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KAPITEL 1

MULTIPLE REGRESSION

Bei der multiplen Regression handelt es sich um ein Standardverfahren der mul-
tivariaten Statistik. Hierbei wird von einem linearen Zusammenhang zwischen
einer abhängigen, zu erklärenden Variablen mit einer -oder mehreren- unab-
hängigen, erklärenden Variablen ausgegangen. Um die Idee besser erfassen zu
können wenden wir uns zunächst der einfachen linearen Regression zu, die aus
dem Grundstudium noch in vager Erinnerung sein sollte.
In der einfachen linearen Regression versuchen wir, eine metrische abhängige
Variable y durch eine unabhängige metrische Variable x vorherzusagen. Hierzu
benötigen wir eine Gerade (daher der Name lineare Regression), die sogenannte
Regressionsgerade, auf der die vorhergesagten Punkte liegen. Ihre Gleichung
lautet ŷi = b0 + b1xi. Diese Gerade ist die Optimale Gerade durch die von
den Variablen x und y gebildete Punktwolke. Sehen wir uns als Beispiel den
Scatterplot für folgende Daten an:
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Abbildung 1.1: Scatterplot

x 2 3 4 4.5 5 5.5 6 6.5 7 9
y 4 3 2 3 7 6 4 10 9 7
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Seite: 5 KAPITEL 1. MULTIPLE REGRESSION

Wie erhalten wir unsere Regressionsgerade für die obige Graphik? Wir benötigen
eigentlich nur eine Handvoll Dinge:

1. Das arithmetische Mittel von y, dies beträgt 5.5.

2. Die Regressionsgerade ŷ = b0+b1xi. Die Parameter a und b sind momentan
noch unbekannt, dies ist aber nicht weiter schlimm.

3. Das Konzept der Varianzzerlegung.

4. Die Daten, natürlich.

1.1 Least Squares & Varianzzerlegung

Sehen wir uns einmal den Scatterplot inklusive y und ŷi an:
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ŷi

y

Abbildung 1.2:

Hier tre�en wir auf das Verfahren der kleinsten Fehlerquadrate (oder eng-
lisch: least squares). Entwickelt wurde es vom dem Mathematiker Carl Friedrich
Gauss, der uns von den letzten 10 DM Scheinen bekannt ist. Mit diesem Verfah-
ren lässt sich die perfekte Regressionsgerade mit mathematischer Genauigkeit
bestimmen.
Bevor wir uns ansehen, wie die Regressions-
gleichung (ŷi = b0 + b1 · xi) bestimmet wird,
müssen wir uns noch mit einigen Grundlagen
vertraut machen, die in diesem Zusammen-
hang eine Rolle spielen.

� Die beste Vorhersage von y ohne
Kenntnis von x ist das arithmetische
Mittel von y, also ȳ. Dies gilt ebenso,
wenn zwischen x und y kein Zusam-
menhang besteht, also r = b = 0.

1.1



Seite: 6 KAPITEL 1. MULTIPLE REGRESSION

� Die beste Vorhersage mit Kenntnis von
x ist nicht mehr ȳ sondern ŷ, also die Regressionsgerade.

Für jeden einzelnen Fall sind 3 Werte von Bedeutung. Einmal der wirklich ge-
messene Wert yi, der von der Regression vorhergesagte Wert ŷi sowie ȳ

� Die Abweichung der gemessenen Werte y von ȳ wird gesamte Abweichung,
gesamte Streuung oder gesamter Fehler genannt. Wir werden später den
Zusammenhang mit der Varianz von y sehen.

� Die Abweichung der vorhergesagten Werte ŷ von ȳ wird erklärter Fehler
genannt. Dies ist die Verbesserung der Vorhersage, die die Regressionsge-
rade gegenüber ȳ bietet.

� Die Abweichung der gemessenen y-Werte von den vorhergesagten ŷ-Werten
der Regressionsgeraden ist der nicht erklärte Fehler von y.

Die Gesamte Streuung von y setzt sich aus zwei Komponenten zusammen: dem
Teil, der durch x erklärt wird, und dem Teil, der nicht durch x erklärt wird.
In Graphik 1.2 sehen wir einen Scatterplot mit eingezeichneter Regressionsge-
rade ŷ und arithmetischem Mittel ȳ. In Graphik 1.3 sind zusätzlich die eben
angeführten Begri�e für einen einzelnen Datenpunkt eingetragen.
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ŷi − y

yi − ŷi
yi − y

Abbildung 1.3: Beispiel mit einem Datenpunkt

Was bedeuten diese Begri�e nun?
Die blaue Strecke ist die Abweichung des Punktes y von seinem arithmetischen
Mittel ȳ. Dies ist der individuelle Beitrag des Punktes zum Gesamten Fehler von
y. Die rote Strecke ist der Beitrag zum nicht-erklärten Fehler, also der Abwei-
chung von der Regressionsgerade. Die grüne Strecke der Beitrag zum erklärten
Fehler, also was die Regressionsgerade �besser� vorhersagt als das arithmetische
Mittel ȳ.
Wie kommen wir an die Werte für die verschiedenen Komponenten? Für einen
einzigen Fall gilt folgendes:

� ŷi − y = erklärter Fehler

1.1
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� yi − ŷi = nicht erklärter Fehler

� yi − y = gesamter Fehler

Da wir es aber nicht nur mit einem einzelnen Fall zu tun haben, sondern mit
mehreren, nämlich n Fällen, müssen wir mehrere Datenpunkte mit jeweils einem
erklärten Fehler, nicht erklärten Fehler und gesamten Fehler berücksichtigen.
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Abbildung 1.4: Beispiel mit allen Datenpunkten

Für alle Datenpunkte werden nun die einzelnen Fehlerwerte aufsummiert. Wir
haben es also hier nicht mit

yi − y, ŷi − y, yi − ŷi
für einen einzelnen Datenpunkt, sondern mit der Summe mehrerer -nämlich n-
Datenpunkten, unterteilt nach den verschiedenen Fehlerarten zu tun:

n∑

i=1

yi − y,
n∑

i=1

ŷi − y,
n∑

i=1

yi − ŷi

Hierbei stoÿen wir auf ein Problem. Die verschiedenen Summen ergeben Null.
Diese Eigenschaft tritt ebenfalls bei der Berechnung der Varianz auf. Wir bedie-
nen uns hier eines Tricks um dies zu vermeiden: Wir quadrieren die Di�erenzen
bevor wir sie summieren. Es resultiert nun:

n∑

i=1

(yi − y)2,

n∑

i=1

(ŷi − y)2,

n∑

i=1

(yi − ŷi)2

Diese 3 Terme werden �Fehlerquadratsummen� genannt. Ho�entlich ist deut-
lich geworden, warum. Es handelt sich hierbei um die quadrierten Summen der
Di�erenzen, oder anders gesagt die quadrierten Summen der Fehler. Es besteht
folgender Zusammenhang zwischen diesen Termen:

n∑

i=1

(yi − y)2 =

n∑

i=1

(ŷi − y)2 +

n∑

i=1

(yi − ŷi)2

1.1



Seite: 8 KAPITEL 1. MULTIPLE REGRESSION

Teilen wir alle 3 Terme durch n − 1 erkennen wir etwas. Die totale Streuung
wird durch die gleiche Formel ausgedrückt, wie die Varianz von y. Somit ist die
Varianz von y in 2 Teile zerlegbar. Einen Teil, der durch die Regression erklärt
wird, und ein Teil der durch die Regression nicht erklärt wird.

∑
(yi − y)2

n− 1
=

∑
(ŷi − y)2

n− 1
+

∑
(yi − ŷi)2

n− 1
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Abbildung 1.5: Gesamter Fehler

In der folgenden Tabelle sind die einzelnen Fehler berechnet.

Tabelle 1.1: Fehlerberechnung

x y ŷ ef ef2 nef nef2 gf gf2

ŷ − ȳ (ŷ − ȳ)2 y − ŷ (y − ŷ)2 y − ȳ (y − ȳ)2

2 4 2.633 −2.876 8.220 1.367 1.869 −1.5 2.25
3 3 3.515 −1.985 3.940 −0.515 0.265 −2.5 6.25
4 2 4.400 −1.103 1.216 −2.400 5.747 −3.5 12.25
4.5 3 4.838 −0.662 0.438 −1.838 3.380 −2.5 6.25
5 7 5.279 −0.221 0.048 1.721 2.960 1.5 2.25
5.5 6 5.720 0.221 0.048 0.280 0.078 0.5 0.25
6 4 6.161 0.662 0.438 −2.161 4.673 −1.5 2.25
6.5 10 6.603 1.103 1.216 3.397 11.542 4.5 20.25
7 9 7.044 1.544 2.383 1.956 3.827 3.5 12.25
9 7 8.808 3.308 10.943 −1.808 3.269 1.5 2.25
52.5 55 −0.003 28.890 −0.001 37.610 0 66.5

Lassen wir uns die Varianz von y auszurechnen erhalten wir 7.389 als Ergebnis.
Teilen wir die Quadratsumme des gesamten Fehlers (66.5) durch n−1, in unserm
Falle also 9 erhalten wir ebenfalls die Varianz:

66.5

9
= 7.389

1.1
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Was das Verfahren der kleinsten Fehlerquadrate tut, ist die Regressionsgerade
aus der unendlichen Anzahl von möglichen Regressionsgeraden zu bestimmen,
für die die Quadratsumme des nicht erklärten Fehlers minimal ist. Es gibt keine
Regressionsgerade für die dieser Wert geringer ist. Der erklärte Teil ist also
analog maximal.

1.1
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1.2 OLS mathematisch

Wie bereits erwähnt lautet die Gleichung der Regressionsgerade:

ŷi = b0 + b1xi

Die nicht erklärte Streuung ist wie oben dargelegt bestimmt, und soll minimal
sein:

n∑

i=1

(yi − ŷi)2 1

n

!
= min

In folgender Graphik sehen wir, was dies bedeutet: Auf der x und y-Achse sind
jeweils mögliche Werte für b0 und b1 abgetragen. Am tiefsten Punkt des Graphen
be�ndet sich die OLS-Lösung für b0 und b1.

