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Kapitel 1

Einleitung

Der Begriff Ereignisanalyse bezeichnet eine Reihe statistischer Verfahren, die
zur Untersuchung von Zeitintervallen zwischen aufeinander folgenden Ereig-
nissen oder Zustandswechseln verwendet werden. Die von den Untersuchungs-
einheiten - z.B. Parteien, Personen, Staaten oder Regierungen - eingenommen
Zustände sind in der Regel abzählbar, also nicht unendlich. Es handelt sich
also um einen diskreten Zustandsraum. Diese Zustände oder Ereignisse kön-
nen zu jedem beliebigen Zeitpunkt eintreten. Die Zeit, mit der wir es zu tun
haben ist folglich stetig.
Die Ereignisanalyse ist eine Methode mit einem breiten Anwendungsfeld.
Untersucht werden kann die Zeitdauer bis zu einem Regierungswechsel in
Land x oder der Wechsel der Parteipräferenz bei Person y. Überlebenszeiten
von Patienten in medizinischen Studien, beispielsweise nach Herzoperatio-
nen oder Chemotherapie, die Dauer von Lernprozessen in der Psychologie,
die Zeitspanne bis zu einem transregionalen Umzug in der räumlichen Mobi-
litätsanlyse, die Dauer der “Herrschaft” eines Löwen über sein Rudel in der
Biologie oder die Dauer von Arbeitslosigkeit in ökonomischen Untersuchun-
gen sind nur ein kleiner Ausschnitt möglicher Anwendungsfelder.
Die Statistik bietet heute eine grosse Anzahl an Möglichkeiten zur Analyse
von Ereignisdaten. Sie umfassen:

• Deskriptive Verfahren: Sterbetafel-Methode oder Kaplan-Meier- Schät-
zung

• Semiparametrisches Regressionsmodell von Cox

• Parametrische Verfahren mit und ohne Zeitabhängigkeiten: Exponen-
tialmodell, Piecewise-Constant-Modell, Gompertz- (Makeham-) Modell,
Weibull-Modell, log-logistisches-Modell
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Da die Ereignisanalyse in den letzten zwei Jahrzehnten sehr eng mit der Le-
bensverlaufsforschung verbunden gewesen ist, stehen dort die Veränderung
und die Interaktion der verschiedenen Dimensionen des Lebenslaufs im Vor-
dergund. Es hat sich gezeigt, dass die Methoden der Ereignisanalyse beson-
ders geeignet sind, folgende drei konzeptionelle Dimensionen zu beschreiben:

1. Selbstreferentielle Prozesse: Der Verlauf der Entwicklung eines In-
dividuums in einem bestimmten Bereich bezieht sich immer auf in die-
sem Lebensbereich bereits kummulierte Erfahrungen. Die Vorgeschich-
te der Person ist also immer in die gerade aktuellen Entscheidungen
involviert. Vorerfahrungen und bereits in der Vergangenheit getroffe-
ne Entscheidungen begrenzen dabei den Spielraum der in der Zukunft
möglichen Ereignisse.

2. Multidimensionale Prozesse: Der Lebensverlauf entwickelt sich in
mehreren, wechselseitig aufeinander bezogenen Bereichen. Jeder Be-
reich ist ein Teilprozess des Lebensverlaufs, so beispielsweise die Bil-
dungskarriere, die Krankengeschichte, der Familienverlauf, der Erwerbs-
biographie oder das bisherige Wahlverhalten. Diese verschiedenen Le-
bensbereiche sind dabei in der Regel nicht unabhängig voneinander.
Ein Beispiel hierfür ist das Zusammenspiel von Erwerbsprozess und
Bildungskarriere oder Krankengeschichte. Der Lebensverlauf setzt sich
hier also nicht aus dem selbstreferentiellen Bezug auf frühere Zustände
zusammen, sondern durch die parallele Interdependenz vieler verschie-
dener Lebensbereiche in der Vergangenheit. Auch die unterschiedliche
Gewichtung der einzelnen Bereiche im Hinblick auf das Alter einer
Person ist dabei nicht zu vernachlässigen. So ist ersichtlich, dass die
Krankengeschichte für einen jugendlichen oder “Twenty-something” im
Normalfall weniger bedeutend ist, als für eine Person jenseits der 70.

3. Gesellschaftliche Mehrebenenprozesse: Der Lebensverlauf ist in
solche hochgradig differenzierten Prozesse eingebettet. So haben bei-
spielsweise Einfluss:

• Andere Personen mit denen mehr oder weniger enge Interaktions-
beziehungen bestehen, beispielsweise Eltern, Lebenspartner, Kin-
der, Freunde etc.
• Verschiedene soziale Gruppen deren Mitglied man ist, also elterli-

che Familie, eigene Familie, Sport- oder sonstige Vereine, Bezugs-
gruppen, “Peer-Groups”
• Veränderungen gesellschaftlicher Institutionen und sozialer Orga-

nisationen wie staatliche Institutionen, Arbeitsorganisationen etc.
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• Wandel der Lebensbedingungen, beispielsweise soziale oder regio-
nale Kontexte.

• Generelle Rahmenbedingungen, so die historisch gewachsenen, sich
verändernden gesellschaftlichen Strukturen, die die sozialkulturel-
len, politischen, rechtlichen, kulturellen und ökonomischen Rah-
menbedingungen für die Lebensorganisation darstellen.

Zusammengefasst lässt sich sagen, dass es sich bei Verläufen (z.B. Lebensver-
läufe) um komplexe, nichtlineare Prozesse handelt, die durch Selbstreferenz,
zeitlich lokale Interdependenz sowie vertikale Interdependenz zwischen ver-
schiedenen sozialen Prozessen beeinflusst werden.

5



Kapitel 2

Grundlagen

2.1 Regression für Längschnittdaten?
Eine Annäherung an die Analyse von Ereignisdaten über das Standardverfah-
ren der multiplen Regression ist leider nicht unproblematisch. Nach Allison
(1984) führen die bei Ereignisdaten vorhandenen Zensierungen und zeitver-
änderlichen unabhängigen Variablen zu ernsten Problemen, wenn man sta-
tistische Standardverfahren anwenden möchte. Solche Verfahren können zu
einem starken bias, oder zu enormen Datenverlust führen. Als Beispiel für
diese Probleme nennt Allison eine Studie über Ex-Häftlinge: In dieser Studie
wurde untersucht, ob Personen die aus dem Gefängnis entlassen wurden, in
einem Ein-Jahresintervall wieder im Gefängnis landen. Obwohl das exakte
Datum der Verhaftungen der in diesem Jahr rückfällig gewordenen bekannt
war, wurde für den gesamten Zeitraum ein Dummy als abhängige Variable
gebildet, der angab, ob das entsprechende Individuum verhaftet wurde oder
nicht. Einmal davon abgesehen, dass die Verwendung einer multiplen Re-
gression bei dieser Art von abhängiger Variable fragwürdig erscheint (Stich-
wort logistische Regression), nimmt man durch die (willkürlich) Bildung eines
Dummys viel Informationsverlust in Kauf. Beispielsweise lassen Individuen,
die direkt in der ersten Woche oder am ersten Tag nach der Entlassung wie-
der rückfällig werden theoretisch anders beschreiben, als jemand der nach 11
oder 12 Monaten rückfällig wird. Die Länge des Zeitintervalls von Freilassung
bis zur nächsten Verhaftung zu nutzen ist aber auch nicht unproblematisch,
da für alle Personen, die 12 Monate nach Entlassung nicht wieder im Ge-
fängnis gelandet sind die Informationen zensiert sind. Es zeigt sich, dass eine
grosse Anzahl von Zensierungen zu einem grossen bias führt. Selbst wenn
kein einziger Fall zensiert wäre, würde sich das Problem, zeitveränderliche
unabhängige Variablen zu integrieren, als schwerwiegend erweisen.
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2.2 Unterscheidungen: A vs. B

2.2.1 Distributional- vs. Regressionsansätze

In den Anfängen widmete sich die Ereignisanalyse vornehmlich der Vertei-
lung der Zeit vor einem Ereignis oder der Zeit zwischen zwei Ereignissen. Wie
wir noch sehen werden, ist dies die Hauptidee hinter der Life-Table Methode
(3.4.1). Mit der Weiterentwicklung der Ereignisanalytischen Verfahren ver-
schob sich der Focus immer mehr auf die Regressionsmodelle, in denen das
Auftreten eines Ereignisses von der Linearkombination einer oder mehrerer
erklärender Variablen abhängt.

2.2.2 Repeated vs. nonrepeated events

In einigen Wissenschaften ist das interessierende Ereignis nicht wiederhol-
bar. So interessiert in der Biostatistic oftmals der Tod des Individuums, dass
natürlich nur einmal sterben kann. In den Ingenieurwissenschaften ist die Le-
benszeit eines Bauteils von Interesse, das ebenso nur einmal “kaputt gehen”
kann, und danach ausgetauscht wird. Anders liegt der Fall in den Sozialwis-
senschaften. Auch hier gibt es Ereignisse, die nur einmalig auftreten können,
so wie die Geburt des ersten Kindes oder die erste Heirat. Aber wie man sich
an dieser Stelle schon denken kann, ist es durchaus möglich in seinem Leben
mehr als ein Kind zu bekommen oder öfter als einmal zu heiraten. Diese Er-
eignisse sind also wiederholbar. Diese Modelle sind also für uns interessanter,
allerdings auch komplizierter.

2.2.3 Einzelne Ereignisse vs. multiple Fälle von Ereig-
nissen

In manchen Analysen ist es nicht problematisch, alle Ereignisse gleich zu
behandeln. So ist es beispielsweise in einer medizinischen Studie möglich,
nur zwischen “Patient hat überlebt” und “Patient hat nicht überlebt” zu un-
terscheiden. Sollte die Fragestellung allerdings spezieller sein, dann ist es
sinnvoll, auch hier zu unterscheiden. Ist ein Patient beispielsweise nach ei-
ner neuen Chemotherapie an den Folgen der Behandlung, an Krebs oder
an einer damit nicht in Verbindung stehenden Krankheit wie einem Schlag-
anfall oder Herzinfarkt verstorben, oder ist die Todesursache vollkommen
anders wie ein Verkehrsunfall oder ein Verbrechen? In diesen Fällen spricht
man von “konkurrierenden Risiken” oder Competing Risks. Sofern diese von-
einander unabhängig sind, ist ihre statistische Behandlung einfach: Bei der
Untersuchung der Übergänge in einen bestimmten Zielzustand werden alle
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anderen Übergänge als Zensierungen behalten, also als Beendigung der Be-
obachtungsdauer, ohne dass das untersuchte Zielereignis eingetreten wäre.
Sind die verschiedenen Zielzustände jedoch nicht unabhängig (z.B.: Arbeits-
lose entscheiden sich umso mehr für eine Weiterbildung, je länger sie keinen
Job gefunden haben), ist dieses Verfahren nicht zulässig. Eine adäqute sta-
tistische Behandlung solcher abhängiger Risiken ist nach Mayerhofer noch
nicht möglich. In der Biostatistik wurden Modelle für konkurrierende Risi-
ken (competing risks) entwickelt. Auch diese Modelle sind komplizierter als
das Basismodell.

2.2.4 Parametrische vs. nichtparametrische Methoden

In der Biostatistik sind nichtparametrische Verfahren sehr beliebt, die kaum
oder keine Annahmen über die Verteilung der Eintrittszeitpunkte der Er-
eignisse machen. In der Sozialwissenschaft und den Ingeniuerwissenschaften
sind dagenen parametrische Verfahren, die genaue Angaben über diese Vertei-
lung macht, beliebt. Um diese Verteilung zu beschreiben, bedient man sich
besonderer Verteilungen aus der Mathematik, so beispielsweise der Gom-
pertzverteilung, der Weibullverteilung oder der Exponentialverteilung. Ei-
ne Brücke zwischen diesen beiden Ansätzen wird vom proportional hazards
Modell nach Cox (4.2)geschlagen. Dieser Ansatz ist insofern parametrisch,
als er ein Regressionsmodell mit funktionalem Term angibt, und in sofern
nicht-parametrisch, als es keine genauere Annahme über die Verteilung des
Eintretens der Ereignisse trifft.

