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KAPITEL 1

MULTIPLE REGRESSION

Bei der multiplen Regression handelt es sich um ein Standardverfahren der mul-
tivariaten Statistik. Hierbei wird von einem linearen Zusammenhang zwischen
einer abhingigen, zu erkldrenden Variablen mit einer -oder mehreren- unab-
héngigen, erklirenden Variablen ausgegangen. Um die Idee besser erfassen zu
konnen wenden wir uns zunéchst der einfachen linearen Regression zu, die aus
dem Grundstudium noch in vager Erinnerung sein sollte.

In der einfachen linearen Regression versuchen wir, eine metrische abhingige
Variable y durch eine unabhingige metrische Variable x vorherzusagen. Hierzu
bendtigen wir eine Gerade (daher der Name lineare Regression), die sogenannte
Regressionsgerade, auf der die vorhergesagten Punkte liegen. Ihre Gleichung
lautet ¢; = by + byz;. Diese Gerade ist die Optimale Gerade durch die von
den Variablen x und y gebildete Punktwolke. Sehen wir uns als Beispiel den
Scatterplot fiir folgende Daten an:

Rr———

10k ° 1

Abbildung 1.1: Scatterplot

4 45 5 55 6 65 7 9
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Seite: 5 KAPITEL 1. MULTIPLE REGRESSION

Wie erhalten wir unsere Regressionsgerade fiir die obige Graphik? Wir bendtigen
eigentlich nur eine Handvoll Dinge:

1. Das arithmetische Mittel von %, dies betrdgt 5.5.

2. Die Regressionsgerade § = bo+b1x;. Die Parameter a und b sind momentan
noch unbekannt, dies ist aber nicht weiter schlimm.

3. Das Konzept der Varianzzerlegung.

4. Die Daten, natiirlich.

1.1 Least Squares & Varianzzerlegung

Sehen wir uns einmal den Scatterplot inklusive § und g; an:

12+

10F . i

Abbildung 1.2:

Hier treffen wir auf das Verfahren der kleinsten Fehlerquadrate (oder eng-
lisch: least squares). Entwickelt wurde es vom dem Mathematiker Carl Friedrich
Gauss, der uns von den letzten 10 DM Scheinen bekannt ist. Mit diesem Verfah-
ren lisst sich die perfekte Regressionsgerade mit mathematischer Genauigkeit
bestimmen.
Bevor wir uns ansehen, wie die Regressions-
gleichung (g; = bg + b1 - x;) bestimmet wird, =
miissen wir uns noch mit einigen Grundlagen 5
vertraut machen, die in diesem Zusammen- z
2

GUSAET29T252

hang eine Rolle spielen.

ZEHM DEUTSCHE MARK

e Die beste Vorhersage von y ohne
Kenntnis von x ist das arithmetische
Mittel von y, also g. Dies gilt ebenso,
wenn zwischen x und y kein Zusam-
menhang besteht, also r = b = 0.

1.1



Seite: 6 KAPITEL 1. MULTIPLE REGRESSION

e Die beste Vorhersage mit Kenntnis von
x ist nicht mehr ¢ sondern g, also die Regressionsgerade.

Fiir jeden einzelnen Fall sind 3 Werte von Bedeutung. Einmal der wirklich ge-
messene Wert y;, der von der Regression vorhergesagte Wert 1; sowie g

o Die Abweichung der gemessenen Werte y von § wird gesamte Abweichung,
gesamte Streuung oder gesamter Fehler genannt. Wir werden spéter den
Zusammenhang mit der Varianz von y sehen.

e Die Abweichung der vorhergesagten Werte ¢ von § wird
genannt. Dies ist die Verbesserung der Vorhersage, die die Regressionsge-
rade gegeniiber y bietet.

o Die Abweichung der gemessenen y-Werte von den vorhergesagten g-Werten
der Regressionsgeraden ist der nicht erklarte Fehler von y.

Die Gesamte Streuung von y setzt sich aus zwei Komponenten zusammen: dem
Teil, der durch x erklart wird, und dem Teil, der nicht durch z erklirt wird.
In Graphik 1.2 sehen wir einen Scatterplot mit eingezeichneter Regressionsge-
rade y und arithmetischem Mittel . In Graphik 1.3 sind zusédtzlich die eben
angefiihrten Begriffe fiir einen einzelnen Datenpunkt eingetragen.

12~

Abbildung 1.3: Beispiel mit einem Datenpunkt

Was bedeuten diese Begriffe nun?

Die blaue Strecke ist die Abweichung des Punktes y von seinem arithmetischen
Mittel g. Dies ist der individuelle Beitrag des Punktes zum Gesamten Fehler von
y. Die rote Strecke ist der Beitrag zum nicht-erkléarten Fehler, also der Abwei-

chung von der Regressionsgerade. Die Strecke der Beitrag zum erklarten
Fehler, also was die Regressionsgerade “besser” vorhersagt als das arithmetische
Mittel y.

Wie kommen wir an die Werte fiir die verschiedenen Komponenten? Fiir einen
einzigen Fall gilt folgendes:

. — erklarter Fehler

1.1



Seite: 7 KAPITEL 1. MULTIPLE REGRESSION

e y;, — y; = nicht erkldrter Fehler

e y, —y = gesamter Fehler

Da wir es aber nicht nur mit einem einzelnen Fall zu tun haben, sondern mit
mehreren, namlich n Féllen, miissen wir mehrere Datenpunkte mit jeweils einem
erklarten Fehler, nicht erkldrten Fehler und gesamten Fehler beriicksichtigen.

12

10
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Abbildung 1.4: Beispiel mit allen Datenpunkten

Fiir alle Datenpunkte werden nun die einzelnen Fehlerwerte aufsummiert. Wir
haben es also hier nicht mit

yi_y7 7.1/17.7//\1

fiir einen einzelnen Datenpunkt, sondern mit der Summe mehrerer -némlich n-
Datenpunkten, unterteilt nach den verschiedenen Fehlerarten zu tun:

n n
Zy’i_ya azy’i_?/\’i
i=1 i=1
Hierbei stofsen wir auf ein Problem. Die verschiedenen Summen ergeben Null.
Diese Eigenschaft tritt ebenfalls bei der Berechnung der Varianz auf. Wir bedie-
nen uns hier eines Tricks um dies zu vermeiden: Wir quadrieren die Differenzen
bevor wir sie summieren. Es resultiert nun:

n n
Z(’yi*?ﬂ aZ(’yi*@‘)z
i=1 i=1
Diese 3 Terme werden “Fehlerquadratsummen” genannt. Hoffentlich ist deut-
lich geworden, warum. Es handelt sich hierbei um die quadrierten Summen der
Differenzen, oder anders gesagt die quadrierten Summen der Fehler. Es besteht
folgender Zusammenhang zwischen diesen Termen:

Z(yz -7’ = + Z(yz - 0:)°

i=1

1.1



Seite: 8 KAPITEL 1. MULTIPLE REGRESSION

Teilen wir alle 3 Terme durch n — 1 erkennen wir etwas. Die totale Streuung
wird durch die gleiche Formel ausgedriickt, wie die Varianz von y. Somit ist die
Varianz von y in 2 Teile zerlegbar. Einen Teil, der durch die Regression erkldrt
wird, und ein Teil der durch die Regression nicht erkldrt wird.

> (yi —7)? _ 4 S (yi —ui)?

n—1 n—1

12~

100 ]

Abbildung 1.5: Gesamter Fehler

In der folgenden Tabelle sind die einzelnen Fehler berechnet.

Tabelle 1.1: Fehlerberechnung

x y |y ef ef? nef nef? gf gf?

y=0|w-9ly-9| (y—9)?
2 4 | 2.633 || —2.876 8.220 1.367 1.869 || —1.5 2.25
3 3 | 3.515 || —1.985 3.940 || —0.515 0.265 || —2.5 6.25
4 2 4.400 || —1.103 1.216 || —2.400 5.747 —-3.5 12.25
4.5 3 | 4.838 || —0.662 0.438 || —1.838 3.380 || —2.5 6.25
5 7 | 5.279 || —0.221 0.048 1.721 2.960 1.5 2.25
55 |6 |5.720 0.221 0.048 0.280 0.078 0.5 0.25
6 4 |6.161 0.662 0.438 || —2.161 4.673 || —1.5 2.25
6.5 10 | 6.603 1.103 1.216 3.397 11.542 4.5 20.25
7 9 7.044 1.544 2.383 1.956 3.827 3.5 12.25
9 7 | 8.808 3.308 10.943 || —1.808 3.269 1.5 2.25
52.5 | 55 —0.003 28.890 || —0.001 37.610 0 66.5

Lassen wir uns die Varianz von y auszurechnen erhalten wir 7.389 als Ergebnis.
Teilen wir die Quadratsumme des gesamten Fehlers (66.5) durch n—1, in unserm
Falle also 9 erhalten wir ebenfalls die Varianz:

66.5
— = 17.389
9

1.1
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Was das Verfahren der kleinsten Fehlerquadrate tut, ist die Regressionsgerade
aus der unendlichen Anzahl von méglichen Regressionsgeraden zu bestimmen,
fiir die die Quadratsumme des nicht erklarten Fehlers minimal ist. Es gibt keine
Regressionsgerade fiir die dieser Wert geringer ist. Der erklédrte Teil ist also
analog maximal.

1.1
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1.2 OLS mathematisch

Wie bereits erwahnt lautet die Gleichung der Regressionsgerade:
9i = bo + b1w;
Die nicht erkldirte Streuung ist wie oben dargelegt bestimmt, und soll minimal

sein:
n

1,
N2 g
7Z:;(yl ) = min
In folgender Graphik sehen wir, was dies bedeutet: Auf der x und y-Achse sind
jeweils mogliche Werte fiir by und b; abgetragen. Am tiefsten Punkt des Graphen
befindet sich die OLS-Losung fiir by und b;.

17.5
15.0
12.5

10.0

AT
NS
e
\

Abbildung 1.6: Bestimmung des kleinsten Fehlerquadrates

Als ersten Schritt substituieren wir g; in 37 ; (y; — ¥;)?+ durch by + bya;:

n

S (i — (a+ bwi))~

; n
=1
Ausmultiplizieren

n

1
> (7 = 2(bo + bazi)yi + (bo + b133i)2);

i=1

1.2
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KAPITEL 1. MULTIPLE REGRESSION

n

D (57 = 2yibo —

i=1

Partielle Ableitung nach b

0f(bo,b1)

1
2y;brx; + bg + 2bgbrx; + b%.’lﬁ?)*
n

Partielle Ableitung nach by

0f (bo,b1)

Obg

Z —2yi+2bo+2b1x; __ 0
n

QnyHer;ﬁEblZwi -0

_M+Eb0 +Eb12zi =0
—g+ e 4 iz —0
—§+bo+ b1 =0

bo +b1Z =y

oby

Z —2y;x;+2box; +2b1 27 0
- =

2—2%%-#2 bogjwri-z b3} =0

_Eziyi n Ebonzwi + Zbanw? -0
—Ty + oz 4 mbig2 = 0

—TG + boZ + b1z2 =0

~TG + (§ — b1Z)T + bya?

—TY + TG — 1 ZT + a2 =0

—TY+ TG — 0172+ bra2 =0

Hier ist die linke partielle Ableitung (nach by) beendet, die Gleichung fiir die
Regressionskonstante (das Interzept) im bivariaten Fall lautet also: by = §— b, 7.
Die rechte partielle Ableitung nach by ist noch nicht vollendet, wir miissen also
noch weiter rechnen.

Partielle Ableitung nach b
—TY + Iy — b1 (7% —22) =0

y—zy
by ==
bp =9 — T bl—z%:

So ergeben sich also die Parameterschétzer fiir die Regressionsgerade:

¥i = bo + bix;, mit
Say

2
Sz

An dieser Stelle wird auf die Inspektion der zweiten Ableitung verzichtet, die
anzeigt ob es sich bei dem Extremwert um ein Minimum oder Maximum handelt.
Es handelt sich an dieser Stelle um ein Minimum.

bozg—blfundblz

1.2
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1.2.1 Multipler Fall

Wihrend die bivariate Regression einen Schétzer fiir den Achsenabschnitt by und
einen Schéatzer fiir den Steigungsparameter b; benétigt, sind in der multiplen
Regression mehrere Steiungsparameter b; zu schitzen. Fiir by fiihrt dies im Falle
einer Regression y auf x1, zo und 3 zur Schétzung

bo =9 — |by$1*$2$3 "Iy + bywzfmacs " T2+ by$3*931932 ’ j?)‘

mit den partiellen Regressionskoeffizienten

by byrl—mgrg = by(1—23)
by = bymgfazlxg = by(2—13)
by = byxsffrll’z = by(3—12)

1.2.2 Matrixnotation

Im multiplen Fall bietet es sich an, die Regressionsgleichung in Matrixnotation
zu notieren:
y=Xb+e

Durch Umstellen erhalten wir,

e=y—Xb

was minimiert werden soll. Das fiihrt zu

e’e = (y — Xb)'(y — Xb) = min

Die 1. Ableitung wird gleich Null gesetzt, um den potentiellen Extremwert dieser
Funktion zu ermitteln. Danach wird die 2. Ableitung gleich Null gesetzt, um
zu ermitteln, ob es sich um ein Minimum, Maximum oder einen Sattelpunkt
handelt, darauf wird an dieser Stelle verzichtet. Fiir ein Minimum muss die 2.
Ableitung positiv sein.

Nullsetzen der 1. Ableitung

%(e’e) =0
Substituieren 5
a5Y —Xb)'(y - Xb) =0
Transponieren
o B X')(y — Xb) =0
Ausmultiplizieren

%(y'y -y Xb-b'X'y+bX'Xb)=0

Weil y’ Xb und b’ X’y Skalare sind, gilt y’ Xb = (v’ Xb) = b’ X'y, da ¢ = ¢':

%(y'y -2’ X'y + b’ X' Xb) =0

1.2
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ay'y) 02 X'y) O(b'X'Xb)

_ -0
b b b

Ableiten

0—2X"y +2X'Xb =0
Ergibt

2X'Xb=2X"y
X'Xb= X'y

Linksseitig mit (X’X)~! multiplizieren, also durch (X’X)~* teilen. (“ ")

(X'X)'X'Xb=(X'X)"'X'y
Wir erhalten das Ergebnis fiir b

b= (X'X)"'X'y

1.3 Partielle Korrelation und Regression

Um die Begriffe partielle Korrelation und partielle Regression zu verdeutlichen
betrachten wir ein Beispiel: Eine Untersuchung ergab, dass die Fahrleistung (z1)
mit steigendem Alter (z2) abnimmt, obwohl zu erwarten ist, dass sie zunimmt.
Hier spielt aber eine andere Variable auch eine wichtige Rolle, das Alter des
Fiihrerscheinerwerbs (x3). Partialisiert oder kontrolliert man nun die Variablen
1 und zo mit z3, dann ergibt sich der erwartete positive Zusammenhang.Das
Konstanthalten oder Herauspartialisieren von Einfliissen dritter Variablen er-
folgt mittels Regression.Wir fiithren eine einfache Regression von Fahrleistung
(21) auf Alter Fiihrerscheinerwerb (z3) durch:

T1 = a3 + bisxs mit x1 = a13 + bizxs + &1

und eine einfache Regression von Alter (z3) auf Alter Fiihrerscheinerwerb (x3)

T9 = a3 + bazwsz mit 9 = ag3 + bagxz + €2

Die Fehlervarianzen sgl und 8?2 sind die Anteile von z1 und x5, die durch 3
nicht gekldrt werden. Fiihren wir nun mit diesen Restvarianzen eine Korrelation
oder Regression durch,

Z1-3 = a12-3 + b1a_372_3

analysieren wir x; und x> unter Konstanthalten von x3. Diese wurde mittels
Regression herauspartialisiert.

1.3
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Konventionen

o Partialvariable 1. Ordnung
r1_3 ist die Variable x1 ohne x3
To_3 ist die Variable x5 ohne x3
o Partialvariable 2. Ordnung
T1_34 ist die Variable z; ohne x3 und x4
To_34 ist die Variable x5 ohne x3 und x4
e Partialvariable n-ter Ordnung

T1_34. p ist die Variable 21 ohne z3 und z4 ... z,

To_34.. n ist die Variable x9 ohne z3 und x4 ... z,

Partielle Korrelation

COV($1—3, 1172—3) T12 — T137T23

V/Var(z1_3)Var(zz_3) - V1—13/1—713

T12—-3 =

Partielle Regression

; _ cov(z1-3,22-3)  T12 —T13723
z120—23 — -
172 Var(z2_3) 1 — 73,

beziehungsweise

b _ T12 —T13T23 S1
rix0—23 — 2 T
1—r3, S2

1.3.1 Semipartielle Korrelation und Regression

Mochte man den Einfluss der Variablen x3 nur aus einer Variablen herauspar-
tialisieren, z.B. nur z9, so ergibt sich fiir die Korrelation:

. _ cov(z1,22-3) _ T12 —T13T23

1(2-3) = =

=% V/Var(z1)y/Var(z2_3) 1 — 73

Der semipartielle Regressionskoeffizient entspricht dem partiellen Regressions-
koeffizienten. Die Korrelation von x; mit x5 ohne x3 ist identisch mit der Re-

gression von z; auf x5 ohne zs.

T1(2-3) = b1(273)

Die Regressionskoeffizienten kénnen durch
e Simultane Schitzung (partielle Regressionskoeffizienten)
e Schrittweise Schitzung (semipartiell Regressionskoeffizienten)

erfolgen.

1.3
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Simultane Schitzung

Beispiel vierfache multiple Regression x; = f(x2, x3, x4)
Die Regressionskoeffizienten geben Auskunft dariiber, wie viel Z; sich verdndert,
wenn die unabhéngige Variable z; unter Konstanthalten der iibrigen unabhén-

gigen Variablen xo,...2;_1, Zj41,..., ) um eine Einheit wéchst.
Z1 = bg+baxy + b3wz + by
by = b2z
by = biz—2u
b3 = bia_23

Schrittweise Schitzung

Die Funktion 21 = f(z2, 3, x4) ist als Funktion fortschreitender Partialvaria-
blen anzusehen. Die Regressionskoeffizienten sind semipartielle Koeffizienten.
Variablen werden schrittweise hinzugenommen.

i’l = bo + b2$2 + bgl‘g + b4SC4
b2 = b12

b3 = bia—g)

by = biu—23)

1.4 Relevante Koeffizienten

In der multiplen Regression wird von einem linearen Zusammenhang zwischen
einer abhéngigen Variablen y und J > 2 unabhéngigen Variablen x ausgegangen.
Die Modellgleichung fiir die Grundgesamtheit lautet:

9i = Bo + Brwi1 + Poxia + ... + BrTik + &

oder in kiirzerer Schreibweise

J
9i = Po + Zﬂjxij + €.

j=1
In der uns zugénglichen Stichprobe lautet die Modellgleichung

J
7; = bo + ijxij + €;
j=1
Da wir von b; auf §; riickschliessen wollen. Im Zusammenhang mit der Regres-
sion existieren eine Reihe von Koeflizienten, die die Regression bestimmen und
die Giite der Anpassung beschreiben. Es folgt ein kurzer Uberblick.

1.4.1 Determinationskoeffizient >

Im bivariaten Fall gibt 72-100 den prozentualen Anteil der Varianz der abhiingi-
gen Variablen y an, der durch die unabhéngige Variable x erklért /vorhergesagt
wird. Er berechnet sich iiber:

14
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2 ngesamt - QSnicht erkldrt Qserklért

r° = =
ngesamt ngesamt
Z (v: —7)" - Z (: = 5)° Z @ -7
2 _ =1 i=1 _ =1
= n - n
(i =) > wi—9)’
i=1 i=1

Je groker der Wert der erklirten Quadratsumme, desto grofer wird r2. Analog
wird 2 kleiner, wenn die Quadratsumme der Residuen groRer wird. Ziehen
wir die Wurzel aus 72 erhalten wir den Korrelationskoeffizienten nach Pearson.
Um zu wissen, ob es sich um eine negative oder positive Korrelation handelt,
miissen wir inspizieren, ob der Regressionskoeffizient ein positives oder negatives
Vorzeichen besitzt.

Korrigiertes 72

Durch Hinzunahme weiterer unabhingiger Variablen kann das normale 72 al-
lenfalls steigen, aber nicht sinken, unabhingig, ob die weiteren Variablen einen
Erklarungsbeitrag leisten, oder nicht. Um dieses Problem zu beheben wurde der
korrigierte r2-Koeffizient fiir den multivariaten Fall entwickelt. Er berechnet sich
iiber folgende Formel:

9 n—1

Tk:l_n—k

Wobei k die Anzahl der Parameter und n die Anzahl der Félle angibt. Es
bleibt jpdoch anzumerken, dass gegen falsch spezifizierte Modelle nur theore-
tische Uberlegungen und sorgfiltige Diagnostik hilft.

(-3

Multiples r2

Beim multiplen r? handelt es sich um den Anteil erklirter Varianz relativ zur
Gesamtvarianz, wie auch in der bivariaten Regression. Schreibt man nun die
mittels semipartieller Regressionskoeffizienten ermittelte erkldrte Varianz von x

53 = by 55+ b3 gy S5t +0Ik—2, 3, k—1-5{_5 5 4

und dividiert durch die Gesamtvarianz von z, so erhilt man den multiplen De-
terminationskoeffizienten als Summe semipartieller Determinationskoeffizienten
fortschreitend hoherer Ordnung.

2 2 2 L2 2 L2
o big-s3 n bis_2) " 532 T bl(k—s2, 3,..., k—1) " Sk—2, 3,..., k=1
Tk = 52 82 . 82
1 1 1
2 _ .2 2 2
T =Ti2 T Ti@_2) T T T{k-2, 3., k—1)

Damit wird eine Aussage iiber die zusétzliche Erklarungskraft durch Hinzunah-
me einer weiteren Variablen moglich.
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1.4.2 Der Standardfehler des Schitzers: RMSE

Hierbei handelt es sich um die Quadratwurzel aus den durchschnittlichen resi-
duen des Modells.

n ~\2
i1 (Wi —Ui)
n—=k
Diese Mafzahl ist in der Einheit der abhéngigen Variablen angegeben, sie gibt
den durchschnittlichen Wert an, den unsere Schéitzung im Schnitt daneben liegt.
Je kleiner dieser Wert, desto besser ist die Anpassungsgiite des Modells.

1.4.3 Der F-Test

Beim F-Test handelt es sich um einen Signifikanztest des Gesamtmodells. Der
F-Wert berechnet sich iiber:

k—1 r2
n—k 1—r2

Getestet werden die Hypothesen:

H()ZBZ':O

Kann die Hy nicht verworfen werden, so ist das Ergebnis der Regression als
Zufallsergebnis zu bewerten.

1.4.4 Regressionskoeffizienten

Die Regressionskoeffizienten der multiplen Regression werden so berechnet, dass
die Werte jeder x;-Variable um diejenigen Anteile bereinigt werden, die durch
lineare Effekte der anderen x;-Variablen verursacht werden. Man spricht auch
vou herauspartialisieren. Es wird also eine Regression der abhéngigen Variable
y auf die nun kontrollierten Variablen x; durchgefiihrt.