3
2

−3
0.0

1

−2

2.5

−1

5.0

0

x

y

7.5

0

10.0

−1

1

12.5

2
−2

15.0

3

17.5

−3

Abbildung 1.6: Bestimmung des kleinsten Fehlerquadrates

Als ersten Schritt substituieren wir ŷi in
∑n
i=1(yi − ŷi)2 1

n durch b0 + b1xi:

n∑

i=1

(yi − (a+ bxi))
2 1

n

Ausmultiplizieren

n∑

i=1

(y2
i − 2(b0 + b1xi)yi + (b0 + b1xi)

2)
1

n

1.2
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n∑

i=1

(y2
i − 2yib0 − 2yib1xi + b20 + 2b0b1xi + b21x

2
i )

1

n

Partielle Ableitung nach b0 Partielle Ableitung nach b1

∂f(b0,b1)
∂b0

∂f(b0,b1)
∂b1

∑ −2yi+2b0+2b1xi
n = 0

∑ −2yixi+2b0xi+2b1x
2
i

n = 0

2−
∑
yi+

∑
b0+

∑
b1

∑
xi

n = 0 2
−

∑
yixi+

∑
b0

∑
xi+

∑
b1

∑
x2
i

n = 0

−
∑
yi
n +

∑
b0
n +

∑
b1

∑
xi

n = 0 −
∑
xiyi
n +

∑
b0

∑
xi

n +
∑
b1

∑
x2
i

n = 0

−ȳ + nb0
n + nb1

n x̄ = 0 −xy + nb0
n x̄+ nb1

n x̄2 = 0

−ȳ + b0 + b1x̄ = 0 −xy + b0x̄+ b1x̄2 = 0

b0 + b1x̄ = ȳ −xy + (ȳ − b1x̄)x̄+ b1x̄2

b0 = ȳ − b1x̄ −xy + x̄ȳ − b1x̄x̄+ b1x̄2 = 0

−xy + x̄ȳ − b1x̄2 + b1x̄2 = 0

Hier ist die linke partielle Ableitung (nach b0) beendet, die Gleichung für die
Regressionskonstante (das Interzept) im bivariaten Fall lautet also: b0 = ȳ−b1x̄.
Die rechte partielle Ableitung nach b1 ist noch nicht vollendet, wir müssen also
noch weiter rechnen.

Partielle Ableitung nach b
−xy + x̄ȳ − b1(x̄2 − x̄2) = 0

−b1(−x̄2 + x̄2) = xy − x̄ȳ

b1(x̄2 − x̄2) = xy − x̄ȳ

b1 = xy−x̄ȳ
x̄2−x̄2

b0 = ȳ − b1x̄ b1 =
sxy
s2x

So ergeben sich also die Parameterschätzer für die Regressionsgerade:

ŷi = b0 + b1xi, mit

b0 = ȳ − b1x̄ und b1 =
sxy
s2
x

An dieser Stelle wird auf die Inspektion der zweiten Ableitung verzichtet, die
anzeigt ob es sich bei dem Extremwert um ein Minimum oder Maximum handelt.
Es handelt sich an dieser Stelle um ein Minimum.

1.2
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1.2.1 Multipler Fall

Während die bivariate Regression einen Schätzer für den Achsenabschnitt b0 und
einen Schätzer für den Steigungsparameter b1 benötigt, sind in der multiplen
Regression mehrere Steiungsparameter bj zu schätzen. Für b0 führt dies im Falle
einer Regression y auf x1, x2 und x3 zur Schätzung

b0 = ȳ − |byx1−x2x3 · x̄1 + byx2−x1x3 · x̄2 + byx3−x1x2 · x̄3|
mit den partiellen Regressionskoe�zienten

b1 = byx1−x2x3
= by(1−23)

b2 = byx2−x1x3 = by(2−13)

b3 = byx3−x1x2 = by(3−12)

1.2.2 Matrixnotation

Im multiplen Fall bietet es sich an, die Regressionsgleichung in Matrixnotation
zu notieren:

y = Xb + e

Durch Umstellen erhalten wir,

e = y −Xb

was minimiert werden soll. Das führt zu

e′e = (y −Xb)′(y −Xb)
!
= min

Die 1. Ableitung wird gleich Null gesetzt, um den potentiellen Extremwert dieser
Funktion zu ermitteln. Danach wird die 2. Ableitung gleich Null gesetzt, um
zu ermitteln, ob es sich um ein Minimum, Maximum oder einen Sattelpunkt
handelt, darauf wird an dieser Stelle verzichtet. Für ein Minimum muss die 2.
Ableitung positiv sein.
Nullsetzen der 1. Ableitung

∂

∂b
(e′e) = 0

Substituieren
∂

∂b
(y −Xb)′(y −Xb) = 0

Transponieren
∂

∂b
(y′ − b′X′)(y −Xb) = 0

Ausmultiplizieren

∂

∂b
(y′y − y′Xb− b′X′y + b′X′Xb) = 0

Weil y′Xb und b′X′y Skalare sind, gilt y′Xb = (y′Xb)′ = b′X′y, da ϕ = ϕ′:

∂

∂b
(y′y − 2b′X′y + b′X′Xb) = 0

1.2
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∂(y′y)

∂b
− ∂(2b′X′y)

∂b
+
∂(b′X′Xb)

∂b
= 0

Ableiten
0− 2X′y + 2X′Xb = 0

Ergibt
2X′Xb = 2X′y

X′Xb = X′y

Linksseitig mit (X′X)−1 multiplizieren, also durch (X′X)−1 teilen. (� 1
X′X

�)

(X′X)−1X′Xb = (X′X)−1X′y

Wir erhalten das Ergebnis für b

b = (X′X)−1X′y

1.3 Partielle Korrelation und Regression

Um die Begri�e partielle Korrelation und partielle Regression zu verdeutlichen
betrachten wir ein Beispiel: Eine Untersuchung ergab, dass die Fahrleistung (x1)
mit steigendem Alter (x2) abnimmt, obwohl zu erwarten ist, dass sie zunimmt.
Hier spielt aber eine andere Variable auch eine wichtige Rolle, das Alter des
Führerscheinerwerbs (x3). Partialisiert oder kontrolliert man nun die Variablen
x1 und x2 mit x3, dann ergibt sich der erwartete positive Zusammenhang.Das
Konstanthalten oder Herauspartialisieren von Ein�üssen dritter Variablen er-
folgt mittels Regression.Wir führen eine einfache Regression von Fahrleistung
(x1) auf Alter Führerscheinerwerb (x3) durch:

x̂1 = a13 + b13x3 mit x1 = a13 + b13x3 + ε1

und eine einfache Regression von Alter (x2) auf Alter Führerscheinerwerb (x3)

x̂2 = a23 + b23x3 mit x2 = a23 + b23x3 + ε2

Die Fehlervarianzen s2
ε1 und s2

ε2 sind die Anteile von x1 und x2, die durch x3

nicht geklärt werden. Führen wir nun mit diesen Restvarianzen eine Korrelation
oder Regression durch,

x̂1−3 = a12−3 + b12−3x2−3

analysieren wir x1 und x2 unter Konstanthalten von x3. Diese wurde mittels
Regression herauspartialisiert.

1.3
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Konventionen

� Partialvariable 1. Ordnung

x1−3 ist die Variable x1 ohne x3

x2−3 ist die Variable x2 ohne x3

� Partialvariable 2. Ordnung

x1−34 ist die Variable x1 ohne x3 und x4

x2−34 ist die Variable x2 ohne x3 und x4

� Partialvariable n-ter Ordnung

x1−34...n ist die Variable x1 ohne x3 und x4 . . . xn

x2−34...n ist die Variable x2 ohne x3 und x4 . . . xn

Partielle Korrelation

r12−3 =
cov(x1−3, x2−3)√
Var(x1−3)Var(x2−3)

=
r12 − r13r23√

1− r2
13

√
1− r2

23

Partielle Regression

bz1z2−z3 =
cov(z1−3, z2−3)

Var(z2−3)
=
r12 − r13r23

1− r2
23

beziehungsweise

bx1x2−x3 =
r12 − r13r23

1− r2
23

· s1

s2

1.3.1 Semipartielle Korrelation und Regression

Möchte man den Ein�uss der Variablen x3 nur aus einer Variablen herauspar-
tialisieren, z.B. nur x2, so ergibt sich für die Korrelation:

r1(2−3) =
cov(z1, z2−3)√

Var(z1)
√
Var(z2−3)

=
r12 − r13r23

1− r2
23

Der semipartielle Regressionskoe�zient entspricht dem partiellen Regressions-
koe�zienten. Die Korrelation von x1 mit x2 ohne x3 ist identisch mit der Re-
gression von x1 auf x2 ohne x3.

r1(2−3) = b1(2−3)

Die Regressionskoe�zienten können durch

� Simultane Schätzung (partielle Regressionskoe�zienten)

� Schrittweise Schätzung (semipartiell Regressionskoe�zienten)

erfolgen.

1.3
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Simultane Schätzung

Beispiel vierfache multiple Regression x1 = f(x2, x3, x4)
Die Regressionskoe�zienten geben Auskunft darüber, wie viel x̂1 sich verändert,
wenn die unabhängige Variable xj unter Konstanthalten der übrigen unabhän-
gigen Variablen x2, . . . xj−1, xj+1, . . . , xk um eine Einheit wächst.

x̂1 = b0 + b2x2 + b3x3 + b4x4

b1 = b12−34

b2 = b13−24

b3 = b14−23

Schrittweise Schätzung

Die Funktion x1 = f(x2, x3, x4) ist als Funktion fortschreitender Partialvaria-
blen anzusehen. Die Regressionskoe�zienten sind semipartielle Koe�zienten.
Variablen werden schrittweise hinzugenommen.

x̂1 = b0 + b2x2 + b3x3 + b4x4

b2 = b12

b3 = b1(3−2)

b4 = b1(4−2,3)

1.4 Relevante Koe�zienten

In der multiplen Regression wird von einem linearen Zusammenhang zwischen
einer abhängigen Variablen y und J ≥ 2 unabhängigen Variablen x ausgegangen.
Die Modellgleichung für die Grundgesamtheit lautet:

ŷi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi

oder in kürzerer Schreibweise

ŷi = β0 +

J∑

j=1

βjxij + εi.

In der uns zugänglichen Stichprobe lautet die Modellgleichung

ŷi = b0 +

J∑

j=1

bjxij + ei

Da wir von bj auf βj rückschliessen wollen. Im Zusammenhang mit der Regres-
sion existieren eine Reihe von Koe�zienten, die die Regression bestimmen und
die Güte der Anpassung beschreiben. Es folgt ein kurzer Überblick.

1.4.1 Determinationskoe�zient r2

Im bivariaten Fall gibt r2 ·100 den prozentualen Anteil der Varianz der abhängi-
gen Variablen y an, der durch die unabhängige Variable x erklärt/vorhergesagt
wird. Er berechnet sich über:

1.4
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r2 =
QSgesamt −QSnicht erklärt

QSgesamt
=

QSerklärt
QSgesamt

r2 =

n∑

i=1

(yi − y)
2 −

n∑

i=1

(yi − ŷi)2

n∑

i=1

(yi − y)
2

=

n∑

i=1

(ŷi − y)
2

n∑

i=1

(yi − y)
2

Je gröÿer der Wert der erklärten Quadratsumme, desto gröÿer wird r2. Analog
wird r2 kleiner, wenn die Quadratsumme der Residuen gröÿer wird. Ziehen
wir die Wurzel aus r2 erhalten wir den Korrelationskoe�zienten nach Pearson.
Um zu wissen, ob es sich um eine negative oder positive Korrelation handelt,
müssen wir inspizieren, ob der Regressionskoe�zient ein positives oder negatives
Vorzeichen besitzt.

Korrigiertes r2

Durch Hinzunahme weiterer unabhängiger Variablen kann das normale r2 al-
lenfalls steigen, aber nicht sinken, unabhängig, ob die weiteren Variablen einen
Erklärungsbeitrag leisten, oder nicht. Um dieses Problem zu beheben wurde der
korrigierte r2-Koe�zient für den multivariaten Fall entwickelt. Er berechnet sich
über folgende Formel:

r2
k = 1− n− 1

n− k (1− r2)

Wobei k die Anzahl der Parameter und n die Anzahl der Fälle angibt. Es
bleibt jedoch anzumerken, dass gegen falsch spezi�zierte Modelle nur theore-
tische Überlegungen und sorgfältige Diagnostik hilft.

