exponentialmodell mit konstanter Hazardrate.
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4.1.5 Intermezzo 1

Nach Allison (1984) unterscheiden sich das Exponentialmodell, das Gompertz-
Makeham Modell und das Weibull Modell nur dadurch, wie der Faktor Zeit
in die Formeln eingebunden wird. Folgende Formeln werden angegeben, der
iibersichtlichkeit halber nur mit zwei erkldarenden Variablen, die zeitkonstant
sind:

Exponentialmodell : log(h(t)) = a + bixy + byzs
Gompertz-Makeham Modell : log(h(t)) = a + byx1 + boxs + ct
Weibull Modell : log(h(t)) = a + bixy + baxs + ¢ - log(t)

Wir haben es hier mit dem logarithmus der Hazardrate zu tun, da die rechten
Seiten der Formeln negativ werden kénnen. Dies macht aber bei (Eintritts-
)Wahrscheinlichkeiten keinen Sinn. Deshalb wird der Logarithmus gebildet,
um diesem Problem aus dem Weg zu gehen.

Wir sehen, dass im Exponentialmodell keine Zeitabhéngigkeit der Hazardrate
vorliegt. Sie ist Zeitkonstant. Im Gompertz-Makeham Modell hingegen ver-
dndert sich die Hazardrate linear mit der Zeit (log(h(t)) = a+byz1+boxa+ct).
Im Weibull Modell veréandert sich die Hazardrate linear mit dem Logarithmus
der Zeit (log(h(t)) = a+byxi+bexa+c - log(t)). Diese drei Modelle gehoren al-
le der generellen Klasse von Modellen an, die als proportional hazards models
bekannt sind.
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4.1.6 Log-Logistisches Modell

Mit diesem Modell kann eine fallende oder eine zunéchst steigende und dann
fallende Hazardrate modelliert werden. Das Log-Logistische Modell ist defi-
niert iiber:

4.1.7 Log-Logistsches Standardmodell

Log-Logistisches Standardmodell

abata—l
T Ty
abata—l
At) =15 (bt)a
1
= G

wobei b = exp{fy + 51.X1 + ... + B Xk}, also:

h(t) _ a - eXp {ﬁo + ﬁle =+ ... +ﬁka}ata_l
LoF (exp {60 +60 X1+ ...+ ﬁka}t)a

a=20 —
a=15

a=10 —
25 r a=06 —
a=03 —

1 T

05

0 05 1 15 2

Abbildung 4.6: Hazardrate im Log-Logistischen Modell

Wir sehen, dass ein grosserer Wert fiir b von einer fallenden Hazardrate zu
einer erst steigenden und dann fallenden Hazardrate fithrt
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Q=

(a—1)

| =

tmax
Punax = b(a — 1) %

Erweitertes Log-Logistsches Modell

Erweitertes Log-Logistisches Modell
a(bt)*!

f(t) =cC- W a,b,c>0
~a(bt)r!
h(t) = c- T(bt)“
1

Sit)= ——
®) (14 (bt)2)s
wobei b = exp {0y + /1 X1 + ... + B Xk}, also:

~alexp {Bo + 5 Xy + ... + B Xy} )t
1+ (exp{Bo+ (1 X1+ ...+ BuXi} )

h(t) =

4.1.8 Log-Normale Modelle

Das Log-Normal-Modell unterstellt eine zunéchst steigende und dann fal-
lende Hazardrate. Im Log-Normalen Modell spielt die Normalverteilung eine
wichtige Rolle. Sie ist definiert {iber

Dichtefunktion der Standardnormalverteilung;:

p(t) = \/12—7Texp {—g}

Verteilungsfunktion der Standardnormalverteilung::

P — /O ()

und ist wie folgt in das Log-Normale Modell implementiert:
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Log-Normal Modell
1 log(t) — b
1) = o (EO=) a0

Cat

1 o(z) . log(t) — b
®) at 1 — d(z) S 2 a
St)=1- o <log(2) - b)

wobei b = exp {fy + /1 X1 + ... + B Xk}, also:

1 () . _log(t) —exp{Bo + 1 X1 + ... + B X}
h(t) = ET{)(ZI&) mit Zt = a

4.1.9 Intermezzo 11

Im Unterschied, zu den proportional hazards models, von denen wir in In-
termezzo 1 gelesen haben, gehoren das log-normale und das log-
logistische Modell einer anderen Klasse von Modellen an. Hierbei handelt es
sich um accelerated failure time models, oder auch location-scale models ge-
nannt. Wenn 7" die Zeit beschreibt, bis ein Ereignis auftritt, dann kann diese
Klasse von Modellen wie folgt beschrieben werden:

log(T) =a+bixy +boxs+ ...+ u

wobei u ein Zufalliger Zufallsterm bezeichnet, der unabhingig von x; ist.
Dieser Zufallsterm w ist fiir die Unterschiede zwischen den Mitgliedern dieser
Modellfamilie zusténdig. Verteilungen, die oftmals angenommen werden um-
fassen die Norma “lverteilung, log-gamma Verteilung, logistische Verteilung
und die extreme-value Verteilung. Daraus ergeben sich die Verteilungen fiir
T, die wir als log-normalen und die log-logistischen Modelle kennen, sowie
das Gamma Modell, auf das nicht ndher eingegangen wird. Ebenso treffen
wir hier auf das Weibull-Modell, das in beide Klassen eingeteilt werden kann.
Es kann gezeigt werden, dass das Weibull Modell (sowie sein Spezialfall, das
Exponentialmodell) das einzige Modell ist, dass in beide Klassen fallt. Fiir
verschiedene Verteilungen von u ergeben sich:
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Verteilung von u

Resultierende Verteilung

Normalverteilung
Log-Gamma
Logistisch
Extreme-Value

LU

Log-Normal
Gamma
Log-Logistisch
Weibull

Das log-normale und das log-logistische Modell sind unter dem Blickwinkel
etwas Besonderes, da sie (wie in den Graphiken und ?? zu sehen) da-
zu geeignet sind, eine erst steigende und dann -nach einem Maximalwert-
fallende Hazardrate zu modellieren. Thre Hazardraten sind nicht monotone

Funktionen der Zeit
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4.1.10 Sichelmodell / Sickle-Model

Auch dieses Modell kann zunéchst steigende und dann fallende Raten mo-
dellieren. Die Form ist glockenformig, einer Sichel dhnlich. Es ist definiert
iiber:

Sickle-Modell

i

t
h(t) = btexp{——} , a,b>0
a

) = ez {—ba {a (¢ +a)exp {-2}} }

wobei b = exp {0y + /1 X1 + ... + B X}, also:

h(t) = exp {Bo + £1.X4 +---+ﬁka}teXp{—§}

03

a=20

Abbildung 4.7: hazard rate im Sickle-Modell

Das Maximum der Rate liegt bei ¢ = a und der einzige Wendepunkt bei
t = 2a. Eine Besonderheit dieses Modells ist, dass die Survivorfunktion nicht
gegen () tendiert, sondern gegen

exp—{(Bo+ i X1 + ... + BiXi)a®}
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Mit anderen Worten, dieses Modell ist vor allem dann angemessen, wenn
man annimmt, dass nicht fiir alle Personen ein Ereignis eintritt. Es ist z.B.
fiir die Analyse von Ehescheidungen gut geeignet.

4.1.11 Letzte parametrische Bemerkung

Als Abschlussbemerkung sei erwéhnt, dass nach Allison kein tiberzeugendes
parametrisches Modell existiert, um eine u-férmige Hazardrate zu modellie-
ren. Auch in anderen Lehrbiichern lésst sich dazu nichts finden. Ebenso sei es
oftmals besser, bei starker Abweichung von monotonen Steigungseigenschaf-
ten auf das semiparametrische proportional hazards model zuriickzugreifen.
Der nicht ganz unberechtigte Einwurf, dass eine sozialwissenschaftliche Theo-
rie kaum Hinweise geben kann, ob eher ein Weibull- oder Gompertz-Makeham
Modell angebracht ist vereinfacht uns die Analyse auch nicht.

Im Hinblick auf das Cox-Modell werden zwei weitere Nachteile erwéhnt:

1. Die Entscheidung dariiber, wie die Hazardrate von der Zeit abhéngt,
woriiber wir oftmals kaum Informationen haben. Desweiteren ist die
Wahl des passenden Modells mit der Richtigen Form problematisch,
wenn wir eine nichtmonotone Hazardfunktion erwarten.