Beispiel: Nehmen wir die Regression y; = bg+b1x;1 +boxi2+b3x;3: Betrachten
wir den Koeffizienten b;, so gibt er uns den Wert der Verdnderung fiir
y; an, wenn sich z;; um eine Einheit dndert, alle anderen unabhingigen
Variablen, also x;5 und z;3, konstant gehalten werden.

Wird also eine Einflussreiche z-Variable félschlicherweise nicht in das Regressi-
onsmodell aufgenommen, so kann auch ihr linearer Effekt nicht aus den iibrigen
x; Variablen herausgerechnet werden. Er wird sich also in den Residuen wieder-
finden.

b-Koeffizienten

Bei den b-Koeffizienten handelt es sich um die unstandardisierten Regressions-
koeffizienten. Sie geben an, um wieviel -ndmlich um b;- sich y verdndert, wenn
sich die zugehdrige x; Variable um eine Einheit verdndert. Die b; Koeflizienten
koénnen hinsichtlich ihrer Bedeutung nicht miteinander verglichen werden. Es
ist offensichtlich, dass die Verdnderung des Einkommens um einen (oder 100)
Euro eine andere Bedeutung besitzt als eine Verdnderung des Alters um ein
Jahr (oder 100).
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[-Koeflizienten

Bei den j3;-Koeffizienten handelt es sich um die standardisierten Regressionsko-
effizienten. Hier ist der Hinweis angebracht, dass es sich, trotz der gleichen Be-
zeichnung, nicht um die Regressionskoeflizienten der Population handelt. Es gibt
mehrere Moglichkeiten sie zu berechnen: Entweder indem man die Ursprungs-
variablen x; und y z-Standardisiert, also:

Tij — Xy . Yi — Y
Zg = —— sowie zy, =
SiEj Sy
oder iber:
6’ _ bsf%
7= YT
y

Hier lautet die Interpretation folgendermafsen: y verdndert sich um 8 Standard-
abweichungen, wenn sich z um eine Standardabweichung veréndert. Wir haben
es hier also nicht mehr mit den urspriinglichen Einheiten der Variablen - bei-
spielsweise Euro, Alter in Jahren oder dhnlichem- zu tun. Die ;-Koeffizienten
kénnen untereinander hinsichtlich ihrer Bedeutung nach verglichen werden, da
sie sich auf Standardbweichungseinheiten beziehen.

1.5 Statistische Tests bei multipler Regression

1.5.1 Der Test der multiplen Regressionskoeffizienten

Die Berechnung von Konfidenzintervallen fiir die partiellen Regressionskoeffizi-
enten erfolgt, wie im bivariaten Fall

By =bjtsy, -zg

oder

b — B
5= Bj

Sb;

mit

S S
T (@i—5) (n—1)si(l—13)
wobei s2 die durch die j Variablen (j = 2,...,J) nicht erklirte Varianz von 4
(abhéngige / Kriteriumsvariable) ist.
> (x; — &) ist die durch die Variablen z1, x2, ..., x; nicht erklirte Varianz
von z; (lineare Unabhéngigkeit von z; von anderen unabhéngigen Variablen)
(1- rjz) wird als “Toleranz” bezeichnet und ist der Anteil der nicht erklirten
Varianz einer unabhéngigen Variablen, gegeben die anderen unabhéngigen Va-
riablen. Die Toleranz gibt Auskunft iiber das Ausmafs der Unabhéngigkeit oder
Abhéngigkeit der unabhangigen Variablen. Bei 0 besteht Multikollinearitét.

Sb

1.5.2 Test der Korrelationskoeffizienten

Es ist zu testen, ob sich die multiplen Korrelationskoeffizienten signifikant von 0
unterscheiden. Dies kann entweder durch einen Gesamttest oder durch partielle
Tests erfolgen.
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Der Gesamttest
Wenn nur einer der partiellen Korrelationskoeffizienten von 0 abweicht, ist Hy
abzulehnen.
Hy:pios x=piz—o4 k=--=pie23.k1=0&pr=0
Der multiple Determinationskoeffizient r? wird mittels F-Test der Form

2
n—Fk 7

F= Tk
k—1 1-13}

gepriift. Es folgen durch diesen Test fast immer hohe Werte fiir F' und damit
signifikante Modelle. Dieser Test gibt jedoch keine Auskunft dariiber, welche
Variablen einen Beitrag leisten.

Der partielle Test

Bei diesem Test ist es moglich, den Beitrag der zuletzt aufgenommenen Varia-
blen (1.) zum Modell auf Signifikanz zupriifen (Die Variable xj, aus der alle
anderen unabhéngigen Variablen X2, ... X} _; herauspartialisiert sind). Man
kann jedoch auch den Beitrag einer beliebigen Partialvariablen (2.) zum Modell
testen.

1. Wir testen den Beitrag der letzten Variablen zj; zum Modell auf Signifi-
kanz, d.h. wir testen Hy : P1k—2,3,... . k—1 = 0 mittels F-Test.

1,2
-1 " "1(k—2,3,....k—1)

i (1= 77)

F =

indem wir die durch x; erklarte Varianz relativ zur nicht erklirten Ge-
samtvarianz setzen.

2. Getestet wird die Hy, dass eine beliebige Variable X; keinen signifikanten
Beitrag leistet mit

TQ
1(j=2,3, = Lj+ 1,0, k)

F =
s (1=78)

1.5.3 Test des multiplen Regressionsmodells
Blockweise Regression

Es erfolgt eine simultane Schitzung der Koeflizienten, alle Variablen wer-
den simultan in das Modell aufgenommen. Die Einzelbeitrage der Varia-
blen zum Regressionsmodell werden nicht getestet. Lediglich die Erkla-
rungskraft des Gesamtmodells wird gepriift.
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Schrittweise Regression

Die Variablen werden nacheinander in Abhingigkeit ihrer einfachen Kor-
relationskoeffizienten in die Analyse einbezogen. Es bestehen 2 Mdoglich-
keiten:

Vorwirts Die Variable mit der héchsten Korrelation geht als erste Va-
riable in das Modell ein. Fiir die anderen Variablen werden nun partielle
Korrelationen berechnet und die Variable mit dem néchsthochsten Erkla-
rungsbeitrag geht in das Modell ein. Das Ziel ist, aus einer gegebenen
Menge von z; Variablen diejenige Menge an z; herauszufinden, deren li-
nearkombination bei geringster Anzahl von z; die beste Schitzung liefert.
Ist der r2-Zuwachs bei Hinzunahme nicht mehr signifikant, wird abgebro-
chen. Als Kritikpunkt ist zu erwihnen, dass das Modell {iber die Relevanz
der Variablen entscheidet, nicht der Forscher mit theoretischen Argumen-
ten. Es ist mdoglich, dass Suppressorvariablen den Effekt einer wichtigen
x-Variablen verdecken, die somit nicht ins Modell mit aufgenommen wird.
Dies kann zu dem Vorwurf fithren, dass man theoretische Probleme in
formal-statistische aufgeldst hat, und es sich somit bei den Ergebnissen
um kiinstlich verursachte Fehlschdtzungen handelt. In der Literatur wird
ihre allzuh&ufig sinnlose Anwendung angemerkt.

Riickwirts Hier werden die Variablen nicht vom héchsten 72 an einbe-

zogen. Wie bei der blockweisen Regression werden zuerst alle z;-Variablen
aufgenommen, danach wird diejenige x;-Variable mit dem niedrigsten,
nicht signifikanten, Beitrag zu 72 aus dem Modell entfernt. Dies wird so
lange wiederholt, bis nur noch Variablen mit einem signifikanten Beitrag
zu 7?2 vorhanden sind.

Es bleibt anzumerken, dass die schrittweisen Regressionen “vorwarts” und
“riickwérts” nicht notwendigerweise zu identischen Ergebnissen fithren miis-
sen.

Hierarchische Regression

Die Einbeziehung der Variablen ist theoretisch untermauert. Es gibt zwi-
schen ihnen hierarchische Beziehungen, die in dem Modell modelliert wer-
den. Es wird folglich festgelegt, in welcher Reihenfolge die Variablen in
das Modell eingehen. Als Analyse in mehreren Stufen ist die hierarchische
(oder auch sequentielle oder kumulative) Regression der schrittweisen Re-
gression recht &hnlich. Der gewichtige Unterschied ist, dass es hier der For-
scher ist, der die Reihenfolge der Variablenaufnahme bestimmt, nicht das
statistische Modell iiber r2. Der Vorteil gegeniiber der klassischen, simul-
tanen Analyse ist der, dass wir die Abhéngigkeit der Schitzung einzelner
Variableneffekte von anderen, im Modell enthaltenen Variableneffekten
kontrollieren kénnen.
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1.6 Spezielle Modelle und Erweiterungen

1.6.1 Interaktionseffekte

Mochte man priifen, ob 2 Variablen nicht nur einen separaten, sondern auch
einen gemeinsamen Effekt haben, testen wir dies liber Interaktionseffekte: Fiir
die Variablen x; und x> und das Modell

Yi = by + x1b1 + 2202

bilden wir die neue Variable (z1 - 22) und nehmen sie in das Modell auf.

Yi = bo + x1b1 + x2bs + (l‘l . l‘g)bg

Setzen wir (1 - x2) = x% resultiert

Yi = bo + x1b1 + x2bs + $§b3

Betrachten wir beispielsweise die beiden Variablen Familiengrofte x1 und Ein-
kommen x5, und wollen wissen ob sie gemeinsam einen Effekt auf das Sparver-
halten y haben, so generieren wir Familiengrofe x Einkommen (z; - 22) und
kénnen nun so testen, ob sie gemeinsam wirken, also ob beispielsweise grofse Fa-
milien mit geringem Einkommen stérker sparen, als sich durch beide Variablen
einzeln erkliren ldsst.

Wichtig an diesem Modell ist, dass nicht nur die Interaktionsvariable in das Mo-
dell einfliesst, sondern auch die beiden “Haupteffekte”. Nur so wird statistisch
kontrolliert (partielle Regressionskoeffizienten), ob der Interaktionseffekt unab-
héngig von den Einzeleffekten seiner Komponenten einen eigenstindigen Einfluf§
auf y ausiibt. Ein auftretendes Problem ist die resultierende Multikollinearitét,
da z3 hoch mit z; und x5 korrelieren wird, da es ja aus ihnen gebildet wurde. Um
dieses Problem zu beheben werden x; und x5 vor Bildung des Interaktionsterms
Mittelwertzentriert. Dies geschieht wie folgt:

T _ _
T =2, —T

Die Werte der neu gebildeten Variable sind wie folgt zu interpretieren:
e —m = m Einheiten unterhalb des Mittelwertes
e 0 = entspricht genau dem Mittelwert
e +m = m Einheiten oberhalb des Mittelwert

Haben wir also fiir eine Person auf der zentrierten Variablen Einkommen einen
Wert von 145, so ist das Einkommen um 145 Euro hoher, als das durchschnittli-
che Einkommen. Wichtig ist hier der Unterschied der Mittelwertzentrierung zur
Z-Transformation:

e Die Mittelwertzentrierung ist immer noch in der Ursprungsskala (2 = 2
Euro iiber dem Durschschnitt) gemessen, nur der Mittelwert ist nun = 0

e Bei der Z-Transformation ist der neue Mittelwert = 0, sowie die Skala
in Standardabweichungen transformiert (2=2 Standardabweichungen iiber
dem Durchschnitt).
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Achtung!

Die Berechnung der standardisierten Regressionskoeffizienten (; ist {iber die
Form j3; = bjs?myl in Gegenwart von Interaktionseffekten nicht zuldssig (so
beispielsweise in Stata), sie sind nicht interpretierbar. Zur Ermittlung der
Bj-Koeffizienten miissen die an der Bildung der Interaktionsterme beteiligten
Variablen z; im Vorfeld z-transformiert werden.

1.6.2 Dummy-Regression

Es besteht auch die Moglichkeit, Dummy-Variablen in die Regression einzubin-
den. Wir kénnen Dummys jedoch nur als unabhéngige Variablen nutzen, eine
Dummy-Variable als abhingige Variable ist in der linearen Regression nicht
ratsam. Hierzu bendtigt man logistische Anséitze, die spéter diskutiert werden
sollen.

Wie also funktioniert nun eine lineare Regression mit einer unabhéngigen Dummy-
Variablen? Eine Besonderheit ist, dass sich die Interpretation des Regressions-
koeffizienten verandert. Hier macht die generelle Aussage “wenn sich x um eine
Einheit dndert, dann &ndert sich y um b” nur bedingt Sinn, da sich die z-Variable
namlich (da sie ein Dummy ist) nur ein einziges Mal um eine Einheit &ndern
kann, ndmlich von 0 zu 1.
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Abbildung 1.7: Dummy als abhéngige Variable

Die Interpretation der Parameter gestaltet sich wie folgt:

e by, also die Konstanten bezeichnet den Mittelwert der y-Variable fiir die
mit 0 codierten Falle.

e by + by gibt den Mittelwert der mit 1 codierten Fille an.
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e by steht fiir den Effekt, den das besitzen, bzw. das nichtbesitzen des Merk-
mals hat. Ist dieser Effekt, also b; signifikant, so besteht ein signifikanter
Unterschied zwischen den beiden Gruppenmittelwerten.

Achtung!

Die Verwendung standardisierter Regressionskoeflizienten bei dichotomen z;
ist nicht zulédssig. Da es sich bei der Standardabweichung eines Dummys um
eine Funktion seiner Schiefe handelt, werden die 3;-Koeffizienten umso kleiner,

je Schiefer der Dummy ist.
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1.7 Voraussetzungen

1.

Die wahre Beziehung zwischen den erkldrenden Variablen x und der zu er-
kldrenden Variable y (d.h. die “Population Regression Function”) ist linear
in den Parametern. Wenn wir k£ unabhéngige Variablen haben:

Yi = Bo + Prx1i + Boxoi + ... 4 BuTri + €

Die Parameter der Grundgesamtheit Sy, 51, B2, - - ., Bk sind fiir alle N Be-
obachtungen konstant.

Das Regressionsmodell ist korrekt spezifiziert, d.h. es fehlen keine relevan-
ten unabhéngigen Variablen, und die verwendeten unabhingigen Varia-
blen sind nicht irrelevant.

Die Storterme €; der Grundgesamtheit haben einen Erwartungswert = 0:

Homoskedastizitiit: alle €; haben die gleiche konstante Varianz o2

Var(e;) = o2

Wenn die Residuen diese Annahme verletzen spricht man von Heteroske-
dastizitét.

Die Storterme e; der Grundgesamtheit sind nicht autokorreliert,e darf
nicht hoch oder niedrig sein, weil sein vorhergehender Wert dies war. D.h.
fiir jedes Paar x; und x;, (i # j) ist die Korrelation zwischen den Stérter-
men ¢; und €; gleich Null.:

COV(€i7€j) =0;i#7
Keine perfekte Multikollinearitdt (d.h. die z-Variablen sind linear unab-
hingig).

Die Anzahl der Beobachtungen n ist grofser als die Anzahl der zuschét-
zenden Parameter k.

Keine Korrelation zwischen den Storgrofsen und den erkldrenden Varia-
blen:
cov(ei, ;)

¢; darf nicht klein sein, nur weil z; klein ist

Die Storgrofen sind normalverteilt:

EiNN(O,O'?)

Fiir die prinzipiell unbeobachtbaren Storgréften ¢ werden die Residuen e; =
y; — Y; herangezogen.
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1.7.1 Das Anscombe-Quartett

Das Anscombe-Quartett ist ein klassisches Beispiel fiir die Notwendigkeit der
Regressionsdiagnostik. Wir sehen 4 Regressionen fiir 4 Datensétze. Das Beson-
dere an diesen Regressionen ist, dass jeweils Z, 3, bo, by, 72 sowie o}, identisch
sind. Inspizieren wir nur diese Werte, so entgeht uns, ob es sich um einen

e Angemessen linearen Zusammenhang
e Quadratischen Zusammenhang
e Bis auf einen Ausreifier perfekt linearen Zusammenhang

e Ohne den Ausreifer gar keinen Zusammenhang

handelt.
Parameter im Anscombe-Quartett
bp = 3.0 r? = 067
bp = 05 T = 90
op, = 0118 5 = 175
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Abbildung 1.8: Anscombe-Quartett

In solchen bivariaten Féllen ist es noch mdglich, sich iiber die Graphiken einen
Uberblick zu verschaffen. Dies ist in hoherdimensionalen Regressionen leider
nicht mehr moglich. An dieser Stelle setzt die Regressionsdiagnostik an.
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1.7.2 Heteroskedastizitat

Auswirkung

Die OLSMethode gewichtet die Beobachtungen mit grofser Varianz stérker
als jene mit kleinen Varianzen. Aufgrund dieser impliziten Gewichtung sind
die OLSParameter zwar weiterhin erwartungstreu und konsistent, aber nicht
mehr effizient. Auflerdem sind die geschitzten Standardabweichungen der Pa-
rameter verzerrt. Deshalb sind die statistischen Tests und Konfidenzintervalle
ungiiltig, selbst wenn die Storterme unabhéngig und normalverteilt sind.

Tests

e GoldfeldQuandt Test
e BreuschPagan Test

e WhiteTest

Heteroskedastizitit (auch (Residuen)-Varianzheterogenitét) bedeutet in der Sta-
tistik unterschiedliche Streuung innerhalb einer Datenmessung. Die Streuung
der Fehlerwerte variiert in Abhéingigkeit der Ausprigungen der unabhingigen
x-Variablen. Heteroskedastizitit kann beispielsweise durch systematische Mefs-
fehler der y-Variable, oder durch ein fehlerhaft spezifiziertes Regressionsmodell
entstehen.

flylx)

fylx)

Abbildung 1.9: Hetero- und Homoskedastizitét

Wenn man zum Beispiel die Urlaubsausgaben von Haushalten (y) in Abhéngig-
keit vom Einkommen (z) untersucht ist zu erwarten, dafs die Varianz bei reiche-
ren Haushalten grofer ist als bei weniger wohlhabenden Haushalten. Wenn die
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Varianz der Residuen (und somit die Varianz der erklérten Variablen selbst) fiir
alle Ausprigungen der anderen (Pradiktor-) Variablen nicht signifikant unter-
schiedlich sind, liegt Homoskedastizitét ((Residuen-) Varianzhomogenitit) vor.
Ist Homoskedastizitét, also sind die Gleichheit der Residuumsvarianzen fiir un-
terschiedliche z-Werte nicht gegeben, so haben die Regressionskoeffizienteb ver-
zerrte Varianzen. Die Varianzen von b entsprechen nicht mehr jenen von f.
Dies verfilscht den Standardfehler der Regressionskoeflizienten. Allerdings blei-
ben die geschitzten b-Koeffizienten an sich unverzerrt. Die Konfidenzinterval-
le sind jedoch von der Verzerrung betroffen. Heteroskedastizitdt kann hiufig
schon in einem Streudiagramm (Scatterplott) erkannt werden.Zur Inspektion
bietet sich eine visuelle Analyse der Residuen an, indem man die vorhergesag-
ten y;-Werte gegen die Residuen plottet. Das Streudiagramm der geschétzten
Werte der abhingigen Variablen (ZPRED) und der Residuen (ZRESID) darf
kein Dreiecksmuster aufweisen.

4

L L L L
0.0 05 10 15

Abbildung 1.10: Heteroskedastische Residuen

0‘.0 0‘.5 1‘.0 l‘.5 2‘.0 2‘.5 310
Abbildung 1.11: Homoskedastische Residuen

Ein statistischer Test zur Aufdeckung von Heteroskedastizitéit ist der Goldfeldt-
Quandt Test. Hier wird die Stichprobe in zwei Subgruppen aufgespalten. Es
werden nun die beiden Varianzen ins Verhiltnis (Quotient) gesetzt. Gilt s3 = s3,
so betrigt der Quotient 1. Je weiter sich der Wert von 1 entfernt, so stérker ist
die Tendenz zur Heteroskedastizitét. Sind die Residuen normalverteilt und trifft
die Annahme der Homoskedastizitat zu, so folgt das Verhéltnis der Varianzen
einer F-Verteilung. Heteroskedastizitdt ist auch eine Folge von Nichtlinearitét
und nichtlineare Transformationen kénnen somit Homoskedastizitéit herstellen.
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1.7.3 Multikollinearitat

Auswirkung

Perfekte Multikollinearitét fithrt dazu, dass die Regression nicht mehr bere-
chenbar ist (Division durch 0). Auch wenn dies in der sozialwissenschaftlichen
forschung seltenst vorkommt, so werden doch die Schéitzungen der Regressi-
onsparameter unzuverlassiger durch einen groferen Standardfehler.

Tests
e Toleranz

e VIF

In folgender Graphik sehen wir, dass bei steigender Multikollinearitdt ein immer
groferer Teil der Daten redundant wird. Es lisst sich die redundante Informa-
tion auch nicht mehr eindeutig einer Variable zuordnen. Der rote bereich kann
nicht zur Bestimmung der Koeflizienten der Regressoren enutzt werden. Sie geht
aber trotzdem in die Berechnung des standardfehlers ein, vermindert ihn und
tragt somit zur Verbesserung der Prognose und Steigerung von r? bei. Es kann
vorkommen, dass 72 signifikant ist, obwohl kein Regressor dies ist.

Abbildung 1.12: Hohe und geringe Multikollinearitit

Es kann vorkommen, dass sich die Regressoren stark veréindern, wenn eine Va-
riable hinzugenommen wird, die die Multikollinearitét stark erhoht, oder eine
herausgenommen wird, die sie stark senkt. Ein Mafs fiir Multikollinearitét sind
hohe Korrelationen zwischen den unabhéngigen Variablen. Hier sind Werte nahe
+1 ein Indiz. Allerdings ist diese Untersuchung nur bivariat.