Multiples r2

Beim multiplen r2 handelt es sich um den Anteil erklärter Varianz relativ zur
Gesamtvarianz, wie auch in der bivariaten Regression. Schreibt man nun die
mittels semipartieller Regressionskoe�zienten ermittelte erklärte Varianz von x

s2
x̂ = b212 · s2

2 + b21(3−2) · s2
3−2 + . . .+ b21k − 2, 3, . . . , k − 1 · s2

k−2, 3,..., k−1

und dividiert durch die Gesamtvarianz von x, so erhält man den multiplen De-
terminationskoe�zienten als Summe semipartieller Determinationskoe�zienten
fortschreitend höherer Ordnung.

r2
k =

b212 · s2
2

s2
1

+
b21(3−2) · s2

3−2

s2
1

+ . . .+
b21(k−2, 3,..., k−1) · s2

k−2, 3,..., k−1

s2
1

r2
k = r2

12 + r2
1(3−2) + · · ·+ r2

1(k−2, 3,..., k−1)

Damit wird eine Aussage über die zusätzliche Erklärungskraft durch Hinzunah-
me einer weiteren Variablen möglich.

1.4
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1.4.2 Der Standardfehler des Schätzers: RMSE

Hierbei handelt es sich um die Quadratwurzel aus den durchschnittlichen resi-
duen des Modells.

√∑n
i=1 (yi − ŷi)2

n− k
Diese Maÿzahl ist in der Einheit der abhängigen Variablen angegeben, sie gibt
den durchschnittlichen Wert an, den unsere Schätzung im Schnitt daneben liegt.
Je kleiner dieser Wert, desto besser ist die Anpassungsgüte des Modells.

1.4.3 Der F -Test

Beim F -Test handelt es sich um einen Signi�kanztest des Gesamtmodells. Der
F -Wert berechnet sich über:

k − 1

n− k ·
r2

1− r2

Getestet werden die Hypothesen:

H0 : βi = 0

Kann die H0 nicht verworfen werden, so ist das Ergebnis der Regression als
Zufallsergebnis zu bewerten.

1.4.4 Regressionskoe�zienten

Die Regressionskoe�zienten der multiplen Regression werden so berechnet, dass
die Werte jeder xj-Variable um diejenigen Anteile bereinigt werden, die durch
lineare E�ekte der anderen xj-Variablen verursacht werden. Man spricht auch
von herauspartialisieren. Es wird also eine Regression der abhängigen Variable
y auf die nun kontrollierten Variablen xj durchgeführt.

Beispiel: Nehmen wir die Regression yi = b0+b1xi1+b2xi2+b3xi3: Betrachten
wir den Koe�zienten b1, so gibt er uns den Wert der Veränderung für
yi an, wenn sich xi1 um eine Einheit ändert, alle anderen unabhängigen
Variablen, also xi2 und xi3, konstant gehalten werden.

Wird also eine Ein�ussreiche x-Variable fälschlicherweise nicht in das Regressi-
onsmodell aufgenommen, so kann auch ihr linearer E�ekt nicht aus den übrigen
xj Variablen herausgerechnet werden. Er wird sich also in den Residuen wieder-
�nden.

b-Koe�zienten

Bei den b-Koe�zienten handelt es sich um die unstandardisierten Regressions-
koe�zienten. Sie geben an, um wieviel -nämlich um bj- sich y verändert, wenn
sich die zugehörige xj Variable um eine Einheit verändert. Die bj Koe�zienten
können hinsichtlich ihrer Bedeutung nicht miteinander verglichen werden. Es
ist o�ensichtlich, dass die Veränderung des Einkommens um einen (oder 100)
Euro eine andere Bedeutung besitzt als eine Veränderung des Alters um ein
Jahr (oder 100).

1.4



Seite: 18 KAPITEL 1. MULTIPLE REGRESSION

β-Koe�zienten

Bei den βj-Koe�zienten handelt es sich um die standardisierten Regressionsko-
e�zienten. Hier ist der Hinweis angebracht, dass es sich, trotz der gleichen Be-
zeichnung, nicht um die Regressionskoe�zienten der Population handelt. Es gibt
mehrere Möglichkeiten sie zu berechnen: Entweder indem man die Ursprungs-
variablen xj und y z-Standardisiert, also:

zx =
xij − x̄j
sxj

sowie zy =
yi − ȳ
sy

oder über:

βj = bj
sxj
sy

Hier lautet die Interpretation folgendermaÿen: y verändert sich um β Standard-
abweichungen, wenn sich x um eine Standardabweichung verändert. Wir haben
es hier also nicht mehr mit den ursprünglichen Einheiten der Variablen - bei-
spielsweise Euro, Alter in Jahren oder ähnlichem- zu tun. Die βj-Koe�zienten
können untereinander hinsichtlich ihrer Bedeutung nach verglichen werden, da
sie sich auf Standardbweichungseinheiten beziehen.

1.5 Statistische Tests bei multipler Regression

1.5.1 Der Test der multiplen Regressionskoe�zienten

Die Berechnung von Kon�denzintervallen für die partiellen Regressionskoe�zi-
enten erfolgt, wie im bivariaten Fall

βj = bj ± sbj · zα2
oder

z =
bj − βj
sbj

mit

sbj =
s2
u∑

(xi − x̂j)
=

s2
u

(n− 1)s2
j (1− r2

j )

wobei s2
u die durch die j Variablen (j = 2, ..., J) nicht erklärte Varianz von x1

(abhängige / Kriteriumsvariable) ist.∑
(xi − x̂j) ist die durch die Variablen x1, x2, . . . , xj nicht erklärte Varianz

von xj (lineare Unabhängigkeit von xj von anderen unabhängigen Variablen)
(1 − r2

j ) wird als �Toleranz� bezeichnet und ist der Anteil der nicht erklärten
Varianz einer unabhängigen Variablen, gegeben die anderen unabhängigen Va-
riablen. Die Toleranz gibt Auskunft über das Ausmaÿ der Unabhängigkeit oder
Abhängigkeit der unabhängigen Variablen. Bei 0 besteht Multikollinearität.

1.5.2 Test der Korrelationskoe�zienten

Es ist zu testen, ob sich die multiplen Korrelationskoe�zienten signi�kant von 0
unterscheiden. Dies kann entweder durch einen Gesamttest oder durch partielle
Tests erfolgen.
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Der Gesamttest

Wenn nur einer der partiellen Korrelationskoe�zienten von 0 abweicht, ist H0

abzulehnen.

H0 : ρ12−3...k = ρ13−2,4...k = . . . = ρ1k−2,3...k−1 = 0⇔ ρ2
k = 0

Der multiple Determinationskoe�zient r2
k wird mittels F-Test der Form

F =
n− k
k − 1

· r2
k

1− r2
k

geprüft. Es folgen durch diesen Test fast immer hohe Werte für F und damit
signi�kante Modelle. Dieser Test gibt jedoch keine Auskunft darüber, welche
Variablen einen Beitrag leisten.

Der partielle Test

Bei diesem Test ist es möglich, den Beitrag der zuletzt aufgenommenen Varia-
blen (1.) zum Modell auf Signi�kanz zuprüfen (Die Variable xk, aus der alle
anderen unabhängigen Variablen X2, . . . Xk−1 herauspartialisiert sind). Man
kann jedoch auch den Beitrag einer beliebigen Partialvariablen (2.) zum Modell
testen.

1. Wir testen den Beitrag der letzten Variablen xk zum Modell auf Signi�-
kanz, d.h. wir testen H0 : ρ1k−2,3,...,k−1 = 0 mittels F-Test.

F =

1
2−1 · r2

1(k−2,3,...,k−1)

1
n−k · (1− r2

k)

indem wir die durch xk erklärte Varianz relativ zur nicht erklärten Ge-
samtvarianz setzen.

2. Getestet wird die H0, dass eine beliebige Variable Xj keinen signi�kanten
Beitrag leistet mit

F =
r2
1(j−2,3,...,j−1,j+1,...,k)

1
n−k · (1− r2

k)

1.5.3 Test des multiplen Regressionsmodells

Blockweise Regression

Es erfolgt eine simultane Schätzung der Koe�zienten, alle Variablen wer-
den simultan in das Modell aufgenommen. Die Einzelbeiträge der Varia-
blen zum Regressionsmodell werden nicht getestet. Lediglich die Erklä-
rungskraft des Gesamtmodells wird geprüft.
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Schrittweise Regression

Die Variablen werden nacheinander in Abhängigkeit ihrer einfachen Kor-
relationskoe�zienten in die Analyse einbezogen. Es bestehen 2 Möglich-
keiten:

Vorwärts Die Variable mit der höchsten Korrelation geht als erste Va-
riable in das Modell ein. Für die anderen Variablen werden nun partielle
Korrelationen berechnet und die Variable mit dem nächsthöchsten Erklä-
rungsbeitrag geht in das Modell ein. Das Ziel ist, aus einer gegebenen
Menge von xj Variablen diejenige Menge an xj herauszu�nden, deren li-
nearkombination bei geringster Anzahl von xj die beste Schätzung liefert.
Ist der r2-Zuwachs bei Hinzunahme nicht mehr signi�kant, wird abgebro-
chen. Als Kritikpunkt ist zu erwähnen, dass das Modell über die Relevanz
der Variablen entscheidet, nicht der Forscher mit theoretischen Argumen-
ten. Es ist möglich, dass Suppressorvariablen den E�ekt einer wichtigen
x-Variablen verdecken, die somit nicht ins Modell mit aufgenommen wird.
Dies kann zu dem Vorwurf führen, dass man theoretische Probleme in
formal-statistische aufgelöst hat, und es sich somit bei den Ergebnissen
um künstlich verursachte Fehlschätzungen handelt. In der Literatur wird
ihre allzuhäu�g sinnlose Anwendung angemerkt.

Rückwärts Hier werden die Variablen nicht vom höchsten r2 an einbe-
zogen. Wie bei der blockweisen Regression werden zuerst alle xj-Variablen
aufgenommen, danach wird diejenige xj-Variable mit dem niedrigsten,
nicht signi�kanten, Beitrag zu r2 aus dem Modell entfernt. Dies wird so
lange wiederholt, bis nur noch Variablen mit einem signi�kanten Beitrag
zu r2 vorhanden sind.

Es bleibt anzumerken, dass die schrittweisen Regressionen �vorwärts� und
�rückwärts� nicht notwendigerweise zu identischen Ergebnissen führen müs-
sen.