2. Wichtiger als dieses mag jedoch sein, dass es die angefiihrten Modelle
-nach Allison- nicht erlauben, erkldrende Variablen mit aufzunehmen,
deren Werte sich iiber die Zeit verdndern.
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4.2 Semi-Parametrische Modelle: die Regressi-
on nach Cox

Das Cox-Modell ist nach Yamaguchi (1991) die populérste Regressionsme-
thode zur Analyse von Uberlebensdaten. Sie findet besonderen Anklang in
der demographischen Forschung, beispielsweise in der Untersuchung von Hei-
rat, Scheidung, Geburt, Migration und Job-Mobilitdt. Ebenso bescheinigt
ihr Allison (1984) grosse Beliebtheit, als Beispiel nennt er die biomedizini-
sche Forschung. Das stetige Cox-Modell wird auch als proportionales Hazard
Modell (proportional hazards model) bezeichnet. Es beruht auf der Partial
Likelthood und nicht auf der Mazimum Likelihood Methode. Der wichtigste
Vorteil dieser Partial Likelihood ist die Moglichkeit, Zeitabhangigkeiten zu
modellieren, ohne dass eine Annahme iiber die Form getroffen werden muss.
Ein weiterer Vorteil ist die Fahigkeit des Cox-Modells, stratifizierte Modelle
umzusetzen. Stratifizierte Modelle erlauben es uns, eine oder mehrere kate-
goriale Kovariate zu kontrollieren, die komplizierte Interaktionseffekte mit
der Zeit aufweisen konnen, ohne die Form dieser Interaktionseffekte spezifi-
zieren zu miissen. Das Cox-Modell krankt allerdings auch an mindestens vier
Nachteilen.

1. Dieses Modell nutzt nur die Information iiber die relative Reihenfol-
ge der Verweildauern anstelle der exakten Zeitpunkte der Ereignisse
und Zensierungen. Der Informationsverlust ist also méglicherweise dus-
serst gross. Dieser Verlust an Prazision der Partial Likelihood Parame-
terschétzer im Vergleich zu den Maximum Likelihood Schétzern ver-
schwindet normalerweise immer mehr, je grofer die Stichprobe wird,
kann aber problematisch sein, wenn nur eine kleine Stichprobe vorhan-
den ist.

2. Die Handhabung von Ties ist problematisch. Als Daumenregel sollten
nicht mehr als 5% der Falle Ties sein. Die Partial Likelihood Methode
kann Ties nicht exakt handhaben, dies ist rechnerisch unerschwing-
lich. Deshalb werden sie in Programmen, die zur Berechnung der Cox-
Methode verwendet werden, approximiert. Diese Anndherung ist je-
doch bei einer grossen Anzahl von Ties bestenfalls fragwiirdig. Nach
Yamaguchi ist dann die ML-Methode vorzuziehen, insbesondere mit
diskreten Zeitmodellen.

3. Die Analyse der Form der Zeitabhéngigkeit ist mit der PL-Methode
nicht moglich. Ist diese von Interesse, dann ist die Anwendung des
Cox-Modells eine fruchtlose Angelegenheit.
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4. Die PL-Methode basiert auf schwicheren theoretischen Grundlagen als
die ML-Methode. Bei der Modellauswahl sind Vorsichtsmafnahmen
empfohlen.

Trotz dieser Nachteile ist das Cox-Modell ungebrochen beliebt bei der Ana-
lyse von Ereignisdaten. Wieder einmal unterscheiden sich die Darstellungen
dieser Methode je nach Lehrbuch. Mir erscheint es sinnvoll, hier kurz Allison
(1984) und Yamaguchi (1991) zusammenfassend darzulegen, da sich durch
die verschiedenen Herangehensweisen moglicherweise ein Gewinn an Durch-
blick erzielen lésst.

4.2.1 Cox-Modell, Notation nach Allison

Das Cox-Modell -6fter auch proportionales Hazardmodell bezeichnet- ist nach
Allison (wobei es sich der Eienfachheit halber bei 27 und x5 um zeitkonstante
erkldrende Variablen handelt) definert als:

log(h(t)) = a(t) + byxy + boxs

a(t) kann hierbei jede Funktion der Zeit sein. Weil diese Funktion nicht spe-
zifiziert werden muss, wird dieses Modell als semiparametrisch oder partiell
parametrisch bezeichnet. Es wird proportionales Hazardmodell genannt, weil
fiir alle zwei Individuen zu jedem Zeitpunkt folgendes gilt:

hi(t)

h;(t)
¢ kann dabei von den erkldrenden Variablen abhéngen, nicht jedoch von der
Zeit. Im Gegensatz zu dem Namen ist dies keine entscheidende Eigenschaft
des Modells, weil die Konstanz der Hazard-Ratios abhanden kommt, wenn
zeitveranderliche unabhéngige Variablen eingefiihrt werden. Es ist natiirlich
einfacher, solch ein Modell aufzustellen als es zu schétzen. Hier ziegt sich das
wichtige an Cox’s Modell: die Partial Likelihood Methode. Diese Methode
beruht auf der Tatsache, dass die Likelihoodfunktion fiir Daten aus dem
proportionalen Hazardsmodell in zwei Teile zerlegt werden kann: Der eine
Faktor entélt nur die Information iber die Koeflizienten b; und by. Der andere
Faktor enthélt Informationen iiber by, by und die Funktion a(t). Die Partial
Likelihood Methode ignoriert einfach den zweiten Faktor und behandelt den
Ersten als ganz normale Likelihoodfunktion. Dieser Faktor héngt nur von
der Reihenfolge ab, in der die Ereignisse eintreten, nicht jedoch von dem
exakten Zeitpunkt ihres Eintretens. Die daraus resultierenden Schétzer sind
asymptotisch unverzerrt und normalverteilt. Sie sind nicht komplett effizient,