Ein anderes Maf zur Inspektion ist die Toleranz. Als Toleranz bezeichne wir den
Term 1 — 7']2- Hierbei bezeichnet r]2- die Regression der unabhéngigen Variable x;
auf alle iibrigen unabhiingigen Variablen. Da ein hoher Wert von 2 auf eine
starke Erkldrung der unabhéngigen Variablen durch die anderen unabhingigen
Variablen hinweist, kénnen wir sagen, dass die Toleranz uns immer stirkere
Probleme anzeigt, je niedriger ihr Wert wird. Ein darauf aufbauendes Maf ist
der Variance Inflation Factor, auch VIF genannt. Er ist der simple Kehrwert
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der Toleranz, also:
1

— 2
lrj

Toleranz und VIF liegen bei nicht vorhandener Multikollinearitit bei 1. Bei
einem VIF-Wert grofer als 10 ist grofste Vorsicht geboten. Der Name Variance
Inflation Factor resultiert daraus, dass sich mit zunehmender Multikollinearitét
die Varianzen der Regressionskoeffizienten um diesen Betrag vergrofiern. Die
Schitzungen werden also mit zunehmender Multikollinearitét immer schlecher.
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1.7.4 Autokorrelation

Auswirkung

Autokorrelation fiihrt zu Verzerrung bei der Ermittlung des Standardfehlers
der Regressionskoeffizienten, demnach also auch zu Problemen bei der Be-
stimmung des Konfidenzintervalls

Tests

e Durbin-Watson-Test

Eine weitere Vorraussetzung fiir die Verwendung der Regression ist, dass die
Residuen nicht miteinander korrelieren. Bei auftretender Autokorrelation sind
die Abweichungen von der Regressionsgeraden nicht mehr zufillig, sondern von
den Abweichungen der vorangehenden Werte abhéngig. Die Werte beziehen sich
also auf die ihnen vorhergehenden Werte. Diese Verletzung der Pramisse fiihrt
zu einem verzerrten Standardfehler des entsprechenden Regressionskoeffizienten
und damit auch zu einem fehlerhaften Konfidenzintervall.
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Abbildung 1.13: Autokorrelation, positiv und negativ

Ist ein Mefiwert hoch, weil sein Vorginger hoch ist, so sprechen wir von positi-
ver Autokorrelation. Ist ein Mefiwert hoch weil sein vorhergehender Wert niedrig
ist, so sprechen wir von negativer Autokorrelation. Bei positiver Autokorrelation
geht d gegen null, bei negativer Autokorrelation geht d gegen +4. Wir testen
die Hypothese Hy : p = 0, dass die Autokorrelation null ist. Fehlspezifikation,
oder fehlende Variablen kénnen zu Autokorrelation fithren. Der Stoérterm re-
présentiert den Einflufl aller nicht beriicksichtigten erkldrenden Variablen. Wir
erwarten, daf der Einflufs dieser Variablen gering ist und dafs sie sich in ihrer
Wirkung im Durchschnitt gegenseitig aufheben. Wenn sich die “ausgelassenen”
Variablen aber sehr &hnlich verhalten kann dies zu Autokorrelation fiihren.

Weitere Anhaltspunkte fiir eine eventuell vorhandene Autokorrelation liefert das
Streuungsdiagramm der geschitzten abhingigen Variablen und der Residuen,
das schon zur Beurteilung der Homoskedastizitdt herangezogen wird. Positive
Autokorrelation ist erkennbar, wenn aufeinander folgende Residualwerte nahe
beieinander stehen, negative daran, dass die Schwankungen sehr grofs sind.

Autokorrelation tritt hiufig bei aufeinanderfolgenden Beobachtungen in Zeitrei-
hen (serielle Autokorrelation) auf, man trifft aber auch bei rdumlich nahe bei-
einanderliegenden Erhebungseinheiten (spatial correlation) auf Autokorrelation.
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1.7.5 Nichtlinearitat

Das lineare Regressionsmodell fordert, dass die Beziehung zwischen den X und
der Y-Variablen linear in den Parametern ist. Es ist daher ohne weiteres moglich
eine Variable X durch Transformation in eine Variable X; = f(x) zu iiberfiihren,
fiir die der Scatterplot eine liineare Beziehung ausweist.
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f(z) kann dabei jede beliebige nichtlineare Funktion bezeichnen, beispielsweise
f(z) =e*, f(z) =Inz oder f(z) =22

1.7.6 Erwartungswert der Storgrofien ungleich Null

Wenn alle systematischen Einflufgrofien als unabhingige Variablen erfasst sind,
dann erfasst die Storvariable nur zufillige Effekte, die Schwankungen gleichen
sich im Mittel aus. Eine Verletzung dieser Annahme besteht dann, wenn die
Stichprobenauswahl nict zufillig war, wichtige unabhéngig Variablen vernach-
ldssigt werden oder die Mefwerte von y systematisch zu hoch oder zu niedrig
gemessen werden. Dann enthélt die Storgrofe nicht nur zufallige Abweichungen,
sondern einen systematischen Effekt. Durch die OLS-Methode wird der Mittel-
wert auf Null “gezwungen”, der systematische Fehler geht in die Berechnung des
Intercepts by ein. by wird bei konstant zu grofs gemessenen y ebenfalls verzerrt
zu hoch sein.

1.7.7 Residuen nicht Normalverteilt

Die Uberpriifung dieser Annahme steht am Schluss der Residualanalsye, da
eine Verletzung dieser Annahme oftmals durch Verletzungen der anderen An-
nahmen verursacht wird. Sie hebt sich oftmals auf, wenn die anderen Verlet-
zungen behoben werden. Diese Annahme muss nicht eingehalten werden, damit
die Regressionsparameter nach der OLS-Methode als BLUE angesehen werden
koénnen. Sie bezieht sich viel mehr -und nur- auf die durchfithrbarkeit statisti-
scher Signifikanzests, wie den F-Test oder den T-Test. Hierbei wird unterstellt,
dass die Regressionsparameter by und b; normalverteilt sind. Hier bieten sich
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der Kolmogoroff-Smirnoff Test, der Skewness-Kurtosis Test oder der Shapiro-
Wilk W Test an. An Graphiken lassen sich ein Histogramm mit eingezeichneter
Normalverteilung, Kerndichteschéitzungen oder P-P-Plots anwenden.
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Abbildung 1.14: Uberpriifung auf Normalverteilung
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KAPITEL 2

VARIANZANALYSE

In der Varianzanalyse wird gepriift, ob eine nominalskalierte unabhéngige Va-
riable  oder mehrere nominalskalierte unabhéngige Variablen z; einen Einfluss
auf eine metrische skalierte abhéngige Variable y ausiiben. Die Auspragungen
dieser z;-Variablen definieren die verschiedenen Gruppen, fiir die getestet wird,
ob sich die Mittelwerte dieser Gruppen signifikant voneinander Unterscheiden.
Die nominalskalierten unabhéngigen Variablen werden als Faktoren bezeichnet,
aber Achtung: Diese Faktoren haben mit den Faktoren der Faktorenanalyse
nichts gemeinsam. Die Auspragungen der unabhéngigen Variablen werden als
Faktorstufen bezeichnet. Die Varianzanalyse hat ihren Ursprung in der Land-
wirtschaft, wo gepriift wurde, ob Felder, die mit verschiedenen Diingern behan-
delt wurden auch unterschiedliche Ertrége erzielten. Heute ist die Varianzana-
lyse ein gingiges Verfahren, insbesondere zur Auswertung von Experimenten in
der Psychologie, aber auch der Medizin, der Biologie und natiirlich auch der So-
zialwissenschaft. Im Zusammenhang mit der Varianzanalyse wird oft auch der
Begriff ANOVA verwendet, der ANalysis Of VAriance bedeutet.

Je nach Anzahl der Faktoren sprechen wir von einer

e Einfaktoriellen ANOVA (eine UV)
e Zweifaktoriellen ANOVA (zwei UVen)

Dreifaktoriellen ANOVA (drei UVen)

2.1 Einfaktorielle ANOVA

Es wird eine Stichprobe vom Umfang n aus einer Grundgesamtheit gezogen,
die sich auf Grund der j Stufen des ersten Faktors in ebensoviele, namlich j
Gruppen einteilen lassen. Bei den Untersuchungseinheiten wird jeweils der Wert
der abhéngigen Variablen y ermittelt.

Als Beispiel fiir eine einfaktorielle ANOVA kdnnten wir ein Experiment mit dem
dreistufigen Faktor “Medikamentendosierungen” ansehen:
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Faktor 1
Placebo | Dosierung x 1 | Dosierung x 2
Y11 Y21 Y31
ylnl y2n2 y3n3
(7 Yo s

Wir gehen von folgendem Modell aus: Die Werte der abhéngigen Variable y erge-
ben sich systematisch als Summe des Gesamtmittelwerts der Grundgesamtheit
p und dem Effekt des Faktors «;. Alle anderen nicht beachteten Einflufigréfien
sind in der Storgrofe €;; enthalten, die als normalverteil angenommen wird.

Yij = b+ o5 + €45

Die Mittelwerte der j Stufen des ersten Faktors, 115, sind in der Grundgesamtheit
durch

Hj =P+

gegeben. Die Grofle «; gibt somit den Effekt des Faktors in Form einer Verén-
derung des Gesamtmittels 1 wieder.
Die Nullhypothese, die in der einfaktoriellen Varianzanalyse gepriift wird lautet

Ho:pi=p2=...=py

Wobei j die Anzahl der Faktorstufen bezeichnet. Es wird also unterstellt, dass
der Mittelwert iiber alle Faktorstufen gleich ist. Ist mindestens ein p; # p; mit
i # 7, so ist die Hy zu verwerfen.

2.1.1 Voraussetzungen

Um eine Varianzanalyse berechnen zu diirfen, miissen einige Voraussetzungen
erfiillt sein.

Normalverteilungsannahme Die Residuen der Gruppen miissen in der Po-
pulation normalverteilt sein. Vielfach wird die Normalverteilung der Resi-
duen falschlicherweise mit der Normalverteilung der Ausgangswerte gleich-
gesetzt. Liegen beispielsweise bei zwei Gruppen normalverteilte Residuen
und ein signifikanter Mittelwertsunterschied zwischen den beiden vonein-
ander unabhingigen Gruppen vor, so konnen die die zusammengefassten
Daten der beiden Gruppen nicht wiederum normalverteilt sein. Die men-
gentheoretische Zusammenfassung zweier Normalverteilungen darf nicht
mit der Linearkombination zweier Normalverteilungen verwechselt wer-
den. Die Forderung nach Normalverteilung bezieht sich nicht auf die y-
Werte, sondern auf die Residuen, deren Inspektion diese Forderung auch
priift.

Homogenitidtsannahme Die Varianzen der Residuen innerhalb der Gruppen
des Designs miissen homogen sein (Homoskedastizitét).

Unabhingigkeitsannahme Die Residuen innerhalb der Gruppen miissen un-
abhingig voneinander sein.
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Sind die Vorraussetzungen nicht erfiillt, so bietet sich der Kruskal-Wallis H-Test
an. Hierbei handelt es sich um eine Erweiterung des Mann-Whitney U-Test fiir
mehr als drei Gruppen. Der Test ist nicht-parametrisch, und testet auf Gleich-
heit der Populationsmediane innerhalb der Gruppen, wobei die Daten durch
ihre Rénge ersetzt werden. Fiir vergleiche der Gruppenmediane untereinander
wird der Dunn-Test verwendet.

2.1.2 Varianzzerlegung

Die Gesamtquadratsumme der Messwerte kann zerlegt werden in die Treatment-
summe (S5, /erklirter Anteil), also den Anteil an Unterschiedlichkeit der Beob-
achtungen, der auf die verschiedenen Faktorstufen zuriickzufiihren ist, sowie die
Fehlersumme (5SS, /nicht erkldrter Anteil), die so nicht erklért werden kann. In
Abbildung 2.1 sehen wir, was dies bedeutet. Die Grundidee ist derjenigen der
Regression &dusserst &hnlich. Es werden die Abweichungen vom Gesamtmittel-
wert g gemessen. Dieser Abstand lasst sich in zwei Teile zerlegen:

1. Den erklarbaren Abstand vom Gesamtmittelwert §j zu den durch die j
Faktorstufen gebildeten Mittelwerten g;. Hier sehen wir 4 Gruppen, die
durch die Faktorstufen des Faktors gebildet werden. Dies erlaubt uns, den
Effekt des treatments zu messen. Diese Streuung bezeichnet die Streuung
zwischen den Gruppen.

2. Den Abstand der Messwerte y/;; -hier exemplarisch nur eine Beobachtung
pro Gruppe- von ihren Gruppenmittelwerten ;. Diese Streuung geht nicht
auf den Effekt des Faktors zuriick. Je geringer die Relevanz des Faktors,
desto stérker streuuen die Werte um ihre Gruppenmittelwerte ¢;. Man
nennt dies auch die Streuung innerhalb der Gruppen.

12~
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r rm
8r Y2 rJ35
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Gruppé 1 Grup;:;e 2 Gruﬁpe 3 GrL;ppe 4

Abbildung 2.1: Group Means
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Gesamte Abwei- = Erklarte Abwei- Nicht erklarte Ab-
chung chung weichung

Summe der qua-
drierten Gesamtab-

Summe der qua-
drierten Abweichun-

Summe der qua-
drierten Abweichun-

weichung gen der gen zwischen den
Faktorstufen Faktorstufen
J nj J n;j
> wi-w® = + > (i —55)°
j=1i=1 j=1i=1
SSt - SSb + SSw
SSt(otal) = SSb(etween) + st(ithin)

In Abbildung 2.2 sehen wir, wie man sich die S5, vorstellen kann: Links ist die
Streuung innerhalb der Gruppen gering, die Gesamte Streuung geht also grof-
tenteils auf die Streuung zwischen den Gruppen zuriick. die rechte Abbildung
zeigt eine grofe Streuung innerhalb der Gruppen. Die gesamte streuung wird
hier viel weniger durch die Streuung zwischen den Gruppen gebildet, die Grup-
pen sind weit weniger eindeutig als in der linken Abbildung. An dieser Stelle
wird hoffentlich der Begriff Varianzanalyse klarer, da die Entscheidung, ob es
sich hier um signifikant Unterschiedliche Mittelwerte handelt nicht allein von
der Lage der Mittelwerte (Z; = 2, To = 5 und Z3 = 8) ausgeht. Die Varianzen
der einzelnen Gruppen in Relation zur Gesamten Varianz steht hier im Mit-
telpunkt. Links sind die Varianzen innerhalb der gruppen klein, die Gruppen
sind gut getrennt, wohingegen die Gruppen rechts grosse Uberlappungsbereiche
aufweisen, sie sind somit schlechter getrennt, und wiirden als nicht signifikant
unterschiedlich angesehen. Der Effekt des Faktors wére also nicht signifikant.
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Abbildung 2.2: SS,, klein vs. SS,, gross
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Varianzaufkliarung

Ahnlich der Regressionsanalyse kann auch bei der Varianzanalyse eine Varian-
zaufkldrung durchgefiihrt werden. Der Quotient n? ist in seiner Berechnung r?
sehr dhnlich:

2 _ QSTreat
QSTotal

stellt jedoch eher ein deskriptives Maf dar, da er die Varianzaufklirung der
Population iiberschétzt.

- 100

Signifikanz

Fiir die Population bleibt zu priifen, ob die “deskriptiv”’ erklirte Varianz ein
Zufallseffekt der Stichprobe ist, oder ob der Faktor auch in der Grundgesamtheit
signifikante Mittelwertunterschiede verursacht. Wir testen Hy : 1 = o = ... =
g, das ist dquivalent zu Ho : 0%, = Ofopjer- Wenn wir Hy ablehnen méchten,
IMUSS 0%, > Okgper S€iN, wir iiberpriifen das mit dem F-Test

2
g
_ “Treat
F = R
Fehler

2.1.3 Ungleiche Stichprobengrdssen

Bisher sind wir von gleichgrofsen Stichproben je Faktorstufe ausgegangen. Das ist
bei geplanten Experimenten sicherlich sinnvoll, entspricht aber nicht der Realitét
einer Varianzanalyse bei gegebenem Datensatz. Die unterschiedlichen Stichpro-
bengréfen haben Anderungen in den Berechnungen der Quadratsummen zur
Folge. Wéhrend wir vorher ein einheitliches n hatten gibt es nun mehrere n; fiir
jede Faktorstufe (Stichprobe) j. Die Gesamtzahl der Untersuchungseinheiten N
ist nun nicht mehr

N =p-nsondern N = an
j=1

Dies hat eine Anderung in der Berechnung der Quadratsummen zur Folge. Die
Berechnung

QSTotal = QSTreatment + QSFehler
ergibt sich fiir n; = n;, i # j

n J
Z Yji — + Z (yji - /yj)2

1i=1 Jj=1l1=1

Mk‘

J
firn; #nj, i1 #J

Jon
S wi—v +D 0 Wi —9)’

j=1i=1 j=1i=1

Die Freiheitsgrade der Gesamtvarianz ergeben sich jeweils durch
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dfTotal = dfTreatment + dfFehler

mit
Freiheitsgrade, Freiheitsgrade,
gleiche Stichprobengrofen ungleiche Stichprobengréfien
dftotat = p-n—1 dftota = N -1
dfpenler = p(n - 1) dffenter = p—1
dfTreat = p-—1 dfTreat = N-p

2.1.4 Einzelvergleiche

Wenn wir einen signifikanten F-Wert haben kénnen wir schlieffen, dass sich die
Mittelwerte unterscheiden. Wir kénnen allerdings nicht wissen, ob sich alle oder
einige unterscheiden oder sogar vielleicht nur ein einziger Mittelwert die Ge-
samtsignifikanz verursachte. Erst durch Einzelvergleiche (Kontraste) finden wir
heraus, welche Mittelwerte sich signifikant voneinander unterscheiden. Wir ge-
hen vom Fall eines Faktors mit 2 Faktorstufen aus, dieser lasst bei Signifikanz
eine eindeutige Aussage iiber die Unterschiedlichkeit der beiden Mittelwerte zu.
Man kann diesen Ansatz aber auf Faktoren mit mehr Faktorstufen {ibertra-
gen. Wir vergleichen immer paarweise 2 Mittelwerte. Dies erreichen wir durch
Gewichtungen. Fiir die Gewichtungskoeffizienten c; gilt:

J
ch =0
j=1

Priifung des Einzelvergleichs mittels F-Verteilung
D2

F= var(D)

2| 42
E :Cj " OFehler J
= e D2 =3 (¢;- 4)?
sowie => (¢-4;)

j=1

var(D) =

n

Beispiel Drei Behandlungsmethoden und eine Kontrollbedingung werden ge-
stestet (p=4, n=20) in Bezug auf den Behandlungserfolg. Folgende Mittelwerte
finden sich fiir die Gruppen:

A =16, Ay =14, A3 =18, A, =15
Die nicht durch die Behandlungen erklérte Varianz betragt
a'I%ehler =9

Wir testen, ob sich die Behandlungsgruppen signifikant von der Kontrollgruppe
unterscheiden (a=0,05).

1 1 1
D=(--16+--14+--18) -1
(3 64514t s 8) 5
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Dann ist

20 - 12
F=— 1 1 2 3
%+ 25+ o+ (—1)
Mit Fineoretisch = 3.98 und df, = 1, df, = p-(n — 1) = 76 (Fehler). Damit ist
der Unterschied nicht signifikant.

Orthogonale Einzelvergleiche

Man kann verschieden Mittelwerte bei einem mehrstufigen Faktor vergleichen.
So ist also nicht nur der Vergleich von Behandlungsmethodeneffekt gegeniiber
der Kontrollgruppe interessant, sondern vielleicht diverse andere Vergleiche.
Mochte man diverse voneinander unabhéngige Vergleiche durchfiihren, also sol-
che ohne redundante Testung, nennt man dies orthogonale Einzelvergleiche.

Beispiel Wir fiihren bei p—=4 Faktorstufen 6 Tests durch:

D, = Ay

Dy, = A —-A

Dy = As;— A

Ds; = A +Ay  Az+Ay

_ _ 2
_  At+A Ax+A
Dy = 123_ 224

Sind nun redundante Informationen in den Einzeltests enthalten oder haben wir
hier einen vollstdndigen Satz orthogonaler Einzelvergleiche?

2. Feststellung Orthogonalititsbedingung fiir Kontraste

J
Clk'011+62k'sz+--.+cjk'cjl:chk'cﬂ:0
j=1
Vergleich Dy /Dy : 4.1+ %-04+%-0+(=1)-(—=1)=3 — nicht erfiillt
Vergleich D3/Dy: 1-0+(=1)-04+0-140-(-1)=0 — erfiillt
Vergleich D5/ Dg : %%—&-%*—1—1—’71 %—l—%l ’71:0 — erfillt
Vergleich Dy/Ds: 1-340-3+0 -5t +(=1)- 5 =1 — nicht erfiillt

Es ist nun zu priifen, ob auch Ds /D3 wechselseitig orthogonal sind, oder D1/ Ds3,
um einen kompletten Satz wechselseitig othogonaler Einzelvergleiche zu finden.
Ein kompletter Satz besteht aus p — 1 Einzelvergleichen.Wenn wir die restli-
chen Tests durchfiihren, stellen wir fest, dass D3/ D4/ D5 einen kompletten Satz
orthogonal wechselseitiger Einzelvergleiche darstellen. Einen vollstdndigen Satz
kann man sich auch mittels der Regeln fiir Helmert-Kontraste / umgekehrter
Helmert-Kontraste erstellen:
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Helmert-Kontraste umgekehrte Helmert-Kontraste
Dy = A - w D, = A
Dy = A, Avtcrd, | g A
Dy = /_14 _ A1+,§2+A3
Dy = Apo- % Dypo = Api— %
Dy, = Ap—lzzlp D, = Ap _ %

Wir erhalten aus den zwei Sdtzen orthogonaler Einzelvergleiche folgende Ge-
wichtungsiibersicht:

Set 1: Set 2
Dy 1 -3 —% —% D, -1 1 0 0
Dy, 0 1 -5 —3 Dy —% —% 1 0
Dy 0 0 1 -1 D3y —3 —3z —x 0

Zerlegung der (QSireat bei Einzelvergleichen (@ Si.eat setzt sich bei voll-
stdndig orthogonalen Sétzen von Einzelvergleichen durch Addition aus diesen
zusammen

QStreat = QSp, + QSp, +... +QSp,_,
Die QSp sind definert als

. D?
QSp = &6}, dadf =1

Ej:l ¢

und auf Signifikanz werden die Einzelvergleiche dann mittels F-Test gepriift

~2
F=_"D

&%ehle'r
Einzelvergleiche bei Stichproben unterschiedlicher Grofie

Keine Gewichtung Werden die Mittelwerte zu Vergleichen zusammenge-
fasst, geschieht dies als Durchschnittsbildung der Mittelwerte. Die unterschied-
lichen Stichprobengréfien bleiben unberiicksichtigt. Bei Experimenten mit un-
terschiedlichen Gruppengrofen ist das praktikabel, da die VPs den Gruppen
zufillig zugeordnet werden.

Gewichtung In die Durchschnittbildung der Mittelwerte geht eine Gewich-
tung ein, die der Stichprobengrofie beriicksichtigt. Entsprechen die unterschied-
lichen Stichprobenumfinge den Populationsgegebenheiten, ist das mittels Ge-
wichtung zu beriicksichtigen. Bei den meisten sozialwissenschaftlichen Analysen
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ist dieser Vorgehensweise Vorrang zu gewdhren, da die Datensétze keine expe-
rimentellen Versuchsanordnungen abbilden. Gewichtete Durchschnittsbildung:

J J
D:an-cj-f_ljmit an~6j:0
j=1 j=1

Die Schitzung der Gewichte fiir die Einzelvergleiche, ist nun etwas komplizierter.
Mittels spezieller Regeln jedoch durchfiihrbar. Mittels Kontrastierung besteht
die Moglichkeit, unterschiedliche Effekte wechselseitig zu testen. Was bedeutet
das fiir die Signifikanzberechnungen?
Standardméfig testet die Varianzanalyse Hy : j11 = p2 = ... = p;, den Global-
vergleich. Bei einer Irrtumswahrscheinlichkeit o = 0.05 wird bei diesem Test in
5% irrtiimlich Hy abgelehnt, bzw. H; angenommen. Korrekterweise beibehalten
wird Hy in 1 — o« = 0.95, also 95%.
Nun fiithren wir 2 orthogonale Einzeltests durch. Die Wahrscheinlichkeit, Hy kor-
rekterweise beizubehalten reduziert sich in der Folge auf 0,95 - 0,95 = 0,9025
(Multiplikationssatz bei gemeinsamen Auftreten unabhingiger Ereignisse: 2- Hy
korrekterweise ablehnen bei 2 Versuchen). Bei einem Satz wechselseitig ortho-
gonale Einzelvergleiche reduziert sich die Wahrscheinlichkeit, H korrekterweise
anzunehmen auf

7= (1-a)?