Hierarchische Regression

Die Einbeziehung der Variablen ist theoretisch untermauert. Es gibt zwi-
schen ihnen hierarchische Beziehungen, die in dem Modell modelliert wer-
den. Es wird folglich festgelegt, in welcher Reihenfolge die Variablen in
das Modell eingehen. Als Analyse in mehreren Stufen ist die hierarchische
(oder auch sequentielle oder kumulative) Regression der schrittweisen Re-
gression recht ähnlich. Der gewichtige Unterschied ist, dass es hier der For-
scher ist, der die Reihenfolge der Variablenaufnahme bestimmt, nicht das
statistische Modell über r2. Der Vorteil gegenüber der klassischen, simul-
tanen Analyse ist der, dass wir die Abhängigkeit der Schätzung einzelner
Variablene�ekte von anderen, im Modell enthaltenen Variablene�ekten
kontrollieren können.
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1.6 Spezielle Modelle und Erweiterungen

1.6.1 Interaktionse�ekte

Möchte man prüfen, ob 2 Variablen nicht nur einen separaten, sondern auch
einen gemeinsamen E�ekt haben, testen wir dies über Interaktionse�ekte: Für
die Variablen x1 und x2 und das Modell

yi = b0 + x1b1 + x2b2

bilden wir die neue Variable (x1 · x2) und nehmen sie in das Modell auf.

yi = b0 + x1b1 + x2b2 + (x1 · x2)b3

Setzen wir (x1 · x2) = x∗3 resultiert

yi = b0 + x1b1 + x2b2 + x∗3b3

Betrachten wir beispielsweise die beiden Variablen Familiengröÿe x1 und Ein-
kommen x2, und wollen wissen ob sie gemeinsam einen E�ekt auf das Sparver-
halten y haben, so generieren wir Familiengröÿe × Einkommen (x1 · x2) und
können nun so testen, ob sie gemeinsam wirken, also ob beispielsweise groÿe Fa-
milien mit geringem Einkommen stärker sparen, als sich durch beide Variablen
einzeln erklären lässt.
Wichtig an diesem Modell ist, dass nicht nur die Interaktionsvariable in das Mo-
dell ein�iesst, sondern auch die beiden �Haupte�ekte�. Nur so wird statistisch
kontrolliert (partielle Regressionskoe�zienten), ob der Interaktionse�ekt unab-
hängig von den Einzele�ekten seiner Komponenten einen eigenständigen Ein�uÿ
auf y ausübt. Ein auftretendes Problem ist die resultierende Multikollinearität,
da x∗3 hoch mit x1 und x2 korrelieren wird, da es ja aus ihnen gebildet wurde. Um
dieses Problem zu beheben werden x1 und x2 vor Bildung des Interaktionsterms
Mittelwertzentriert. Dies geschieht wie folgt:

xx̄i = xi − x̄
Die Werte der neu gebildeten Variable sind wie folgt zu interpretieren:

� −m = m Einheiten unterhalb des Mittelwertes

� 0 = entspricht genau dem Mittelwert

� +m = m Einheiten oberhalb des Mittelwert

Haben wir also für eine Person auf der zentrierten Variablen Einkommen einen
Wert von 145, so ist das Einkommen um 145 Euro höher, als das durchschnittli-
che Einkommen. Wichtig ist hier der Unterschied der Mittelwertzentrierung zur
Z-Transformation:

� Die Mittelwertzentrierung ist immer noch in der Ursprungsskala (2 = 2
Euro über dem Durschschnitt) gemessen, nur der Mittelwert ist nun = 0

� Bei der Z-Transformation ist der neue Mittelwert = 0, sowie die Skala
in Standardabweichungen transformiert (2=2 Standardabweichungen über
dem Durchschnitt).
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Achtung!

Die Berechnung der standardisierten Regressionskoe�zienten βj ist über die
Form βj = bj

sxj
sy

in Gegenwart von Interaktionse�ekten nicht zulässig (so
beispielsweise in Stata), sie sind nicht interpretierbar. Zur Ermittlung der
βj-Koe�zienten müssen die an der Bildung der Interaktionsterme beteiligten
Variablen xj im Vorfeld z-transformiert werden.

1.6.2 Dummy-Regression

Es besteht auch die Möglichkeit, Dummy-Variablen in die Regression einzubin-
den. Wir können Dummys jedoch nur als unabhängige Variablen nutzen, eine
Dummy-Variable als abhängige Variable ist in der linearen Regression nicht
ratsam. Hierzu benötigt man logistische Ansätze, die später diskutiert werden
sollen.
Wie also funktioniert nun eine lineare Regression mit einer unabhängigen Dummy-
Variablen? Eine Besonderheit ist, dass sich die Interpretation des Regressions-
koe�zienten verändert. Hier macht die generelle Aussage �wenn sich x um eine
Einheit ändert, dann ändert sich y um b� nur bedingt Sinn, da sich die x-Variable
nämlich (da sie ein Dummy ist) nur ein einziges Mal um eine Einheit ändern
kann, nämlich von 0 zu 1.

0
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40

00
60

00
80

00

0 1
X

Abbildung 1.7: Dummy als abhängige Variable

Die Interpretation der Parameter gestaltet sich wie folgt:

� b0, also die Konstanten bezeichnet den Mittelwert der y-Variable für die
mit 0 codierten Fälle.

� b0 + b1 gibt den Mittelwert der mit 1 codierten Fälle an.
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� b1 steht für den E�ekt, den das besitzen, bzw. das nichtbesitzen des Merk-
mals hat. Ist dieser E�ekt, also b1 signi�kant, so besteht ein signi�kanter
Unterschied zwischen den beiden Gruppenmittelwerten.

Achtung!

Die Verwendung standardisierter Regressionskoe�zienten bei dichotomen xj
ist nicht zulässig. Da es sich bei der Standardabweichung eines Dummys um
eine Funktion seiner Schiefe handelt, werden die βj-Koe�zienten umso kleiner,
je Schiefer der Dummy ist.
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1.7 Voraussetzungen

1. Die wahre Beziehung zwischen den erklärenden Variablen x und der zu er-
klärenden Variable y (d.h. die �Population Regression Function�) ist linear
in den Parametern. Wenn wir k unabhängige Variablen haben:

yi = β0 + β1x1i + β2x2i + . . .+ βkxki + εi

Die Parameter der Grundgesamtheit β0, β1, β2, . . . , βK sind für alle N Be-
obachtungen konstant.

2. Das Regressionsmodell ist korrekt spezi�ziert, d.h. es fehlen keine relevan-
ten unabhängigen Variablen, und die verwendeten unabhängigen Varia-
blen sind nicht irrelevant.

3. Die Störterme εi der Grundgesamtheit haben einen Erwartungswert = 0:

E(εi) = 0

4. Homoskedastizität: alle εi haben die gleiche konstante Varianz σ2

Var(εi) = σ2

Wenn die Residuen diese Annahme verletzen spricht man von Heteroske-
dastizität.

5. Die Störterme εi der Grundgesamtheit sind nicht autokorreliert,ε darf
nicht hoch oder niedrig sein, weil sein vorhergehender Wert dies war. D.h.
für jedes Paar xi und xj , (i 6= j) ist die Korrelation zwischen den Störter-
men εi und εj gleich Null.:

cov(εi, εj) = 0; i 6= j

6. Keine perfekte Multikollinearität (d.h. die x-Variablen sind linear unab-
hängig).

7. Die Anzahl der Beobachtungen n ist gröÿer als die Anzahl der zuschät-
zenden Parameter k.

8. Keine Korrelation zwischen den Störgröÿen und den erklärenden Varia-
blen:

cov(εi, xi)

εi darf nicht klein sein, nur weil xi klein ist

9. Die Störgröÿen sind normalverteilt:

εi ∼ N (0, σ2
i )

Für die prinzipiell unbeobachtbaren Störgröÿen ε werden die Residuen ei =
yi − ŷi herangezogen.
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1.7.1 Das Anscombe-Quartett

Das Anscombe-Quartett ist ein klassisches Beispiel für die Notwendigkeit der
Regressionsdiagnostik. Wir sehen 4 Regressionen für 4 Datensätze. Das Beson-
dere an diesen Regressionen ist, dass jeweils x̄, ȳ, b0, b1, r2 sowie σb1 identisch
sind. Inspizieren wir nur diese Werte, so entgeht uns, ob es sich um einen

� Angemessen linearen Zusammenhang

� Quadratischen Zusammenhang

� Bis auf einen Ausreiÿer perfekt linearen Zusammenhang

� Ohne den Ausreiÿer gar keinen Zusammenhang

handelt.

Parameter im Anscombe-Quartett

b0 = 3.0 r2 = 0.67
b1 = 0.5 x = 9.0
σb1 = 0.118 y = 7.5
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Abbildung 1.8: Anscombe-Quartett

In solchen bivariaten Fällen ist es noch möglich, sich über die Graphiken einen
Überblick zu verscha�en. Dies ist in höherdimensionalen Regressionen leider
nicht mehr möglich. An dieser Stelle setzt die Regressionsdiagnostik an.
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1.7.2 Heteroskedastizität

Auswirkung

Die OLSMethode gewichtet die Beobachtungen mit groÿer Varianz stärker
als jene mit kleinen Varianzen. Aufgrund dieser impliziten Gewichtung sind
die OLSParameter zwar weiterhin erwartungstreu und konsistent, aber nicht
mehr e�zient. Auÿerdem sind die geschätzten Standardabweichungen der Pa-
rameter verzerrt. Deshalb sind die statistischen Tests und Kon�denzintervalle
ungültig, selbst wenn die Störterme unabhängig und normalverteilt sind.

Tests

� GoldfeldQuandt Test

� BreuschPagan Test

� WhiteTest

Heteroskedastizität (auch (Residuen)-Varianzheterogenität) bedeutet in der Sta-
tistik unterschiedliche Streuung innerhalb einer Datenmessung. Die Streuung
der Fehlerwerte variiert in Abhängigkeit der Ausprägungen der unabhängigen
x-Variablen. Heteroskedastizität kann beispielsweise durch systematische Meÿ-
fehler der y-Variable, oder durch ein fehlerhaft spezi�ziertes Regressionsmodell
entstehen.

Abbildung 1.9: Hetero- und Homoskedastizität

Wenn man zum Beispiel die Urlaubsausgaben von Haushalten (y) in Abhängig-
keit vom Einkommen (x) untersucht ist zu erwarten, daÿ die Varianz bei reiche-
ren Haushalten gröÿer ist als bei weniger wohlhabenden Haushalten. Wenn die
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Varianz der Residuen (und somit die Varianz der erklärten Variablen selbst) für
alle Ausprägungen der anderen (Prädiktor-) Variablen nicht signi�kant unter-
schiedlich sind, liegt Homoskedastizität ((Residuen-) Varianzhomogenität) vor.
Ist Homoskedastizität, also sind die Gleichheit der Residuumsvarianzen für un-
terschiedliche x-Werte nicht gegeben, so haben die Regressionskoe�zienteb ver-
zerrte Varianzen. Die Varianzen von b entsprechen nicht mehr jenen von β.
Dies verfälscht den Standardfehler der Regressionskoe�zienten. Allerdings blei-
ben die geschätzten b-Koe�zienten an sich unverzerrt. Die Kon�denzinterval-
le sind jedoch von der Verzerrung betro�en. Heteroskedastizität kann häu�g
schon in einem Streudiagramm (Scatterplott) erkannt werden.Zur Inspektion
bietet sich eine visuelle Analyse der Residuen an, indem man die vorhergesag-
ten ŷi-Werte gegen die Residuen plottet. Das Streudiagramm der geschätzten
Werte der abhängigen Variablen (ZPRED) und der Residuen (ZRESID) darf
kein Dreiecksmuster aufweisen.
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Abbildung 1.10: Heteroskedastische Residuen
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Abbildung 1.11: Homoskedastische Residuen

Ein statistischer Test zur Aufdeckung von Heteroskedastizität ist der Goldfeldt-
Quandt Test. Hier wird die Stichprobe in zwei Subgruppen aufgespalten. Es
werden nun die beiden Varianzen ins Verhältnis (Quotient) gesetzt. Gilt s2

1 = s2
2,

so beträgt der Quotient 1. Je weiter sich der Wert von 1 entfernt, so stärker ist
die Tendenz zur Heteroskedastizität. Sind die Residuen normalverteilt und tri�t
die Annahme der Homoskedastizität zu, so folgt das Verhältnis der Varianzen
einer F-Verteilung. Heteroskedastizität ist auch eine Folge von Nichtlinearität
und nichtlineare Transformationen können somit Homoskedastizität herstellen.
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1.7.3 Multikollinearität

Auswirkung

Perfekte Multikollinearität führt dazu, dass die Regression nicht mehr bere-
chenbar ist (Division durch 0). Auch wenn dies in der sozialwissenschaftlichen
forschung seltenst vorkommt, so werden doch die Schätzungen der Regressi-
onsparameter unzuverlässiger durch einen gröÿeren Standardfehler.