= ¢, fiir jeden Zeitpunkt ¢
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da ein Teil der Information (der genaue Zeitpunkt des Eintretens) von dem
Verfahren ignoriert bleibt. Dieser Malus an Effizienz ist jedoch normalerweise
so gering, dass er nach Allison (1984) nicht der Sorge Wert ist. Wenn die
Abhéngigkeit des Hazards von der Zeit von Bedeutung ist, lésst sich das Cox-
Modell nicht anwenden. Als Beispiel wird das Prinzip der kumulativen Inertia
angefiihrt, die besagt, dass die Wahrscheinlichkeit eines Individuum, seinen
Zustand zu dndern abnimmt, je langer es schon in diesem Zustand verharrt.
Ist jedoch nur der Effekt der erklarenden Variablen von Bedeutung, und nicht
die Abhéngigkeit von der Zeit, dann ist das Cox-Modell eine interessante
Option.

Zeitveranderliche erklarende Variablen

Das proportionale Hazardmodell kann leicht um erklarende Variablen er-
weitert werden, die ihre Werte {iber die Zeit &ndern. Hier wird ein Modell
aufgefiihrt, in dem eine der beiden unabhéngigen Variablen zeitkonstant ist,
die andere zeitverdanderlich.

log(h(t)) = a(t) + byzy + boxa(t)

Dieses Modell besagt, dass der Hazard zur Zeit ¢ vom Wert der Variable x,
zum gleichen Zeitpunkt ¢ abhéngt. Wenn man Grund zur Annahme hat, dass
der Effekt der Variable x5 zeitverzogert eintritt, kann man dies leicht in die
Formel einfliessen lassen.

log(h(t)) = a(t) 4+ byxy + boxs(t — v)

Dies ist die generelle Form, dies zu tun. Wenn die Zeit in Monaten gemessen
wurde und wir annehmen, dass der Effekt um 3 Monate zeitverzogert wirkt,
dann setzen wir fiir v einfach 3 ein, also:

log(h(t)) = a(t) 4+ bixy + baxa(t — 3)

Ein heutzutage obsolet anmutender, jedoch erwdhnenswerter Hinweis von
Allison soll hier nicht verschwiegen werden: Bei Aufnahme von zeitverander-
lichen unabhangigen Variablen in das Modell steigt die Rechenzeit enorm an.
Allein die Aufnahme einer zeitverdnderlichen Variablen erhohte die Rechen-
zeit um den Faktor 10.

4.2.2 Cox-Modell, Notation nach Yamaguchi

Ergénzend dazu ist proportionale Hazardmodell nach Yamaguchi (1991) de-
finiert als:
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Cox-Modell

hi(t) = ho(t) exp {Z kaik(t)}

Die Hazardrate ist definiert als das Produkt einer unspezifizierten Baseli-
ne-Funktion ho(t) und einem zweiten Term der den moglichen Einfluss eines
Kovariatvektors X () (fir Person i zum Zeitpunkt ¢ und Kovariate k) auf die
Hazardrate angibt. Der Effekt der Kovariaten kann proportionale Anderun-
gen der Hazardrate bewirken. Deshalb sollte das Cox-Modell nur verwndet
werden, wenn diese Proportionalitdtsannahme gerechtfertigt ist. Das Modell
nimmt an, dass wenn X, eine Intervallskalierte Variable ist, sich die Hazardra-
te mit jeder einheit der intervallskalierten Variable um exp {by} vervielfacht,
sofern der Effekt der anderen Kovariate kontrolliert ist.