2.2.5 Diskrete vs. stetige/kontinuierliche Zeit

Modelle die annehmen, dass die Zeit des Eintretens des Ereignisses exakt
gemessen ist, sind als continous-time modells oder Modelle mit stetiger Zeit
bekannt. In der Praxis sind diese Zeitpunkte immer diskret gemssen, egal
wie klein die Intervalle sind. Allerdings ist es möglich, bei feinen Intervallen
eine kontinuierliche Messung zu unterstellen. Sind die Intervalle in Mona-
ten oder Jahren gemessen, ist es angebrachter von einer diskreten Messung
auszugehen.

2.3 Begriffe
Um zu verstehen, welche Ideen hinter der Ereignisanalyse stehen, ist es un-
umgänglich, einige zentrale Grundbegriffe zu definieren:
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2.3.1 Zustände - State

Unter Zuständen verstehen wir die Ausprägungen der abhängigen Variablen.
Dafür müssen wir festlegen, welche Zustände wir unterscheiden wollen. An
jedem Zeitpunkt nimmt jede Person exakt einen Zustand ein. Z.B. unter-
scheidet man in der Untersuchung von Heiratsverläufen

• Nie verheiratet

• Verheiratet

• Geschieden

• Verwitwet

Das Set der möglichen Zustände wird auch Zustandsraum oder state space
genannt.

2.3.2 Ereignis - Event

Unter Ereignissen versteht man Veränderungen von einem Zustand in einen
anderen, also von einem Ursprungszustand (origin state) in einen Zielzustand
(destination state). Erwähnenswert ist, dass die Zahl der Ereignisse von der
Zahl der Zustände abhängt. Wenn nur zwischen verheiratet und verwitwet
unterschieden wird, gibt es das Ereigniss “Scheidung” sozusagen nicht.

2.3.3 Verweildauer - Duration

Die Verweildauer gibt an, wie lange ein Individuum in einem Zustand ver-
harrt, also z.B. wie lang eine Person Single ist und nicht heiratet, oder wie
lange eine Ehe dauert bis sich die Ehe geschieden wird, oder ein Partner
stirbt.

2.3.4 Risiko-Periode - Risk Period

Natürlich können nicht alle Personen sämtliche Zustände zu jedem Zeitpunkt
einnehmen. Um eine bestimmte Veränderung zu durchleben muss die Person
in dem Ursprungszustand sein, der den Wechsel in den Zielzustand erlaubt.
Z.B. kann ein Single kein Witwer werden. Die Periode, in der ein Individuum
dem Risiko ausgesetzt ist, einen bestimmten Zustandswechsel durchzuma-
chen nennt man die Risiko-Periode. Ein eng verwandtes Konzept ist das
Risiko-Set. Es wird von der Zahl aller Individuen gebildet, die zu einem be-
stimmten Zeitpunkt dem Risiko ausgesetzt sind einen Zustandswechsel zu
erleben.

9
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2.3.5 Risikomenge - Risk Set

Die Anzahl der Fälle, die an einem bestimmen Zeitpunkt (stetig) oder in
einem bestimmten Intervall (diskret) dem Risiko eines Ereignisses unterliegt.
Dies ist die Menge der “noch lebenden” Individuen, also derjenigen, denen
noch kein Ereignis wiederfahren ist. Beachtenswert ist, dass die Risikomenge
kontinuierlich abnimmt. Es ist also zwar auf den ertsen Blick verwunderlich,
dass die Hazardrate wächst, während die Menge derjenigen Individuen, bei
denen ein Ereignis auftritt, kleiner wird. Auf den zweiten Blick ist es jedoch
einsichtig, dass dem so ist, da die Hazardrate steigt, aber die Menge der-
jenigen, für die ein Ereignis möglich ist, immer kleiner wird. In absoluten
Zahlen wird diese Menge kleiner, in relativen Zahlen wächst aber der Anteil
derjenigen aus der Risikomenge, die ein Ereignis erlebt haben.

2.4 Mathematische Grundlagen
Wir nehmen an, dass es sich bei T um eine stetige Zufallsvariable handelt.
Bei f(t) handelt es sich um die probability density function. Sie gibt an, wie
sich die Wahrscheinlichkeiten auf die möglichen Zufallsergebnisse verteilen.
Also beispielsweise wie wahrscheinlich es ist, dass eine Person einen IQ von
120 besitzt.
F (t) bezeichnet die distribution function von T. Sie gibt also an, wieviele
Fälle kumuliert in Relation zu allen Fällen bisher aufgetreten sind.

2.4.1 Dichtefunktion f(t) & Verteilungsfunktion F (t)

Wenn es sich bei T um eine stetige Zufallsvariable handelt, kann die Vertei-
lung auch als Dichtefunktion (f(t)) beschrieben werden, die mit der Vertei-
lungsfunktion F (t) in folgendem Zusammenhang steht:

f(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)

∆t
=
∂F (t)

∂t

F (t) = P (T ≤ t) =

∫ t

0

f(u)du

Die Dichte, also der Flächeninhalt wird über Integralrechnung angegeben.
Bilden wir die erste Ableitung des Integrals erhalten wir die Ausgangsglei-
chung. Also:

f(t) = F ′(t)
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Verdeutlichen wir uns dies an Hand der uns bekannten Standardnormalvertei-
lung: In folgender Graphik sehen wir die Dichtefunktion f(x), die berühmte
Gauss’sche Glockenkurve und die Verteilungsfunktion F (x) der Standard-
normalverteilung. Sie hat keinen glockenförmigen Verlauf.

Abbildung 2.1: f(x) & F(x)

wobei:

f(x) =
1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}

F (x) =
1

σ
√

2π

∫ a

−∞
exp

{
−1

2

(
x− µ
σ

)2
}
da

An der Dichtefunktion können wir sehen, wie die Wahrscheinlichkeit für die
verschiedenen Ausprägungen verteilt sind. An unserer Verteilungsfunktion
F (x) können wir den grau eingefärbte Bereich ablesen, der uns hier angibt,
wie viele Fälle von −∞ bis in unserem Beispiel bis zum Z-Wert 1 liegen. In
der Z-Tabelle sind diese Werte tabelliert.
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2.4.2 Survivalfunktion S(t)

Die survival function oder survival probability gibt die Wahrscheinlichkeit
dafür an, das vor dem Zeitpunkt t kein Ereigniss eintritt. Individuen, denen
das Ereignis noch nicht wiederfahren ist haben “überlebt” (survived). Der
Begriff überlebt kommt aus der Biostatistik, wo das interessierende Ereignis
oftmals der Tod des Individuums ist. Bei S(t) handelt es sich um eine fallende
Funktion von t, mit S(0) = 1 und S(t) = 0 für t→∞. Dies bedeutet ausge-
sprochen, dass wir die Analyse mit 100% “Überlebenden” beginnen und sich
nach unendlich langer Zeit (t → ∞) bei jedem Individuum ein Zustands-
wechsel vom Urzustand in den Zielzustand vollzogen hat. Sie ist definiert
als:

S(t) = 1− F (t) = 1− P (T ≤ t) = P (T ≥ t) =

∫ ∞
t

f(u)du

Die distribution function ist also das Komplement der survival function. Sie
gibt die Wahrscheinlichkeit dafür an, dass ein Ereignis vor dem Zeitpunkt
t statt findet. Folgender Zusammenhang besteht zwischen survival function
und distribution function, der in den Graphiken 2.2 und 2.3 verdeutlicht
werden soll:

F (t) + S(t) = 1

P (T ≤ t) + P (T ≥ t) = P (Ω) = 1

∫ t

0

f(u)du+

∫ ∞
t

f(u)du =

∫ ∞
0

f(u)du = 1

Abbildung 2.2: Eintrittswahrscheinlichkeit Ereignis
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Abbildung 2.3: Flächeninhalt unter Kurve = Integral: survival function &
distribution function

2.4.3 Hazardrate h(t)

Ein weiteres wichtiges Konzept ist die hazard rate oder hazard function.
P (t ≤ T < t + ∆t|T ≥ t) bezeichnet die Wahrscheinlichkeit dafür, dass
ein Ereignis im Intervall mit dem Zeitpunkt t als unterer Grenze und dem
Zeitpunkt t + ∆t als oberer Grenze statt findet, sofern dieses Ereignis nicht
schon vor dem Zeitpunkt t statt gefunden hat. Es soll also eine Veränderung
von einem Anfangszustand in einen Zielzustand stattfinden. Beispielsweise
von unverheiratet in verheiratet oder von verheiratet in geschieden. Sie gibt
das augenblickliche “Risiko” für solch einen Zustandswechsel an.

P (t ≤ T < t+ ∆t|T ≥ t); wobei gilt t < t+ ∆t

Dies ist die Wahrscheinlichkeit dafür, dass ein Ereignis eintritt, unter der Be-
dingung, dass vorher kein Ereigniss (keine Zustandsänderung) eigetreten ist,
also im Intervall zwischen 0 und t. Ein Beispiel hierfür ist, dass sich jemand
nur im interessierenden Intervall scheiden lassen kann, wenn er noch verhei-
ratet ist, und sich nicht in einem beliebigen anderen vorherigen Intervall hat
scheiden lassen. lim

∆t→0
bedeutet, dass die Breite des Intervalls gegen Null geht,

da ∆t gegen 0 strebt, also obere und untere Grenze unendlich Nahe beiein-
ander liegen. Dies ist möglich, da es sich bei T um eine stetige Zufallsvariable
handelt. Das zeitliche Intervall wird also sehr kurz. Es zeigt sich jedoch das
Problem, dass die Wahrscheinlichkeit in einem infinitesimal kleinen Intervall
zu liegen Null ist.

lim
∆t→0

P (t ≤ T < ∆t+ t|T ≥ t) = 0

13



Seite: 14 KAPITEL 2. GRUNDLAGEN

Um dies zu umgehen betrachten wir die Ratio aus Übergangswahrscheinlich-
keit und der Grösse des Intervalls. So kommen wir zu der Wahrscheinlichkeit
von Veränderungen in der abhängigen Variable pro Zeiteinheit:

P (t ≤ T < ∆t+ t|T ≥ t)

∆t

Dies erlaubt uns, folgenden Grenzwert zu definieren:

lim
∆t→0

P (t ≤ T < ∆t+ t|T ≥ t)

∆t

Hier haben wir nun das zentrale Konzept der hazard rate oder auch transition
rate h(t) vor uns:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t

Der “hazard” gibt die Wahrscheinlichkeit an, dass das Ereigniss in einem sehr
kurzen zeitlichen Intervall - sofern das Ereignis nicht schon vorher eingetreten
ist - statt findet. Aus diesem Grund ist die hazard rate auch als “instantaneous
risk” bekannt. Der Term

H(t) =

∫ t

0

h(u)du

Cumulative Hazard Function H(t)

wird cumulative hazard function genannt. Es gilt:

H(t) = − lnS(t)

2.4.4 Verknüpfungen

Es ist möglich, die aufgeführten Begriffe h(t), S(t), f(t) sowie F (t) durch die
jeweils anderen Begriffe auszudrücken. Es gilt

P (t ≤ T < t+ ∆t|T ≥ t) =
P (t ≤ T < t+ ∆t)

P (T ≥ t)

Also können wir h(t) wiefolgt umschreiben:

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
= lim

∆t→0

P (t ≤ T < t+ ∆t)

∆t

1

P (T ≥ t)

14



Seite: 15 KAPITEL 2. GRUNDLAGEN

=
f(t)

S(t)

Ebenso lässt sich also Ausdrücken:

h(t) =
f(t)

S(t)
=

lim
∆t→0

P (t ≤ T < ∆t+ t)

∆t
P (T ≥ t)

Es gilt ebenfalls:

S(t) = exp

{
−
∫ t

0

h(u)du

}

f(t) = lim
∆t→0

F (t′)− F (t)

∆t
= lim

∆t→0

p(t ≤ T < t+ ∆t)

∆t

f(t) = h(t) · S(t) = h(t) · exp

{
−
∫ t

0

h(u)du

}

f(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)

∆t
= F ′(t)

F (t) =

∫ t

0

f(u)du

2.5 Zensierung
Beobachtungen von Ereignisgeschichten sind normalerwiese zensiert. Zensie-
rung bedeutet, dass die Information über die Verweildauer in einem Zustand
nicht vollständig ist. Man spricht von vollständiger Linkszensierung, wenn
der Beginn und das Ende einer Episode vor dem Beobachtungsfenster liegen.
Teilweise linkszensiert ist eine Episode wenn nur der Beginn vor dem Beob-
achtungsfenster liegt, aber wir nicht wissen, wann diese Episode begonnen
hat.