Oder anders ausgedriickt: wenn in 5% der Félle Hy zu Unrecht abgelehnt wird,
steigt bei zunehmender Testzahl die Wahrscheinlichkeit, dass Hp zu Unrecht
abgelehnt wird.

Bonferoni-Korrektur

Werden mehrere Tests durchgefithrt, man moéchte aber gewdhrleisten, dass a =
0.05 fiir alle Tests nicht iiberschritten wird, so sind die Irrtumswahrscheinlich-
keiten der Einzeltests dementsprechend festzulegen. Die einfache Approximation
von Bonferoni

ist konservativ, d.h. dass die angepassten o etwas niedriger ausfallen, als sie
miissten.

Beispiel Wir fiihren m=4 orthogonale Einzelvergleiche mit o = 0.05 durch.
o = % = 0,0125. Jeder Einzeltest darf folglich den Wert 0,0125 nicht iiber-
schreiten.

2.1.5 A priori-Tests vs. a posteriori-Tests

Liegt einer Untersuchung eine eindeutige Hypothese iiber Wirkungen zugrunde,
die aufgrund von Voruntersuchungen o.3. begriindet wird, konnen Einzeltestun-
gen (i.d. Regel max. 3) ohne Fehlerkorrektur auskommen. A posteriori bedeutet
in diesem Zusammenhang, dass man eine globale Signifikanz fiir die Faktorstu-
fen erhalten hat und nun nicht hypothesengeleitet sehen mochte, welche Effek-
te dafiir verantwortlich sind. Fiir A-Posteriori-Vergleiche kann man Verfahren
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nach Duncan, Tukey,.., Scheffe benutzen. Der Scheffe-Test garantiert ,dass das
Overall-Signifikanzniveau nicht {iberschritten wird.

2.2 Zweifaktorielle ANOVA

Bei Zweifaktoriellen ANOVAs gilt es einige Begrifflichkeiten zu unterscheiden.
Erstens, ob eine Interaktion zwischen dem ersten und dem zweiten Faktor erlaub
sein soll, zweitens, ob alle Gruppen identisch grof sind (orthogonale ANOVA),
wie es in experimentellen Designs oft der Fall ist, oder ob es sich um ungleich
grofse Gruppen handelt (nonorthogonale ANOVA)

Wihrend bei experimentellen Daten eine gleichmifige Zellbesetzung im Allge-
meinen herstellbar ist, so ist dies bei Beobachtungsdaten nicht unbedingt der
Fall. Dort miissen bestimmte Anpassungen vorgenommen werden, da sich hier
die einzelnen Abweichungsquadratsummen SS, und SS,, -im Gegensatz zum
orthogonalen Fall- nicht von vornherein zur totalen Abweichungsquadratsumme
SS; aufsummieren.

Das Modell, von dem wir ausgehen, lautet wie folgt:

IE 1. Ordnung
~ =
Yigk =p+ o+ B+ aBi + ek
~—— ~~~
HE Residuum

Bei o und 3, handelt es sich um die Haupteffekte der beiden Faktoren, wobei
der erste Faktor iiber j Stufen verfiigt, der zweite {iber k. Sind Interaktionen er-
laubt, so handelt es sich bei a3;;, um den Effekt, den bestimmte Kombinationen
der Faktorstufen j des ersten Faktors gemeinsam mit den Faktorstufen k des
zweiten Faktors iiber die Haupteffekte hinaus auf y ausiibt. Da in diesem Fall
alle moglichen Einfliisse auf die abhingige Variable y, die direkt oder indirekt
durch die beiden Faktoren hervorgerufen werden kénnen im Modell enthalten
sind, spricht man auch von einem geséttigten oder saturierten Modell.

Sind Interaktionen nicht erlaubt, so gilt folgendes Modell

Yijk = M+ a; + By + g
in dem sich die Interaktion in den Storgrofen e;;1, wie alle anderen nicht be-
achteten Einfliiffe, bemerkbar macht. In folgender Graphik sehen wir, was man

sich unter Interaktionseffekten zwischen den Faktoren A und B, sowie dem In-
teraktionseffekt A x B vorstellen koénnte:
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2.2.1

Beispiel

Abbildung 2.3: ANOVA zweifaktoriell

Als Beispiel fiir eine zweifaktorielle ANOVA erweitern wir das Experiment um
den Faktor “Geschlecht”

Faktor 1
Placebo | einfache Dosis | doppelte Dosis

F Y111 Y121 Y131

a d R R e 1.

k Yling, Y12n,, Y13n13

t Yo11 Y221 Y231

o Q . e . 7.

r Y21noy Y22n49 Y23n03

2 ¥a U2 U3 Ya

Mit den Werten:
Faktor A
Placebo | einfache Dosis | doppelte Dosis | B;
22 16 13
F 25 16 12
a d 22 16 12 16.8
k 21 15 13
t 22 15 12
0 18 19 16
r 19 20 14
Q 17 17 16 17.0
B 21 16 13
19 16 14

A;  20.6 16.6 13.5 16.9

Dnn berechnen wir die einfaktorielle Varianzanalyse fiir den Faktor A.
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Einfaktorielle Varianzanalyse (

=

ur Faktor A)

n

P 4q
Qstot = 348.7 QStot = Z Z Z Tijm —

j=1m=1

p
Q5S4 = 953 | QS4 = Y n-q-(4-G)

N
Il

—
<.

p q
QSFehler = 2534 QSFehler = Z Z (xijm - Az)g

Sowie die einfaktorielle Varianzanalyse fiir den Faktor B.

Einfaktorielle Varianzanalyse (nur Faktor B)

QS = 03 QSB:anB G)?

Zuletzt die Zelleneffekte:

Zellenquadrate: Die Effekte hingen von beiden Faktoren A/B ab:

p q n
QStot = 307.90 +40.8 = 348.7 | QSi0t = 333 (@iym - G)?
i=1 j=1m=1
p
QSZellen = 3079 QSZellen = ’I”LZ Z(ABij - G)2
pz:lq]:ln N
QSFehler = 408 QSFehler = Z Z (xijm - ABij>2
i=1 j=1m=1

A und B erkldren zusammen einen groferen Teil der abhingigen Variablen als
A alleine. Geschlecht und Behandlungsart bestimmen also die Wirkung des Me-
dikaments, ist der Zelleneffekt A/B die Summe aus Faktor A und Faktor B
(QSzeten = QSsa + QSsp)?

QS7ellen = QSsa + QSsp = 253.4 + 0.30 = 253.70 < 307.90

Die Differenz von 54.20 ist der Teil, der durch die Wechselwirkung von A und
B entsteht: Die Behandlungsarten wirken geschlechtsspezifisch. Diese Wechsel-
wirkung wird als Interaktionseffekt bezeichnet:

P4
nz Z(AB:?J' — ABy;)* mit AB}; = A; — B; — G (nur Haupteffekte)
i=1j=1
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7 q
QSaxp = nY_ Y (ABj; - AB;;)* | dfaxs (p—1)-(¢g—1)
pz:lq]:ln ]
QSiot = Z Z (Tijm — G)? df ot p-qg-n—1
=1 j=1m=1
P q e B
QSzeten = n-»_ > (ABj; - G)? df zellen prg—1
v l:ql 47:711 N
QSFehler = Z Z Z (Zijm — ABjj)? || dfrenier p-1-(n—1)
im1 j=1m=1
p
QRS54 = n.q Y (A-G7 df a p—1
=1
4
QSp = n-p-Y (B —G) dfs ¢—1
=1
QSiot = QS%Zcllen + @ SFehler df ot dfa +dfp + dfaxp
+dfFehler
QSzelien = QSa+ QS+ QSaxn dfzellen dfa +dfp +df axp

2.2.2 Hypothesen

In einer zweifaktoriellen Varianzanalyse werden folgende Hypothesen getestet:

1. Die Untersuchungseinheiten aus dem ersten Faktor entstammen einer Po-

pulation mit gleichem Mittelwert

Hy: M1, = M2, = ... = Uy,

2. Die Untersuchungseinheiten aus dem zweiten Faktor entstammen einer

Population mit gleichem Mittelwert

Hy: pr1=po=...=pug

3. Die Zellenmittelwerte sind lediglich die Summe der Haupteffekte

Ho: pjk = pj + pe — po

Die Priifung der Nullhypothesen erfolgt iiber den F-Test fiir die entsprechenden

Varianzen:
OFehler = % = 43748
b _ % = W4, Ry = 16T — 7453
P _ Qd;; = 2 Fp = %3 = 018
Gaxy = %fjxx; = M2 o P o= T = 1594

Bei FA/FAXB (2,24,0.99) = 5.61 sind Aund A signiﬁkant, B ist bei FB (1,24,0.99) =

7.82 nicht signifikant.
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2.2.3 Wichtige Interaktionsformen

Interaktionen lassen sich in Form von Diagrammen darstellen und erleichtern
die Interpretation der Ergebnisse.

1. Ordinale Interaktion: Es gibt in beiden moglichen Interaktionsdiagram-
men keine Uberschneidungen und die Effekte sind stets gleichgerichtet (es
liegen eindeutige Haupteffekte vor). Gleicher Trend der Linien fiir zwei
mogliche Darstellungen, die Haupteffekte sind eindeutig interpretierbar

) / o
/ B, o DA
o
A A, B, B.

2. Hybride Interaktion: In einem Diagramm gibt es gegengerichtete Trends,
daher iiberschneiden sich die Linien in dem anderen Diagramm. Hauptef-
fekte sind mit Vorsicht zu interpretieren, in einem Faktor hiangt die Rei-
henfolge der Stufen ja von dem anderen Faktor ab (Uberschneidung). Nicht
interpretierbar fiir Faktor A.

A,

B.
l:'/‘:I )

\

3. Disordinale Interaktion: In beiden Diagrammen gibt es starke Uber-
schneidungen, die Haupteffekte sind nicht eindeutig bzw. nicht interpre-
tierbar. Die Haupteffekte alleine sind bedeutungslos Die Interaktion ist die
bestimmende Grofse der Werte. Die Unterschiede zwischen a1 und as sind
nur in Verbindung mit den Stufen von Faktor B interpretierbar, gleiches
gilt fiir by und b,.

2.2.4 Feste und zufillige Effekte
Bei festen Effekten sind alle moglichen Faktorstufen Teil der Untersuchung.
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Bei zufillige Effekten sind nicht alle mdoglichen Faktorstufen Teil der Unter-
suchung. Es werden bspw. Therapeuten zufillig ausgew#hlt, wenn man testen
mochte, ob die Person des Therapeuten Einfluss auf den Verlauf der Therapie
nimmt.

Die Unterscheidung von zufilligen und festen Effekten wird erst mit der zwei-
faktoriellen VA rechnerisch notwendig. Fiir die einfaktorielle VA dndert sich nur
die Interpretation. Die Auswirkung der Hinzunahme zufilliger Effekte in die VA
besteht in der Vorraussetzung, dass alle Treatmenteffekte normalverteilt sein
miissen. Bei Hinzunahme von zufélligen Effekten dndern sich die Priifvarianzen
im F-Test.

2.2.5 Einzelvergleiche
Einfache Einzelvergleiche

Vergleich von bspw. Placebo gegen Medikamente (Faktor B) oder Vergleich von
Psychoanalyse gegen Verhaltenstherapie (Faktor A)

P 2
n-q <Z ci — /L)
i=1

QSpa) = p
>
i=1
2
i —
n-p Z cj — B;
QSp) = ’

Fragestellung: wirken die Therapien nur bei bestimmter Medikamentendosie-
rung?
Bedingte Einzelvergleiche

Nicht der gesamte bedingte Haupteffekt A wird mittels Einzeltests verglichen,
sondern Einzeltests je Faktorstufe B werden durchgefiihrt.

p
D, (Alb;) = Z Cis * ABM mit s = Anzahl der Einzelvergleiche

i=1
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Vergleich von bspw. Psychoanalyse mit anderen Therapien gegeben ein be-
stimmtes Medikament. Ergebnis bspw. bei Placeboeinnahme erzielt die Psy-
choanalyse bessere Ergebnisse als andere Therapieformen.

Interaktionseinzelvergleiche

Z.B. Vergleich Placebowirkung bei Kontrollgruppe gegen Placebowirkung The-
rapie.

Dy, (D(A) x D(B)) = zq:cju X Ds(A|bj)

j=1
2.3 Dreifaktorielle ANOVA
In einer dreifaktoriellen ANOVA gehen wir von folgendem Modell aus:

IE 1. Ordnung Residuum

~~
Yijkt = b+ aj + B + v+ Bk + oy + By +  aBvim + eijk
| S —— ——
HE IE 2. Ordnung
Mit 3 Haupteffekten (A4, B, C), 3 Interaktionseffekten 1. Ordnung (A x B,

A x C, B x C) und einem Interaktionseffekt 2. Ordnung (A x B x C), die man
sich in etwa so vorstellen kann:

Abbildung 2.4: ANOVA dreifaktoriell

2.3.1 Hypothesen
Es werden folgende Hypothesen getestet:

Faktor A : pi=pe=...=pp
Faktor B : pi=p2=...= g
Faktor C' : pi=pe=...=pr
Interaktion A X B : i = s + pj —
Interaktion A x C' ' pip = s + pe — p
Interaktion B x C' ' pjk = pj + px —
Interaktion 2. Ord. A X B X C :  pijr = fij + fik + ik — fi — [ — fk + 1
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2.3.2 Quasi-F-Briiche/Pooling-Prozeduren

Wird fiir nicht direkt testbare (F-Test) Effekte benutzt, da hier die Fehlerva-
rianzen nicht verfiigbar sind. Dieser Fall ist in einem Modell mit mehr als 2
zufilligen Effekten gegeben. Zwei Strategien damit umzugehen bestehen in der
Berechnung von Quasi-F-Briichen oder Pooling-Prozeduren. Anmerkung: Inter-
aktionen 2. Ordnung sind testbar, jedoch schwer interpretierbar. Regeln der
3-faktoriellen VA sind auf die mehrfaktorielle iibertragbar.

2.3.3 Nonorthogonale ANOVA

Mehrfaktorielle Varianzanalysen mit ungleich grofsen Stichproben verletzen die
Voraussetzung der Orthogonalitdt von Haupt- und Interaktionseffekten. Vari-
anzanalysen mit ungleich grofsen Stichproben werden als nicht orthogonale Va-
rianzanalysen bezeichnet.

Losungsanséatze:

1. Missing Data Techniken: Werden nur eingesetzt, wenn die Werte auch
tatsédchlich fehlen. Das bedeutet, wenn urspriinglich grofere Stichproben
geplant waren, es aber zu Datenausfillen gekommen ist.

2. ANOVA mit proportional geschichteten Stichproben: Die Stichproben ent-
sprechen den Populationen und sind zeilen- und spaltenweise zueinander
proportional. Die Berechnung ist fast identisch mit der ANOVA mit gleich
grofien Stichprobenumféngen.

Faktor A
| Ay Az As
Bl nip = 5 Nnig = 15 niz = 10
BQ Nn9g1 = 20 N2y = 60 Nos = 40
B3 nsi = 10 N3z = 30 N33 = 20
Bg Nng1 = 15 Nyo = 45 N43 = 30

g™ © <& m o o

3. ANOVA mit harmonischem Mittel der Stichprobenumfénge: Fiir ungleich
grofie Stichproben, die nicht proportional geschichtet sind.

Quadratsummenberechnung / Priifgrofen fir den F-Test

QS df

QSa -1y p—1

QSp - fp q—1
QSaxp-nn | (p—1)(g—1)
QSFenter 7 | N —p-q

Der Einsatz des Harmonischen Mittels setzt voraus, das urspriinglich gleich
grofie Stichproben geplant waren. Ersetzung der Stichprobenumfinge durch
das harmonische Mittel aller Stichprobengrofien (zweifaktorieller Fall):
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ik ik

HM =ny, = =
1
2

1
ni1 ni2 Njk

L4 L4+ L
J=1k=1dk

4. ANOVA nach dem ALM

2.3



KAPITEL 3

LOGISTISCHE REGRESSION

Ist die uns interessierende abhingige Variable metrisch, so hilft uns der bereits
besprochene lineare Regressionsansatz weiter. Es ist allerdings auch mdoglich,
dass die abhéngige Variable nominales (also dichotom oder multinomial) Mef-
niveau aufweist. In diesem Fall kommen wir mit dem klassischen Regressions-
ansatz nicht weiter. Die Methode, die hier besprochen werden soll ermoglicht
es uns, nominale Variablen als abhéngige Variablen zu nutzen. Wir werden uns
den Fall einer dichotomen abhingigen Variablen ansehen.

Folgend besprechen wir die Probleme, die in solchen Féllen die logistische Re-
gression zur Methode der Wahl machen, und nicht die lineare Regression:

1. Allgemein handelt es sich bei den vorhergesagten g-Werten um Schétzun-
gen des bedingten Mittelwertes der abhingigen Variable. Denken wir uns
als Beispiel 10 Personen, von denen jeweils das Alter und der Familiensta-
tus erfragt worden sind:

Alter | 18 25 27 29 34 35 42 42 51 60
Verheiratet | 0 0 0 1 1 0 0 1 1 1

Betrachten wir den Mittelwert eines Dummies, so kénnen wir ihn als Anteil
der mit 1 codierten Félle betrachten. Bei unseren 10 Féllen sind 5 ledig
(mit 0 codiert) und 5 verheiratet (mit 1 codiert). Es ergibt sich folgender
Mittelwert;:

0+04+0+0+04+1+1+14+1+1 5

10 10

Den vorhergesagten Wert einer dichotomen Variablen kann man also so
interpretieren, dass ein Wert 0.5 einer Wahrscheinlichkeit fiir das Vor-

handensein des Merkmals von 50% entspricht. Wir haben hier also eine
50%-Wahrscheinlichkeit, eine verheiratete Person zu erwischen.

0.5

Das Problem besteht nun darin, dass wir bei entsprechend grofien bzw.
kleinen z-Werten vorhergesagte Werte grofer 1 oder kleiner O erhalten.
Ein vorhergesagter Mittelwert von 1.2 entsprache einer 120% Wahrschein-
lichkeit, einen Verheirateten zu treffen. Dies ist natiirlich Unsinn, ergibt
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10}
08
06+
04l
02+

0.0 ;

sich aber zwingend bei einer linearen Vorhersage. Es sind also nicht alle
vorhergesagten Werte inhaltlich interpretierbar.

20FT

1 1sf

1.0

051

00

-05F

=100

o 0 m  m e w w w0 1 2» ®m # o & w
Abbildung 3.1: Linearer Regressionsansatz

Das logistische Regressionsmodell wurde entwickelt, um dieses Problem
zu beheben. Es ersetzt die Regressionsgerade durch eine S—férmige Kurve
die sich den Werten 0 und 1 asymptotisch ndhert. Der Wertebereich ist
also hier auf [0; 1] festgesetzt, wihrend er in der linearen Regression mit
[—00; +00] unbeschréinkt ist

10r-

0.8

0.6

04+

0.2

0.0

Abbildung 3.2: Logistischer Regressionsansatz

. Es ergeben sich Probleme mit der Homoskedastizititsannahme der li-

nearen Regression. Hierbei soll die Varianz der Fehler fiir alle § kon-
stant sein. Sagen wir fiir einen Verheirateten (1) auf Grund einer unab-
hangigen Variablen wie beispielsweise des Alters eine Wahrscheinlichkeit
von 0.6 dafiir vorher, dass er verheiratet ist, so liegt ein Residuum von
yi — Ui = 1 —0.6 = 0.4 vor. Sagen wir auf Grund des Alters fiir eine ledige
Person einen Wert von 0.6 vorher, verheiratet zu sein, so ergibt sich ein
Residuum von y; — 9; = 0 — 0.6 = —0.6. Es sind also nur 1 — g; sowie —g;
als Residuen moglich. Die bedingte Varianz ; x (1 — §j;) der Residuen ist
umso grofer, je ndher die vorhergesagten Werte an 0.5 herangehen.
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0.4

03 B

02

01

oobLw/ v
0.0 0.2 0.4 0.6 0.8 10

Abbildung 3.3: §; x (1 — ;)

Sie sind demnach per definitionem heteroskedatisch. Dies fiihrt zu Proble-
men mit der Berechnung der Konfidenzintervalle der Regressionskoeffizi-
enten. Sie sind nicht mehr zuverléssig.

3.1 Grundidee

Im Gegensatz zur linearen Regression fiihrt die logistische Regression keine Vor-
hersage der (wie in der linearen Regression) metrischen y;-Werte der abhingigen
Variablen durch, sondern eine Vorhersage der FEintrittswahrscheinlichkeit der
(dichotomen) y;-Werte. Hierzu wird der Ansatz der linearen Regression verin-
dert, so dass sich keine Regressionsgerade, sondern die oben erwdhnte, fiir die
logistische Regression charakteristische S-Kurve ergibt. Um die Eintrittswahr-
scheinlichkeit des Ereignisses bestimmen zu konnen, wird eine latente Variable
z angenommen, die die y-Ausiirdgungen in Abhéngigkeit der unabhingigen Va-
riablen x; erzeugen kann. Es gilt:

~J1 falls 2, >0
=00 falls z, <0

mit
J
2z = by + Z bjxij + ¢; = Logit
j=1
Um nun die Wahrscheinlichkeitsaussage beziiglich des Eintretens von y treffen
zu konnen, bendtigen wir noch eine Wahrscheinlichkeitsfunktion, die dann y = 0,

bzw. y = 1 aus z erzeugen kann. Hier wird auf die logistische Wahrscheinlich-
keitsfunktion

1 ek 1
pk(y_ )_1+ezk_1+€_zk
mit
J
2z = by + ijl‘,’j + ¢; = Logit
j=1
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zuriickgegriffen. Bei den b; Koeffizienten spricht man auch von Logit-Koeflizienten.
Die logistische Funktion stellt die Wahrscheinlichkeitsbeziehung zwischen y und
x; her, sie wird auch linking-function genannt. Es ist zu beachten, dass es sich
bei

ek 1
L4em 14e 2

um einen nicht-linearen Zusammenhang zwischen dem Eintreten von y und z;
handelt (S-Kurve), das Zustandekommen der aggregierten Einflussstirke zj

pe(y=1) =

J
2z = by + ijxij + ¢; = Logit
=1

aber als linear unterstellt wird.