Tests

� Toleranz

� VIF

In folgender Graphik sehen wir, dass bei steigender Multikollinearität ein immer
gröÿerer Teil der Daten redundant wird. Es lässt sich die redundante Informa-
tion auch nicht mehr eindeutig einer Variable zuordnen. Der rote bereich kann
nicht zur Bestimmung der Koe�zienten der Regressoren enutzt werden. Sie geht
aber trotzdem in die Berechnung des standardfehlers ein, vermindert ihn und
trägt somit zur Verbesserung der Prognose und Steigerung von r2 bei. Es kann
vorkommen, dass r2 signi�kant ist, obwohl kein Regressor dies ist.

Abbildung 1.12: Hohe und geringe Multikollinearität

Es kann vorkommen, dass sich die Regressoren stark verändern, wenn eine Va-
riable hinzugenommen wird, die die Multikollinearität stark erhöht, oder eine
herausgenommen wird, die sie stark senkt. Ein Maÿ für Multikollinearität sind
hohe Korrelationen zwischen den unabhängigen Variablen. Hier sind Werte nahe
±1 ein Indiz. Allerdings ist diese Untersuchung nur bivariat.
Ein anderes Maÿ zur Inspektion ist die Toleranz. Als Toleranz bezeichne wir den
Term 1− r2

j Hierbei bezeichnet r
2
j die Regression der unabhängigen Variable xj

auf alle übrigen unabhängigen Variablen. Da ein hoher Wert von r2 auf eine
starke Erklärung der unabhängigen Variablen durch die anderen unabhängigen
Variablen hinweist, können wir sagen, dass die Toleranz uns immer stärkere
Probleme anzeigt, je niedriger ihr Wert wird. Ein darauf aufbauendes Maÿ ist
der Variance In�ation Factor, auch VIF genannt. Er ist der simple Kehrwert
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der Toleranz, also:
1

1− r2
j

Toleranz und VIF liegen bei nicht vorhandener Multikollinearität bei 1. Bei
einem VIF-Wert gröÿer als 10 ist gröÿte Vorsicht geboten. Der Name Variance
In�ation Factor resultiert daraus, dass sich mit zunehmender Multikollinearität
die Varianzen der Regressionskoe�zienten um diesen Betrag vergröÿern. Die
Schätzungen werden also mit zunehmender Multikollinearität immer schlecher.
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1.7.4 Autokorrelation

Auswirkung

Autokorrelation führt zu Verzerrung bei der Ermittlung des Standardfehlers
der Regressionskoe�zienten, demnach also auch zu Problemen bei der Be-
stimmung des Kon�denzintervalls

Tests

� Durbin-Watson-Test

Eine weitere Vorraussetzung für die Verwendung der Regression ist, dass die
Residuen nicht miteinander korrelieren. Bei auftretender Autokorrelation sind
die Abweichungen von der Regressionsgeraden nicht mehr zufällig, sondern von
den Abweichungen der vorangehenden Werte abhängig. Die Werte beziehen sich
also auf die ihnen vorhergehenden Werte. Diese Verletzung der Prämisse führt
zu einem verzerrten Standardfehler des entsprechenden Regressionskoe�zienten
und damit auch zu einem fehlerhaften Kon�denzintervall.
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Abbildung 1.13: Autokorrelation, positiv und negativ

Ist ein Meÿwert hoch, weil sein Vorgänger hoch ist, so sprechen wir von positi-
ver Autokorrelation. Ist ein Meÿwert hoch weil sein vorhergehender Wert niedrig
ist, so sprechen wir von negativer Autokorrelation. Bei positiver Autokorrelation
geht d gegen null, bei negativer Autokorrelation geht d gegen +4. Wir testen
die Hypothese H0 : ρ = 0, dass die Autokorrelation null ist. Fehlspezi�kation,
oder fehlende Variablen können zu Autokorrelation führen. Der Störterm re-
präsentiert den Ein�uÿ aller nicht berücksichtigten erklärenden Variablen. Wir
erwarten, daÿ der Ein�uÿ dieser Variablen gering ist und daÿ sie sich in ihrer
Wirkung im Durchschnitt gegenseitig aufheben. Wenn sich die �ausgelassenen�
Variablen aber sehr ähnlich verhalten kann dies zu Autokorrelation führen.
Weitere Anhaltspunkte für eine eventuell vorhandene Autokorrelation liefert das
Streuungsdiagramm der geschätzten abhängigen Variablen und der Residuen,
das schon zur Beurteilung der Homoskedastizität herangezogen wird. Positive
Autokorrelation ist erkennbar, wenn aufeinander folgende Residualwerte nahe
beieinander stehen, negative daran, dass die Schwankungen sehr groÿ sind.
Autokorrelation tritt häu�g bei aufeinanderfolgenden Beobachtungen in Zeitrei-
hen (serielle Autokorrelation) auf, man tri�t aber auch bei räumlich nahe bei-
einanderliegenden Erhebungseinheiten (spatial correlation) auf Autokorrelation.
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1.7.5 Nichtlinearität

Das lineare Regressionsmodell fordert, dass die Beziehung zwischen den X und
der Y -Variablen linear in den Parametern ist. Es ist daher ohne weiteres möglich
eine VariableX durch Transformation in eine VariableXt = f(x) zu überführen,
für die der Scatterplot eine liineare Beziehung ausweist.
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f(x) kann dabei jede beliebige nichtlineare Funktion bezeichnen, beispielsweise
f(x) = ex, f(x) = lnx oder f(x) = x2.

1.7.6 Erwartungswert der Störgröÿen ungleich Null

Wenn alle systematischen Ein�uÿgröÿen als unabhängige Variablen erfasst sind,
dann erfasst die Störvariable nur zufällige E�ekte, die Schwankungen gleichen
sich im Mittel aus. Eine Verletzung dieser Annahme besteht dann, wenn die
Stichprobenauswahl nict zufällig war, wichtige unabhängig Variablen vernach-
lässigt werden oder die Meÿwerte von y systematisch zu hoch oder zu niedrig
gemessen werden. Dann enthält die Störgröÿe nicht nur zufällige Abweichungen,
sondern einen systematischen E�ekt. Durch die OLS-Methode wird der Mittel-
wert auf Null �gezwungen�, der systematische Fehler geht in die Berechnung des
Intercepts b0 ein. b0 wird bei konstant zu groÿ gemessenen y ebenfalls verzerrt
zu hoch sein.

1.7.7 Residuen nicht Normalverteilt

Die Überprüfung dieser Annahme steht am Schluss der Residualanalsye, da
eine Verletzung dieser Annahme oftmals durch Verletzungen der anderen An-
nahmen verursacht wird. Sie hebt sich oftmals auf, wenn die anderen Verlet-
zungen behoben werden. Diese Annahme muss nicht eingehalten werden, damit
die Regressionsparameter nach der OLS-Methode als BLUE angesehen werden
können. Sie bezieht sich viel mehr -und nur- auf die durchführbarkeit statisti-
scher Signi�kanzests, wie den F-Test oder den T-Test. Hierbei wird unterstellt,
dass die Regressionsparameter b0 und bj normalverteilt sind. Hier bieten sich
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der Kolmogoro�-Smirno� Test, der Skewness-Kurtosis Test oder der Shapiro-
Wilk W Test an. An Graphiken lassen sich ein Histogramm mit eingezeichneter
Normalverteilung, Kerndichteschätzungen oder P-P-Plots anwenden.
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Abbildung 1.14: Überprüfung auf Normalverteilung

1.7



KAPITEL 2

VARIANZANALYSE

In der Varianzanalyse wird geprüft, ob eine nominalskalierte unabhängige Va-
riable x oder mehrere nominalskalierte unabhängige Variablen xj einen Ein�uss
auf eine metrische skalierte abhängige Variable y ausüben. Die Ausprägungen
dieser xj-Variablen de�nieren die verschiedenen Gruppen, für die getestet wird,
ob sich die Mittelwerte dieser Gruppen signi�kant voneinander Unterscheiden.
Die nominalskalierten unabhängigen Variablen werden als Faktoren bezeichnet,
aber Achtung: Diese Faktoren haben mit den Faktoren der Faktorenanalyse
nichts gemeinsam. Die Ausprägungen der unabhängigen Variablen werden als
Faktorstufen bezeichnet. Die Varianzanalyse hat ihren Ursprung in der Land-
wirtschaft, wo geprüft wurde, ob Felder, die mit verschiedenen Düngern behan-
delt wurden auch unterschiedliche Erträge erzielten. Heute ist die Varianzana-
lyse ein gängiges Verfahren, insbesondere zur Auswertung von Experimenten in
der Psychologie, aber auch der Medizin, der Biologie und natürlich auch der So-
zialwissenschaft. Im Zusammenhang mit der Varianzanalyse wird oft auch der
Begri� ANOVA verwendet, der ANalysis Of VAriance bedeutet.
Je nach Anzahl der Faktoren sprechen wir von einer

� Einfaktoriellen ANOVA (eine UV)

� Zweifaktoriellen ANOVA (zwei UVen)

� Dreifaktoriellen ANOVA (drei UVen)

� . . .

2.1 Einfaktorielle ANOVA

Es wird eine Stichprobe vom Umfang n aus einer Grundgesamtheit gezogen,
die sich auf Grund der j Stufen des ersten Faktors in ebensoviele, nämlich j
Gruppen einteilen lassen. Bei den Untersuchungseinheiten wird jeweils der Wert
der abhängigen Variablen y ermittelt.
Als Beispiel für eine einfaktorielle ANOVA könnten wir ein Experiment mit dem
dreistu�gen Faktor �Medikamentendosierungen� ansehen:

33



Seite: 34 KAPITEL 2. VARIANZANALYSE

Faktor 1
Placebo Dosierung × 1 Dosierung × 2
y11 y21 y31

· · · · · · · · ·
y1n1 y2n2 y3n3

ȳ1 ȳ2 ȳ3

Wir gehen von folgendem Modell aus: Die Werte der abhängigen Variable y erge-
ben sich systematisch als Summe des Gesamtmittelwerts der Grundgesamtheit
µ und dem E�ekt des Faktors αj . Alle anderen nicht beachteten Ein�uÿgröÿen
sind in der Störgröÿe εij enthalten, die als normalverteil angenommen wird.

yij = µ+ αj + εij

Die Mittelwerte der j Stufen des ersten Faktors, µj , sind in der Grundgesamtheit
durch

µj = µ+ αj

gegeben. Die Gröÿe αj gibt somit den E�ekt des Faktors in Form einer Verän-
derung des Gesamtmittels µ wieder.
Die Nullhypothese, die in der einfaktoriellen Varianzanalyse geprüft wird lautet

H0 : µ1 = µ2 = . . . = µj

Wobei j die Anzahl der Faktorstufen bezeichnet. Es wird also unterstellt, dass
der Mittelwert über alle Faktorstufen gleich ist. Ist mindestens ein µi 6= µj mit
i 6= j, so ist die H0 zu verwerfen.