Abbildung 2.4: Teilweise linkszensiert

15
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Linkszensierung ist ein schwerwiegendes methodischen Problem in der Ereig-
nisanalyse, da die Information der unbekannten Episode oder Verweildauer
nicht in das Modell mit einbezogen werden kann. Es entsteht ein Selektions-
problem, weil die Wahrscheinlichkeit, dass diese Episode beobachtet wird,
vom Beginn und der Dauer dieser Episode abhängt. Es sind dann solche
Episoden systematisch unterrepräsentiert, die entweder sehr kurz sind, oder
die lange vor der Beobachtung begonnen haben. Nach Blossfeld und Rohwer
sind nur solche Daten zu analysieren, bei denen die Annahme der Markov-
Eigenschaften -d.h. wenn der Prozess nur vom Ausgangszustand, nicht aber
von der Verweildauer im Ausgangszustand abhängt- gerechtfertigt ist.
Der Normalfall in der Ereignisanalyse ist jedoch die Rechtszensierung. In
diesem Fall kennen wir den Anfang der Episode und deren Vorgeschichte,
das Ende jedoch ist nicht bekannt. Dies ist immer dann der Fall, wenn zum
Zeitpunkt der letzten Befragung die Episode noch nicht abgeschlossen war.

Abbildung 2.5: Rechtszensierung

Dies ist zum Beispiel dann der Fall, wenn jemand zum Ende des Beobach-
tungsfensters noch immer verheiratet ist. In diesem Fall ist die Ehedauer
rechtszensiert. Da dieses rechtszensierende Ereignis im Normallfall unabhän-
gig vom beobachteten Prozess eintritt, ist die statistische Handhabung dieser
Rechtszensierungen methodisch unproblematisch.

Abbildung 2.6: Keine Zensierung
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Kapitel 3

Diskrete Zeit

3.1 Discrete Time Logit Models
In discrete time logit models wird angenommen, dass die Ereignisse nur zu
bestimmten diskreten Zeitpunkten auftreten. Die Anwendung von discret
time models kann mehreren Zwecken dienen:

1. Durch Modelle mit diskreter Zeit können Modelle mit stetiger Zeit ap-
proximiert werden.

2. Modelle mit diskreter Zeit nach Cox haben gegenüber Modellen mit
stetiger Zeit Vorteile bei der Behandlung von Ties.

3. Der zu Grunde liegende Zeitprozess ist tatsächlich diskret.

4. Ein binärer Prozess -der bestimmten Anforderungen genügt- wird an-
genommen und durch Daten einer Panelbefragung analysiert.

Zuerst fokussieren wir uns auf Ereignisse, die nicht wiederholbar sind, also
nur einmalig auftreten. Solche Ereignisse sind beispielsweis die Geburt des
ersten Kindes oder die erste Heirat. Die nachfolgende Beschreibung basiert
auf Cox und Brown

3.1.1 Approximation stetiger Zeit durch Modelle mit
diskreter Zeit

Drei Überlegungen sind relevant für die Anwendung von Modellen mit dis-
kreter Zeit um damit Modelle für stetiger Zeit zu approximieren.
Erstens die Einheit der Zeitmessung. Die Ereignisse, die wir erhalten sind
höchst selten auf einer feinen Skala gemessen, sondern eher grob. So kennen

17



Seite: 18 KAPITEL 3. DISKRETE ZEIT

wir vielleicht das Alter eines Befragten in Jahren, aber nicht in Jahren, Mo-
naten und Tagen. In solchen Fällen ist es natürlicher, diskrete Zeit zu Grunde
zu legen.
Zweitens spielt die Anzahl der Ties in der Analyse eine Rolle. Man spricht
von Ties, wenn die Ereignisse zweier oder mehrerer Personen gleichzeitig statt
finden. Sind viele Ties vorhanden, kann dies zu einem ernsthaften bias in den
Parameterschätzungen führen, wenn “Cox method for proportional hazards”
(4.2) für stetige Zeit genutzt wird.
Drittens ist die Frage, ob es adäquat ist, durch solche Modelle zu approxi-
mieren von Bedeutung. Dies hängt mit der bedingten Wahrscheinlichkeit, ein
Ereignis an einem diskreten Zeitpunkt zu beobachten, zusammen. Diskrete
Modelle sind nur geeignet Modelle mit stetiger Zeit zu approximieren, wenn
die bedingt Wahrscheinlichkeit angemessen klein ist.

3.2 Mathematische Konzepte
Nehmen wir an, bei T handelt es sich um eine diskrete Zufallsvariable, die
den Zeitpunkt eines Ereignisses angibt. T = t bedeutet, dass das Ereignis
zum Zeitpunkt t eintritt. Die Wahrscheinlichkeit eines Ereignisses ist gegeben
durch:

f(ti) = P (T = ti), i = 1, 2, . . .

wobei ti mit t1 < t2 < . . . den iten diskreten Zeitpunkt bezeichnet.
Die Survivorfunktion ist gegeben durch

S(ti) = P (T ≥ ti) =
∑
j

f(tj)

Sie gibt die Wahrscheinlichkeit an, vor dem Zeitpunkt ti kein Ereignis zu
erleben. Das Risiko zum Zeitpunkt ti ist als bedingte Wahrscheinlichkeit des
Eintretens des Ereignisses zum Zeitpunkt ti, unter der Bedingung, dass es
nicht schon vorher eingetreten ist, definiert.

h(ti) = λi = P (T = ti|T ≥ ti) =
f(ti)

S(ti)

anders geschrieben:

S(ti) =
i−1∏
j=1

(1− λj)

Jede parametrische Spezifikation der bedingten Wahrscheinlichkeit für λj ist
ein Hazardmodell mit diskreter Zeit.

18
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3.3 Logitmodell für diskrete Zeit
Im ersten Schritt ist zu spezifizieren, wie die Hazardrate von den unabhän-
gigen Variablen abhängt. P (t) bezeichnet hier die Wahrscheinlichkeit, dass
ein Individuum ein Ereignis zum Zeitpunkt T hat, sofern es das Ereignis
nicht schon vor T erlebt hat. Der Einfachheit halber nehmen wir an, dass
wir es mit zwei unabhängigen Variablen zu tun haben. x1 ist über die Zeit
konstant, z.B. in einem wissenschaftlichen Kontext das Prestige des beschäf-
tigenden Instituts, und x2(t) kann mit den Zeitpunkten seinen Wert wechseln,
beispielsweise die Anzahl der Publikationen zum Zeitpunkt T .
Als erste Annäherung (für t Zeitpunkte) können wir P (t) als Linearkombi-
nation der unabhängigen Variablen schreiben:

P (t) = a+ b1x1 + b2x2(t)

Problematisch ist hier, dass a+b1x1+b2x2(t) jeden beliebigen Wert annehmen
kann, P (t) jedoch auf den Wertebereich 0 ≤ P (t) ≤ 1 eingeschränt ist. Was
also tun? Das Logitmodell für diskrete Zeit nutzt das Konzept des Logit
oder der log-Odds. Unter Odds versteht man die Ratio zweier wechselseitig
exklusiven Zustände. Die Odds für die Wahrscheinlichkeit P (t) sind wie folgt
definiert:

Odds =
P (t)

1− P (t)

Man kann erkennen, dass je grösser P (t) auf dem Bruchstrich wird, 1−P (t)
unter dem Bruchstrich immer kleiner wird. Da P (t) immer noch auf den
oben angegebenen Wertebereich beschränkt ist, also nicht negativ werden
kann, sind die Odds auf das Intervall zwischen 0 und +∞ fesgelegt. Um den
kompletten Wertebereich von −∞ bis +∞ zu erschliessen, muss also noch
ein Schritt getan werden. An dieser Stelle kommt der Begriff des Logit ins
Spiel:

Logit = ln [Odds] = ln

{
P (t)

1− P (t)

}
Logits sind als logarithmierte Odds definiert, also Log-Odds. Wir verwenden
aber nicht irgendeinen Logarithmus, sonder den Logrithmus Naturalis. Dies
ist die Bezeichnung des Logarithmus zur Basis e, also loge = ln.
Also:

ln

{
P (t)

1− P (t)

}
= a+ b1x1 + b2x2(t)
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Diese Transformation ist nicht die einzige, die zu diesem Ergebnis führt, aber
sie ist die gängigste. Die Koeffizienten b1 und b2 geben die Veränderung des
Logit für jede Änderung von x1 oder x2 um eine Einheit an.
Dieses Modell schränkt uns immer noch ein, da es annimmt, dass Änderun-
gen in der Hazardrate unter Einfluss von x1 und x2 auftreten. Oftmals ist
es aber sinnig anzunehmen, dass die Hazards sich autonom über die Zeit
verändern. Bei Jobwechseln kann man erwägen, dass der Hazard eines Wech-
sels mit verstreichender Zeit abnimmt. Dies lässt sich folgendermaßen in die
Gleichungen einbauen:

ln

{
P (t)

1− P (t)

}
= a(t) + b1x1 + b2x2(t)

Das Intercept, oder anders gesprochen die Regressionskonstante wird an je-
dem Zeitpunkt (t) einfach neu geschätzt.
Die Notation unterscheidet sich leider von Lehrbuch zu Lehrbuch. Da das zu
Grunde liegende Konzept soweit klar sein sollte wird ab hier dies ausführ-
lichere, aber auch verwirrendere Notation von Yamaguchi übernommen. So
definiert Yamaguchi (1991) das Logitmodell folgendermaßen:

λ(ti; X)

1− λ(ti; X)
=

λ0(ti)

1− λ0(ti)
+ exp

{∑
k

bkXk

}
Für mich scheinen diese beiden Notationen fogendermaßen in Einklang zu
bringen zu sein:
Zuerst exponieren wir die einzelnen Komponenten.

ln

{
λ(ti; X)

1− λ(ti; X)

}
= ln

{
λ0(ti)

1− λ0(ti)

}
+ ln

{
exp

{∑
k

bkXk

}}
Beim Logarithmus Naturalis handelt es sich um den Logarithmus zur Basis
e, also der Eulerschen Zahl (ln = loge). Dies ist die Umkehrfunktion zu
exp {x} = ex. Es folgt also:

ln

{
λ(ti; X)

1− λ(ti; X)

}
= ln

{
λ0(ti)

1− λ0(ti)

}
+
∑
k

bkXk

An einer späteren Stelle des Buches schreibt Yamaguchi selber, dass sich

λ(ti; X)

1− λ(ti; X)
=

λ0(ti)

1− λ0(ti)
+ exp

{∑
k

bkXk

}
auch in Form einer logistischen Regression darstellen lässt, und zwar:
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ln

{
λ(ti; X)

1− λ(ti; X)

}
= ai +

∑
k

bkXk

wobei ai = ln λ0(ti)
1−λ0(ti)

, also eine einfache Substitution.
Eine Herleitung der logistischen Regressionsgleichtung finden wir im Appen-
dix auf Seite 63
Wenn die Kovariate alle zeitunabhängig sind, also sich über die Zeit nicht
ändern, liegt ein proportional Odds model vor. In diesem Fall bilden die
Odds ( λ(ti;X)

1−λ(ti;X)
) , dass ein Ereignis eintritt eine konstante Ratio

Substituieren wir ln
{

λ0(ti)
1−λ0(ti)

}
durch a erhalten wir:

ln

{
λ(ti; X)

1− λ(ti; X)

}
= a+

∑
k

bkXk

wobei λ(ti; X) die bedingte Wahrscheinlichkeit angibt, ein Ereignis zum Zeit-
punkt ti für einen bestimmten Kovariatvektor X = (X1, . . . , Xk) zu erhalten.
bei bk, k = 1, . . . , K handelt es sich um Parameter. Die baseline hazard func-
tion λ0(ti) mit i = q, . . . , I ist durch die bedingte Wahrscheinlichkeit der
Fälle charakterisiert, für die X = 0 gilt. Ebenso kann man hier sehen, dass
die Wahrscheinlichkeit, ein Ereignis zu erleben, für jeden Fall, der nicht zur
baseline group gehört an jedem Zeitpunkt um exp {

∑
k bkXk} höher liegt, da

dieser Term in der baseline group wegen X = 0 wegfällt.
Bei immer feiner werdenden Messungen der Zeit wird die Ratio zweier Odds

λ(ti;X)
1−λ(ti;X)

λ0(ti)
1−λ0(ti)

der Ratio zweier Raten immer ähnlicher:

λ(ti; X)

λ0(ti)

und nähert sich einem proportional hazards model für stetige Zeit an. Also:
wenn die bedingten Wahrscheinlichkeiten genügend klein sind, dann liefert
uns das Logit-Modell eine Approximation des proportional hazards model
für stetige Zeit.