Wenn die Kovariate alle Zeitunabhéngig sind, dann ist die Survivorfunktion
gegeben durch:

Si(t) = So(t) P XwbuXin }

wobei Sy(t) die Survivorfunktion fiir die Individuen mit X, = 0 angibt. Sie

ist gegeben {iiber:
So(t) = exp {—/h0(8>d8}

Die log minus log Survivorfunktion ist gegeben iiber:
In —InS;(#)] = In [~ In So(t)] + Y b Xy
k

Der erste Teil der Formel auf der rechten Seite ist allen Objekten gemein-
sam, der zewite Teil ist nicht Zeitabhéngig. Es folgt, dass wenn alle Kovariate
Zeitunabhéngig sind, die Differenz der log minus log Survivorfunktion unter
den Gruppen mit unterschiedlichen Werten auf den Kovariaten, iiber Zeit
konstant werden. Diese Charakteristik kann in einer graphischen Uberprii-
fung der nonproportionalen Effekte fiir eitunabhéngige Kovariate verwendet
werden.
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Anhang A

Variablen: diskret & stetig

Wichtig fiir dieses Skript ist die Unterscheidung zwischen diskreten und Steti-
gen Variablen. Es vermindert meiner Erachtens enorm die Verwirrung, wenn
man weiss, warum “manchmal” mit > und “manchmal” mit [ f(z)dz gerech-
net wird.

A.1 Diskret Variablen

Bei diskreten Variablen handelt es sich um Variablen, deren Auspragungen
endlich oder abzéhlbar unendlich sind. Uns bekannte diskrete Wahrschein-
lichkeitsverteilungen sind die Hypergeometrische Verteilung, die Binomial-
verteilung oder die Poissonverteilung. In jeder dieser Verteilungen existiert
ein Term aus der Kombinatorik, so dass sie schon intuitiv als abzahlbar er-
kannt werden konnen:

() (s)
()

Binomialverteilung = <n> p*(l—p)"®
x

Hypergeometrisch =

k

Poissonverteilung = %6_H

In jeder dieser Formeln steht entweder (Z) oder z!. Diese Werte mogen zwar

extrem grosswrden, unendlich sind sie jedoch nicht. Beim Lotto z.B. exis-
tieren (469) = 13.983.816 moglich Lottoziehungen. Die Auspragungen die die
Variable “Richtige im Lotto” annehmen kann besitzt aber nur die Auspré-
gungen 1, 2, 3, 4, 5, 6 Richtige und nicht zu vergessen 0 Richtige. -2 Richtige
oder 3,5 Richtige sind nicht mdoglich!
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Abbildung A.1: Wahrscheinlichkeit fiir Gewinn

5 6

In Graphik sehen wir, wie hoch die jeweilige Wahrscheinlichkeit ist, die
entsprechende Anzahl an Treffern im Lotto zu erzielen. Es sind zwar Bal-
ken in diesem Diagramm zur besseren Ubersicht dargestellt, aber wollen wir
préaziser von “Strichen” reden, da die Auspragungen keine Intervalle darstel-
len, sondern Punkte. Wir haben hoffentlich 6 Richtige im Lotto und nicht
zwischen 5,9 und 6,1, denn dies ist nicht moglich. Die Wahrscheinlichkeit fiir
1 und O Richtige liegen relativ gleich auf, sie entspricht ungefdhr 0,42. Die
Wahrscheinlichkeit fiir 4 bis 6 Richtige ist mit blossem Auge in der Graphik
nicht mehr zu erkennen, sie betrégt fiir 4 Richtige ~ 0, 00096862 oder anders
geschrieben ~ 9, 6862 F — 04, fiir 5 Richtige ~ 1,845F — 05 und fiir 6 Richtige
~ 7,1511F — 08, also m. Es ist schon intuitiv logisch, dass die Wahr-
scheinlichkeit, sofern man denn mitgespielt hat, Eines dieser Ergebnisse zu
erhalten, namlich 0, 1, 2, 3, 4, 5 oder 6 Richtige zu haben eintreten muss.
Die kumulierte Wahrscheinlichkeit muss also exakt = 1 betragen.
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08

06

04 A

02 4

0.0

Abbildung A.2: Kumulierte Wahrscheinlichkeit

Wenn wir uns die kumulierte Wahrscheinlichkeit anzeigen lassen sehen wir,
dass die Summe 1 ergibt. Auch wenn es in der Graphik optisch nicht
deutlich wird, 1 wird erst mit dem letzten Strich erreicht, vorher liegt der
Wert der kumuliertn Wahrscheinlichkeit zwar sehr nahe an 1, er ist jedoch
noch kleiner als 1.