2.1.1 Voraussetzungen

Um eine Varianzanalyse berechnen zu dürfen, müssen einige Voraussetzungen
erfüllt sein.

Normalverteilungsannahme Die Residuen der Gruppen müssen in der Po-
pulation normalverteilt sein. Vielfach wird die Normalverteilung der Resi-
duen fälschlicherweise mit der Normalverteilung der Ausgangswerte gleich-
gesetzt. Liegen beispielsweise bei zwei Gruppen normalverteilte Residuen
und ein signi�kanter Mittelwertsunterschied zwischen den beiden vonein-
ander unabhängigen Gruppen vor, so können die die zusammengefassten
Daten der beiden Gruppen nicht wiederum normalverteilt sein. Die men-
gentheoretische Zusammenfassung zweier Normalverteilungen darf nicht
mit der Linearkombination zweier Normalverteilungen verwechselt wer-
den. Die Forderung nach Normalverteilung bezieht sich nicht auf die y-
Werte, sondern auf die Residuen, deren Inspektion diese Forderung auch
prüft.

Homogenitätsannahme Die Varianzen der Residuen innerhalb der Gruppen
des Designs müssen homogen sein (Homoskedastizität).

Unabhängigkeitsannahme Die Residuen innerhalb der Gruppen müssen un-
abhängig voneinander sein.
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Sind die Vorraussetzungen nicht erfüllt, so bietet sich der Kruskal-Wallis H-Test
an. Hierbei handelt es sich um eine Erweiterung des Mann-Whitney U -Test für
mehr als drei Gruppen. Der Test ist nicht-parametrisch, und testet auf Gleich-
heit der Populationsmediane innerhalb der Gruppen, wobei die Daten durch
ihre Ränge ersetzt werden. Für vergleiche der Gruppenmediane untereinander
wird der Dunn-Test verwendet.

2.1.2 Varianzzerlegung

Die Gesamtquadratsumme der Messwerte kann zerlegt werden in die Treatment-
summe (SSb /erklärter Anteil), also den Anteil an Unterschiedlichkeit der Beob-
achtungen, der auf die verschiedenen Faktorstufen zurückzuführen ist, sowie die
Fehlersumme (SSw /nicht erklärter Anteil), die so nicht erklärt werden kann. In
Abbildung 2.1 sehen wir, was dies bedeutet. Die Grundidee ist derjenigen der
Regression äusserst ähnlich. Es werden die Abweichungen vom Gesamtmittel-
wert ŷG gemessen. Dieser Abstand lässt sich in zwei Teile zerlegen:

1. Den erklärbaren Abstand vom Gesamtmittelwert ŷG zu den durch die j
Faktorstufen gebildeten Mittelwerten ŷj . Hier sehen wir 4 Gruppen, die
durch die Faktorstufen des Faktors gebildet werden. Dies erlaubt uns, den
E�ekt des treatments zu messen. Diese Streuung bezeichnet die Streuung
zwischen den Gruppen.

2. Den Abstand der Messwerte yji -hier exemplarisch nur eine Beobachtung
pro Gruppe- von ihren Gruppenmittelwerten ŷj . Diese Streuung geht nicht
auf den E�ekt des Faktors zurück. Je geringer die Relevanz des Faktors,
desto stärker streuuen die Werte um ihre Gruppenmittelwerte ŷj . Man
nennt dies auch die Streuung innerhalb der Gruppen.

2
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Gruppe 1                 Gruppe 2                   Gruppe 3                  Gruppe 4

ȳG

ȳ1

ȳ2
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Abbildung 2.1: Group Means
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Gesamte Abwei-
chung

= Erklärte Abwei-
chung

+ Nicht erklärte Ab-
weichung

Summe der qua-
drierten Gesamtab-
weichung

= Summe der qua-
drierten Abweichun-
gen innerhalb der
Faktorstufen

+ Summe der qua-
drierten Abweichun-
gen zwischen den
Faktorstufen

J∑

j=1

nj∑

i=1

(yji − ȳ)2 =
J∑

j=1

nj(ȳj − ȳ)2 +
J∑

j=1

nj∑

i=1

(yji − ȳj)2

SSt = SSb + SSw

SSt(otal) = SSb(etween) + SSw(ithin)

In Abbildung 2.2 sehen wir, wie man sich die SSw vorstellen kann: Links ist die
Streuung innerhalb der Gruppen gering, die Gesamte Streuung geht also gröÿ-
tenteils auf die Streuung zwischen den Gruppen zurück. die rechte Abbildung
zeigt eine groÿe Streuung innerhalb der Gruppen. Die gesamte streuung wird
hier viel weniger durch die Streuung zwischen den Gruppen gebildet, die Grup-
pen sind weit weniger eindeutig als in der linken Abbildung. An dieser Stelle
wird ho�entlich der Begri� Varianzanalyse klarer, da die Entscheidung, ob es
sich hier um signi�kant Unterschiedliche Mittelwerte handelt nicht allein von
der Lage der Mittelwerte (x̄1 = 2, x̄2 = 5 und x̄3 = 8) ausgeht. Die Varianzen
der einzelnen Gruppen in Relation zur Gesamten Varianz steht hier im Mit-
telpunkt. Links sind die Varianzen innerhalb der gruppen klein, die Gruppen
sind gut getrennt, wohingegen die Gruppen rechts grosse Überlappungsbereiche
aufweisen, sie sind somit schlechter getrennt, und würden als nicht signi�kant
unterschiedlich angesehen. Der E�ekt des Faktors wäre also nicht signi�kant.
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Abbildung 2.2: SSw klein vs. SSw gross
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Varianzaufklärung

Ähnlich der Regressionsanalyse kann auch bei der Varianzanalyse eine Varian-
zaufklärung durchgeführt werden. Der Quotient η2 ist in seiner Berechnung r2

sehr ähnlich:

η2 =
QSTreat
QSTotal

· 100

stellt jedoch eher ein deskriptives Maÿ dar, da er die Varianzaufklärung der
Population überschätzt.

Signi�kanz

Für die Population bleibt zu prüfen, ob die �deskriptiv� erklärte Varianz ein
Zufallse�ekt der Stichprobe ist, oder ob der Faktor auch in der Grundgesamtheit
signi�kante Mittelwertunterschiede verursacht. Wir testen H0 : µ1 = µ2 = . . . =
µj , das ist äquivalent zu H0 : σ2

Treat = σ2
Fehler. Wenn wir H0 ablehnen möchten,

muss σ2
Treat > σ2

Fehler sein, wir überprüfen das mit dem F-Test

F =
σ2
Treat

σ2
Fehler

2.1.3 Ungleiche Stichprobengrössen

Bisher sind wir von gleichgroÿen Stichproben je Faktorstufe ausgegangen. Das ist
bei geplanten Experimenten sicherlich sinnvoll, entspricht aber nicht der Realität
einer Varianzanalyse bei gegebenem Datensatz. Die unterschiedlichen Stichpro-
bengröÿen haben Änderungen in den Berechnungen der Quadratsummen zur
Folge. Während wir vorher ein einheitliches n hatten gibt es nun mehrere ni für
jede Faktorstufe (Stichprobe) j. Die Gesamtzahl der Untersuchungseinheiten N
ist nun nicht mehr

N = p · n sondern N =

J∑

j=1

nj

Dies hat eine Änderung in der Berechnung der Quadratsummen zur Folge. Die
Berechnung

QSTotal = QSTreatment +QSFehler

ergibt sich für ni = nj , i 6= j

J∑

j=1

n∑

i=1

(yji − ȳ)2 =

J∑

j=1

(ȳj − ȳ)2 +

J∑

j=1

n∑

i=1

(yji − ȳj)2

für ni 6= nj , i 6= j

J∑

j=1

nj∑

i=1

(yji − ȳ)2 =

J∑

j=1

nj(ȳj − ȳ)2 +

J∑

j=1

nj∑

i=1

(yji − ȳj)2

Die Freiheitsgrade der Gesamtvarianz ergeben sich jeweils durch
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dfTotal = dfTreatment + dfFehler

mit
Freiheitsgrade,

gleiche Stichprobengröÿen
dfTotal = p · n− 1
dfFehler = p(n− 1)
dfTreat = p− 1

Freiheitsgrade,
ungleiche Stichprobengröÿen
dfTotal = N − 1
dfFehler = p− 1
dfTreat = N − p

2.1.4 Einzelvergleiche

Wenn wir einen signi�kanten F -Wert haben können wir schlieÿen, dass sich die
Mittelwerte unterscheiden. Wir können allerdings nicht wissen, ob sich alle oder
einige unterscheiden oder sogar vielleicht nur ein einziger Mittelwert die Ge-
samtsigni�kanz verursachte. Erst durch Einzelvergleiche (Kontraste) �nden wir
heraus, welche Mittelwerte sich signi�kant voneinander unterscheiden. Wir ge-
hen vom Fall eines Faktors mit 2 Faktorstufen aus, dieser lässt bei Signi�kanz
eine eindeutige Aussage über die Unterschiedlichkeit der beiden Mittelwerte zu.
Man kann diesen Ansatz aber auf Faktoren mit mehr Faktorstufen übertra-
gen. Wir vergleichen immer paarweise 2 Mittelwerte. Dies erreichen wir durch
Gewichtungen. Für die Gewichtungskoe�zienten cj gilt:

J∑

j=1

cj = 0

Prüfung des Einzelvergleichs mittels F-Verteilung

F =
D2

var(D)

mit

var(D) =




J∑

j=1

c2j


 · σ̂2

Fehler

n
sowie D2 =

J∑

j=1

(cj · Āj)2

Beispiel Drei Behandlungsmethoden und eine Kontrollbedingung werden ge-
stestet (p=4, n=20) in Bezug auf den Behandlungserfolg. Folgende Mittelwerte
�nden sich für die Gruppen:

Ā1 = 16, Ā2 = 14, Ā3 = 18, Ā4 = 15

Die nicht durch die Behandlungen erklärte Varianz beträgt

σ̂2
Fehler = 5

Wir testen, ob sich die Behandlungsgruppen signi�kant von der Kontrollgruppe
unterscheiden (α=0,05).

D =

(
1

3
· 16 +

1

3
· 14 +

1

3
· 18

)
− 15
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Dann ist

F =
20 · 12

1
32 + 1

32 + 1
32 + (−1)2

= 3

Mit Ftheoretisch = 3.98 und dfz = 1, dfn = p · (n − 1) = 76 (Fehler). Damit ist
der Unterschied nicht signi�kant.