Im Gegensatz zur linearen Regression wird hier keine unmittelbare je-desto-
Hypothese zwischen y und z aufgestellt, sondern zwischen z und der Eintritts-
wahrscheinlichkeit von y = 1.

3.2 Herleitung der logistischen Regressionsglei-
chung

Der Einfachheit und Ubersichtlichkeit halber verkiirzen wir die Schreibweise von

ibﬂi auf bx;
i=1

also auf den bivariaten Fall und

p(Y =1) auf p

Ebenso gilt fiir die Konstante a = by. Wenn wir eine Wahrscheinlichkeit durch
lineare Regression vorhersagen wollen treffen wir auf Probleme: Die Wahrschein-
lichkeit ist auf das Intervall von O bis 1 festgelegt. Sie kann nicht negativ oder
grosser 1 werden, so wie es die rechte Seite der Formel p = a + bz; kann. Um
dieses Problem zu lésen betrachtet man zuerst die Odds (Chance), also den
Quotienten aus zwei Wahrscheinlichkeiten, ndmlich einmal der Wahrscheinlich-
keit des Eintretens (p(Y = 1)) und der Wahrscheinlichkeit, dass das Ereignis
nicht eintritt (1 — p(Y = 1)).

P2 _ a+ bx;

L—p
Betrachten wir ein beliebiges Ereignis, dass entweder eintreten kann, oder nicht,
wie z.B. Regen. Der Odd der Wahrscheinlichkeit, dass das Ereignis x eintritt,
es also regnet (p(z) = 0.75) betragt 13(;&) = 075 = 3. Also ist die Wahrschein-
lichkeit, dass es regnet 3 mal hoher als das es trocken bleibt. Das ist schon
besser. Aber immer noch nicht OK; den die Odds kénnen nich negativ werden,
sie besitzen einen Wertebereich zwischen 0 und +oco. Durch logarithmieren (iib-
licherweise mit dem logarithmus naturalis In) erreichen wir einen Wertebereich
zwischen —oo und +o00. Die logarithmierten Odds werden Logits genannt.
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p

ln1 =a+ bx;

Wenn wir die Gleichung nun nach p auflésen, da uns ja gerade p interessiert,
gehen wir folgendermafien vor:

In 2

e = ea+bmi

Da gilt ™% = Ine® = z, es sich also um die Umkehrfunktion handelt, gilt
folgendes:

Multiplikation mit 1 — p(z)

Ausmultiplizieren

p= 6a+bzi _ peaerzi

Addition, um pe®*®® auf die linke Seite zu bringen:

p+pea+bxi — ea+baci

Ausklammern von p

P (1 + ea-Hmi) _ ea""bwi
Dividieren durch (1 + ea-Hm)

ea+bwi

P Ty emin

Hier ist in manchen Lehrbiichern Schluss, wir haben die Formel der logistischen
Regression erreicht. Doch kann man noch weiter vereinfachen: Klammern wir
unter dem Bruchstrich e®+%%: aus.

ea—&-bxi
b= a+bzx; 1
e 1(ea+bwi +1)
Umschreiben, da gilt * =a™!
ea-&-bm
p= catbz; (ef(aer:ri) + 1)
Finales Kiirzen
1
p(Y =1)

= 1 +67(a+bzi)
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3.3 Maximum Likelihood-Schitzung

Es gilt

1 ..
e fir Yk = 1
pi(y) = {11+e i i —0

was sich zusammenfassen lasst zu:

1 Yk 1 1—yk

Fiir alle k Fille zusammen greift man auf den Wahrscheinlichkeitssatz fiir unab-
héngige Ereignisse zuriick, um die Likelihood-Funktion zu bilden, die maximiert

werden soll:
K 1—
1 Yk 1 Yk '
L(0) = S 1 —— _
(9) H (]_ + e~ %k ) < 1 + e %k ) max

k=1
Es ist einfacher, die Log-Likelihood zu maximieren, als die normale Likelihood.
Dies liegt daran, dass es einfacher ist, mit Summen zu arbeiten, als mit Produk-
ten. Die Extremwerte bleiben identisch. Es gelten folgende Regeln zum Rechnen
mit Logarithmen:

log,, (u - v) log, u + log, v
log,(u") = rlog,u (r € R)

Hier wird der Logarithmus naturalis verwendet, also log,, der logarithmus mit
der eulerschen Zahl als Basis.

-5 o)) (10 )

Maximierung erfolgt in vielen Programmpaketen durch den Newton-Raphson-
Algorithmus (Ann&herung an den Nullpunkt durch Iteration).

3.4 Interpretation

Die Logits sind nicht leicht zu interpretieren, da es sich bei ihnen, wie wir
spater sehen werden, um logarithmierte Odds (Chancen) handelt. Sie werden
deshalb wieder in normale Odds zuriicktransformiert, indem das entsprechende
zE in 16%216 eingesetzt wird. Die Regressionskoeffizienten a und b werden als
Logit-Koeffizienten bezeichnet, und im Gegensatz zur OLS-Regression iiber das
Maximum-Liklihood-Verfahren ermittelt.

Der Logit-Koeffizient a hat Einfluss auf die Lage der Kurve, nicht auf ihre Stei-
gung. Bei positivem a verschiebt sich die Kurve nach links, bei negativen a
nach rechts. Der Koeffizient b hat hier nicht die Eigenschaften, wie im Falle
der linearen Regression, d.h. gleiche Verdnderungen von x; in unterschiedlichen
Bereichen wirken sich unterschiedlich auf die Eintrittswahrscheinlichkeiten von
y aus, da es sich ja um einen nichtlinearen Zusammenhang handelt.

Ferner gilt:
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b=0 Fiir alle Beobachtungen von x; liegen die Wahrscheinlichkeiten bei 0.5

0<b<1 Die Wahrscheinlichkeitswerte steigen in Abhéngigkeit von x; nur sehr
langsam an

+b Die Wahrscheinlichkeitswerte steigen mit gréfier werdenden Werten z; (nicht
linear)

-b Die Wahrscheinlichkeitswerte sinken mit steigenden Beobachtungswerten x;

Mit der Moglichkeit, die logistische Regression in ein Logitmodell zu {iberfiihren,
in der Form

e®i

i = Thm
e¥ = p;-(1+e*)
e¥ = pi+pie”
s = e%(l—p;)
13;% = e~
In 137‘%’ %

ist eine bessere Interpretation des Einflusses der unabhéngigen Variablen z;
(Mehrvariablenfall) auf die Eintrittswahrscheinlichkeiten p verbunden.

° lf—ip = e* wird als der Odds bezeichnet, diese driicken ein Chancenver-

haltnis aus. Bsp.: p(Y =1) =0.8 — % =4, d.h. bei einer Odds von 4 ist
die Chance des Eintretens von y vier mal grofler als das Nichteintreten.

e In 1f ip_ = z; Wird als Linkfunktion bezeichnet, die den Regressionsaus-
druck mit der Wahrscheinlichkeit p; verbindet: In £ "p' = «a + Bx; Die

Linkfunktion ist der logarithmierte Odds, sie wird als ﬂogit bezeichnet.

Da Informationen iiber die der logarithmierten Erfolgschancen etwas fremd an-
muten, bedient man sich verschiedener Hilfskonstruktionen:

Vorzeicheninterpretation: Die einfachste Moglichkeit ist, sich bei der In-
terpretation der Koeffizienten auf die Vorzeichen und die relative Grofke
der Koeffizienten zu beschrianken. Ein positives Vorzeichen bedeutet bei-
spielsweise, dass die Wahrscheinlichkeit fiir y = 1 mit der entsprechenden
unabhingigen Variablen ansteigt, ein negatives Vorzeichen, dass die Wahr-
scheinlichkeit fallt. Je grofser der Betrag der Koeffizienten, desto grofser das
Ausmaf der Verinderung. Uber das genaue Ausmaf lassen sich aber so
keine Riickschliisse ziehen.

Interpretation der Odds-Ratios: Da es sich bei den Logits um die loga-
rithmierten Chancen (Odds) handelt, kénnen wir sie wieder in normale
Chancen (Odds) umrechnen. Der schnellste Weg, um die Odds-Ratios zu
erhalten, ist das direkte exponieren der b-Koeffizienten.

ebotbi(zi+1) ebotbiz1 pba by

ebotbizy = ebotbizy =€

Wenn sich die unabhéngige Variable x; um eine Einheit erhoht, dann steigt
die Chance fiir y = 1 um das e?—fache. Steigt 2; um c Einheiten, so erhoht
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sich die Chance fiir y = 1 um c~e§’-. Man spricht im Zusammenhang mit den
Odds-Ratios von multiplikativen Einheitseffekt, im Gegensatz zum additi-
ven Einheitseffekt der Regressionskoeffizienten in der linearen Regression.

Wahrscheinlichkeitsinterpretation: Die Dritte Moglichkeit ist zur Interpre-
tation der Logitkoeffizienten liegt in der Umrechnung in Wahrscheinlich-
keiten. Uber

1

p(yzl)zm

kann fiir jeden zi-Wert die entsprechende Wahrscheinlichkeit p(y = 1)
angegeben werden, also wie hoch die Wahrscheinlichkeit ist, dass fiir z; =
by + Z;]:l bjx;; gilt: p(y = 1). Das Problem bei der Interpretation der
Wahrscheinlichkeiten besteht nun aber darin, dass sie nicht linear mit der
Erhéhung der unabhéngigen Variablen ansteigen. Eine Erhchung von x;
um eine Einheit hat also nicht immer den selben Effekt.

Relevant fiir die Interpretation ist auch der Effekt-Koeffizient e®, der eine ge-
nauere Analyse des Einflusses der exogenen Variablen auf die Eintrittswahr-
scheinlichkeit erlaubt. Hierzu betrachten wir jetzt erst einmal wieder den Odds
(Wahrscheinlichkeitsverhéltnis von Z gzég und erhohen dabei die exogene Va-
riablen um 1

A — ea+b(m7¢+1) — . €bmi . €b _ Di . €b
Es zeigt sich, dass man den Effekt-Koeffizienten als Faktor begreifen kann, der
das Wahrscheinlichkeitsverhaltnis (Odds) verdndert.

10—

Abbildung 3.4: Exponentialfunktion f(b) = e®

Der Effektkoeffizient e’ kann Werte zwischen 0 und 400 annehmen. Bei negati-
ven Regressionskoeffizienten b verringert sich das Wahrscheinlichkeitsverhiltnis,
bei positivem b vergréRert der Faktor e das Wahrscheinlichkeitsverhéltnis.

Beispiel:

0.6
b
1—p P P *T 04

3.4



Seite: 59 KAPITEL 3. LOGISTISCHE REGRESSION

L.b=0,§%-e=15-1=15
2.b=2, 3%.¢2=15-7.39 =11.081
0

3.b=-2,28.¢72=15-0.125=0.203

(=]

Eine Erhohung der unabhingigen Variablen um eins bewirkt in Abhéngigkeit
von b eine Verbesserung oder Verschlechterung des Wahrscheinlichkeitsverhalt-
nisses. Eine Verinderung um das e’-fache (Erhohung der unabhingigen Va-
riablen um eine Einheit) beeinflusst linear das Wahrscheinlichkeitsverhéltnis
(Odds), p; jedoch in nicht-linearer Weise. Dies liegt daran, dass die Auswirkung
einer Erhohung von x; durch die Linkfunktion vermittelt wird.

Man kann nun die Auswirkung der Erhohung von e’ danach unterscheiden, ob
sie den Odds zu Gunsten oder zu ungunsten von p; veréndern.

Erhéhung der exogenen Variablen hat keinen EinfluB
auf die Eintrittswahrscheinlichkeit p;. Das Verhaltnis
der Wahrscheinlichkeiten (Odds) bleibt konstant

- >

Erhéhung der exogenen Erhohung der exogenen Variablen
Variablen vermindert die steigert die Eintrittswahrscheinlich-
Eintrittswahrscheinlichkeit  keit fir y=1 gegeniiber y=0

fir y=1 gegeniber y=0

Der Logit-Koeffizient b; ist an die Ausprigungen der x; gebunden, so dass auch
der Effekt-Koeffizient €’ von der Skalierung der x; abhiingt. Mochte man eine
Vergleichbarkeit der (Variablen) Effekte erreichen, braucht es eine Standardisie-
rung. Der normierte Logit-Koeffizient

Bj = bjy/var(z;)
fiihrt zum standardisierten Effektkoeflizienten

B; = ebaV/ver)

3.5 Priifung des logistischen Modells:

Fiir ausgewéhlte Félle wird ein Vergleich von tatséchlicher (beobachteter) Grup-
penzugehorigkeit und den durch die Schatzung hervorgegangenen Gruppenzu-
ordnungen gelistet, wobei fiir die Zuordnung zu einer Gruppe gilt:

_ JGruppey =1 falls pp(y =1) > 0.5
Yk = Gruppe y =0 falls pr(y =1) < 0.5
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3.5.1 Klassifikationsmatrix

Gegeniiberstellung der richtigen und falschen Zuordnungen erfolgt iiber eine
Kreuztabellierung in der Form, dass richtige Zuordnungen in der Hauptdiago-
nalen stehen und Fehlklassifikationen in den iibrigen Feldern.

Vorhergesagt
Gruppe y =1 Gruppe y =0 | % richtig
Beo- Gruppe y =1 10 2 83.3
bachtet Gruppe y =0 2 10 83.3
Gesamt % 83.3

Man kann nun die Trefferquote mit einer Trefferquote vergleichen, die rein zu-
fallig entstanden wére, d.h. durch vollig willkiirliche Zuordnung der Personen
zu einer der Gruppen (Miinzwurf).

Anmerkung: Da die Trefferquoten sehr stark an die aktuelle Stichprobe ge-
bunden sind, ist davon auszugehen, dass sie in einer anderen Stichprobe niedri-
ger ist, da sie auf der Basis der Anpassung an die aktuellen Stichprobendaten
entstanden ist. Die Uberschitzung der Trefferquote kann durch Kreuzvalidie-
rung des Modells {iberwunden werden. Dies geschieht durch eine Berechnung
der Schitzfunktion auf Basis einer Stichprobe, die Zuordnung oder Klassifika-
tion der Elemente auf Basis der Schitzfunktion erfolgt aber in einer anderen
Stichprobe. In ausreichend grofen Datensitzen (mit geniigend grofen Zellbe-
setzungen) kann die Kreuzvalidierung innerhalb des Datensatzes durchgefiihrt
werden.

3.5.2 Press’s Q-Test

Bezieht sich auf die Klassifikationsmatrix und iiberpriift die Abweichung der
Trefferquote aufgrund der Berechnungen von der Trefferquote auf Basis einer
zufilligen Zuordnung. Die Priifgroke ist x2-verteilt mit df = 1. Getestet wird
die Hy: Die Klassifikation der Elemente entspricht einem Zufallsprozess.
Press’s Q berechnet sich iiber:
Q: [n_(nga’)]2
n(g—1)

wobei:

n den Stichprobenumfang, g die Anzahl der Gruppen und a den Anteil der
korrekt klassifizierten Elemente angibt. Liegt @ oberhalb des kritischen Wertes
(bei a = 0.05 — 3.84) wird die Hy abgelehnt, die Klassifikationsergebnisse sind
signifikant von denen eine zufilligen Zuordnung unterschieden.

3.5.3 Hosmer-Lemeshow-Test

Priffung der Nullhypothese, dass die Differenz zwischen vorhergesagtem und
beobachtetem Wert null ist, also Hy : yr — (Zuordnung geméfp,) = 0. Die
Fille werden in Gruppen aufgeteilt, dann werden beobachtete und erwartete
Zuordnungen verglichen. Liegt die Priifgrofe innerhalb der kritischen Grenzen,
wird Hy beibehalten.
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3.5.4 Devianzanalyse

Bei der Maximum Likelihood-Methode maximieren wir die Wahrscheinlichkeit
der Parameter bei gegebenen Daten. Das 2-fache der log-likelihood ist ann&hernd
x2-verteilt mit df = N — J — 1, wobei N die Anzahl der Beobachtungen und
J die Anzahl Parameter angibt. 2 wird als Devianz bezeichnet und ist mit der
Fehlerquadratsumme der linearen Regression vergleichbar. Bei einem perfekten
Fit ist die Devianz = 0. Es wird die Hy: “Das Modell besitzt eine perfekte
Anpassung” getestet, je geringer der Wert fiir —21n L, desto besser der Fit. Die
Schiefe der Verteilung der Beobachtungen hat einen Einfluss auf die Devianz. Ein
Schiefer Datensatz hat tendentiell eine bessere Anpassung, als ein gleichverteilter
Datensatz.

3.5.5 Likelihood-Ratio-Test

Beim LR-Test vergleichen wir die Devianz des vollstdndigen Modells —21n Ly
mit der Devianz des Nullmodells —21In Ly . Beim Nullmodell handelt es sich
nicht um das Modell mit einer Devianz —2In L = 0, sondern um das Modell, in
dem nur die Konstante vorhanden ist, und alle anderen Parameter auf 0 gesetzt
werden. Bei grofser die Differenz, desto mehr tragen die unabhingigen Variablen
zur Unterscheidung der y-Zusténde bei.
Als Hy wird “Alle Logitkoeffizienten sind = 0” getestet.
Als Testgrofe fungiert die absolute Differenz zwischen —21In Ly und —21n L,
also:

X2 =—2(InLy —InLy)

Diese ist annihernd y2-verteilt mit df = .J. Der x2-Wert kann also #hnlich
dem F-Wert in der linearen Regression genutzt werden, um zu priifen, ob alle
b; = 0 sind. Bei groflen Werten ist die Hy abzulehnen, was auf ein fiir die
Daten relevantes Modell hinweist. Allerdings ist auch hier, wie beim F-Test in
der linearen Regression eine einfache Zuriickweisung nicht ausreichend, um mit
dem Modell zufrieden zu sein.

3.6 Pseudo-r2
3.6.1 McFaddens - 12

Analog zum Determinationskoeffizienten der linearen Regression r? kann die
Giite des logistischen Regressionsmodells mit McFaddens Pseudo-r? beurteilt
werden. Hierbei handelt es sich um ein globales Giitemafs, das aus den logarith-
mierten Maximum-Likelihood-Schétzungen des Ausgangsmodells (nur Konstan-
te) —21In Ly und —21In L; des Modells mit den unabhéngigen Variablen berech-
net wird. Es beurteilt die Trennkraft der unabhingigen Variablen.
2 —21IIL1 lnL1 lnL() — lnL1

McFaddens — r“ =1 S, 1 i Lo
Besteht kein Unterschied zwischen Ly und L; wird, dann wird 2 den Wert null
annehmen, je grofer der Unterschied, desto stiirker geht r? gegen 1, ohne diesen
Wert jedoch zu erreichen. Werte zwischen 0.2 und 0.4 deuten auf einen guten
Modellfit hin.
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Wihrend der Likelihood-Ratio-Test ein Test auf Ubertragbarkeit der Stich-
probenergebnisse auf die Grundgesamtheit ist, handelt es sich bei McFaddens
Pseudo-r2 um einen Modellvergleich, der die Trennkraft der unabhingigen Va-
riablen beurteilt.

3.6.2 Cox & Snell - 12

2
Lol™
Cox & Snell — 7% =1 — [0}
Ly
Gegeniiberstellung der nicht logarithmierten Likelihoodwerte. Der Koeffizient
wird iiber den Stichprobenumfang gewichtet. Akzeptable Werte >0.2, gute Wer-

te >0.4, Nachteil: erreicht nur Werte <1

3.6.3 Nagelkerke - 72

Erreicht im Gegensatz zu den beiden anderen Pseudo-r2-Koeffizienten den Maxi-
malwert von 1, und sollte in der Analyse vornehmlich genutzt werden. Desweite-
ren soll er eine Interpretation wie die des “originalen” Determinationskoeffizien-
ten in der linearen Regression zulassen, er gibt den Anteil der Varianzerklirung
der abhéngigen Variable durch die unabhingigen Variablen an. Werte ab 0.5
deuten auf einen guten Modellfit hin. Er berechnet sich iiber:

Cox & Snell — 2
1—[Lo]=

Nagelkerke — % =

oder anders

2

Nagelkerke — 7% = ;n—
rmax
mit 72, =1— (Lg)» und Ly, der Likelihood des Nullmodells, in welchem nur

die Konstante geschétzt wird, aber keine unabhéngigen Variablen eingegangen
sind.

3.7 Diagnostik

3.7.1 Linearitét

Bei der logistischen Regression muss die funktionale Form des Scatterplots nicht-
linear sein, da sich die Linearitdtsannahme auf die Logits bezieht, nicht auf den
Zusammenhang zwischen Eintrittswahrscheinlichkeit p(y = 1) und xz;, der als
S-férmig angemonnem wird. Dies kann iiber sogenannte LOWESS (LOcally
WEighted Scatterplot Smoother) inspiziert werden, hier liegt eindeutig keine
S-férmiger Zusammenhang vor.
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0 1000 2000 3000 4000 5000
X
bandwidth = .75

Abbildung 3.5: LOWESS

Die abhingige Variable in Abbildung 3.5 ist dichotom, um Uberlagerungen zu
vermeiden wurde zu jedem y-Wert jeweils ein Zufallswert addiert, damit sie
nicht alle auf den Werten 0 und 1 liegen, sondern leicht um diese Werte herum
“zittern” (jitter).

3.7.2 Ausreilser

Es geht um die Beurteilung des Effektes, den einzelne Personen auf die Modell-
giite haben. Diese koénnen neben einer schlechten Auswahl der unabhingigen
Variablen eine schlechte Modellanpassung verursachen. Die Identifizierung von
Ausreifsern erfolgt {iber die Berechnung der Residuen, d.h. es wird die Diskre-
panz zwischen empirischem Wert und geschétzter Wahrscheinlichkeit p(y = 1)
berechnet. Als Ausreifler gelten Personen, deren standardisierte Residuen iiber
0,5 liegen. Die Berechnung der standardisierten Residuen erfolgt nach

ZResid = Yk _p(yk — 1)
Ve =1)- (1 —plye = 1))

Bei einem beobachteten Wert fiir Person k£ mit y = 1 und einer geschétzten
Wahrscheinlichkeit p(y; = 0.073) ergibt sich dann

4o __1-0073 0927
Reside = 0.073-0.927  0.2601

Person k kann nach dem Kriterium Zgeg;q > 0.5 als Ausreifser angesehen werden.

= 3.564

3.8 Priifung der Merkmalsvariablen

Angaben zur Trennféhigkeit der einzelnen Variablen geben der Likelihood-Quotienten-
Test und die Wald-Statistik.