3.4 Deskriptiv: Nichtparametrische Verfahren
Nichtparametrische Verfahren sind Verfahren, bei denen keine Annahmen
über die Verteilung der Wartezeit gemacht wird. Hierzu zählen die Life Ta-
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ble Method (“Sterbetafelschätzung”) als auch die Kaplan-Meier-Schätzung
(Product-Limit Estimation). Die Life-Table Methode hat ihren Ursprung in
der Demographie und zählt zu den bekanntesten und lange Zeit beliebtesten
Methoden der Ereignisanalyse. Erwähnenswert ist, dass eine der bekanntes-
ten Regressionsmethoden für Ereignisdaten (Die Regression nach Cox (4.2))
von der Grundidee hinter der Life-Table Methode inspiriert ist.
Der wesentlicher Unterschied zwischen diesen beiden nichtparametrischen ex-
plorativen Verfahren ist, dass die Sterbetafel-Schätzung für gruppierte War-
tezeiten und die Produkt-Limit-Schätzung für exakte Wartezeiten konzipiert
ist. Neben einer ersten allgemeinen Beschreibung des Veränderungsprozesses
besteht auch die Möglichkeit, anhand eines Vergleichs der geschätzten Über-
lebensfunktionen und Hazardraten einzelner Subgruppen, einen Überblick
über mögliche Erklärungsfaktoren zu gewinnen.

3.4.1 Life Table Methode: Verweildauer in Intervallen

Wie bereits erwähnt, sind bei der Life-Table Methode keine Annahmen über
die Verteilung von T notwendig. Errechnet werden die Survivorfunktionen
zu Beginn des jeweiligen Intervalls sowie für jedes Intervall die Dichte- und
Hazardfunktion (und deren Standardfehler). Nachteile dieser Methode sind,
dass diskrete Zeitintervalle nötig sind und dass sie eine grosse Anzahl an
events benötigt, um reliable zu sein. Um die diskreten Intervalle zu erhalten,
wird die Zeitachse punktweise aufgesplittet.

Abbildung 3.1: Einteilung in diskrete Intervalle

Mit der Konvention: τL+1 = ∞ existieren L Intervalle, von denen jedes die
linke Grenze beinhaltet, aber nicht die Rechte. Es gilt:

Il = {t|τl ≤ T ≤ τl+1}, l = 1, · · · , L
Terminologie:

• Nl Zahl der Fälle, die in Intervall Il eintreten.

• El Zahl der Ereignisse / Übergänge im Intervall Il

• Zl Zahl der Zensierungen im intervall Il
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• Rl Risk Set / Risikomenge im Intervall Il

• Rl Zahl der Elemente in Rl

Wenn wir die Zahl der Fälle, die im jeweiligen Intervall ein Ereignis (Über-
gang in den Zielzustand) erfahren, mit El benennen und die Zahl der Fälle
mit Zensierungen in einem Intervall mit Zl, so lässt sich zunächst die Risi-
komenge Rl, also die Zahl der Fälle, die im jeweiligen Intervall dem Risiko
eines Ereignisses unterliegt, berechnen. Hier wird wiederum die Zahl der Fäl-
le benötigt, die zu Beginn eines Intervalls noch nicht ausgeschieden ist (durch
ein Ereignis oder durch Zensierung). Diese ist für das erste Intervall gleich
N (der Gesamtzahl der Fälle), für alle folgenden Intervalle gilt:
Rekursive Bestimmung von Nl. Es gilt für das erste Intervall:

N1 = N

Für das zweite Intervall:

N2 = N1 − E1 − Z1

Generell gilt:

Nl = Nl−1 − El−1 − Zl−1

Berücksichtigung von Zensierung in Il: Zur Berechnung der Risikomenge sind
nun Annahmen über die Verteilung der zensierten Fälle während des Inter-
valls zu machen. Üblicherweise wird angenommen, dass die Zensierungen
gleichmäßig über das gesamte Intervall verteilt sind; daraus folgt, dass die
Zahl der Fälle zu Beginn des Intervalls um die Hälfte der Zensierungen wäh-
rend dieses Intervalls zu reduzieren ist, um die Risikomenge zu erhalten. Die
Risikomenge R wird also folgendermaßen bestimmt:

Rl = Nl −
1

2
· Zl

Wird dies nicht angenommen gilt allgemein folgendes:

Rl = Nl − ω · Zl , ω = (0 ≤ ω ≤ 1)

wobei für ω = 1
2
die vorherige annahme wieder gilt.

Die bedingte Wahrscheinlichkeit für einen Übergang im Intervall Il ist wie
folgt definiert:

ql =
El
Rl
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Folglich lautet die bedingte Wahrscheinlichkeit für keinen Übergang im In-
tervall Il, also das Intervall zu überleben:

p1 = 1− ql = 1− El
Rl

Die Überlebenswahrscheinlichkeit zu Beginn von Il, also die Survivorfunktion
lautet:

Sl = 1; Sl = pl−1 · Sl−1

die durchschnittliche Überlebenswahrscheinlichkeit im Intervall Il ist wie
folgt definiert:

S̄l =
Sl + Sl+1

2
Die durchschnittliche Wahrscheinlichkeitsdichte im Intervall Il ergibt sich
durch

fl =
Sl − Sl+1

τl − τl+1

, l = 1, · · · , L− 1

sowie die Hazard-Rate
hl =

fl
S̄l

die auch in anderer Form dargestellt werden kann:

hl =
1

τl+1 − τl
· ql

1− ql
2

=
1

τl+1 − τl
· El

Rl − El

2

Life-Tables sind für den Vergleich mehrerer Gruppen anwendbar. In nachfol-
gender Graphik 3.2 sehen wir ein Beispiel aus Arias (2003) über die Anwen-
dung von Life Tables.

Abbildung 3.2: Vergleich mehrerer Gruppen
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Hier wurden vier Subgruppen gebildet, die nun untereinander hinsichtlich
ihrer Lebenserwartung verglichen werden können. Allerdings wird oftmals
betont, dass die Interpretation von Life Table Tabellen nicht immer einfach
ist, und sich daher Graphiken zur Erleichterung anbieten.
Im Unterschied zur Sterbetafelschätzung verwendet der Kaplan-Meier-Schätzer
direkt die Wartezeiten; eine Klassifizierung in Intervalle und eine Annahme
über die Verteilung der Ereignisse und Rechtszensierungen pro Intervall wird
nicht vorgenommen.

3.4.2 Product-Limit Estimation / Kaplan-Meier

Der Unterschied zu der Life-Table Methode ist die direkte Verwendung der
Wartezeiten. Es ist also unnötig, eine Zusammenfassung der Zeit in Interval-
len vorzunehmen. Statt dessen wird die Risikomenge für jeden Zeitpunkt, an
dem ein Ereignis statt findet, berechnet. Graphik 3.3 zeigt ein Beispiel, ent-
mommen aus , http://www.thieme-connect.com/ejournals/pdf/dmw/doi/10.1055/s-
2002-32819.pdf. Eine Sortierung der Zeitpunkte mit Ereignissen ist erforder-
lich:

τ1 < τ2 < τ3 < · · · < τL

wobei τ1 den Zeitpunkt bezeichnet, an dem das erste Ereignis stattfindet, τ2

den Zeitpunkt, an dem das zweite Ereignis staffindet, und so weiter.
Terminologie:

• El Zahl der Episoden mit Ereignissen zum Zeitpunkt τl. Es gilt: τ0 = 0

• Zl Zahl der Zensierugen im Intervall τl−1 ≤ t < τl. Dies bedeutet, dass
wenn Zensierung und Ereigniss zum selben Zeitpunkt stattfinden wird,
angenommen, dass die Zensierung etwas später statt findet.

• Rl Risikomenge zum Zeitpunkt τl, d.h.: mit einer Startzeit tStart < tl
und einer Endzeit tEnde ≥ tl
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Abbildung 3.3: Beispiel: Kaplan-Meier Kurve

Die Risikomenge Rl zum Zeitpunkt τl enthält Episoden, die zu diesem Zeit-
punkt zensiert sind. Es wird angenommen, dass eine zensierte Episode die
Information enthält, dass, inklusive des Endzeitpunktes kein Ereignis auf-
getreten ist. Nach Blossfeld und Rohwer wird in der Literatur oftmals da-
von ausgegangen, dass die Zensierung einen infinitesimalen Betrag rechts der
Endzeit der Beobachtung statt findet.

Es gilt für einen Zeitpunkt mit Ereignis:

ql =
El
Rl

pl = 1− ql = 1− El
Rl

sowie für einen Zeitpunkt ohne Ereignis:

ql = 0 pl = 1− ql = 1

Der Product-Limit-Estimator für S(t) ist definiert als:

Ŝ(t) = p1 · p2 · p3 · · · · pl−1 =
∏
l:τl<t

pl =
∏
l:τl<t

1− El
Rl

Noch einmal: bei El handelt es sich um die Zahl der Episoden mit Ereignis
zum Zeitpunkt τl. Anders gesprochen handelt es sich hierbei um die Anzahl
der Personen, die in diesem Intervall “ausfallen”. Bei Rl handelt es sich um
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die Risikomenge zum Zeitpunkt τl, also die Personen die “noch leben”, und
nicht zensiert wurden. Zur Verdeutlichung hier ein kurzes Beispiel, zur Ver-
deutlichung fallen hier jeweils mehrere Personen an einem Zeitpunkt aus der
Analyse, stören wir uns nicht daran:
Wir starten mit n=125 Personen. Zum ersten Zeitpunkt, an dem ein Ereig-
nis stattfindet, fallen 5 Personen gleichzeitig aus. Also: 5

125
= 0.04. Diesen

relativen Anteil der Ausfälle ziehen wir nun von der Gesamtheit ab, also von
1. Wenn wir diese Zahlen mit 100 multiplizieren, bekommen wir Prozentwer-
te heraus. Also sind von 100% (125 Personen) am ersten Zeitpunkt 4% (5
Personen) ausgefallen. Zum zweiten Zeitpunkt fallen 10 Personen aus. Also
10
120

= 0.083̄. Es sind also zum zweiten Zeitpunkt von der Anzahl der Personen
vom ersten Zeitpunkt 8.3̄% nicht mehr “dabei”. Im dritten Schritt fallen 15
Personen aus, also 15

110
= 0.13̄6. In jedem Schritt wird also der relative Anteil

der Ausfälle, gemessen an der Anzahl der Verbliebenen zum Zeitpunkt τ1

angegeben.