10

08

06

04

02

00 \ : H =, ; : .
0 1 2 3 4 5 6

Abbildung A.3: Wahrscheinlichkeit & kumulierte Wahrscheinlichkeit

Fiir unser hypergeometrisch verteiltes Lotto-Beispiel gilt folgendes,

6

Z p(ﬂ’?z) =1

=0
da wir es mit abzéhlbaren Auspragungen zu tun haben, und daraus die Sum-
me bilden kénnen, was wir eben getan haben.
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A.2 Stetige Variablen

Bei stetigen Variablen liegt der Fall anders, hier haben wir es mit tiberabzahl-
bar unendlich vielen Eigenschaften oder Auspragungen zu tun. Wir kénnen
-anders als bei den Lottoergebnissen- jede Auspragung noch genauer Messen.
Eine Person kann theoretisch beliebig genau gewogen, in der Grosse vermes-
sen oder ihr Alter bestimmt werden. So ist es beispielsweise moglich eine
Person nicht “grob” auf 1.75m - 1.76m in ihrer Grdsse zu messen, sondern
anzugeben, ob sie 1.75m, 1.754m, 1.7548m oder 1.75482m gross ist. zwischen
jeden beliebigen zwei Messwerten liegen unendlich viele andere. Wir haben
hier also nicht nur 7 Striche vorleigen wie in unserem Lotto-Beispiel. Nicht
einmal 100 Striche. Auch 1.000, 5.000 oder 523.495.685.932 Striche genii-
gen nicht. Da die Anzahl der Auspragungen gegen unendlich geht, liegen die
Striche unendlich dicht beieinander. Und damit sind wir sehr nahe an einer
wichtigen Schlussfolgerung. Wonach sehen unendlich viele Striche unendlich
nahe beieinander aus? Erinnern wir uns, an unsere ersten ausmal-Versuche
in der Grundschule oder dem Kindergarten. Richtig. Sie sehen aus wie ein
Flédche. Flachen berechnet man in der Mathematik {iber Integrale. Also heisst
dies fiir uns, wir rechnen nicht

Zp(m) =1

denn dies wiirde unendlich lange dauern, sondern

/_ Z F@)dr = 1

In den nachfolgenden Graphiken sehen wir, das wir, wie sich aus einer An-
sammlung von Strichen eine Fléche entwickelt. Es ist der Auflésung des PC-
Bildschirms geschuldet, dass schon bei einer relativ “ungenauer Messung” be-
stehend aus 0.01er Schritten (Bild unten rechts) die Ansammlung der Striche
als Fldache erscheint.
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Abbildung A.4: Abnehmender Abstand zwischen den Messungen
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Anhang B

Dichtefunktion &
Verteilungsfunktion

Eine Dichtefunktion, auch als Wahrscheinlichkeitsdichte oder Wahrschein-
lichkeitsdichtefunktion bekannt, dient dazu die Wahrscheinlichkeitsverteilun-
gen einer Variablen zu beschreiben. Die Wahrscheinlichkeiten fiir die einzel-
nen Auspragungen einer stetigen Zufallsvariablen kénnen im Gegensatz zum
diskreten Fall nicht angegeben werden, da die Wahrscheinlichkeiten fiir jede
einzelne Auspriagung 0 sind, da die Intervalle gegen Null gehen, und damit
die Wahrscheinlichkeit, in ein bestimmtes Intervall zu fallen ebenfalls gegen
Null gehen. Es lassen sich nur Wahrscheinlichkeiten dafiir angeben, dass die
Werte innerhalb eines Intervalls um den interessierenden Wert x liegen. Die
Wahrscheinlichkeit, dass die Zufallsvariable Werte zwischen a und b annimmt,

entspricht dem Integral der Funktion. Es gilt

Pla<z<b)= /abf(x)dac - /_; f(a)dz — /_Oo F(@)da

Abbildung B.1: Dichtefunktion und Verteilungsfunktion der Standardnormal-

verteilung
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Anhang C

Grundlagen der Analysis

Ein paar Grundlagen in Analysis scheinen mir auserordentlich niitzlich, um
die Zusammenhénge in diesem Skript besser nachvollziehen zu kénnen.

C.1 Ausgangsfunktion f(x)

Funktionen die wir kennen, die kennen wir iiblicherweise urch ihre norma-
le Funktion, die ich in diesem Zusammenhang “Ausgangsfunktion” nennen
mochte. Die Parabel der Funktion f(z) = z? zeigt sich nur in ihrer Aus-
gangsfunktion.
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Abbildung C.1: Ausgangsfunktion der Standardnornmalverteilung

In der vorangehenden Graphik sehen wir die uns bekannte Standard-
normalverteilung (im folgenden: SNV). Thr typischer brachte ihr den Namen
Glockenfunktion oder Gaussche Glocke ein. Doch auch hier zeigt sich der
Verlauf nur in der Ausgangsfunktion f(x). Wie sich die Form, und die Inter-
pretation verdndert, wenn man aus dieser Funktion die Ableitung f’(x) oder
die Stammfunktion F'(x) bildet sehen wir nun:

C.2 Stammfunktion F(z)

Die Stammfunktion wird iiber intergrieren der Ausgangsfunktion gewonnen.
Das Integral einer Funktion beschreibt den Flacheninhalt zwischen Kurve der
Funktion und der x — Achse. Der Flacheninhalt unter der gesamten Kurve
wird tiber

F(z) = /_ o; f(2)dz

beschrieben. Allerdings ist es allgemein notwendig sich die Teilstiicke zwi-
schen den Nullstellen der Ausgangsfunktion gesondert anzuschauen. Dies ist
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hier jedoch nicht erforderlich, da die Ausgangsfunktion der SNV iiber kei-
ne Nullstellen verfiigt. In Graphik sehen wir einen bekannten Sachver-
halt. Die Stammfunktion nimmt fiir x = 0 den Wert 0.5 an. Dies ist der
Wert, den der Fldcheninhalt zwischen Kurve und z-Achse annimmt. Da der
Flacheninhalt der Gesamten SNV (von —oo bis oo) gleich 1 ist, und die
SNV symmetrisch zum Ursprung ist, war dieser Wert erwartet. Der Wert der
Stammfunktion gibt den Flidcheninhalt von —oo bis zu dem Punkt an, der
auf der z-Achse abgelesen wird.

1.0

075+

0.5

0.25+

I:I'I:I_ T 1T 17T 17 T T 171 T 1T 17T 7T T T 171
50 25 0.0 25 5.0
¥

Abbildung C.2: Ausgangsfunktion der Standardnornmalverteilung

Es gilt also fiir die Standardnormalverteilung:

F(0) :/_ f@)dz = 05

Andere bekannte Werte fiir die Stammfunktion der SNV sind:

1.645
F(1.645) = / f(z)dz ~ 0.95

—00

1.96
F(1.96):/ fla)da ~ 0.975
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2.326

F(2.326) = / f(z)dx ~ 0.99
Hier liiftet sich vielleicht etwas der kryptische Schleier der Z-Werte, den mit
denen hatten wir es gerade zu tun.

C.3 Erste Ableitung f'(x)

Die erste Ableitung der Ausgangsfunktion hat eine ebenso interessante In-
terpretation. Die erste Ableitung beschreibt die Steigung der Tangente, die
die Kurve in dem Punkt beriihrt, der auf der x-Achse abgelesen wird. Wir
kénnen in Graphik [C.3]shen, in welchen Bereichen die Ausgangsfunktion der
SNV steigt (positiver y-Wert = positive Steigunt), fallt (negativer y-Wert
= negative Steiung, die Funktion fillt also der z-Achse entgegen) und wo
die Funktion keine Steigung besitzt. Dies ist hier bei 2 = 0 der Fall. Uber
die Struktur der Ableitungen kann man eine Menge iiber die Charakteris-
tik der Funktion erfahren. Z.B. konnen wir errechnen, wo die Funktion eine
Extremstelle besitzt, indem wir die erste Ableitung f'(z) = 0 setzen und
diese Gleichung losen. Um jedoch zu entscheiden, ob es sich um ein Mini-
mum oder Maximum handelt, reicht die Aussage f”(x) # 0 nicht, sie gibt
nur an, dass es sich um eine Extremstelle handelt. Also miissen wir die zweite
Ableitung genauer untersuchen. Ist f”(z) < 0 handelt es sich um ein Ma-
ximum, ist f”(z) > 0 handelt es sich um ein Minimum. Wir erinnern uns
wahrscheinlich dunkel an die Begrifflichkeiten von notwendiger und hinrei-
chender Bedingung. Fiir Wendestellen miissen wir untersuchen, ob und wo
f"(x) = 0 gilt. Ist in diesem Punkt f”(z) # 0, so haben wir es mit einem
oder mehreren Wendepunkten zu tun. Bei der SNV haben wir 2 Wendepunkt
vorliegen, bei 1 und —1. Generell gilt fiir Normalverteilungen: Wendepunkte
bei +1-0. Wir kénnen in Graphik gut erkennen, dass die Ausgangskurve
ihr Steigungsverhalten dndert.
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Abbildung C.3: Erste Ableitung der Standardnornmalverteilung

Erst steigt die Kurve (der ersten Ableitung) an, dies bedeutet eine grosser
werdende Steigung in der Ausgangsfunktion (!) also eine Linkskurve. Am
Punkt —1 verharrt die Ableitung kurz und fallt dann, was eine Rechtskurve
fiir die Ausgangsfunktion bedeutet, bis zum Punkt +1. Dort verharrt die
Kurve der Ableitung auch infinitesimal kurz und beginnt dann wieder zu
steigen, was einer Linkskurve fiir die Ausgangsfunktion gleichkommt.
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C.4 Beispiel einiger Funktionen