3.8.1 Likelihood-Quotienten-Test

Ahnelt dem LR-Test, ist aber kein Vergleich des vollstindigen Gesamtmodells
In Ly gegen das Nullmodell, sondern ein Vergleich unterschiedlicher reduzierter
Modelle, wobei jeweils ein Koeflizient b; = 0 gesetzt wird. Dann wird die Diffe-
renz der —21In L zwischen vollstindigem (In Ly ) und reduzierten (In L )Modell
betrachtet.
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Hy: Der Effekt von b; ist Null (b; = 0) Die Testgrofe (InLg — In Ly) ist x2-
verteilt und somit kann auf dieser Basis eine Signifikanzpriifung durchgefiihrt
werden.

3.8.2 Wald-Statistik

Testet die Nullhypothese, dass ein bestimmtes b; Null ist, also die unabhéngige
Variablen nicht zur Trennung der Gruppen beitriagt. Die Wald-Statistik

b \°
W = (J> mit s, = Standardfehler von b,
Sb]‘

ist ebenfalls asymptotisch y2-verteilt.
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KAPITEL 4

DISKRIMINANZANALYSE

Bei der Diskriminanzanalyse handelt es sicg um ein multivariates Verfahren zur
Analyse von Gruppen- bzw. Klassenunterschieden. Durch diese Methode ist es
moglich, G > 2 Gruppen unter Beriicksichtigung von z; Variablen zu untersu-
chen, und dabei zu ermitteln, in wie weit sich diese Gruppen unterscheiden. Der
Unterschied zur Clusteranalyse liegt darin, dass es sich bei der Diskriminanzana-
lyse um kein exploratives, sondern um ein konfirmatorisches Verfahren handelt.
Es werden keine Gruppen gebildet, sondern es werden vorhandene Gruppierung
hinsichtlich ihrer Gruppierungsqualitét {iberpriift. Die abhingige Variable, die
die Gruppenzugehorigkeit festlegt ist nominal, die unabhéngigen Variablen sind
metrisch.
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Abbildung 4.1: Diskriminanzfunktion

Durch die Diskriminanzanalyse kann gepriift werden, ob das Ergebnis einer Clus-
teranalyse verbesserungsfihig ist, welche Variablen fiir die Gruppierung beson-
ders erkldrungskraftig sind, oder in welche Gruppe ein neues Objekt eingeordnet
werden sollte.
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Der einfachste Fall besteht darin, wenn nur 2 Gruppen vorliegen - bsp. die Vor-
hersage der Zuordnung von Personen entweder zur Gruppe der SPD-Wihler oder
der Gruppe der CDU/CSU-Wihler. Diese 2 Gruppen werden dann durch die
sogenannte Diskriminanzfunktion, in die mehrere unabhéngige Variablen einge-
hen konnen, getrennt. Sollen mehr Gruppen getrennt werden, so bendtigen wir
auch mehrere Diskriminanzfunktionen. Bei beispielsweise 3 Gruppen benétigen
wir 2 Diskriminanzfunktionen.

Die Diskriminanzfunktion &hnelt derjenigen Gleichung der Regression.

y:bo+b1£ﬂ1+bgﬂj2+...+bjl‘j

SPSS beispielsweise benotigt zur Durchfiihrung einer Diskriminanzanalyse einen
a priori-Wert. Als Voreinstellungen konnen aus der GruppengrifSe berechnen
oder alle Gruppen gleich gewahlt werden. Mdchte man andere a priori Wahr-
scheinlichkeiten verwenden, beispielsweise aus der amtlichen Statistik oder vor-
herigen Untersuchungsergebnissen, so kann dies nur iiber die Syntax iiber den
Unterbefehl /PRIORS = X,Y,Z realisiert werden.

Fiir jeden Fall wird ein Diskriminanzwert berechnet. Mittels der Diskriminanz-
werte kann jedes Objekt einer Gruppe zugeordnet werden. Die Werte der Diskri-
minanzfunktion sind metrisch, stellen also noch keine Gruppenzugehorigkeiten
dar.

4.1 Ansatz iiber Bayes-Theorem

Betrachten wir die abhingige Variable Wahlabsicht. Die Schitzung der Koeffizi-
enten b; soll den Anteil der durch die Gruppenzugehdrigkeit erklérten Varianz
maximieren Prinzipiell l4sst sich keine Funktion finden, die eine eindeutige Zu-
ordnung der Gruppen erlaubt. Tendenziell sind nach der berechneten nach b;
maximierten Diskriminanzfunktion Personen mit niedrigen Diskriminanzwer-
ten SPD-Wihler. Es kann jedoch auch eine Person mit niedrigen Werten ein
CDU/CSU-Wihler sein. Es ist folglich nicht eindeutig moglich zu sagen: ab dem
Diskriminanzwert Y* wihlt eine Person immer die CDU/CSU. Diesen Trenn-
wert kann man dennoch im 2-Gruppenfall zur Trennnung benutzen. Sind mehr
als 2 Gruppenzugehorigkeiten zu schitzen und in der Folge mehr Diskriminanz-
funktion, erfolgt die Prognose der Gruppenzugehérikeit mittels Bayes-Statistik.
Fiir jede Person lasst sich die Wahrscheinlichkeit P(G;|Y;), bestimmen, dass sie
bei gegebenem Diskriminanzwert in Gruppe G; gehort.

4.1.1 Klassifikation der Féille

Fiir alle Gruppen werden fiir jede Person die Wahrscheinlichkeiten berechnet,
in diese Gruppen zu gehoren. Uber alle Gruppen hinweg ergibt sich fiir jedes
Objekt eine Gesamtwahrscheinlichkeit von 1. Bei der Berechnung dieser Wahr-
scheinlichkeiten, kommt der Satz von Bayes zum Einsatz:

PY;|G:) - P(Gi)
G
> P(Y;|G:) - P(Gy)
i=1

P(GilY;) =

4.1
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Mittels dieses Satzes konnen wir die Wahrscheinlichkeit fiir die Gruppenzuge-
horigkeit aus zwei bekannten Wahrscheinlichkeiten auf Grund des Diskriminan-
zwertes berechnen. Man bezeichnet P(G;|Y;) als a posteriori- Wahrschein-
lichkeit. Diese wird auf der Basis der bedingten Wahrscheinlichkeit P(Y;|G;)
und der a priori-Wahrscheinlichkeit P(G;) berechnet.

Die a priori - Wahrscheinlichkeit P(G;) ist die theoretische Wahrscheinlichkeit
in eine der beiden Gruppen zu fallen. Sie ist oftmals nicht bekannt, und muss
vom Forscher gew#hlt werden. Hat man gar keine Informationen iiber die Vertei-
lung in der Grundgesamtheit (z.B. aus der amtlichen Statistik), wird man eine
Gleichverteilung zugrundelegen. Wir gehen davon, dass unsere relativen Hau-
figkeiten denen der Grundgesamtheit entsprechen und nutzen sie als a priori
Eingaben.

Mit dem Vergleich der Gruppenzugehdrigkeits-Wahrscheinlichkeit 1dsst sich auch
ein Riickschluss auf die Giite der Zuweisung ziehen. Sind die Wahrscheinlichkei-
ten sehr unterschiedlich, ist die Einordnung eindeutig. Betrachtung der Grup-
penmittelwerte bzw. Centroide, die auf der Basis der Zuweisung von Diskrimi-
nanzwerten errechnet werden. Je ndher die Centroide zusammenliegen, desto
schwieriger wird die Zuweisung zu einer Gruppe. Diese ist jedoch noch keinen
Test darauf, ob die Unterschiede in den Gruppencentroiden auch in der Grund-
gesamtheit gelten.

Der Eigenwert entspricht nahezu dem F-Wert der Varianzanalyse, seine Berech-
nung

_ QSzwischen erklirte Streuung

A= =
QSinnernay  nicht erklérte Streuung

unterscheidet sich von der des F-Wertes der Varianzanalyse dadurch, dass hier
die Freiheitsgrade nicht einfliefen. Je grofer der Eigenwert, desto grofer die
durch die Diskriminanzfunktion erkldrte Streuung. Werte innerhalb der Grup-
pen sind sich dhnlich, Werte zwischen den Gruppen unterscheiden sich deutlich.
Die Diskriminanzfunktion soll die Varianz zwischen den Gruppen maximieren.
Die Maximierung erfolgt iiber die Gewichtungsfaktoren b; der Variablen x;.

071

06F

05F

04F
min

03}

02F

0.1Ff

Abbildung 4.2: Verhéltnis der Varianzen
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Der Eigenwert berechnet sich iiber:

(b1(Z1,4, — T1,4,) + b2(T2,4, — T2,4,))°
b%Sll =+ b%SQQ + 2[)11)2512

= max!

>\ =
Das Maximum fiir A erhilt man nach

2
a)\:Ounda)\

Die kanonische Korrelation

Qszwischen
Qszwischen + QSinnerhalb

misst den Zusammenhang zwischen abhéngigen und erkldrenden Variablen und
entspricht in der Definition dem 1 der Varianzanalyse: erkldrter Anteil zu Ge-
samtstreuung.

Wilk’s A
Wilk’s A ist kontrir zur kanonischen Korrelation definiert als

QSzwischen

A =
Qszwischen + QSinnerhalb

und addiert sich somit mit dem Quadrat des kanonischen Korrelationskoeffizien-
ten zu eins auf. Es wird eher zur Uberpriifung der Modellgiite herangezogen, da
hier mittels x2-Transformation von A ein Signifikanztest durchgefiihrt werden
kann: Hy: Die Diskriminanzwerte sind in der Population zwischen den Gruppen
identisch.

4.2 Mehrfache Diskriminanzanalyse

Bei g Gruppen (I = 1,...,g) der abhingigen Variablen werden durch k£ — 1
Diskriminanzfunktionen getrennt, die nacheinander berechnet werden.
In Abbildung4.3 werden 3 Gruppen durch 2 Diskriminanzachsen getrennt.

4.2
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Ya

Abbildung 4.3: 3 Gruppen-Fall

Die erste Diskriminanzfunktion
Yi=b14aX1 4+ 024 X5

trennt Gruppe Al gegen die Gruppen A3 und A2, Y4 trennt nicht zwischen A3
und A2. Die zweite Diskriminanzfunktion

Yp =bipX1 + bapXs

steht orthogonal zu Y4 und trennt Gruppe A3 gegen Gruppen A2 und Al. Y,
trennt nicht zwischen A2 und Al. Wir benétigen beide Diskriminanzfunktionen
zur Trennung der Gruppen.

4.2.1 Prozedere

Bildung der ersten Diskriminanzfunktion als Linearkombination der Variablen
Z1,...,2; mit den Gewichten b; 4

Yia=b1aX1 +baaXo+ ...+ bpaXy

Wie im 2-Gruppenfall wird auch hier der Wert fiir die Gewichte b; gesucht der
die Funktion maximiert.

_ Qszwischen
Qsinnerhalb

Die zweite Diskriminanzfunktion ist die Linearkombination der Partialvariablen
erster Ordnung x;_4:

AA = maz!

Yp=bi_apXi—a+...+bp_aXi_2a

Durch Transformation der Gewichte lasst sich die Funktion jedoch als Linear-
kombination der Ursprungsvariablen schreiben

4.2
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Yp =bip X1 +bapXo +... + bpp Xy

und wie Y, wird sie nach b; maximiert. Alle weiteren Diskrimanzfunktionen
werden als Linearkombinationen von Partialvariablen hoherer Ordnung gebildet
Tj—AB,..-

Die Klassifikation nach dem Satz von Bayes ist ab dem Fall mehrerer Gruppen
erst nachvollziehbar. Wir kénnen jetzt nicht mehr einfach mit einem Trennin-
dex arbeiten, wie im Zweigruppenfall. Ab jetzt ist die Klassifizierung einfacher
mittels anderer Verfahren.

P(Y};|Gr) - P(Gy)
ZP i|G1) - P(Gr)

P(G]Y}:) =

Die Wahrscheinlichkeit wird fiir Person i fiir alle Gruppen mit allen Diskriman-
zwerten berechnet. Die Zuordnung zu einer Gruppe erfolgt nach dem Maximal-
wert von:

K

> P(GilY)

J=A

4.3 Varianzzerlegung

Ahnlich der Varianzanalyse, lisst sich bei der Diskriminanzanalyse eine Vari-
anzzerlegung durchfiihren

Gesamte Abwei- = Erklarte Abwei- + Nicht erklarte Ab-

chung chung weichung

Summe der qua- = Summe der qua- + Summe der qua-

drierten Gesamtab- drierten Abweichun- drierten Abweichun-

weichung gen der gen zwischen den
Faktorstufen Faktorstufen

I, ;1

G
ZZ Ygi — - + ZZ Ygi — 7/y

g=11i=1 g=11i=1

Q

Q

SS; = SSy + SSw

SSt(otal) - SSb(etween) + SSw(ithin)

4.3
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Die Schétzung der Koeflizienten b; soll den Anteil der durch die Gruppenzu-
gehorigkeit erklirten Varianz maximieren. Kleine Uberschneidungsbereiche der
Haufigkeitsverteilungen auf der Diskriminanzachse bedeutet gute Trennung.
Jede Gruppe besitzt einen Centroid (mittleren Diskriminanzwert):

I.q
j{:ygi
gg = i:}
g
Ein Maf fiir die Unterschiedlichkeit zweier Gruppen Gruppen ist beispielsweise
|94 — UBl|

Die Parameter der Diskriminanzfunktion sollen nun so geschitzt werden, daft
sich die Gruppen maximal unterscheiden. |g4 — §p| ist als Mafs aber ungeeignet,
da es die Streuung der Gruppen nicht beriicksichtigt.

Wenn

1. nur 2 Gruppen vorliegen
2. die anndhernd gleich grof sind
3. mit ungefihr gleicher Streuung s

dann ist

U = |yA - yB‘
s
ein geeigneteres Diskriminaznmalfs. Dazu ist dquivalent:

U2 _ (ZJA - QB)2
T s
Um die Voraussetzungen 1. und 2. aufzuheben, muf (74 — ¥5)? in der obigen
Formel durch ein Maf fiir die Streuung zwischen den Gruppen ersetzt werden.

Dies geschieht durch

G
SSy = I,(Fy — 9)°
g=1

wobei
G = Anzahl der Gruppen
I, = Anzahl der elemente in Gruppe g
yg = Mittlerer Diskriminanzwert in Gruppe g
y = Gesamtmittel der Diskriminanzwerte aller Elemente

Um die Vorausssetzung 3.aufzuheben, muf s? in der Formel fiir U? durch ein
Maf fiir die gesamte (gepoolte) Streuung innerhalb der zwei oder mehr Gruppen
ersetzt werden. Ein Mafs dafiir ist:

G I

SSw =2 (Ygi —Ug)°

g=11i=1

wobei y4; den Diskriminanzwert von Element ¢ in Gruppe g bezeichnet.
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Das Diskriminanzkriterium, dass bei 2 oder mehr Gruppen verwendet wird, um
die Unterschiedlichkeit der Gruppen zu messen ist:

SSy  Streuung zwischen den Gruppen

F = =
SSw Streuung in den Gruppen
G
> 15— )

— g:1

= G K

> (ar — )
g=1k=1

I" kann als Quotient aus erklirter zu nicht erklirter streuung interpretiert
werden, also

erklarte Streuung

~ nicht erklirte Streuung

Die Diskriminanzwerte und damit auch I sind abhingig von den zu schitzenden
Koeffizienten. Das Problem der Schétzung der Diskriminanzfunktion l&ft sich
nun so formulieren: Wéhle die Koeflizienten by, b1, ..., b; so, daf I' maximal
wird

4.4 Schatzen der Diskriminanzfunktion

Hierfiir benttigen wir 2 Matrizen, die Matrix der Streuung zwischen den Grup-
pen, die Between-Matrix:

sowie die Matrix der Streuung innerhalb der Gruppen, die Within-Matrix:

g
W = Zwk
k=1

W=y

g=11

IQ
(3791' - ﬂg)@gi - yy)/

=1

Das Diskriminanzkriterium I' soll maximiert werden. Man kann I" kann mit Hilfe

der Matrizen W und B schreiben:

¥ BY

YWY

wobei ¥ der Vektor der unbekannten Parameter der Diskriminanzfunktion ist.
Um I' zu maximieren, muss die erste Ableitung nullgesetzt werden (sowie die

zweite Ableitung an diesem Punkt negativ sein). Dies ergibt folgende Bedingung
fiir den Wert A:

I =

(B—AW)9 =0
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Was zu

BY = \W9
fihrt. Durch invertieren der Matrix W erhalten wir
(W™IB)9 = \9

Es handelt sich bei A\ um den maximalen Eigenwert der Matrix W 1B, ¥ ist
der dazugehorige Eigenvektor.
Dies fiihrt zu der nicht-normierten Diskriminanzfunktion:

y:ﬁ1x1+192m2+...+19jxj

Die normierte Variante lautet:

1 . /1

J
und bo = — Z bj.fj
j=1

4.5 Giute der Diskriminanz

Wir wissen, dass fiir den maximalen A des Diskriminanzkriteriums I gilt:

erklédrte Streuung

~ nicht erklirte Streuung

Dieses Unterschiedlichkeitsmafs ist allerding nicht auf den Bereich 0 < A < 1.
Folgende Werte sind auf diesen Bereich genormt:

A erklirte Streuung

1+  gesamte Streuung

sowie

1 nicht erklérte Streuung

1+  gesamte Streuung

welcher Wilk’s Lambda genannt wird.

Wilk’s A ist ein sogenanntes “inverses Giitemak”, d.h. kleinere Werte bedeuten
hohere Unterschiedlichkeit der Gruppen, bzw. héhere Trennkraft der Diskrimi-
nanzfunktion.

4.5.1 Signifikanz der Diskriminanzfunktion
Es werden folgende Hypothesen getetstet:

Hy : Gruppen unterscheiden sich nicht
H;, : Gruppen unterscheiden sich

4.5
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Aus Wilk’s A lisst sich eine Priifgréfe berechnen, die annihernd y2-verteilt ist
mit df = J - (G — 1), mit der die Hypothesen gepriift werden kénnen.

Xzz—[N—J—;G—l]lnA

wobei
N : Gesamtzahl der Fille
J : Anzahl der Merkmalsvariablen

G : Anzahl der Gruppen
Wenn mehr als zwei Gruppen vorhanden sind, so wird mehr als eine Diskrimi-
nanzfunktion verwendet. Bei G Gruppen: héchstens G — 1 Diskriminanzfunktio-
nen. Aber: nicht mehr Diskriminanzfunktionen als Merkmalsvariablen. Zu jeder
Diskriminanzfunktion gehdért ein Eigenwert. Fiir diese Eigenwerte gilt:

AL> A > > A >

Die zweite Diskriminanzfunktion wird so ermittelt, daft sie einen maximalen An-
teil jener Streuung erklért, die nach Ermittlung der ersten Diskriminanzfunktion
als Rest verbleibt.

Ein Mafs fiir die relative Wichtigkeit der kten Diskriminanzfunktion ist der so-
genannte Eigenwertanteil:

M ARk

Er gibt die durch die k—te Diskriminanzfunktion erklirte Streuung als Anteil
jener Streuung an, die durch alle K Diskriminanzfunktionen erklirt wird. Die
Wichtigkeit der Diskriminanzfunktionen nimmt schnell ab. Meist geniigen 23
Diskriminanzfunktionen.

Zum Priifen der Unterschiedlichkeit der Gruppen miissen alle Diskriminanzfunk-
tionen und deren Eigenwerte beriicksichtigt werden. Man verwendet dazu das
multivariate Wilks A:

EA;

K

1 1 1 1
A: = . . —
gl-i—Ak 1+XM 14X 1+ Mg

Wobei A\, der Eigenwert der k-ten Diskriminanzfunktion ist. Das multivariate
Wilks A ergibt sich als Produkt der univariaten. Es kann wiederum die x?2-
Priifgrofie gebildet werden, um auf Signifikanz zu testen.

Wilks A kann einem in unterschiedlichen Schreibweisen begegnen:

_ det(W) det(W)

A= det(T) ~ det(B + W)

=det(I + W™ 'B)™! =
k

(1 + /\k)_l
1

q




ANHANG A

MATRIX-ALGEBRA

Eine Matrix besteht aus m Zeilen und n Spalten. Matrizen werden mit fetten
Grofsbuchstaben bezeichnet. Eine m x n-Matrix sieht folgendermafsen aus:

a11 a12 a13 cee Q1n
a1 G2 Q23 ... G2y
A= azi a32 as3 ce. Q3n
aml Am2 Am3 ... amn

A.1 Skalarmultiplikation

Um eine Matrix mit einem Skalar zu multiplizieren muss jedes Element der
Matrix mit diesem Skalar multipliziert werden.

a1l a2 ais wailr @ai2  $ais
A-p=p az1 Q22 Q23 = ©Yaz1  @pazz a3
as; az2 as3 paz1 Pas2 Pass

Rechenregeln fiir Skalarmultiplikation

(a+B)A = aA+pA

a(A+B) = aA+aB
a(fA) = (aB)A = (Ba)A = p[(aA)
a(AB) = (@A) B = A(aB) = aAB
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A.2 Multiplikation

In der Rechnung mit Matrizen ist Einiges zu beachten, was uns auf den ersten
Blick unlogisch oder verwirrend erscheint. So ist jedem von uns aus dem Alltag
bekannt, dass 3 mal 5 identisch ist mit 5 mal 3. Dies gilt in der Matrizenrechnung
nicht, oder nur fiir ganz bestimmte Matrizen A und B, namlich fiir idempotente
Matrizen. Im “Normalfall” gilt:

A-B#¥B-A
Berechnen wir A - B mit
3 1
A:<_21 ;3 (1));3: 4 2
5 =3
erhalten wir folgendes:
(2 -3 1) Z ; _(1 7)
-1 4 0 5 _3 13 7

3 1 5 -5 3
4 2 ( 2 3 1) 6 -4 4
5 13 —27 5

Matrixmultiplikation ist also nicht kommutativ! Wann koénnen wir tiberhaupt
zwei Matrizen miteinander multiplizieren? Dies ist nicht immer mdglich. Man
kann zwei Matrizen nur multiplizieren, wenn die Anzahl der Spalten der ersten
Matrix identisch ist mit der Anzahl der Zeilen der zweiten Matrix. Wir kénnen
als eine 4 x 5-Matrix mit einer 5 x 6-Matrix multiplizieren und erhalten so eine
5 x 5-Matrix als Ergebnis. Es ist jedoch nicht mdoglich, eine 5 x 6-Matrix mit
einer 4 x 5-Matrix zu multiplizieren.