Ŝ(t) = p0 · p1 · p2 · p3

Ŝ(t) = (1− q0) · (1− q1) · (1− q2) · (1− q3)

Ŝ(t) =

(
1− E0

R0

)
·
(

1− E1

R1

)
·
(

1− E2

R2

)
·
(

1− E3

R3

)
wobei:

Ŝ(t) =

(
1− 0

125

)
·
(

1− 5

125

)
·
(

1− 10

120

)
·
(

1− 15

110

)
Ŝ(t) = (1− 0) · (1− 0.04) · (1− 0.083̄) · (1− 0, 13̄6)

Ŝ(t) = 1 · 0.96 · 0.916̄ · 0, 86̄3

Dies bedeutet nun inhaltlich: Zum Zeitpunkt 0, also am Anfang sind al-
le Personen “lebend”. Da wir den Wert 1 erhalten, kann man diesen Zeit-
punkt also bedenkenlos wegfallen lassen. Zum Zeitpunkt des ersten Ereig-
nisses bleiben 0,96 oder 96% übrig. Zum zweiten Zeitpunkt bleiben 91.6̄%
der Überlebenden des ersten Zeitpunktes erhalten. Die Berechnung für von
91.6̄% von 96% erfolgt über 0.96 · 0.916̄ ≈ 0.879̄. Für den dritten Zeitpunkt
multipliziert man dieses Ergebnis mit dem Wert des dritten Zeitpunktes:
0.879̄ · 0.863 ≈ 0.96 · 0.916̄ · 0.863 ≈ 0.759̄. Kürzer geschrieben:

Ŝ(t) = p1 · p2 · p3 · · · · pl−1 =
∏
l:τl<t

pl =
∏
l:τl<t

1− El
Rl
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Hierbei handelt es sich um eine Treppenfunktion mit den Stufen zu den
Zeitpunkten τl.
Zusätzlich zur Schätzung der Survivor-Funktion bietet die Product-Limit-
Estimation eine simple Schätzung für die cumulated hazard rate:

Ĥ(t) = −log(Ŝ(t))

wobei:

H(t) =

∫ t

0

h(u)du

S(t) =

∫ ∞
t

f(u)du = exp

{
−
∫ t

0

h(u)du

}
und demnach:

H(t) = −log(S)t))∫ t

0

h(u)du = −log exp

{
−
∫ t

0

h(u)du

}
∫ t

0

h(u)du = (−1)

(
−
∫ t

0

h(u)du

)
∫ t

0

h(u)du =

∫ t

0

h(u)du

Die cumulated hazard rate ist wiederum eine Treppenfunktion. Sie ist nütz-
lich für einfache graphische Überprüfungen der Verteilungsannahmen und der
zu Grunde liegenden Verweildauern. Leider bietet sie keine direkte Schätzung
der hazard rate. Man könnte den Zusammenhang

ĥ(t) = Ĥ ′(t)

als möglichen Weg nutzen, da generell folgender Zusammenhang zwischen
Funktionen gilt: Wenn F (x) die Stammfunktion der Funktion f(x) ist, die
über Integration ermittelt wird, dann ist die erste Ableitung (f ′(x)) der
Stammfunktion (F ′(x)) mit der Ursprungsfunktion identisch. Dafür muss
die Treppenfunktion jedoch erst geglättet werden.

3.4.3 Nachteile nichtparametrischer Verfahren

Mit der Anwendung nichtparametrischen Verfahren treten diverse Probleme
auf.
Erstens wird mit einer wachsenden Anzahl von Subgruppen schnell ein Punkt
erreicht, an dem ein Vergleich der survivor functions S(t) nicht mehr sinnvoll
ist, da n in den verschiedenen Subgruppen zu klein wird.
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Zweitens ist selbst wenn n in den verschiedenen Gruppen groß genug, und
wir für eine grosse Anzahl wichtiger Subgruppen Survivorfunktionen schätzen
können, so ist der Vergleich dieser Funktionen schnell sehr komplex und die
Interpretation äußerst schwierig.
Drittens ist es im Fall quantitativer Variablen notwendig, diese zu gruppie-
ren, um die Survivorfunktionen schätzen zu können. Beispielsweise wird eine
metrische Einkommensvariable in eine neue Variable mit weniger Ausprä-
gungen eingeteilt, z.B. Trichotom (niedriges - mittleres - hohes Einkommen)
oder Dichotom (niedriges - hohes Einkommen). Der Informationsverlust ist
dementsprechend groß.
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Kapitel 4

Stetige Zeit

Im wesentlichen können Zeitverändliche Raten auf drei Wegen modelliert
werden:

1. durch Aufnahme von Polynom-Termen für die Zeit,

2. durch Modellierung perioden- oder zeitabschnitts-spezifischer Regres-
sionskonstanten (gegebenenfalls auch periodenspezifischer Einflüsse)

3. durch Wahl einer geeigneten Verteilung für die Hazardrate.

Nur der erste Weg ist sowohl für stetige als auch für diskrete Verweildauern
möglich. Alle übrigen Verfahren sind nur für stetige Zeit ausformuliert. Wir
werden uns auf die zwei letztgenannten konzentrieren.

4.1 Parametrische Modelle der Zeitabhängig-
keit

Obwohl die Modelle mit diskreter Zeit einen breiten Anwendungsbereich ha-
ben wird doch zum grössten Teil mit Modellen für stetige Zeit gearbeitet.
Dabei sind die parametrischen Modelle populär. Sie werden so genannt, weil
in ihnen jeder Aspekt des Modells spezifiziert ist, ausser den zu schätzen-
den Parametern. Es ist wichtig, sich vor Augen zu führen, dass die Wahl der
Verteilung die Hazardrate determiniert(ebenso die Zeit bis zu einem Ereig-
nis oder zwischen zwei Ereignissen), da diese in einem engen Zusammenhang
stehen.
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4.1.1 Exponential Hazard Rate Models

Hierbei handelt es sich um das einfachste Hazard-Rate Modell, das auch
unter dem Namen Exponential Transition Rate Model bekannt ist. Die ange-
nommene Dauer von T kann von einer Exponentialverteilung angegeben wer-
den. Im Exponential-Modell wird also die Verweildauer bis zu einem Ereignis
durch eine Exponentialverteilung beschrieben. Das Risiko, dass ein Ereignis
eintritt, ist von den im Modell beinhalteten Kovariaten abhängig, ist aber
über alle Zeitpunkte unverändert konstant. Ein einziger Parameter -b- de-
terminiert das Modell. Die Schätzung erfolgt über die Maximum-Likelihood
Methode.
Es gilt:

Basic Exponential Model

f(t) = b · exp {−bt} , b > 0

h(t) = b

Achtung! Die Hazardrate ist Konstant über die Zeit.

S(t) = exp {−bt}

wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) = exp {β0 + β1X1 + . . .+ βkXk}
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Abbildung 4.1: Dichte- & Survivor-Funktion im Exponential Hazard Rate
Modell

Abbildung 4.2: Survivorfunktion (variabel) und Hazardrate (konstant)

Die generelle Definition des Modells für Übergänge vom Ursprungszustand j
in den Zielzustand k ist:

rjk(t) ≡ rjk = exp {βjk0 +Bjk1βjk1 + . . .} = exp {Bjkβjk}

rjk = Zeitkonstante hazard rate vom Ursprungszustand j in den Zielzustand
k Die exit rate (Rate des Verlassens des Ursprungszustand j in einen anderen
Zielzustand k) ist definiert als:

rj =
∑
k∈Dj
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wobei Dj das Set aller möglichen Zielzustände bezeichnet, die von j aus
erreichbar sind.
Die Survivorfunktion S(t) für die Verweildauer im Ursprungszustand j kann
durch die exit rate ausgedrückt werden:

Sj(t) = exp

{
−
∫ t

0

rjdτ

}
= exp {−trj}

Annahme: rjk(t) kann zwischen verschiedenen Konstellationen von Kovaria-
ten variieren, aber ist zeitkonstant. Mit anderen Worten: Es wird angenom-
men, dass der Prozess nicht Zeit-abhängig ist.
Der Zusammenhang zwischen der hazard rate und dem (Zeilen-) Vektor der
Kovariaten Ajk ist als ist log-linear spezifiziert um sicherzustellen, dass die
Schätzungen der hazard rate nicht negativ werden.
Der (Spalten-) Vektor der unbekannten Parameter αjk und der Vektor der
beobachteten Kovariaten Ajk sind spezifiziert im Hinblick auf den Ursprungs-
zustand j und den Zielzustand k. Im Vektor der Parameter ist ein Term αjk0

enthalten, der auch dann geschätzt werden kann, wenn keine Kovariaten im
Modell enthalten sind. Ein Modell ohne Kovariate wird geschätzt über:

r(t) ≡ r = exp {β0}

Solch ein simples Modell behandelt die Daten als ein Sample homogener
Episoden. Es wird also von allen Merkmalen abstrahiert, die die Individuen
unterscheiden, sie heterogen machen. Wir sind aber daran interessiert, Un-
terschiede zwischen verschiedenen Konstellationen von Merkmalen vereint in
ihren Trägern zu entdecken. Der einfachste Weg dies zu erreichen ist, zeitkon-
stante Kovariaten mit ein zu beziehen. Bei zeitkonstanten Kovariaten sind die
Werte dieser Kovariate für jedes Individuum über die Zeit unveränderlich. Es
gibt zwei Arten zeitkonstanter Kovariaten: erstens solche, die -normalerweise-
im Leben des Individuums konstant sind wie beispielsweise Geschlecht, so-
ziale oder ethnische Herkunft (ascribed statuses). Zweitens solche, die vorher
erlangt wurden und danach konstant bleiben, so wie beispielsweise höchster
Bildungsabscluss oder Alter bei erster Heirat (statuses attained prior to).

4.1.2 Piecewise Constant Exponential Models

Hierbei handelt es sich um eine Abwandlung des einfachen Exponentialm-
odells, dass in der Anwendung äusserst nützlich sein kann. Nach Blossfeld
und Rohwer (2002) ist seine Anwendung in zwei Fällen besonders in Betracht
zu ziehen. Erstens, wenn der Forscher nicht in der Lage ist, wichtige zeitab-
hängige erklärende Variablen zu messen und in das Modell mit einzubeziehen
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oder zweitens, wenn keine klare Vorstellung über die Form der Zeitabhängig-
keit des Prozesses vorliegt. In dieser Art von Modell sind die Hazardraten
stückweise konstant. Das bedeutet, dass die kontinuierliche Zeitachse in ver-
schiedene, abzählbare Intervalle zerlegt wird. Innerhalb dieser Intervalle sind
die Hazardraten jeweils konstant, unterscheiden sich jedoch in der Regel (aber
nicht notwendiger Weise) zwischen den Intervallen.
In diesem Modell werden verschiedene intervallspezifische Konstanten ge-
schätzt. Es gilt also:

Piecewise Constant Exponential Models
h(tl) = exp {β0l + β1X1 + . . .+ βkXk}
wobei der Index l anzeigt, dass für beliebige vom Anwender anzugeben-
de Intervalle l jeweils eine spezifische Konstante geschätzt wird, die die
“Basishöhe” der Hazardrate in diesem Intervall angibt.

Es wird angenommen, dass die Hazardraten piecewise constant, also frei
übersetzt stückweise konstant sind. Dies bedeutet, dass konstant in jedem
Intervall eines Sets aus Zeitintervallen.

Modelle mit Periodenspezifischen Effekten

Modelle mit Periodenspezifischen Effekten
h(tl) = exp {β0l + β1lX1 + . . .+ βklXk}
Hier werden für jedes Intervall l neben einer eigenen Regressionskonstante
auch die Regressionskoeffizienten geschätzt.
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Abbildung 4.3: Beispiel einer Piecewise-Funktion

4.1.3 Weibull-Modell

In diesem Modell kann die Hazardrate nur auf eine ganz bestimmte Art
monoton fallen oder steigen (siehe Graphik 4.4). In single transition Fällen
wird dieses Modell durch Annahme einer Weibull-Verteilung für die Dauer
der Episoden erlangt.

Weibull Modell

f(t) = abata−1 exp {−(bt)a} , a, b > 0

h(t) = abata−1

S(t) = exp {−(bt)a}

für a=1 erhalten wir das Exponentialmodell.
wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) = a · exp {β0 + β1X1 + . . .+ βkXk}a ta−1
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Abbildung 4.4: Hazardrate im Weibull-Modell

Bei a > 1 liegt eine steigende Hazardrate vor, bei a < 1 fällt sie. Ist a = 1
erhalten wir das Exponentialmodell, dass über eine Konstante Hazardrate
verfügt.

4.1.4 Gompertz-Makeham Modell

Auch in diesem Modell kann die Hazardrate über die Zeit nur auf eine be-
stimmte Art monoton steigen oder fallen. Dies war auch schon beim Weibull-
Modell der Fall. In Graphik 4.5 sehen wir den Unterschied. Beide Hazardra-
ten, im Gompertz-Makeham Modell können nur monoton steigen oder fallen.
Trotzdem sehen sie sich nicht gerade ähnlich. Das Modell ist definiert über:
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Gompertz-Makeham Modell

f(t) = exp
{
−bt− a

c
(exp {ct})− 1

}
(b+ a exp {ct})

h(t) = b+ a exp {ct}

S(t) = exp
{
−bt− a

c
(exp {ct})− 1

}
für c = 0 reduziert sich das Gompertz-Makeham Modell zum einfachen
Exponentialmodell mit

f(t) = b · exp {−bt} , b > 0

S(t) = exp {−bt}
wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) = exp {β0 + β1X1 + . . .+ βkXk}+ a exp {ct}

Abbildung 4.5: Hazardrate im Gompertz-Makeham-Modell

Für b < 0 fällt die Hazardrate, für b > 0 steigt die Hazardrate, für b = 0
erhalten wir das Exponentialmodell mit konstanter Hazardrate.