Orthogonale Einzelvergleiche

Man kann verschieden Mittelwerte bei einem mehrstu�gen Faktor vergleichen.
So ist also nicht nur der Vergleich von Behandlungsmethodene�ekt gegenüber
der Kontrollgruppe interessant, sondern vielleicht diverse andere Vergleiche.
Möchte man diverse voneinander unabhängige Vergleiche durchführen, also sol-
che ohne redundante Testung, nennt man dies orthogonale Einzelvergleiche.

Beispiel Wir führen bei p=4 Faktorstufen 6 Tests durch:

D1 = Ā1+Ā2+Ā3

3−Ā4

D2 = Ā1 − Ā4

D3 = Ā1 − Ā2

D4 = Ā3 − Ā4

D5 = Ā1+Ā2

2 − Ā3+Ā4

2

D6 = Ā1+Ā3

2 − Ā2+Ā4

2

Sind nun redundante Informationen in den Einzeltests enthalten oder haben wir
hier einen vollständigen Satz orthogonaler Einzelvergleiche?

2. Feststellung Orthogonalitätsbedingung für Kontraste

c1k · c1l + c2k · c2l + . . .+ cjk · cjl =

J∑

j=1

cjk · cjl = 0

Vergleich D1/D2 : 1
3 · 1 + 1

3 · 0 + 1
3 · 0 + (−1) · (−1) = 4

3 → nicht erfüllt
Vergleich D3/D4 : 1 · 0 + (−1) · 0 + 0 · 1 + 0 · (−1) = 0 → erfüllt
Vergleich D5/D6 : 1

2 · 1
2 + 1

2 · −1
2 + −1

2 · 1
2 + −1

2 · −1
2 = 0 → erfüllt

Vergleich D2/D5 : 1 · 1
2 + 0 · 1

2 + 0 · −1
2 + (−1) · −1

2 = 1 → nicht erfüllt

Es ist nun zu prüfen, ob auch D2/D3 wechselseitig orthogonal sind, oder D1/D3,
um einen kompletten Satz wechselseitig othogonaler Einzelvergleiche zu �nden.
Ein kompletter Satz besteht aus p − 1 Einzelvergleichen.Wenn wir die restli-
chen Tests durchführen, stellen wir fest, dass D3/D4/D5 einen kompletten Satz
orthogonal wechselseitiger Einzelvergleiche darstellen. Einen vollständigen Satz
kann man sich auch mittels der Regeln für Helmert-Kontraste / umgekehrter
Helmert-Kontraste erstellen:
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Helmert-Kontraste umgekehrte Helmert-Kontraste

D1 = Ā1 − Ā2+Ā3+...+Āp
p−1 D1 = Ā1

D2 = Ā2 − Ā3+Ā4+...+Āp
p−2 D2 = Ā3 − Ā1+Ā2

2

. . . . . . . . . D3 = Ā4 − Ā1+Ā2+Ā3

3

Dp−2 = Āp−2 − Āp−1+Āp
2 Dp−2 = Āp−1 − Ā1+Ā2+...+Āp−2

p−2

Dp−1 = Āp−1Āp Dp−1 = Āp − Ā1+Ā2+...+Āp−1

p−1

Wir erhalten aus den zwei Sätzen orthogonaler Einzelvergleiche folgende Ge-
wichtungsübersicht:

Set 1: Set 2:
D1 1 − 1

3 − 1
3 − 1

3 D1 −1 1 0 0
D2 0 1 − 1

2 − 1
2 D2 − 1

2 − 1
2 1 0

D3 0 0 1 −1 D3 − 1
3 − 1

3 − 1
3 0

Zerlegung der QStreat bei Einzelvergleichen QStreat setzt sich bei voll-
ständig orthogonalen Sätzen von Einzelvergleichen durch Addition aus diesen
zusammen

QStreat = QSD1
+QSD2

+ . . .+QSDp−q

Die QSD sind de�nert als

QSD =
n ·D2

∑J
j=1 c

2
j

⇔ σ̂2
D, da df = 1

und auf Signi�kanz werden die Einzelvergleiche dann mittels F-Test geprüft

F =
σ̂2
D

σ̂2
Fehler

Einzelvergleiche bei Stichproben unterschiedlicher Gröÿe

Keine Gewichtung Werden die Mittelwerte zu Vergleichen zusammenge-
fasst, geschieht dies als Durchschnittsbildung der Mittelwerte. Die unterschied-
lichen Stichprobengröÿen bleiben unberücksichtigt. Bei Experimenten mit un-
terschiedlichen Gruppengröÿen ist das praktikabel, da die VPs den Gruppen
zufällig zugeordnet werden.

Gewichtung In die Durchschnittbildung der Mittelwerte geht eine Gewich-
tung ein, die der Stichprobengröÿe berücksichtigt. Entsprechen die unterschied-
lichen Stichprobenumfänge den Populationsgegebenheiten, ist das mittels Ge-
wichtung zu berücksichtigen. Bei den meisten sozialwissenschaftlichen Analysen
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ist dieser Vorgehensweise Vorrang zu gewähren, da die Datensätze keine expe-
rimentellen Versuchsanordnungen abbilden. Gewichtete Durchschnittsbildung:

D =

J∑

j=1

nj · cj · Āj mit
J∑

j=1

nj · cj = 0

Die Schätzung der Gewichte für die Einzelvergleiche, ist nun etwas komplizierter.
Mittels spezieller Regeln jedoch durchführbar. Mittels Kontrastierung besteht
die Möglichkeit, unterschiedliche E�ekte wechselseitig zu testen. Was bedeutet
das für die Signi�kanzberechnungen?
Standardmäÿig testet die Varianzanalyse H0 : µ1 = µ2 = . . . = µj , den Global-
vergleich. Bei einer Irrtumswahrscheinlichkeit α = 0.05 wird bei diesem Test in
5% irrtümlich H0 abgelehnt, bzw. H1 angenommen. Korrekterweise beibehalten
wird H0 in 1− α = 0.95, also 95%.
Nun führen wir 2 orthogonale Einzeltests durch. Die Wahrscheinlichkeit,H0 kor-
rekterweise beizubehalten reduziert sich in der Folge auf 0, 95 · 0, 95 = 0, 9025
(Multiplikationssatz bei gemeinsamen Auftreten unabhängiger Ereignisse: 2 ·H0

korrekterweise ablehnen bei 2 Versuchen). Bei einem Satz wechselseitig ortho-
gonale Einzelvergleiche reduziert sich die Wahrscheinlichkeit, H korrekterweise
anzunehmen auf

π = (1− α)j−1

Oder anders ausgedrückt: wenn in 5% der Fälle H0 zu Unrecht abgelehnt wird,
steigt bei zunehmender Testzahl die Wahrscheinlichkeit, dass H0 zu Unrecht
abgelehnt wird.

Bonferoni-Korrektur

Werden mehrere Tests durchgeführt, man möchte aber gewährleisten, dass α =
0.05 für alle Tests nicht überschritten wird, so sind die Irrtumswahrscheinlich-
keiten der Einzeltests dementsprechend festzulegen. Die einfache Approximation
von Bonferoni

α′ =
α

m

ist konservativ, d.h. dass die angepassten α′ etwas niedriger ausfallen, als sie
müssten.

Beispiel Wir führen m=4 orthogonale Einzelvergleiche mit α = 0.05 durch.
α′ = 0,05

4 = 0, 0125. Jeder Einzeltest darf folglich den Wert 0,0125 nicht über-
schreiten.

2.1.5 A priori-Tests vs. a posteriori-Tests

Liegt einer Untersuchung eine eindeutige Hypothese über Wirkungen zugrunde,
die aufgrund von Voruntersuchungen o.ä. begründet wird, können Einzeltestun-
gen (i.d. Regel max. 3) ohne Fehlerkorrektur auskommen. A posteriori bedeutet
in diesem Zusammenhang, dass man eine globale Signi�kanz für die Faktorstu-
fen erhalten hat und nun nicht hypothesengeleitet sehen möchte, welche E�ek-
te dafür verantwortlich sind. Für A-Posteriori-Vergleiche kann man Verfahren
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nach Duncan, Tukey,.., Sche�e benutzen. Der Sche�e-Test garantiert ,dass das
Overall-Signi�kanzniveau nicht überschritten wird.

2.2 Zweifaktorielle ANOVA

Bei Zweifaktoriellen ANOVAs gilt es einige Begri�ichkeiten zu unterscheiden.
Erstens, ob eine Interaktion zwischen dem ersten und dem zweiten Faktor erlaub
sein soll, zweitens, ob alle Gruppen identisch groÿ sind (orthogonale ANOVA),
wie es in experimentellen Designs oft der Fall ist, oder ob es sich um ungleich
groÿe Gruppen handelt (nonorthogonale ANOVA)
Während bei experimentellen Daten eine gleichmäÿige Zellbesetzung im Allge-
meinen herstellbar ist, so ist dies bei Beobachtungsdaten nicht unbedingt der
Fall. Dort müssen bestimmte Anpassungen vorgenommen werden, da sich hier
die einzelnen Abweichungsquadratsummen SSb und SSw -im Gegensatz zum
orthogonalen Fall- nicht von vornherein zur totalen Abweichungsquadratsumme
SSt aufsummieren.
Das Modell, von dem wir ausgehen, lautet wie folgt:

yijk = µ+ αj + βk︸ ︷︷ ︸
HE

+

IE 1. Ordnung︷ ︸︸ ︷
αβjk + eijk︸︷︷︸

Residuum

Bei αj und βk handelt es sich um die Haupte�ekte der beiden Faktoren, wobei
der erste Faktor über j Stufen verfügt, der zweite über k. Sind Interaktionen er-
laubt, so handelt es sich bei αβjk um den E�ekt, den bestimmte Kombinationen
der Faktorstufen j des ersten Faktors gemeinsam mit den Faktorstufen k des
zweiten Faktors über die Haupte�ekte hinaus auf y ausübt. Da in diesem Fall
alle möglichen Ein�üsse auf die abhängige Variable y, die direkt oder indirekt
durch die beiden Faktoren hervorgerufen werden können im Modell enthalten
sind, spricht man auch von einem gesättigten oder saturierten Modell.
Sind Interaktionen nicht erlaubt, so gilt folgendes Modell

yijk = µ+ αj + βk + εijk

in dem sich die Interaktion in den Störgröÿen εijk, wie alle anderen nicht be-
achteten Ein�üÿe, bemerkbar macht. In folgender Graphik sehen wir, was man
sich unter Interaktionse�ekten zwischen den Faktoren A und B, sowie dem In-
teraktionse�ekt A×B vorstellen könnte:

2.2



Seite: 43 KAPITEL 2. VARIANZANALYSE

Abbildung 2.3: ANOVA zweifaktoriell

2.2.1 Beispiel

Als Beispiel für eine zweifaktorielle ANOVA erweitern wir das Experiment um
den Faktor �Geschlecht�

Faktor 1
Placebo einfache Dosis doppelte Dosis

F y111 y121 y131

a | · · · · · · · · · ȳ1.

k y11n11 y12n12 y13n13

t y211 y221 y231

o ~ · · · · · · · · · ȳ2.

r y21n21
y22n22

y23n23

2 ȳ.1 ȳ.2 ȳ.3 ȳG

Mit den Werten:

Faktor A
Placebo einfache Dosis doppelte Dosis B̄j

22 16 13
F 25 16 12
a | 22 16 12 16.8
k 21 15 13
t 22 15 12
o 18 19 16
r 19 20 14

~ 17 17 16 17.0
B 21 16 13

19 16 14
Āi 20.6 16.6 13.5 16.9

Dnn berechnen wir die einfaktorielle Varianzanalyse für den Faktor A.
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Einfaktorielle Varianzanalyse (nur Faktor A)

QStot = 348.7 QStot =

p∑

i=1

q∑

j=1

n∑

m=1

(xijm − Ḡ)2

QSA = 95.3 QSA =

p∑

i=1

n · q · (Āi − Ḡ)2

QSFehler = 253.4 QSFehler =

p∑

i=1

q∑

j=1

n∑

m=1

(xijm − Āi)2

Sowie die einfaktorielle Varianzanalyse für den Faktor B.