Matrixmultiplikation

3x4 - 4dxb5 = 3x5|4x3 - 5x4 =/
5 X . x5 = H5x5]|6x . x6 = 6x6
Tx5H - 5Hx3 = 7Tx3|5x7 - 3x5 = /

Als Beispiel multiplizieren wir nun die schon angesprochenen Matrizen A und
B, um zu sehen, wie wir an die Werte kommen, die in der resultierenden Matrix
C stehen. Wir berechnen:

A-B=C
also
2 -3 1 3 1 C11 C12
-1 4 0 42 )=
5 _3 C21  C22
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Welchen Wert hat nun beispielsweise der Eintrag ¢117

(2 1>.3;
-1 4 0 5 3

Der Wert von c¢p7 ergibt sich durch
c11=2-34+ +1-5=-1

Es wird also das erste Element der ersten Zeile der Matrix A mit dem ersten
Element der ersten Spalte der Matrix B multipliziert. Dann wird das zweite
Element der ersten Zeile der Matrix A mit dem zweiten Element der ersten
Spalte der B multipliziert und dieses Ergebnis zu dem vorherigen Ergebnis ad-
diert. Zu guter Letzt wird das Ergebnis der Multiplikation des dritten Elements
der ersten Zeile der Matrix A mit dem dritten Element der ersten Spalte der
Matrix B zu den beiden vorherigen addiert. Wir erhalten folgende 4 Werte:

cl = 23 4 (=34 + 1.5 = -1
C12 = 2.1 + (—3) -2 —|— 1- (—3) = —7
Co1 = (—1)'3 + 4.4 =+ 0-5 = 13

Also erhalten wir als Ergebnis der Multiplikation A - B die Matrix

-1 -7
C‘( 13 7)

Rechenregeln zur Matrixmultiplikation

Assoziativgesetz (AB)C = A(BC)
(AB)C = ABC
A(BC) = ABC
linksseitiges Distributivgesetz A(B+C) = AB+ AC
rechtsseitiges Distributivgesetz (A+ B)C = AC + BC
im Allgemeinen AB # BA
Al = IA = A

A.3 Addition und Subtraktion

Addition und Subtraktion von Matizen sind einfacher zu bewerkstelligen als
Multiplikation oder Division von Matrizen. Eine Einschrankung ist jedoch, dass
nur Matrizen der gleichen Ordnung addiert oder subtrahiert werden konnen.
Schauen wir uns nun die Addition zweier Matrizen an:

3 1 5 4 3+5 1+4 8 5
5 2 )14+ 1 2 )= 541 2+2 | =] 6 4
2 4 1 3 241 4+3 37
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die Subtraktion zweier Matrizen verlduft analog. Auch hier ein Beispiel:

3 1 5 4 3—-5 1-4 -2 =3
5 2 |4+ 1 2 |=]156-1 2-2|= 4 0
2 4 1 3 2—-1 4-3 1 1

Rechenregeln Addition und Subtraktion

(A+B)+C = A+(B+0)
A+B = B+A
A+0 = A

A+(—A) = 0

Wobei A, B und C = n x m-Matrizen und 0 die n X m-Nullmatrix

A.4 Transponieren

Als transponieren einer Matrix wird der Vorgang bezeichnet, durch den die
Zeilen einer Matrix zu Spalten werden und Spalten zu Zeilen. Technischer ge-
sprochen: Aus dem Eintrag a;; wird der aj;. Die transponierte Matrix von A
wird mit A’ oder auch A* bezeichnet.

Ty z

a b ¢\t i @
A= ( ) TARSREIETE Albzw At = by
C z

Transponieren und multiplizieren wirken sich kombiniert folgendermafien aus:
e A x B = Multiplikation Reihe mal Spalte von A und B
e A x B’ — Multiplikation Reihe mal Reihe von A und B
e A’ x B — Multiplikation Spalte mal Spalte von A und B

e A’ x B’ — Multiplikation Spalte mal Reihe von A und B

Rechenregeln fiir Transponierte
Ay = A
(A+B) = A'+B
(aA) = aA’
(AB) = B'A
(ABC) = C'B'A

A.5 Diagonalmatrizen

Bei einer symmetrischen Matrix handelt es sich um einen Sonderfall einer qua-
dratischen Matrix (nxn-Matrix). Hierbei sind die Matrix und ihre Transponierte
identisch, es gilt: A = A’. Eintrag a;; und a;; sind identisch, also a;;=a;;.

Bei einer Diagonalmatrix handelt es sich um eine Matrix, in der alle Wert, bis
auf die der Hauptdiagonalen gleich Null sind. Es gilt also:
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a 0 O
0 b O
0 0 ¢

Bei einer Skalarmatrix handelt es sich um eine Diagonalmatrix, die durch den
Skalar gebildet wird. Sie steht fiir den Skalar und unmegekehrt. Es gilt:

w 0 0

o
=R
S

WA = Aw = wA = Aw

Ein Spezialfall einer Diagonalmatrix ist die sogenannte Einheits- oder Identi-
tatsmatrix, abgekiirzt mit E oder I. In ihr stehen nur Einsen auf der Haupt-
diagonalen.

E bzw. I =

OO =
o = O
= o O

A.6 Die Spur einer Matrix

Als Spur einer Matrix sp(A) oder tr(A), Abkiirzung des englischen “trace” fiir
“Spur”) bezeichnet man die Summe der Elemente der Hauptdiagonalen. Sie ist

definiert als tr(A) = Z @i
i=1

In der Matrix

1 0 0
01 0
0 0 1
betrigt die Spur 1+1+1=3
In der Matrix
5 =5 3
2 3 4
6 -7 4

betrigt die Spur 5+ 3 +4 =12

Rechenregeln fiir die Spur einer Matrix

tr(A+ B) = tr(A)+tr(B) tr(A") = tr(A)

tr(aA) = atr(A) tr(AB) = tr(BA)

tr(BCA) =tr(CAB) = tr(ABC) tr(B"'AB) = tr(A)
(i. Allg.) tr(AB) # tr(A)tr(B)

Fiir partionierte Matrizen

t <A11 A12
T

Asy A22> = tr(Au) + tr(Az)
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A.7 Determinante

Die Determinante einer 2 x 2-Matrix errechnet sich wie folgt:
fiir die Matrix A:

a a
A= = 12 — det(A) = a11a22 — 412021
a1 Q22

Wie aber berechnet man die Determinante von hoher dimensionierten Matrizen?
Hier als Beispiel eine 3 x 3-Matrix:

Es bestehen nun mehrere Mdoglichkeiten, die Determinante einer 3 x 3-Matrix
zu berechnen (Laplace’scher Entwicklungssatz). Wir kénnen die Determinante
iber die gewichtete Summe der Elemente einer Reihe oder Spalte (egal welcher)
bestimmen.

e Fiir jedes Element der gewdhlten Spalte oder Zeile, hier a1, a1 und agsq,
wird ein Gewicht berechnet.

e Dieses Gewicht ist die Determinante einer 2 x 2-Matrix.

e Diese 2 x 2-Matrix erhédlt man, wenn man alle Elemente streicht, die in
der gleichen Spalte sowie Zeile stehen, wie das Element, fiir das man das
Gewicht berechnen will.

Also berechnen wir wie folgt fiir die Matrix A:

a21 @G22 Aa23
agz2 ass

a12 a3
o ( a2z  a23
asi  az2 as3

) = Q22033 — Q23032 = &

a11 a2 ais
_ a12 a13 _ _
asy asz | = = a12033 — a13a32 = [
asz2 ass
asz; Qs asz
11 a2 ais
. a2 a3 _ _
21 Q22 423 = azs  G23 = a12G23 — 13022 = 7Y
a3z a33

Die Determinanten der Restmatrizen werden Kofaktoren der Einzelelemente ge-
nannt. Das Vorzeichen des Kofaktors erhélt man, indem man den Spalten /Zeilen-
Index des Einzelelements addiert. Bei einer geraden Summe des Indexes ergibt

sich ein positives Vorzeichen, bei einer ungeraden Summe ein negatives Vorzei-
chen. Also:

Q.  — a11 =  Ggerade dal+1=2 also: +
6 — a2 = aungerade da 1 + 2= 3, also: —
Y — a3 = Ggerade dal-+3=4, also: +

Zusammengefasst ergibt sich die Determinante der 3 x 3-Matrix aus:
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Det(A) =aj-a—a2-f+az-y

Ebenso lasst sich die Determinante einer 4 x 4-Matrix berechnen, allerdings ist
dies verschachtelter, und somit aufwendiger. Hier ist es erforderlich, aus der 4 x 4-
Matrix auf analoge Weise erst vier 3 x 3-Matrizen zu extrahieren, um danach mit
der eben dargestellten Methode aus diesen 3 x 3-Matrizen deren Determinanten
zu errechnen. Also wird dieses Verfahren sehr schnell sehr aufwendig.

Eine alternative Berechnung der Determinante einer 3 x 3-Matrix funktioniert
folgendermafsen (Regel von Sarrus): Die Spalten der Matrix

ap b o
A= ag bg Co
a3 bz c3

stellt man wie folgt angeordnet dar:

ar b ca a1 by
az by ca ax by
az bz c3 az b3

Nun werden Elemente nach einem bestimmten Muster multipliziert und addiert
bzw. subtrahiert.

Abbildung A.1: Rechenschema

Wir rechnen:
det(A) = a1b203 + a3b102 -+ (121)301 — a3b201 — a1b302 — agblcg

Eine weitere Moglichkeit besteht darin, die Matrix in Stufenform zu bringen.
Hierbei ist das Vertauschen von zwei Zeilen oder das Multiplizieren einer Zeile
mit einer Zahl (z.B. mit (—1)) nun aber nicht erlaubt bzw. verdndert den Wert
der Determinante.

Beispiel:

Die Matrix X

4 7 6 2 3 4

0 2 1 5 4 5

4 7 7 5 6 6
X =

0O 2 1 8 6 ©6

0 4 2 16 16 14

8 14 13 7 9 12
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wird Schrittweise in Stufenform gebracht. Diese Matrix hat eine Determinante
mit dem wert 192. Auf die ausfiihrliche Darstellung der Berechnung der Deter-
minante sowie der herstellung der triagonalisierten Matrix (Stufenform) wird an
dieser Stelle verzichtet. Wir erhalten folgende Matrix als Ergebnis:

4 7 6 2 3 4
0 215 45
001 3 3 2
000 3 21
0 00 0 4 2
000 00 2
Das Produkt der Hauptdiagonalen 4 x 2 x 1 x 3 x 4 x 2 = 192 ergibt wiederum

det(A) = 192.

1.

Regeln fiir Determinanten

Fiir eine n x n-Matrix A gilt:

Wenn alle Elemente in einer Zeile oder Spalte von A gleich 0, dann
det(A) =0

. det(A) = det(A")

. Wenn alle Elemente in einer Zeile oder Spalte von A mit ¢ multipliziert

werden gilt ¢ det(A) =0

Wenn zwei Spalten oder Zeilen von A vertauscht werden wechselt det(A)
das Vorzeichen, der Absolutwert bleibt identisch.

. Wenn zwei Zeilen oder Spalten von A proportional sind, dann det(A) =

0

. det(A) bleibt unveréndert, wenn das Vielfache einer Zeile oder Spalte

zu einer anderen Zeile oder Spalte von A addiert wird.

Wenn B ebenfalls eine n x n-Matrix ist, dann:
det(AB) =det(A)-det(B)

. Fiir ¢ € R gilt det(pA) = ¢"det(A)

A.8 Adjunkte

Um die Adjunkte (abgekiirzt mit: adj(A) ) einer Matrix zu bestimmen miissen
wir folgendes berechnen:

Fiir jedes Matrixelement wird der Kofaktor bestimmt
Jedes mit Element der Matrix wird durch seinen Kofaktor ersetzt

Die Kofaktoren werden mit (+1) multipliziert, wenn die Indexsumme ge-
rade ist, mit (-1), wenn die Indexsumme negativ ist.
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e Danach wird die Matrix der Kofaktoren transponiert.
Beispiel:
2 1 2
2 0 0
4 2 2
Wir ersetzen die urspriinglichen Elemente der Matrix durch die zugehorigen

Kofaktoren. Dies geschieht durch die oben dargestellte Methode. Die Matrix
der Kofaktoren sieht so aus:

0 4 4
-2 -4 0
0 —4 -2

Nun wird fiir eine gerade Indexsumme mit (+1) multipliziert, mit (-1) bei un-
gerader Indexsumme. Also ergibt sich folgendes Schema:

a1l Gi2 @13 gerade ungerade  gerade + - +
as1 Q92 93 — | ungerade gerade ungerade — - 4+ -
as1 a3z as3 gerade ungerade  gerade + - +

Also ergibt sich folgendes:

H0)  —(4)  +(4) 0 -4 4
—(=2) +(=4) - | =2 -4 o
+(0)  —(—4) +(=2) 0 4 -2

Schlussendlich transponieren wir diese Matrix und erhalten so die Adjunkte.

0 —4 4 , 0 2 0
9 _4 0 trans;ﬂweren 4 4 4
0 4 -2 4 0 -2

A.9 Inverse

Bleibt noch die Inverse einer Matrix, auch Reziprokmatrix genannt. Sie ist nur
fiir quadratische Matrizen definiert. Die Inverse von A wird mit A~! abgekiirzt.
Es gilt: A- A~! = I. Wenn man sich die Zahlen, mit denen wir tagtiiglich rech-
nen als eindimensionale, also 1 x 1-Matrizen vorstellt, dann ist die Inverse zu 7
1/7, oder anders geschrieben 771, da 7-1/7 = 1 ist. 1 ist die Identitéitsmatrix
im eindimensionalen Raum. Sie besteht nur aus einem Eintrag, ndmlich 1, da
dieser einzige Eintrag gleichzeitig die gesammte Hauptdiagonale ist. Fiir hcher-
dimensionale Rdume wird die Berechnung der Inversen aufwendiger, sofern sie
iiberhaupt existiert.

e Die Inverse einer Matrix existiert nur fiir quadratische Matrizen, da nur
quadratische Matrizen eine Determinante haben, die zur Berechnung der
Inversen notwendig ist. Vorsicht: nicht jede quadratische Matrix besitzt
eine Inverse!
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e Die Inverse existiert nur, wenn die Determinante der Matrix von Null
verschieden ist. Solche Matrizen heissen regulir oder nicht-singuléar. Qua-
dratische Matrizen besitzen also nicht immer eine Inverse sondern kénnen
Inversen besitzen. Miissen sie aber nicht.

e Eine Matrix mit det(A)= 0 heisst singulér.

e Eine det(A)=0 resultiert dann, wenn man eine Zeile oder Spalte als Line-
arkombination einer oder mehrerer Spalten darstellen kann.

Berechnung der Inversen:
-1 _ adJ (A)
det(A)

Hier mag man sich noch einmal vor Augen fiihren, dass die Adjunkte einer Ma-
trix wieder eine Matrix ist, die Determinante einer Matrix jedoch keine Matrix
sondern ein Skalar. Ein Beispiel:

2 1 2 0 2 0
A=[2 0 0] ;adjA) = -4 -4 4 |; det(A)=4
4 2 2 4 0 -2

Wir setzen diese Werte ein:

. dj(A) . _
A2 = A)- A) !
det(A) adj(A) - det(A)
0 2 0 0 0.5 0
A= -4 -4 4 )4 = -1 -1 1
4 0 -2 1 0 —-05

wir erinnern uns, dass nun gilt A- A~' =T

2 1 2 0 05 0 1 00
2 0 0)- -1 -1 1 |=10 10
4 2 2 1 0 -05 0 01

Wir sehen hier, warum nur Matrizen mit einer det(A) # 0 eine Inverse besit-
zen: ganz einfach deshalb, weil die Berechnung mdéglich ist. Matrizen mit einer
det(A)=0 stofen bei der Berechnung der Inversen auf das altbekannte Problem
einer Division durch Null, dem einen “grofsen Verbot” aus Schultagen neben dem
Wurzelziehen aus negativen Zahlen. Es liegt also schlichtweg daran, das wir auf
dem Rechenweg in einer Sackgasse enden.

Eine alternative Methode die Inverse einer Matrix auszurechnen funktioniert
folgendermafen: Wir schreiben links die Matrix, z.B. A, die wir invertieren
wollen und rechts die gleichdimensionierte Einheitsmatrix I

(AlT)
2 1 2|1 0 0 Zeilel
2.0 0/0 1 0 | ZeilelI
42 200 0 1) Zeilelll

A9



Seite: 85

ANHANG A. MATRIX-ALGEBRA

Nun formen wir die linke Seite schrittweise so um, dass sie zur Einheitsmatrix
wird. Dadurch veréndert sich die Einheitsmatrix auf der rechten Seite so, dass sie
zur Inversen wird. Resultiert auf der linken Seite eine komplette Nullzeile oder
Nullspalte, so hat die Matrix A nicht vollen Rang, und sie ist nicht invertierbar.

Als 1. Schritt subtrahieren wir Zeile I von der Zeile II

2
2
4
Als 2. Schritt subtrahieren w
2 1 2
0 -1 -2 —
4 2 2

Als 3. Schritt multiplizieren wir IIT mit (-1)

2 1

ir 2-I von III

2 1

0 -1 —-2|-1
0 0 —-2]-2

4. subtrahieren wir III von I

2 1 2
0 -1 -2
0 0 2

2 1 0
0o -1 -2
0 0 2
6. addieren wir IT zu I
2 1 0
0 -1 0
0 0 2

7. dividieren wir I und III durch 2 und multiplizieren I mit (-1)

o o
|
—_
N OO

Das Ergebnis sieht wie folgt aus:

0

O O =
o = O
(=)

|
—_
—

-1 0
-1

[t

|
DN —
O = O

0 1
11
2 0

0 05
-1 -1

1

(I1A™")

O~ =
o = O

—_ o O

= O O

o

1
-1
-1

0

-1
-1

-0.5

|
|
|
|

1 211 0 0
0 00 1 O —1I
2 2|0 0 1

—IIT

+1IT

+1I

=2
(=1

=2
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Wir erreichen hier wiederum, wie in der vorherigen Rechnung:

0 05 0
adj(A)=( 1 1 -1
1 0 —05

Die Division zweier Matrizen kann als Multiplikation zweier Matrizen aufgefasst
werden. Dazu benétigt man die Inverse.

A
5= A - B™! deshalb auch a1 A A =T

Rechenregeln fiir Inverse

Sofern die Matrizen A, B und C invertierbar sind:

AhHt = A
AV = I, wennV =A""1
(AB)"* = B 'A™!
(ABC)"' = c'B'A™!
(A) = (ATl
(At = plAT!

Losen von Gleichungen mittels Inversen:

AX=B&X=A'B

XA=B& X =BA™!

A.10 Der Rang einer Matrix

Der Rang ist innerhalb der Mathematik ein Begriff aus der linearen Algebra.
Man ordnet ihn einer linearen Abbildung oder einer Matrix zu. Ubliche Abkiir-
zungen sind rang(A) oder rg(A). Bei einer linearen Abbildung ist der Rang als
Dimension des Bildes dieser Abbildung definiert. Zu einer Matrix exisitiert ein
Zeilenrang und ein Spaltenrang. Der Zeilenrang ist die Dimension des von den
Zeilenvektoren aufgespannten Vektorraumes und entspricht der Anzahl der un-
abhingigen Zeilenvektoren. Entsprechendes gilt fiir den Spaltenrang. Man kann
zeigen, dass der Zeilenrang und der Spaltenrang identisch sind. Man spricht des-
halb vom Rang einer Matrix. Fasst man eine Matrix als Abbildungsmatrix einer
linearen Abbildung auf, so besitzen beide -die Matrix und die lineare Abbildung-
den gleichen Rang.

Um den Rang einer Matrix zu bestimmen, formt man sie mittels gauss’schem
Eliminationsverfahren in eine dquivalente Matrix in Stufenform um. Die Anzahl
der von Null verschiedenen Zeilen ergibt den Rang der Matrix. Eine n x n-Matrix
heifit reguldr, wenn sie vollen Rang aht, also wenn rg(A) = n.
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Beispiel :
3 4 6 3 4 6
A=10 3 2 |~ 0 3 2 | =rang(A)=3
0 6 5 0 0 1
2 1 6 21 6
B=|0 6 4]~ 0 6 4 |=rang(B)=2
0 3 2 0 0 0

Die einzige Matrix mit dem Rang 0 ist die Nullmatrix 0. Fiir eine m x n Matrix
gilt: rang(A) < min (m,n).

Alle reduzierten Korrelationsmatrizen, die von einem gemeinsamen Faktor ge-
bildet werden haben eine Gemeinsamkeit: ihr Rang ist 1. Wenn die Matrix von
zwei gemeinsamen Faktoren gebildet wird ist ihr Rang 2. Ein rg(A)=1 bedeu-
tet, dass alle Spalten durch eine andere Spalte fehlerfrei reproduziert werden
kénnen. ein rg(A)=2 bedeutet, dass alle Spalten durch eine linearkombination
von zwel anderen Spalten “vorhergesagt” werden konnen. Wenn wir wissen, dass
k gemeinsame Faktoren gegeben sind, konnen wir daraus schleissen, dass der
Rang der reduzierten korrelationsmatrix ebenflls k ist. Bei zwei oder mehr Fak-
toren sind jedoch zusédtzliche Annehmen nétig, um das Modell zu formulieren.
Sind die Faktoren korreliert, und mit welchen Variablen stehen die Faktoren in
Beziehung? Verschmutzung der Daten durch Sampling- oder Messfehler kénnen
ebenfalls problematisch sein.

A.11 Idempotente Matrix

Eine quadratische Matrix heisst idempotent, wenn gilt: AA = A? = A.

Fir idempotente Matrizen X und Y gilt:
XY =YX — XY idempotent

I — X — idempotent

XI-X)=(I-X)X=0

A.12 Diverses

A.12.1 Gramian Matrix

Als Gramian Matriz bezeichnet man eine quadratische Matrix, wenn sie sym-
metrisch ist, und alle Eigenwerte > 0 sind. Korrelations- und Kovarianzmatrizen
sind immer gramian.
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A.12.2 Spektralzerlegung einer Matrix

Die Matrix R sei Reell und Symmetrisch. Dann kann sie in die drei Matri-
zen A, A und A’ zerlegt werdn. Dabei handelt es sich bei A um eine Matrix,
deren Spalten aus den Eigenvektoren von R bestehen. Die Matrix A ist eine
Diagonalmatrix, deren Hauptdiagonale die Eigenwerten von R enthilt. Es gilt:

R=AAA

4
ne (]

lisst sich zerlegen in AAA’, also:

AAA' = [ @1 12 A0 ail a1
a1 G99 0 A aiz a2

mit den entsprechenden Werten:

Die Matrix

AAA = <

< sl
SIFS
N——
VS
o O
ot O
N———
N
SING-
|
E
N——

A2



ANHANG B

MAXIMUM LIKELIHOOD

Im Kern geht es darum, dass wir eine konkrete Stichprobe vorliegen haben, und
uns fragen, welche Parameterwerte 6 (z.B. Mittelwert und Varianz bei Normal-
verteilung) das Zustandekommen dieser konkreten Stichprobe am wahrschein-
lichsten macht. Dazu miissen wir allerdings a-priori wissen, aus welcher Vertei-
lung diese Stichprobe gezogen wurde. Wenn wir wissen, dass die Stichprobe aus
einer normalverteilten Grundgesamtheit gezogen wurde, stellt sich die Frage der
Gestalt: welcher Mittelwert 1 und welche Varianz o2 macht die Stichprobenda-
ten am wahrscheinlichsten?