37



Seite: 38 KAPITEL 4. STETIGE ZEIT

4.1.5 Intermezzo I

Nach Allison (1984) unterscheiden sich das Exponentialmodell, das Gompertz-
Makeham Modell und das Weibull Modell nur dadurch, wie der Faktor Zeit
in die Formeln eingebunden wird. Folgende Formeln werden angegeben, der
übersichtlichkeit halber nur mit zwei erklärenden Variablen, die zeitkonstant
sind:

Exponentialmodell : log(h(t)) = a+ b1x1 + b2x2

Gompertz-Makeham Modell : log(h(t)) = a+ b1x1 + b2x2 + ct
Weibull Modell : log(h(t)) = a+ b1x1 + b2x2 + c · log(t)

Wir haben es hier mit dem logarithmus der Hazardrate zu tun, da die rechten
Seiten der Formeln negativ werden können. Dies macht aber bei (Eintritts-
)Wahrscheinlichkeiten keinen Sinn. Deshalb wird der Logarithmus gebildet,
um diesem Problem aus dem Weg zu gehen.
Wir sehen, dass im Exponentialmodell keine Zeitabhängigkeit der Hazardrate
vorliegt. Sie ist Zeitkonstant. Im Gompertz-Makeham Modell hingegen ver-
ändert sich die Hazardrate linear mit der Zeit (log(h(t)) = a+b1x1+b2x2+ct).
Im Weibull Modell verändert sich die Hazardrate linear mit dem Logarithmus
der Zeit (log(h(t)) = a+b1x1+b2x2+c · log(t)). Diese drei Modelle gehören al-
le der generellen Klasse von Modellen an, die als proportional hazards models
bekannt sind.
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4.1.6 Log-Logistisches Modell

Mit diesem Modell kann eine fallende oder eine zunächst steigende und dann
fallende Hazardrate modelliert werden. Das Log-Logistische Modell ist defi-
niert über:

4.1.7 Log-Logistsches Standardmodell

Log-Logistisches Standardmodell

f(t) =
abata−1

(1 + (bt)a)2

h(t) =
abata−1

1 + (bt)a

S(t) =
1

1 + (bt)a

wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) =
a · exp {β0 + β1X1 + . . .+ βkXk}a ta−1

1 + (exp {β0 + β1X1 + . . .+ βkXk} t)a

Abbildung 4.6: Hazardrate im Log-Logistischen Modell

Wir sehen, dass ein grösserer Wert für b von einer fallenden Hazardrate zu
einer erst steigenden und dann fallenden Hazardrate führt
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tmax =
1

b
(a− 1)

1
a

hmax = b(a− 1)1− 1
a

Erweitertes Log-Logistsches Modell

Erweitertes Log-Logistisches Modell

f(t) = c · a(bt)a−1

(1 + (bt)a)
c
b
+1

a, b, c > 0

h(t) = c · a(bt)a−1

1 + (bt)a

S(t) =
1

(1 + (bt)a)
c
b

wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) = c · a(exp {β0 + β1X1 + . . .+ βkXk} t)a−1

1 + (exp {β0 + β1X1 + . . .+ βkXk} t)a

4.1.8 Log-Normale Modelle

Das Log-Normal-Modell unterstellt eine zunächst steigende und dann fal-
lende Hazardrate. Im Log-Normalen Modell spielt die Normalverteilung eine
wichtige Rolle. Sie ist definiert über
Dichtefunktion der Standardnormalverteilung:

ϕ(t) =
1√
2π

exp

{
−t

2

2

}
Verteilungsfunktion der Standardnormalverteilung::

Φ =

∫ t

0

ϕ(τ)dτ

und ist wie folgt in das Log-Normale Modell implementiert:
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Log-Normal Modell

f(t) =
1

at
ϕ

(
log(t)− b

a

)
, a > 0

h(t) =
1

at

ϕ(zt)

1− Φ(zt)
mit zt =

log(t)− b
a

S(t) = 1− Φ

(
log(t)− b

a

)
wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) =
1

at

ϕ(zt)

1− Φ(zt)
mit zt =

log(t)− exp {β0 + β1X1 + . . .+ βkXk}
a

4.1.9 Intermezzo II

Im Unterschied, zu den proportional hazards models, von denen wir in In-
termezzo I (4.1.5) gelesen haben, gehören das log-normale und das log-
logistische Modell einer anderen Klasse von Modellen an. Hierbei handelt es
sich um accelerated failure time models, oder auch location-scale models ge-
nannt. Wenn T die Zeit beschreibt, bis ein Ereignis auftritt, dann kann diese
Klasse von Modellen wie folgt beschrieben werden:

log(T ) = a+ b1x1 + b2x2 + . . .+ u

wobei u ein Zufälliger Zufallsterm bezeichnet, der unabhängig von xi ist.
Dieser Zufallsterm u ist für die Unterschiede zwischen den Mitgliedern dieser
Modellfamilie zuständig. Verteilungen, die oftmals angenommen werden um-
fassen die Norma´lverteilung, log-gamma Verteilung, logistische Verteilung
und die extreme-value Verteilung. Daraus ergeben sich die Verteilungen für
T, die wir als log-normalen und die log-logistischen Modelle kennen, sowie
das Gamma Modell, auf das nicht näher eingegangen wird. Ebenso treffen
wir hier auf das Weibull-Modell, das in beide Klassen eingeteilt werden kann.
Es kann gezeigt werden, dass das Weibull Modell (sowie sein Spezialfall, das
Exponentialmodell) das einzige Modell ist, dass in beide Klassen fällt. Für
verschiedene Verteilungen von u ergeben sich:
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Verteilung von u → Resultierende Verteilung
Normalverteilung → Log-Normal

Log-Gamma → Gamma
Logistisch → Log-Logistisch

Extreme-Value → Weibull

Das log-normale und das log-logistische Modell sind unter dem Blickwinkel
etwas Besonderes, da sie (wie in den Graphiken 4.6 und ?? zu sehen) da-
zu geeignet sind, eine erst steigende und dann -nach einem Maximalwert-
fallende Hazardrate zu modellieren. Ihre Hazardraten sind nicht monotone
Funktionen der Zeit
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4.1.10 Sichelmodell / Sickle-Model

Auch dieses Modell kann zunächst steigende und dann fallende Raten mo-
dellieren. Die Form ist glockenförmig, einer Sichel ähnlich. Es ist definiert
über:

Sickle-Modell

f(t) = exp

{
−ba

[
a− (t+ a) exp

{
− t
a

}]}
bt exp

{
− t
a

}

h(t) = bt exp

{
− t
a

}
, a, b > 0

S(t) = exp

{
−ba

[
a− (t+ a) exp

{
− t
a

}]}
wobei b = exp {β0 + β1X1 + . . .+ βkXk}, also:

h(t) = exp {β0 + β1X1 + . . .+ βkXk} t exp

{
− t
a

}

Abbildung 4.7: hazard rate im Sickle-Modell

Das Maximum der Rate liegt bei t = a und der einzige Wendepunkt bei
t = 2a. Eine Besonderheit dieses Modells ist, dass die Survivorfunktion nicht
gegen 0 tendiert, sondern gegen

exp−
{

(β0 + β1X1 + . . .+ βkXk)a
2
}
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Mit anderen Worten, dieses Modell ist vor allem dann angemessen, wenn
man annimmt, dass nicht für alle Personen ein Ereignis eintritt. Es ist z.B.
für die Analyse von Ehescheidungen gut geeignet.

4.1.11 Letzte parametrische Bemerkung

Als Abschlussbemerkung sei erwähnt, dass nach Allison kein überzeugendes
parametrisches Modell existiert, um eine u-förmige Hazardrate zu modellie-
ren. Auch in anderen Lehrbüchern lässt sich dazu nichts finden. Ebenso sei es
oftmals besser, bei starker Abweichung von monotonen Steigungseigenschaf-
ten auf das semiparametrische proportional hazards model zurückzugreifen.
Der nicht ganz unberechtigte Einwurf, dass eine sozialwissenschaftliche Theo-
rie kaum Hinweise geben kann, ob eher ein Weibull- oder Gompertz-Makeham
Modell angebracht ist vereinfacht uns die Analyse auch nicht.
Im Hinblick auf das Cox-Modell werden zwei weitere Nachteile erwähnt:

1. Die Entscheidung darüber, wie die Hazardrate von der Zeit abhängt,
worüber wir oftmals kaum Informationen haben. Desweiteren ist die
Wahl des passenden Modells mit der Richtigen Form problematisch,
wenn wir eine nichtmonotone Hazardfunktion erwarten.

2. Wichtiger als dieses mag jedoch sein, dass es die angeführten Modelle
-nach Allison- nicht erlauben, erklärende Variablen mit aufzunehmen,
deren Werte sich über die Zeit verändern.
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4.2 Semi-Parametrische Modelle: die Regressi-
on nach Cox

Das Cox-Modell ist nach Yamaguchi (1991) die populärste Regressionsme-
thode zur Analyse von Überlebensdaten. Sie findet besonderen Anklang in
der demographischen Forschung, beispielsweise in der Untersuchung von Hei-
rat, Scheidung, Geburt, Migration und Job-Mobilität. Ebenso bescheinigt
ihr Allison (1984) grosse Beliebtheit, als Beispiel nennt er die biomedizini-
sche Forschung. Das stetige Cox-Modell wird auch als proportionales Hazard
Modell (proportional hazards model) bezeichnet. Es beruht auf der Partial
Likelihood und nicht auf der Maximum Likelihood Methode. Der wichtigste
Vorteil dieser Partial Likelihood ist die Möglichkeit, Zeitabhängigkeiten zu
modellieren, ohne dass eine Annahme über die Form getroffen werden muss.
Ein weiterer Vorteil ist die Fähigkeit des Cox-Modells, stratifizierte Modelle
umzusetzen. Stratifizierte Modelle erlauben es uns, eine oder mehrere kate-
goriale Kovariate zu kontrollieren, die komplizierte Interaktionseffekte mit
der Zeit aufweisen können, ohne die Form dieser Interaktionseffekte spezifi-
zieren zu müssen. Das Cox-Modell krankt allerdings auch an mindestens vier
Nachteilen.

1. Dieses Modell nutzt nur die Information über die relative Reihenfol-
ge der Verweildauern anstelle der exakten Zeitpunkte der Ereignisse
und Zensierungen. Der Informationsverlust ist also möglicherweise äus-
serst gross. Dieser Verlust an Präzision der Partial Likelihood Parame-
terschätzer im Vergleich zu den Maximum Likelihood Schätzern ver-
schwindet normalerweise immer mehr, je größer die Stichprobe wird,
kann aber problematisch sein, wenn nur eine kleine Stichprobe vorhan-
den ist.

2. Die Handhabung von Ties ist problematisch. Als Daumenregel sollten
nicht mehr als 5% der Fälle Ties sein. Die Partial Likelihood Methode
kann Ties nicht exakt handhaben, dies ist rechnerisch unerschwing-
lich. Deshalb werden sie in Programmen, die zur Berechnung der Cox-
Methode verwendet werden, approximiert. Diese Annäherung ist je-
doch bei einer grossen Anzahl von Ties bestenfalls fragwürdig. Nach
Yamaguchi ist dann die ML-Methode vorzuziehen, insbesondere mit
diskreten Zeitmodellen.

3. Die Analyse der Form der Zeitabhängigkeit ist mit der PL-Methode
nicht möglich. Ist diese von Interesse, dann ist die Anwendung des
Cox-Modells eine fruchtlose Angelegenheit.
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4. Die PL-Methode basiert auf schwächeren theoretischen Grundlagen als
die ML-Methode. Bei der Modellauswahl sind Vorsichtsmaßnahmen
empfohlen.

Trotz dieser Nachteile ist das Cox-Modell ungebrochen beliebt bei der Ana-
lyse von Ereignisdaten. Wieder einmal unterscheiden sich die Darstellungen
dieser Methode je nach Lehrbuch. Mir erscheint es sinnvoll, hier kurz Allison
(1984) und Yamaguchi (1991) zusammenfassend darzulegen, da sich durch
die verschiedenen Herangehensweisen möglicherweise ein Gewinn an Durch-
blick erzielen lässt.