Ableitung 7

Ursgrungsfunktion
tammfunkticn

-4 -2 0 2 4

Abbildung C.4: Erste Ableitung und Stammfunktion von f(z) = 22
Wobei:

f(z) =2z
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Tabelle C.1: Ableitungs- & Integrationsregeln
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. . . . 3
C.4.1 Beispiel: Integration von N
Wir wollen 3
€T) =
==
ableiten. Dafiir schreiben wir um in:
3
flx) = ;lffg
Nach f(z) = 2" — F(z) = ~72"*" erhalten wir:
3 1 5 3 1 3 3-2 _3
Flx)=>- B S it
(z) I 13 43"

Vereinfachen und Kiirzen fiihrt uns auf das Ergebnis

11 1
="

C.4.2 Beispiel: Ableitung von %\/:p?’

Es gilt f(z) = 2" — f'(x) = nz""'. Wir schreiben unsere Formel erst einmal

in diese Form um: 5
flz) = g\/ﬁ =

und wenden nun die angegebene Forschrift an:

3
T2

[GVIN )

23 5, 2.3
Py =337 =553

SIS
VI

r2 =

Schreiben wir nun noch um erhalten wir

als Ergebnis

Auf gebrochenrationale Funktionen wird an dieser Stelle nicht eingegangen,
dort sind die Ableitungen nicht notwendigerweise schwerer, aber aufwendiger,
da dort beispielsweise mit der Produkt-, Ketten- und /oder Quotientenregelre-
gel gearbeitet werden muss. Ebenso bleibt die behandlung mehrdimensionaler
Funktionen unbeleuchtet, auch wenn sie in der Statistik prinzipiell bedeutend
sind (Beispielsweise in der Herleitung der Regression).
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Herleitung der logistischen
Regressionsgleichung

Der Einfachheit und Ubersichtlichkeit halber verkiirzen wir die Schreibweise
von

En:bixi auf bzx;
i=1

also auf den bivariaten Fall und

p(z) auf p

Wenn wir eine Wahrscheinlichkeit durch lineare Regression vorhersagen wol-
len treffen wir auf Probleme: Die Wahrscheinlichkeit ist auf das Intervall von
0 bis 1 festgelegt. Sie konnen nicht negativ oder grosser 1 werden, so wie es
die rechte Seite der Formel kann.

p=a-+bx;

Um dieses Problem zu 16sen betrachtet man die Odds, also den Quotienten
aus zwei Wahrscheinlichkeiten.

P oy bx;

lL—p
Der Odd der Wahrscheinlichkeit zu “Uberleben” fiir p(x) = 0.75 betrigt
11:(8) = % = 3. Also ist die Wahrscheinlichkeit zu tiberleben 3 mal hoher
als nicht zu tiberleben. Das ist schon besser. aber immer noch nicht OK, den
die Odd-Ratios kénnen nich negativ werden, also besitzen sie einen Werte-
bereich zwischen 0 und +oo. Durch logarithmieren (iiblicherweise mit dem
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logarithmus naturalis In) erreichen wir einen Wertebereich zwischen —oo und
+00.

P
- P
Wenn wir die Gleichung nun nach p auflésen wollen gehen wir folgendermafien
vor:

In

= a+ bx;

Da gilt e™? = Ine® = z, es sich also um die Umkehrfunktion handelt gilt
folgendes:

p a+bzx;
=e
L—=p
Multiplikation mit 1 — p(x)
p= ea—i—bzi(l p)
Ausmultiplizieren
p= ea+bx¢ o peaer:):i

Addition, um pe®t® auf die linke Seite zu bringen:

P +p€a+bxi — ea—&-baw

Ausklammern von p

p (1 + ethme) = eotho
Dividieren durch (1 4 e***7)

ea+b:pi

= 1 + ea—i—bxi

Hier ist in manchen Lehrbiichern Schluss, wir haben die Formel der logisti-
schen Regression erreicht. Doch kann man noch weiter vereinfachen: Klam-
mern wir unter dem Bruchstrich e®+** aus.

p

€a+b:pi

eatbr; ( 1 + 1)

ea+bzi

p:

Umschreiben, da gilt 2 =a™*
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ea—i—bxi

ea+bx¢(67(a+bxi) + 1)

p =
Finales Kiirzen

1

p(l’) = e—(a—i—bzi) +1
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