0.7
0.6
05
04
03
0.2

0.1

Abbildung B.1: Maximum Likelihood

In dieser Graphik sehen wir einige rot gekennzeichnete Mefwerte. Um intui-
tiv verstehen zu konnen, wie die ML-Methode funktioniert, wollen wir hier auf
Berechnungen verzichten. Gestrichelt sind mehrere Normalverteilungen einge-
zeichnet, wir sehen jedoch recht deutlich, dass es bei einigen eher, bei anderen
weniger wahrscheinlich ist, dass die Mefiwerte aus einer dieser Normalvertei-
lungen gezogen worden sind. Der Wahrscheinlichste Kandidat ist keine dieser
gestrichelten Verteilungen, sondern die blau eingeférbte Normalverteilung. Fiir
diese Normalverteilung ist die Wahrscheinlichkeit maximal, solche Mefiwerte
zu erreichen. Als Ergebnis erhalten wir die Parameter 6, ndmlich ;4 = 5 und
o = 0.85.

Der wichtigste Hintergedanke bei ML ist der, dass wir nicht die Wahrschein-
lichkeitsdichte f(Y'|0) betrachten, bei der es sich um eine Funktion von Y bei
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fixiertem 6 handelt, sondern uns die Likelihood Funktion L(0|Y) genauer an-
schauen, bei der es sich um eine Funktion von 6 fiir fixes Y handelt. Also ziehen
wir hier nicht aus einer iiber 6 genau spezifizierten Funktion beliebige Werte
Y, sondern wir betrachten die Werte Y der Zufallsstichprobe als fixiert, und
schliefen von diesen Werten auf ein ganz bestimmtes Set von Parametern 6.

B.1 ML formaler

Die Maximum Likelihood Methode (Grofte Dichte Methode) erfordert Kennt-
nisse iiber die Verteilungsfunktion der Zufallsvariable und schétzt dann die Pa-
rameter 6 dieser Verteilung. Dies geschieht so, dass das Produkt der Wahrschein-
lichkeiten der Stichprobe maximal wird. Geht man von dem Parameter 6, der
hoherdimensional sein kann, dann gilt fiir den Fall n unabhéngiger identischer
Wiederholungen die Dichte:

L(y1,---ynl®) = f(1110)f(y216) . .. f(yn]0)

Anstatt fiir feste Parameter 6 die Dichte der beliebigen y; Werte zu verdndern
kann man ebensogut fiir feste Werte y; die Dichte als Funktion von 6 auffassen:

L(0) = f(y1,-- - ynl0)

Diese Funktion heisst Likelihoodfunktion und besitzt als Argument den Para-
meter # bei festen Realisationen von y;. Diese Funktion ist zu maximieren:

L(0) = f(y110) f(y210) - .. f(ynl0) = H f(y:)0) L omax

Diese Funktion wird partiell nach den Parametern abgeleitet und dann Null
gesetzt. Also:

OL(0)

00
Damit hinreichende und notwendige Bedingung fiir ein Maximum beide erfiillt
sind, muss die zweite Ableitung kleiner Null sein. Also:

=0

0?L(0)
062

Da die Likelihood eines einzelnen Falles etwas dhnliches ist wie eine Wahrschein-
lichkeit, kann sie einen Wertebereich von [0;1] annehmen. Das Produkt vieler
Zahlen zwischen Null und Eins wird allerdings sehr klein, sodass sich ausge-
sprochen schlecht damit umgehen lisst. Um das Problem von Zahlen zu nahe
an Null zu vermeiden, wird die Likelihood iiblicherweise logarithmiert. Da Lo-
garithmieren eine monotone Transformation und somit die Extremwerte bei
den gleichen Werten fiir « vorkommen, kann ebenso gut (und einfacher!) der
Logarithmus der Likelihood Funktion, die sogenannte Log-Likelihood Funktion,
maximiert werden. Dies hat den grofen Vorteil, dass sie leichter abzuleiten ist.

<0

n

L(0) = f(]0) - f(y2l0) - .. - f(ynl0) = [ ] £(wil0)

=1

B.1
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Diese Funktion wird logarithmiert, da die Produkte im Term zu unerfreulichen
Ergebnissen fithren kénnen und sich Summen leichter ableiten lassen. Produkt-
terme werden beim logarithmieren in Summen, Exponenten in Produkte umge-
wandelt. Es resultiert also:

£(6) =0 L(8) = In f(3110) + 1n f(216) + ...+ In f(3al0) = 3 In f(3:10)
=1

Logarithmen

Es existieren unendlich viele Logarithmen. log, bezeichnet einen Logarithmus
zur Basis a. Haufig verwendete Logarithmen sind:

In = log., = Logarithmus naturalis, Basis e = 2, 718281828 ..
lg = log;;, = Dekadischer / Briggscher Logarithmus, Basis 10
Id /b = log, = Logarithmus Dualis / Binérlogarithmus, Basis 2

lg 100 = log,, 100 gibt als Ergebnis, welchen Exponent fiir 10 man bennétigt,
um 100 als Ergebnis zu erhalten. Also log;, 100 = 2, da 102 = 100
Gesetze zum Rechnen mit Logarithmen:

log,(u-v) = log,u+log,v
log,, (%) = log,u —log,v
log,(u") = rlog,u (r €R)
log, ¥/u = +log,u (neN\1)

Es gilt iibrigens — 21n L(6) ~ x>

Wahrscheinlichkeitssatze

Multiplikationssatz fiir abhingige Ereignisse

p(A1)p(A2|A1)p(As| A1 N A2 N Az) ... p(AR|A1 N Ay N A3 N ...N A1)

Multiplikationssatz fiir unabhingige Ereignisse
p(AiNAsNAsN...NAg) =

k
p(A)p(A2)p(As) ... p(Ax) = [ p(Ar)
i=1

B.1
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BAYES STATISTIK

Bei der Bayes-Statistik handelt es sich nicht einfach um eine weitere Methode
der herkémmlichen Statstik, sondern viel mehr um einen anderen Ansatz.

e In der klassischen parametrischen Inferenzstatistik werden die Daten unter
der Annahme verschiedener Parameterwerte analysiert. Nach bestimmten
Kriterien werden dann einige ausgewahlt.

e In der Bayesianischen Statistik wird die Verteilung der Schitzparameter
analysiert. Dies geschieht unter der Annahme einer bestimmten Vertei-
lungsstruktur der Daten sowie der a-priori Verteilung der gesuchten Pa-
rameter.

Ein VORTEIL der Bayes-Statistik ist ihre Anwendbarkeit bei kleinen Fallzah-
len. So kénnen komplexe Modelle bei kleinem n berechnet werden, die mit her-
kémmlichen Methoden nicht zu bearbeiten wiren. Ebenso kann qualitatives und
quantitatives Wissen gemeinsam in die Vorannahmne der a-priori-Verteilung
der Parameter eingehen.

Ein oft hervorgehobener NACHTEIL ist die grofte Bedeutung subjektiver Ver-
teilungsannahmen der Parameter, die auf Vermutungen, fritheren Erfahrungen
oder -starken- Uberzeugungen beruhen kénnen. Dies ist ein Einfallstor fiir Kriti-
ker. Ein anderes Problem, das mit der Leistungsfihigkeit heutiger und zukiinfti-
ger PCs an Bedeutung verliert ist die analytische Intraktabilitdt vieler Modelle,
die sich nur durch numerische Schéitzverfahren wie Jackknife, Bootstrap oder
Markov Chain Monte Carlo-Simulationen l6sen lassen.

C.1 Frequentisten vs. Bayesianer

Der Hauptunterschied zwischen Bayesianern und “normalen” Statistikern liegt
in der grundsétzlichen Untersheidung des Begriffes der Wahrscheinlichkeit. Die
klassische, frequentistische Sicht definiert Wahrscheinlichkeit wie folgt:

lim P( fa
n— 00 n

p(A)‘<5> =1
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Das frequentistische Wahrscheinlichkeitskonzept ist unabhdingig von subjektiven
Wabhrscheinlichkeitsvorstellungen.

Die bayesianische Sichtweise hingegen geht von subjektiven Wahrscheinlichkeiten
aus. Nur so ist es moglich, Aussagen iiber die unbedingte a-priori Parameter-
wahrscheinlichkeit p(#) zu machen. Wahrscheinlichkeit ist demnach die subjek-
tive Einschétzug von Unsicherheit, z.B. durch Erfahrung, Epertisen, Forschung
(qualitativ oder quantitativ) oder Aberglaube, wie mancher Kritiker polemisch
meinen wird.

In der Praxis ist der bayesianische Ansatz gerade bei kleinen Stichproben dem
klassischen, frequentistischen Ansatz iiberlegen. Zwar ist hier die Wahl der a-
prioir-Verteilung von stirkerer Bedeutung, jedoch ist die Anwendung von baye-
sianischen Methoden besser -oder iiberhaupt- moglich als frequentistische Ver-
fahren.

Der frequentistische Standarfehler wird durch die bayesianische Standardabwei-
chung der a-posteriori-Verteilung ersetzt, das 95%-Konfidenzintervall durch das
2,5% bis 97,5%-Perzentil-Intervall der a-posteriori-Verteilung.

C.2 Grundlagen und Idee

Wihrend in der frequentistischen Statistik z.B. {iber die Maximum Likelihood-
Methode bei gegebenen Daten der wahrscheinlichste Parameter gesucht wird, so
geht die Bayes-Statistik einen anderen Weg. Hier wird nicht nur nach dem Para-
meter gesucht, der die Datenwahrscheinlichkeit maximiert, sondern auch nach
der tatsdchlichen Wahrscheinlichkeit der verschiedenen mdglichen Parameter-
werte. Der Bayes Ansatz gibt sich nicht mit der konditionalen Datenwahrscheinlichkeit

p(X10)*

zufrieden, sondern ermittelt die konditionale Parameterwahrscheinlichkeit. Die-
se wird auch als
a-posteriori-Wahrscheinlichkeit bezeichnet:

a-posteriori® : p(6| X))

Dies geschieht durch den bekannten SATZ VON BAYES:

p(X1[0)p(0)
p(X)
Bei genauerem hinsehen entdecken wir ein Problem:

p(01X) =

a-priori® : p()

die sogenannte a-priori-Wahrscheinlichkeit, ist unbekannt. Da sie nicht objektiv
gegeben ist, muss hier eine Schitzung vorgenommen werden, die -wie wir ge-
hort haben- auf Vermutungen, Uberzeugungen oder Erfahrungen beruhen kann,

I'Wahrscheinlichkeit der Daten unter Bedingung der Parameter
2Wahrscheinlichkeit der Parameter unter Bedingung der Daten
3Wahrscheinlichkeit der Parameter

C.2
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und eine argumentative Schwachstelle des Bayes-Ansatzes darstellt, da sie als
subjektiv unwissenschaftlich angesehen werden koénnte.

Die unbedingte Datenwahrscheinlichkeit p(X) beruht indirekt auf der angenom-
men a-priori-Wahrscheinlichkeit. Warum ist das so? Uber den SATZ DER TO-
TALEN WAHRSCHEINLICHKEIT kann sie als Summe aller méglichen Konditional-
wahrscheinlichkeiten ermittelt werden:

p(X) = p(X|0)p(0)
0

Im Falle stetiger Parameter ersetzen wir . einfach durch |.

ST
-

Abbildung C.1: Satz der totalen Wahrscheinlichkeit

Setzt man die Gleichung etwas anders ergibt sich:

p(X1[0)p(0)
p(X)

in anderer Form: p(f|X) = _PX10)p®)

p(#]X) =
S p(X|0)p(0)
0
Der letzte Bruch zeigt uns -noch einmal auf andere Weise-, dass die a-posteriori-
Wahrscheinlichkeit fiir jeden Parameter angibt, wie hoch seine Wahrscheinlich-
keit, gegeben die Daten, ist.

BEGRIFFE
a priori p(0) unbedingte Parameterwahrscheinlichkeit
a posteriori  p(f|X) bedingte Parameterwahrscheinlichkeit
p(X10) bedingte Datenwahrscheinlichkeit
p(X) unbedingte Datenwahrscheinlichkeit

C.2
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Beispiel: Satz der totalen Wahrscheinlichkeit

Betrachten wir Abbildung C.2: Um p(B) zu berechnen, miissen wir nach dem
Satz der totalen Wahrscheinlichkeit

m

p(B) = ZP(BMDP(AD

i=1
berechnen. Hier ergibt sich
p(B) = p(B|A1)p(A1) + p(B|A2)p(Az) + p(B|As)p(As) + p(B|A4)p(As)
Warum ist dies richtig? Wir wissen, dass
p(ANB) =p(B|A)p(A)

gilt.
Wenn wir also substituiern, erhalten wir:

p(B) =p(A1 N B) +p(A2 N B) + p(A3 N B) + p(As N B)

Dies entspricht den 4 grauen Teilstiicken, da es sich bei diesen um genau die
Bereiche handelt, die A; und B abdecken. Addiert man diese, so erhélt man

p(B).

Abbildung C.2: Beispiel zum Satz der totalen Wahrscheinlichkeit

C.2



ANHANG D

DAS ALLGEMEINE LINEARE MODELL

Die Gleichung des allgemeinen linearen Modell (ALM) entspricht der Gleichung
der multiplen Regression fiir Fall i

Yi = Bo + Brxi + Boxio + Bawiz + ...+ Bz + &

Das Allgemeine Lineare Modell ist ein Ansatz, der viele varianzanalytische Ver-
fahren verbindet. Hierzu zdhlen als Kernstiicke die multiple Regressions- und
Korrelationsanalyse und zudem die Diskriminanzanalyse, die Varianzanalyse,...
Es handelt sich um einen Integrationsansatz, dem die einzelnen Verfahren vor-
ausgingen. Im allgemeinen linearen Modell (ALM) sind die Parameter additiv
verkniipft und treten (hochstens) in der ersten Potenz auf. Produkte oder Po-
tenzen der Parameter sind nicht zuléssig, sind es aber bei den Variablen.

Yi = Bo + B1xi1 + Poth + B3TiTia + €

wobei diese Form wieder in die allgemeine Form des ALM iiberfithrbar ist, indem

Ti1%i4 = T;3 Sowie x?l = X9

gesetzt wird. So erh&lt man wieder die Form

Yi = Bo + Brxi + Boxio + B3z + &

Die Pradiktorvariablen bzw. unabhéngigen Variablen kénnen sowohl Intervalls-
kalenniveau als auch qualitatives Messniveau besitzen. Auch das Kriterium (ab-
hangiger Teil) kann mehrdimensional sein. In diesem Falle werden sowohl die
Prédiktorvariablen als auch die Kriteriumsvariablen als Linearkombinationen
dargestellt.

Geht man von nur einer abhingigen Variablen und mehreren unabhingigen
Variablen aus, sieht die Grundgleichung des ALM wie folgt aus:

y=XB+e

oder
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nY1 =n XppPn +n €1
mit
e Dem n x 1 Spaltenvektor y, der abhéngigen Variablen.
e Der Matrix X, die die Werte der n Personen auf den p Variablen enthalt.
e Dem Spaltenvektor 3, der die Gewichte fiir die p Variablen enthélt.

e Dem Spaltenvektor ¢, der die Fehlerterme der n Personen enthélt.

e Die Prédiktoren sind fest / konstant

e ¢ und y sind Zufallsvariablen

e E(e)=0
o Flee')=1
€1
€2
Ee)=|.|(e1 a2 ... &n)
En
Multipliziert sich aus zu:
E(e2)  E(e1e2) ... E(cien) o2 0 ... 0
E(ese1)  E(£3) E(e26en) 0 o2 0
E(ener) . E(E2) 0 0 ... o2
Also
e~ N(0,0°1)

Dies entspricht der Varianz-Kovarianzmatrix der Fehlerterme wegen E(e) = 0.
Die Fehlervarianz ist konstant und es gibt keine Kovarianzen, d.h. die Fehler
sind unkorreliert. Riickschliisse auf die Population / Hypothesentests setzen die
Annahme der Normalverteilung der Fehler voraus.

Werden im ALM Variablen mit nominalem Mefiniveau betrachtet, miissen sie
verschliisselt werden. Die Varianzanalyse kann mit unabhéngigen Variablen auf
Nominalniveau durchgefiihrt werden. Verschliisselungsarten sind Dummycodie-
rung, Effektcodierung und Kontrastcodierung.

D.1 Kodierung

Nehmen wir zum beispiel die nominale Variable Parteizugehdrigkeit mit den
Auspriagungen

D.1
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SPD
CDhU
FDP
Griine

IENGUN R

Sind die Nominalvariablen codiert, konnen sie als Priadiktoren in einer multi-
ple Regressionsgleichung zur Vorhersage einer abhingigen Variablen eingesetzt
werden Welche Bedeutung haben die jeweiligen b-Gewichte?

Dummycodierung

In der Dummy-codierung werden aus den m Auspriagungen der urspriinglichen
nominalen Variablen m — 1 Dummyvariablen generiert. Dies geschieht deshalb,
da sich ansonsten Multikollinearititsprobleme ergeben, da die Information im
letzten Dummy als redundant angesehen werden kann, da sie sich 100% aus
den vorherigen m — 1 Dummys reproduzieren lasst. Hier die drei Dummys SPD:
ja/nein, CDU: ja/nein und Grine: ja/nein.

Partei ‘ 1 Ty I3
SPD 1 0 0
CDU 0 1 0
FDP 0 0 1
Griine 0 0 0

Die Dummycodierung mit der Regressionsgleichung

Ui = bo + bij1x1 + bioxe + +bi3w3
Hat Person i die Parteipriferenz Griine, so ergibt sich
9i=bp+0+0+4+0, a=yy =g nach KQ
Eine andere Person préferiert die SPD:
9i =1 = bix + 0+ 0+ 7,
bin =y1 — Ya
Die Konstante y entspricht dem Mittelwert der Referenzgruppe, die Gewichte

b;, driicken die Differenzen zwischen Referenzgruppe und Gruppe i aus.

Effektcodierung

Personen, die in allen Kategorien eine Null haben, werden mit -1 codiert.

Partei ‘ 1 To I3
SPD 1 0 0
CDhU 0 1 0
FDP 0 0 1
Griine -1 -1 -1

D.1
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Die Regressionsgleichung lautet wieder wie folgt:

9i = bo + bi1m1 + biawa + +bizws
Nach der KQ-Methode gilt als bester Schitzer fiir Personen mit Parteipriferenz
Griine g4, es ergibt sich
Yo = —b1 — by — b3+ bo

Fiir die iibrigen Personengruppen ergeben sie die Mittelwerte

o= b + by
Yo = by + b
y3 = by + bo

Nach Einsetzen und Auflésen nach by ergibt sich

:§1+.@2+373+§4

bo 1 =G
und damit
b = -G
by = yp2—G
b3 = y3-G

Die Konstante by entspricht bei Effektcodierung dem Gesamtmittelwert der ab-
hingigen Variablen. Die b; entsprechen den Differenzen der Gruppenmittel zum
Gesamtdurchschnitt.

Kontrastcodierung

Entspringt dem Gedanken einzelne Mittelwerte einer Varianzanalyse zu verglei-
chen. Dies geschieht mittels Gewichten ¢;, fiir die gilt Z ¢ =0

?

Partei ‘ Tr1 To T3
SPD 1 0 %
CDU -1 0 5
FDP 0 1 %
Griine 0 -1 -3
Kontrastieren von SPD/CDU
ci=1,ca=—-1,¢c3=0, c, =0 = x
Kontrastieren von FDP/Griine
c1=0,c3=0,c3=1, cus =—-1 — x5
Kontrastieren von SPD/CDU mit FDP/Griine
1 1
c1 = 5, Co = —5 — I3

Die Regressionsgleichung lautet wieder wie folgt:

?;i = bO + bilxl + bi2-r2 + +bi3x3

Die beste Schitzung ist auch hier

D.1
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Yy = by + 164 + 0bs + lb3
Yo = by + (—1()1) + 0bs + %bg
Y3 = by + 0bq + 1b, + — %) b3
ya = by + 0b1 + (—].)bz + —5) b3

e z; konstrastiert Zugehorigkeit zu CDU oder SPD, sonst 0.
o x5 konstrastiert Zugehorigkeit zu FDP oder Griinen, sonst 0.

e 13 konstrastiert Zugehorigkeit CDU/SPD oder FDP/Griine.

Fiir die 4 Gleichungen mit 4 Unbekannten erhdlt man nach Auflésung fiir
bo, b1, b2, bs:

b, = Y1 ; Y2
by = Y3 ; Ya
be — U1+ Yo Y3+ Ya
; = L
2 2
bo Y1+ Y2+ Y3+ Ya G

4

by entspricht dem Gesamtmittelwert der abhéngigen Variablen y. Die b-Gewichte
entsprechen dem jeweils codierten Kontrast.

D.2 Verallgemeinertes lineares Modell

Das verallgemeinerte Lineare Modell subsummiert auch das Allgemeine Lineare
Modell. Die Schitzung fiir dichotome und poissonverteilte abhéngige Variable
l&sst sich im Rahmen der verallgemeinerten linearen Modelle vereinheitlichen.
Die Basis des Verallgemeinerten Linearen Modells sind die Wahrscheinlichkeits-
funktionen der “Exponentialfamilie”. Entwickelt wurde die Idee der Exponen-
tialfamilie von Fisher, wobei es darum geht, eine einheitliche allgemeine ma-
thematische Struktur einer Funktion zu schaffen, innerhalb derer verschiedene
Subfunktionen darstellbar sind. Exponentialfamilie meint nun, dass verschiede-
ne Unterfunktionen in der Exponentenkomponente der natiirlichen Exponenti-
alfunktion (e = 2.71828...) enthalten sind. Jede Subfunktion kann in den Expo-
nenten gebracht werden, wobei der Transfer iiber den natiirlichen Logarithmus
geschieht.

D.2.1 Beispiele

e Fiir die Poisson-Verteilung

67“/174
y!

fylp) =

— exp {ylog(p) — p —log(y!)}

D.2
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e Fiir die Binomialverteilung

flyln,p) = (Z)py(l _p)n

— exp {log (Z) + ylog(p) + (n — y) log(1l — p)}

e Fiir die Normalverteilung

fylp,o®) = \/2;7@@{_(1/2_05)2}

1 1
— exp {—2 log(2m0?) — o5 (y* — 2yp + /f)}

D.2.2 Generalisierung

Die Generalisierung des linearen Modells geschieht wie folgt:

1. y ist die Zufallskomponente des Modells, diese ist entsprechend einer der
Wahrscheinlichkeitsfunktionen der drei Exponentialfamilien (siehe oben)
verteilt

2. © = X ist die systematische Komponente des Modells. Die erklérenden
Variablen x beeinflussen y nur indirekt iiber die Funktion g()

3. Die Linkfunktion © verbindet die systematische und die Zufallskomponen-
te des Modells

4. Die Linkfunktion sorgt dafiir, dass im linearen Modell mit Variablen ge-
arbeitet werden kann, die den Modellkriterien nicht entsprechen.

Die Schitzung der Parameter bzw. Maximierung der Liklihoodfunktion ge-
schieht iiber den Newton-Raphson-Algorithmus. Zur Kategorie der verallgemei-
nerten linearen Modelle zahlt beispielsweise die logistische Regression.

D.2
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