4.2.1 Cox-Modell, Notation nach Allison

Das Cox-Modell -öfter auch proportionales Hazardmodell bezeichnet- ist nach
Allison (wobei es sich der Eienfachheit halber bei x1 und x2 um zeitkonstante
erklärende Variablen handelt) definert als:

log(h(t)) = a(t) + b1x1 + b2x2

a(t) kann hierbei jede Funktion der Zeit sein. Weil diese Funktion nicht spe-
zifiziert werden muss, wird dieses Modell als semiparametrisch oder partiell
parametrisch bezeichnet. Es wird proportionales Hazardmodell genannt, weil
für alle zwei Individuen zu jedem Zeitpunkt folgendes gilt:

hi(t)

hj(t)
= c, für jeden Zeitpunkt t

c kann dabei von den erklärenden Variablen abhängen, nicht jedoch von der
Zeit. Im Gegensatz zu dem Namen ist dies keine entscheidende Eigenschaft
des Modells, weil die Konstanz der Hazard-Ratios abhanden kommt, wenn
zeitveränderliche unabhängige Variablen eingeführt werden. Es ist natürlich
einfacher, solch ein Modell aufzustellen als es zu schätzen. Hier ziegt sich das
wichtige an Cox’s Modell: die Partial Likelihood Methode. Diese Methode
beruht auf der Tatsache, dass die Likelihoodfunktion für Daten aus dem
proportionalen Hazardsmodell in zwei Teile zerlegt werden kann: Der eine
Faktor entält nur die Information über die Koeffizienten b1 und b2. Der andere
Faktor enthält Informationen über b1, b2 und die Funktion a(t). Die Partial
Likelihood Methode ignoriert einfach den zweiten Faktor und behandelt den
Ersten als ganz normale Likelihoodfunktion. Dieser Faktor hängt nur von
der Reihenfolge ab, in der die Ereignisse eintreten, nicht jedoch von dem
exakten Zeitpunkt ihres Eintretens. Die daraus resultierenden Schätzer sind
asymptotisch unverzerrt und normalverteilt. Sie sind nicht komplett effizient,
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da ein Teil der Information (der genaue Zeitpunkt des Eintretens) von dem
Verfahren ignoriert bleibt. Dieser Malus an Effizienz ist jedoch normalerweise
so gering, dass er nach Allison (1984) nicht der Sorge Wert ist. Wenn die
Abhängigkeit des Hazards von der Zeit von Bedeutung ist, lässt sich das Cox-
Modell nicht anwenden. Als Beispiel wird das Prinzip der kumulativen Inertia
angeführt, die besagt, dass die Wahrscheinlichkeit eines Individuum, seinen
Zustand zu ändern abnimmt, je länger es schon in diesem Zustand verharrt.
Ist jedoch nur der Effekt der erklärenden Variablen von Bedeutung, und nicht
die Abhängigkeit von der Zeit, dann ist das Cox-Modell eine interessante
Option.

Zeitveränderliche erklärende Variablen

Das proportionale Hazardmodell kann leicht um erklärende Variablen er-
weitert werden, die ihre Werte über die Zeit ändern. Hier wird ein Modell
aufgeführt, in dem eine der beiden unabhängigen Variablen zeitkonstant ist,
die andere zeitveränderlich.

log(h(t)) = a(t) + b1x1 + b2x2(t)

Dieses Modell besagt, dass der Hazard zur Zeit t vom Wert der Variable x2

zum gleichen Zeitpunkt t abhängt. Wenn man Grund zur Annahme hat, dass
der Effekt der Variable x2 zeitverzögert eintritt, kann man dies leicht in die
Formel einfliessen lassen.

log(h(t)) = a(t) + b1x1 + b2x2(t− v)

Dies ist die generelle Form, dies zu tun. Wenn die Zeit in Monaten gemessen
wurde und wir annehmen, dass der Effekt um 3 Monate zeitverzögert wirkt,
dann setzen wir für v einfach 3 ein, also:

log(h(t)) = a(t) + b1x1 + b2x2(t− 3)

Ein heutzutage obsolet anmutender, jedoch erwähnenswerter Hinweis von
Allison soll hier nicht verschwiegen werden: Bei Aufnahme von zeitveränder-
lichen unabhängigen Variablen in das Modell steigt die Rechenzeit enorm an.
Allein die Aufnahme einer zeitveränderlichen Variablen erhöhte die Rechen-
zeit um den Faktor 10.

4.2.2 Cox-Modell, Notation nach Yamaguchi

Ergänzend dazu ist proportionale Hazardmodell nach Yamaguchi (1991) de-
finiert als:
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Cox-Modell

hi(t) = h0(t) exp

{∑
k

bkXik(t)

}

Die Hazardrate ist definiert als das Produkt einer unspezifizierten Baseli-
ne-Funktion h0(t) und einem zweiten Term der den möglichen Einfluss eines
KovariatvektorsXik(t) (für Person i zum Zeitpunkt t und Kovariate k) auf die
Hazardrate angibt. Der Effekt der Kovariaten kann proportionale Änderun-
gen der Hazardrate bewirken. Deshalb sollte das Cox-Modell nur verwndet
werden, wenn diese Proportionalitätsannahme gerechtfertigt ist. Das Modell
nimmt an, dass wennXk eine Intervallskalierte Variable ist, sich die Hazardra-
te mit jeder einheit der intervallskalierten Variable um exp {bk} vervielfacht,
sofern der Effekt der anderen Kovariate kontrolliert ist.
Wenn die Kovariate alle Zeitunabhängig sind, dann ist die Survivorfunktion
gegeben durch:

Si(t) = S0(t)exp{∑k bkXik}

wobei S0(t) die Survivorfunktion für die Individuen mit Xk = 0 angibt. Sie
ist gegeben über:

S0(t) = exp

{
−
∫
h0(s)ds

}
Die log minus log Survivorfunktion ist gegeben über:

ln − lnSi(t)] = ln [− lnS0(t)] +
∑
k

bkXik

Der erste Teil der Formel auf der rechten Seite ist allen Objekten gemein-
sam, der zewite Teil ist nicht Zeitabhängig. Es folgt, dass wenn alle Kovariate
Zeitunabhängig sind, die Differenz der log minus log Survivorfunktion unter
den Gruppen mit unterschiedlichen Werten auf den Kovariaten, über Zeit
konstant werden. Diese Charakteristik kann in einer graphischen Überprü-
fung der nonproportionalen Effekte für eitunabhängige Kovariate verwendet
werden.
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Anhang A

Variablen: diskret & stetig

Wichtig für dieses Skript ist die Unterscheidung zwischen diskreten und Steti-
gen Variablen. Es vermindert meiner Erachtens enorm die Verwirrung, wenn
man weiss, warum “manchmal” mit

∑
und “manchmal” mit

∫
f(x)dx gerech-

net wird.

A.1 Diskret Variablen
Bei diskreten Variablen handelt es sich um Variablen, deren Ausprägungen
endlich oder abzählbar unendlich sind. Uns bekannte diskrete Wahrschein-
lichkeitsverteilungen sind die Hypergeometrische Verteilung, die Binomial-
verteilung oder die Poissonverteilung. In jeder dieser Verteilungen existiert
ein Term aus der Kombinatorik, so dass sie schon intuitiv als abzählbar er-
kannt werden können:

Hypergeometrisch =

(
X
x

)(
N−X
n−x

)(
N
n

)
Binomialverteilung =

(
n

x

)
px(1− p)n−x

Poissonverteilung =
µk

k!
e−µ

In jeder dieser Formeln steht entweder
(
n
k

)
oder x!. Diese Werte mögen zwar

extrem grosswrden, unendlich sind sie jedoch nicht. Beim Lotto z.B. exis-
tieren

(
49
6

)
= 13.983.816 möglich Lottoziehungen. Die Ausprägungen die die

Variable “Richtige im Lotto” annehmen kann besitzt aber nur die Ausprä-
gungen 1, 2, 3, 4, 5, 6 Richtige und nicht zu vergessen 0 Richtige. -2 Richtige
oder 3,5 Richtige sind nicht möglich!
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Abbildung A.1: Wahrscheinlichkeit für Gewinn

In Graphik A.1 sehen wir, wie hoch die jeweilige Wahrscheinlichkeit ist, die
entsprechende Anzahl an Treffern im Lotto zu erzielen. Es sind zwar Bal-
ken in diesem Diagramm zur besseren Übersicht dargestellt, aber wollen wir
präziser von “Strichen” reden, da die Ausprägungen keine Intervalle darstel-
len, sondern Punkte. Wir haben hoffentlich 6 Richtige im Lotto und nicht
zwischen 5,9 und 6,1, denn dies ist nicht möglich. Die Wahrscheinlichkeit für
1 und 0 Richtige liegen relativ gleich auf, sie entspricht ungefähr 0,42. Die
Wahrscheinlichkeit für 4 bis 6 Richtige ist mit blossem Auge in der Graphik
nicht mehr zu erkennen, sie beträgt für 4 Richtige ≈ 0, 00096862 oder anders
geschrieben ≈ 9, 6862E−04, für 5 Richtige ≈ 1, 845E−05 und für 6 Richtige
≈ 7, 1511E − 08, also 1

13.983.816
. Es ist schon intuitiv logisch, dass die Wahr-

scheinlichkeit, sofern man denn mitgespielt hat, Eines dieser Ergebnisse zu
erhalten, nämlich 0, 1, 2, 3, 4, 5 oder 6 Richtige zu haben eintreten muss.
Die kumulierte Wahrscheinlichkeit muss also exakt = 1 betragen.
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Abbildung A.2: Kumulierte Wahrscheinlichkeit

Wenn wir uns die kumulierte Wahrscheinlichkeit anzeigen lassen sehen wir,
dass die Summe 1 ergibt. Auch wenn es in der Graphik A.2 optisch nicht
deutlich wird, 1 wird erst mit dem letzten Strich erreicht, vorher liegt der
Wert der kumuliertn Wahrscheinlichkeit zwar sehr nahe an 1, er ist jedoch
noch kleiner als 1.

Abbildung A.3: Wahrscheinlichkeit & kumulierte Wahrscheinlichkeit

Für unser hypergeometrisch verteiltes Lotto-Beispiel gilt folgendes,

6∑
i=0

p(xi) = 1

da wir es mit abzählbaren Ausprägungen zu tun haben, und daraus die Sum-
me bilden können, was wir eben getan haben.
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A.2 Stetige Variablen
Bei stetigen Variablen liegt der Fall anders, hier haben wir es mit überabzähl-
bar unendlich vielen Eigenschaften oder Ausprägungen zu tun. Wir können
-anders als bei den Lottoergebnissen- jede Ausprägung noch genauer Messen.
Eine Person kann theoretisch beliebig genau gewogen, in der Grösse vermes-
sen oder ihr Alter bestimmt werden. So ist es beispielsweise möglich eine
Person nicht “grob” auf 1.75m - 1.76m in ihrer Grösse zu messen, sondern
anzugeben, ob sie 1.75m, 1.754m, 1.7548m oder 1.75482m gross ist. zwischen
jeden beliebigen zwei Messwerten liegen unendlich viele andere. Wir haben
hier also nicht nur 7 Striche vorleigen wie in unserem Lotto-Beispiel. Nicht
einmal 100 Striche. Auch 1.000, 5.000 oder 523.495.685.932 Striche genü-
gen nicht. Da die Anzahl der Ausprägungen gegen unendlich geht, liegen die
Striche unendlich dicht beieinander. Und damit sind wir sehr nahe an einer
wichtigen Schlussfolgerung. Wonach sehen unendlich viele Striche unendlich
nahe beieinander aus? Erinnern wir uns, an unsere ersten ausmal-Versuche
in der Grundschule oder dem Kindergarten. Richtig. Sie sehen aus wie ein
Fläche. Flächen berechnet man in der Mathematik über Integrale. Also heisst
dies für uns, wir rechnen nicht

∞∑
i=1

p(x) = 1

denn dies würde unendlich lange dauern, sondern∫ ∞
−∞

f(x)dx = 1

In den nachfolgenden Graphiken sehen wir, das wir, wie sich aus einer An-
sammlung von Strichen eine Fläche entwickelt. Es ist der Auflösung des PC-
Bildschirms geschuldet, dass schon bei einer relativ “ungenauer Messung” be-
stehend aus 0.01er Schritten (Bild unten rechts) die Ansammlung der Striche
als Fläche erscheint.
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Abbildung A.4: Abnehmender Abstand zwischen den Messungen
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Anhang B

Dichtefunktion &
Verteilungsfunktion

Eine Dichtefunktion, auch als Wahrscheinlichkeitsdichte oder Wahrschein-
lichkeitsdichtefunktion bekannt, dient dazu die Wahrscheinlichkeitsverteilun-
gen einer Variablen zu beschreiben. Die Wahrscheinlichkeiten für die einzel-
nen Ausprägungen einer stetigen Zufallsvariablen können im Gegensatz zum
diskreten Fall nicht angegeben werden, da die Wahrscheinlichkeiten für jede
einzelne Ausprägung 0 sind, da die Intervalle gegen Null gehen, und damit
die Wahrscheinlichkeit, in ein bestimmtes Intervall zu fallen ebenfalls gegen
Null gehen. Es lassen sich nur Wahrscheinlichkeiten dafür angeben, dass die
Werte innerhalb eines Intervalls um den interessierenden Wert x liegen. Die
Wahrscheinlichkeit, dass die Zufallsvariable Werte zwischen a und b annimmt,
entspricht dem Integral der Funktion. Es gilt

P (a < x < b) =

∫ b

a

f(x)dx =

∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx

Abbildung B.1: Dichtefunktion und Verteilungsfunktion der Standardnormal-
verteilung

54



Anhang C

Grundlagen der Analysis

Ein paar Grundlagen in Analysis scheinen mir auserordentlich nützlich, um
die Zusammenhänge in diesem Skript besser nachvollziehen zu können.

C.1 Ausgangsfunktion f (x)

Funktionen die wir kennen, die kennen wir üblicherweise urch ihre norma-
le Funktion, die ich in diesem Zusammenhang “Ausgangsfunktion” nennen
möchte. Die Parabel der Funktion f(x) = x2 zeigt sich nur in ihrer Aus-
gangsfunktion.
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Abbildung C.1: Ausgangsfunktion der Standardnornmalverteilung

In der vorangehenden Graphik C.1 sehen wir die uns bekannte Standard-
normalverteilung (im folgenden: SNV). Ihr typischer brachte ihr den Namen
Glockenfunktion oder Gaussche Glocke ein. Doch auch hier zeigt sich der
Verlauf nur in der Ausgangsfunktion f(x). Wie sich die Form, und die Inter-
pretation verändert, wenn man aus dieser Funktion die Ableitung f ′(x) oder
die Stammfunktion F (x) bildet sehen wir nun:

C.2 Stammfunktion F (x)

Die Stammfunktion wird über intergrieren der Ausgangsfunktion gewonnen.
Das Integral einer Funktion beschreibt den Flächeninhalt zwischen Kurve der
Funktion und der x − Achse. Der Flächeninhalt unter der gesamten Kurve
wird über

F (x) =

∫ ∞
−∞

f(x)dx

beschrieben. Allerdings ist es allgemein notwendig sich die Teilstücke zwi-
schen den Nullstellen der Ausgangsfunktion gesondert anzuschauen. Dies ist
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hier jedoch nicht erforderlich, da die Ausgangsfunktion der SNV über kei-
ne Nullstellen verfügt. In Graphik C.2 sehen wir einen bekannten Sachver-
halt. Die Stammfunktion nimmt für x = 0 den Wert 0.5 an. Dies ist der
Wert, den der Flächeninhalt zwischen Kurve und x-Achse annimmt. Da der
Flächeninhalt der Gesamten SNV (von −∞ bis ∞) gleich 1 ist, und die
SNV symmetrisch zum Ursprung ist, war dieser Wert erwartet. Der Wert der
Stammfunktion gibt den Flächeninhalt von −∞ bis zu dem Punkt an, der
auf der x-Achse abgelesen wird.

Abbildung C.2: Ausgangsfunktion der Standardnornmalverteilung

Es gilt also für die Standardnormalverteilung:

F (0) =

∫ 0

−∞
f(x)dx = 0.5

Andere bekannte Werte für die Stammfunktion der SNV sind:

F (1.645) =

∫ 1.645

−∞
f(x)dx ≈ 0.95

F (1.96) =

∫ 1.96

−∞
f(x)dx ≈ 0.975
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F (2.326) =

∫ 2.326

−∞
f(x)dx ≈ 0.99

Hier lüftet sich vielleicht etwas der kryptische Schleier der Z-Werte, den mit
denen hatten wir es gerade zu tun.

C.3 Erste Ableitung f ′(x)

Die erste Ableitung der Ausgangsfunktion hat eine ebenso interessante In-
terpretation. Die erste Ableitung beschreibt die Steigung der Tangente, die
die Kurve in dem Punkt berührt, der auf der x-Achse abgelesen wird. Wir
können in Graphik C.3 shen, in welchen Bereichen die Ausgangsfunktion der
SNV steigt (positiver y-Wert = positive Steigunt), fällt (negativer y-Wert
= negative Steiung, die Funktion fällt also der x-Achse entgegen) und wo
die Funktion keine Steigung besitzt. Dies ist hier bei x = 0 der Fall. Über
die Struktur der Ableitungen kann man eine Menge über die Charakteris-
tik der Funktion erfahren. Z.B. können wir errechnen, wo die Funktion eine
Extremstelle besitzt, indem wir die erste Ableitung f ′(x) = 0 setzen und
diese Gleichung lösen. Um jedoch zu entscheiden, ob es sich um ein Mini-
mum oder Maximum handelt, reicht die Aussage f ′′(x) 6= 0 nicht, sie gibt
nur an, dass es sich um eine Extremstelle handelt. Also müssen wir die zweite
Ableitung genauer untersuchen. Ist f ′′(x) < 0 handelt es sich um ein Ma-
ximum, ist f ′′(x) > 0 handelt es sich um ein Minimum. Wir erinnern uns
wahrscheinlich dunkel an die Begrifflichkeiten von notwendiger und hinrei-
chender Bedingung. Für Wendestellen müssen wir untersuchen, ob und wo
f ′′(x) = 0 gilt. Ist in diesem Punkt f ′′′(x) 6= 0, so haben wir es mit einem
oder mehreren Wendepunkten zu tun. Bei der SNV haben wir 2 Wendepunkt
vorliegen, bei 1 und −1. Generell gilt für Normalverteilungen: Wendepunkte
bei ±1 ·σ. Wir können in Graphik C.3 gut erkennen, dass die Ausgangskurve
ihr Steigungsverhalten ändert.
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Abbildung C.3: Erste Ableitung der Standardnornmalverteilung

Erst steigt die Kurve (der ersten Ableitung) an, dies bedeutet eine grösser
werdende Steigung in der Ausgangsfunktion (!) also eine Linkskurve. Am
Punkt −1 verharrt die Ableitung kurz und fällt dann, was eine Rechtskurve
für die Ausgangsfunktion bedeutet, bis zum Punkt +1. Dort verharrt die
Kurve der Ableitung auch infinitesimal kurz und beginnt dann wieder zu
steigen, was einer Linkskurve für die Ausgangsfunktion gleichkommt.
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C.4 Beispiel einiger Funktionen

Abbildung C.4: Erste Ableitung und Stammfunktion von f(x) = x2

Wobei:

f ′(x) = 2x

f(x) = x2

F (x) =
1

3
x3
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Tabelle C.1: Ableitungs- & Integrationsregeln

f ′′(x) f ′(x) f(x) F (x)

0 0 a ax

n(n− 1)xn−2 nxn−1 xn 1
n+1

xn+1

− 1
4x
√
x

1
2
√
x

√
x 2

3

√
x3

− sinx cosx sinx − cosx

− cosx − sinx cosx sinx

ex ex ex ex

ax(ln a)2 ax ln a ax ax

ln a

− 1
x2

1
x

lnx x lnx− x

− 1
x2 ln a

1
x ln a

loga x
1

ln a
(x lnx− x)

2
x3 − 1

x2
1
x

ln |x|

3

4
√
x5

− 1

2
√
x3

1√
x

2
√
x

Nützlich ist oftmals das Umschreiben bestimmter Ausdrücke wie z.B.:

n
√
x = x

1
n

1

xm
= x−m

n
√
xm = x

m
n

1
n
√
xm

= x−
m
n

61



Seite: 62 ANHANG C. GRUNDLAGEN DER ANALYSIS

C.4.1 Beispiel: Integration von 3
4
√

x5

Wir wollen
f(x) =

3

4
√
x5

ableiten. Dafür schreiben wir um in:

f(x) =
3

4
x−

5
2

Nach f(x) = xn → F (x) = 1
n+1

xn+1 erhalten wir:

F (x) =
3

4
· 1

−5
2

+ 1
x−

5
2

+1 =
3

4
· 1

−3
2

x−
3
2 = −3 · 2

4 · 3
x−

3
2

Vereinfachen und Kürzen führt uns auf das Ergebnis

F (x) = −1

2

1√
x3

= − 1

2
√
x3

C.4.2 Beispiel: Ableitung von 2
3

√
x3

Es gilt f(x) = xn → f ′(x) = nxn−1. Wir schreiben unsere Formel erst einmal
in diese Form um:

f(x) =
2

3

√
x3 =

2

3
x

3
2

und wenden nun die angegebene Forschrift an:

F (x) =
2

3
· 3

2
x

3
2
−1 =

2 · 3
3 · 2

x
1
2 = x

1
2

Schreiben wir nun noch um erhalten wir

F (x) =
√
x

als Ergebnis

Auf gebrochenrationale Funktionen wird an dieser Stelle nicht eingegangen,
dort sind die Ableitungen nicht notwendigerweise schwerer, aber aufwendiger,
da dort beispielsweise mit der Produkt-, Ketten- und/oder Quotientenregelre-
gel gearbeitet werden muss. Ebenso bleibt die behandlung mehrdimensionaler
Funktionen unbeleuchtet, auch wenn sie in der Statistik prinzipiell bedeutend
sind (Beispielsweise in der Herleitung der Regression).
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Anhang D

Herleitung der logistischen
Regressionsgleichung

Der Einfachheit und Übersichtlichkeit halber verkürzen wir die Schreibweise
von

n∑
i=1

bixi auf bxi

also auf den bivariaten Fall und

p(x) auf p

Wenn wir eine Wahrscheinlichkeit durch lineare Regression vorhersagen wol-
len treffen wir auf Probleme: Die Wahrscheinlichkeit ist auf das Intervall von
0 bis 1 festgelegt. Sie können nicht negativ oder grösser 1 werden, so wie es
die rechte Seite der Formel kann.

p = a+ bxi

Um dieses Problem zu lösen betrachtet man die Odds, also den Quotienten
aus zwei Wahrscheinlichkeiten.

p

1− p
= a+ bxi

Der Odd der Wahrscheinlichkeit zu “Überleben” für p(x) = 0.75 beträgt
p(x)

1−(x)
= 0.75

0.25
= 3. Also ist die Wahrscheinlichkeit zu überleben 3 mal höher

als nicht zu überleben. Das ist schon besser. aber immer noch nicht OK, den
die Odd-Ratios können nich negativ werden, also besitzen sie einen Werte-
bereich zwischen 0 und +∞. Durch logarithmieren (üblicherweise mit dem
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logarithmus naturalis ln) erreichen wir einen Wertebereich zwischen −∞ und
+∞.

ln
p

1− p
= a+ bxi

Wenn wir die Gleichung nun nach p auflösen wollen gehen wir folgendermaßen
vor:

eln p
1−p

=ea+bxi

Da gilt elnx = ln ex = x, es sich also um die Umkehrfunktion handelt gilt
folgendes:

p

1− p
= ea+bxi

Multiplikation mit 1− p(x)

p = ea+bxi(1− p)

Ausmultiplizieren

p = ea+bxi − pea+bxi

Addition, um pea+bxi auf die linke Seite zu bringen:

p+ pea+bxi = ea+bxi

Ausklammern von p

p
(
1 + ea+bxi

)
= ea+bxi

Dividieren durch
(
1 + ea+bxi

)
p =

ea+bxi

1 + ea+bxi

Hier ist in manchen Lehrbüchern Schluss, wir haben die Formel der logisti-
schen Regression erreicht. Doch kann man noch weiter vereinfachen: Klam-
mern wir unter dem Bruchstrich ea+bxi aus.

p =
ea+bxi

ea+bxi( 1
ea+bxi

+ 1)

Umschreiben, da gilt 1
a

= a−1
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p =
ea+bxi

ea+bxi(e−(a+bxi) + 1)

Finales Kürzen

p(x) =
1

e−(a+bxi) + 1
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