Einfaktorielle Varianzanalyse (nur Faktor B)

QSB = 0.3 QSB = n · p ·
p∑

i=1

(B̄i − Ḡ)2

Zuletzt die Zellene�ekte:

Zellenquadrate: Die E�ekte hängen von beiden Faktoren A/B ab:

QStot = 307.90 + 40.8 = 348.7 QStot =

p∑

i=1

q∑

j=1

n∑

m=1

(xijm − Ḡ)2

QSZellen = 307.9 QSZellen = n

p∑

i=1

q∑

j=1

(ĀB̄ij − Ḡ)2

QSFehler = 40.8 QSFehler =

p∑

i=1

q∑

j=1

n∑

m=1

(xijm − ĀB̄ij)2

A und B erklären zusammen einen gröÿeren Teil der abhängigen Variablen als
A alleine. Geschlecht und Behandlungsart bestimmen also die Wirkung des Me-
dikaments, ist der Zellene�ekt A/B die Summe aus Faktor A und Faktor B
(QSZellen = QSSA +QSSB)?

QSZellen = QSSA +QSSB = 253.4 + 0.30 = 253.70 < 307.90

Die Di�erenz von 54.20 ist der Teil, der durch die Wechselwirkung von A und
B entsteht: Die Behandlungsarten wirken geschlechtsspezi�sch. Diese Wechsel-
wirkung wird als Interaktionse�ekt bezeichnet:

n

p∑

i=1

q∑

j=1

(ĀB̄′ij − ĀB̄ij)2 mit ĀB̄′ij = Āi − B̄j − Ḡ (nur Haupte�ekte)
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QSA×B = n

p∑

i=1

q∑

j=1

(ĀB̄′ij − ĀB̄ij)2 dfA×B = (p− 1) · (q − 1)

QStot =

p∑

i=1

q∑

j=1

n∑

m=1

(xijm − Ḡ)2 dftot = p · q · n− 1

QSZellen = n ·
p∑

i=1

q∑

j=1

(ĀB̄ij − Ḡ)2 dfZellen = p · q − 1

QSFehler =

p∑

i=1

q∑

j=1

n∑

m=1

(xijm − ĀB̄ij)2 dfFehler = p · 1 · (n− 1)

QSA = n · q ·
p∑

i=1

(Āi − Ḡ)2 dfA = p− 1

QSB = n · p ·
q∑

j=1

(B̄j − Ḡ)2 dfB = q − 1

QStot = QSZellen +QSFehler dftot = dfA + dfB + dfA×B
+dfFehler

QSZellen = QSA +QSB +QSA×B dfZellen = dfA + dfB + dfA×B

2.2.2 Hypothesen

In einer zweifaktoriellen Varianzanalyse werden folgende Hypothesen getestet:

1. Die Untersuchungseinheiten aus dem ersten Faktor entstammen einer Po-
pulation mit gleichem Mittelwert

H0 : µ1. = µ2. = . . . = µj.

2. Die Untersuchungseinheiten aus dem zweiten Faktor entstammen einer
Population mit gleichem Mittelwert

H0 : µ.1 = µ.2 = . . . = µ.k

3. Die Zellenmittelwerte sind lediglich die Summe der Haupte�ekte

H0 : µjk = µj + µk − µ

Die Prüfung der Nullhypothesen erfolgt über den F -Test für die entsprechenden
Varianzen:

σ̂Fehler = QSFehler
dfFehler

= 40.8
24

σ̂A = QSA
dfA

= 253.4
2 → FA = 126.7

1.7 = 74.53

σ̂B = QSB
dfB

= 0.3
1 → FB = 0.3

1.7 = 0.18

σ̂A×B = QSA×B
dfA×B

= 54.2
2 → FA×B = 27.1

1.7 = 15.94

Bei FA/FA×B (2,24,0.99) = 5.61 sindA undA signi�kant,B ist bei FB (1,24,0.99) =
7.82 nicht signi�kant.

2.2



Seite: 46 KAPITEL 2. VARIANZANALYSE

2.2.3 Wichtige Interaktionsformen

Interaktionen lassen sich in Form von Diagrammen darstellen und erleichtern
die Interpretation der Ergebnisse.

1. Ordinale Interaktion: Es gibt in beiden möglichen Interaktionsdiagram-
men keine Überschneidungen und die E�ekte sind stets gleichgerichtet (es
liegen eindeutige Haupte�ekte vor). Gleicher Trend der Linien für zwei
mögliche Darstellungen, die Haupte�ekte sind eindeutig interpretierbar

A1 A2

B1

B2

A1

A2

B1 B2

2. Hybride Interaktion: In einem Diagramm gibt es gegengerichtete Trends,
daher überschneiden sich die Linien in dem anderen Diagramm. Hauptef-
fekte sind mit Vorsicht zu interpretieren, in einem Faktor hängt die Rei-
henfolge der Stufen ja von dem anderen Faktor ab (Überschneidung). Nicht
interpretierbar für Faktor A.

A1 A3A2

B1

B2

B1 B2

A1

A3

A2

A1 A2

B1

B2

B1 B2

A1

A2

3. Disordinale Interaktion: In beiden Diagrammen gibt es starke Über-
schneidungen, die Haupte�ekte sind nicht eindeutig bzw. nicht interpre-
tierbar. Die Haupte�ekte alleine sind bedeutungslos Die Interaktion ist die
bestimmende Gröÿe der Werte. Die Unterschiede zwischen a1 und a2 sind
nur in Verbindung mit den Stufen von Faktor B interpretierbar, gleiches
gilt für b1 und b2.

A1 A3A2

B1

B2

B1 B2

A1

A3

A2

A1 A3A2

B1

B2

B1 B2

A1

A3

A2

A1 A2

B1

B2

B1 B2

A1

A2

2.2.4 Feste und zufällige E�ekte

Bei festen E�ekten sind alle möglichen Faktorstufen Teil der Untersuchung.
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Bei zufällige E�ekten sind nicht alle möglichen Faktorstufen Teil der Unter-
suchung. Es werden bspw. Therapeuten zufällig ausgewählt, wenn man testen
möchte, ob die Person des Therapeuten Ein�uss auf den Verlauf der Therapie
nimmt.
Die Unterscheidung von zufälligen und festen E�ekten wird erst mit der zwei-
faktoriellen VA rechnerisch notwendig. Für die einfaktorielle VA ändert sich nur
die Interpretation. Die Auswirkung der Hinzunahme zufälliger E�ekte in die VA
besteht in der Vorraussetzung, dass alle Treatmente�ekte normalverteilt sein
müssen. Bei Hinzunahme von zufälligen E�ekten ändern sich die Prüfvarianzen
im F-Test.

2.2.5 Einzelvergleiche

Einfache Einzelvergleiche

Vergleich von bspw. Placebo gegen Medikamente (Faktor B) oder Vergleich von
Psychoanalyse gegen Verhaltenstherapie (Faktor A)

QSD(A) =

n · q
(

p∑

i=1

ci − Āi
)2

p∑

i=1

c2i

QSD(B) =

n · p




q∑

j=1

cj − B̄j




2

q∑

j=1

c2j

Bedingte Haupte�ekte

QSA|bj = n ·
p∑

i=1

(ĀB̄ij − B̄j), dfA|bj = p− 1

QSB|ai = n ·
p∑

i=1

(ĀB̄ij − B̄j), dfB|ai = q − 1

Fragestellung: wirken die Therapien nur bei bestimmter Medikamentendosie-
rung?

Bedingte Einzelvergleiche

Nicht der gesamte bedingte Haupte�ekt A wird mittels Einzeltests verglichen,
sondern Einzeltests je Faktorstufe B werden durchgeführt.

Ds(A|bj) =

p∑

i=1

cis · ĀB̄ij mit s = Anzahl der Einzelvergleiche
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Vergleich von bspw. Psychoanalyse mit anderen Therapien gegeben ein be-
stimmtes Medikament. Ergebnis bspw. bei Placeboeinnahme erzielt die Psy-
choanalyse bessere Ergebnisse als andere Therapieformen.

Interaktionseinzelvergleiche

Z.B. Vergleich Placebowirkung bei Kontrollgruppe gegen Placebowirkung The-
rapie.

Dw(D(A)×D(B)) =

q∑

j=1

cju ×Ds(A|bj)

2.3 Dreifaktorielle ANOVA

In einer dreifaktoriellen ANOVA gehen wir von folgendem Modell aus:

yijkl = µ+ αj + βk + γl︸ ︷︷ ︸
HE

+

IE 1. Ordnung︷ ︸︸ ︷
αβjk + αγjl + βγkl + αβγjkl︸ ︷︷ ︸

IE 2. Ordnung

+

Residuum︷︸︸︷
eijk

Mit 3 Haupte�ekten (A, B, C), 3 Interaktionse�ekten 1. Ordnung (A × B,
A×C, B ×C) und einem Interaktionse�ekt 2. Ordnung (A×B ×C), die man
sich in etwa so vorstellen kann:

Abbildung 2.4: ANOVA dreifaktoriell

2.3.1 Hypothesen

Es werden folgende Hypothesen getestet:

Faktor A : µ1 = µ2 = . . . = µp

Faktor B : µ1 = µ2 = . . . = µq

Faktor C : µ1 = µ2 = . . . = µr

Interaktion A×B : µij = µi + µj − µ
Interaktion A× C : µik = µi + µk − µ
Interaktion B × C : µjk = µj + µk − µ

Interaktion 2. Ord. A×B × C : µijk = µij + µik + µjk − µi − µj − µk + µ
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2.3.2 Quasi-F-Brüche/Pooling-Prozeduren

Wird für nicht direkt testbare (F -Test) E�ekte benutzt, da hier die Fehlerva-
rianzen nicht verfügbar sind. Dieser Fall ist in einem Modell mit mehr als 2
zufälligen E�ekten gegeben. Zwei Strategien damit umzugehen bestehen in der
Berechnung von Quasi-F-Brüchen oder Pooling-Prozeduren. Anmerkung: Inter-
aktionen 2. Ordnung sind testbar, jedoch schwer interpretierbar. Regeln der
3-faktoriellen VA sind auf die mehrfaktorielle übertragbar.

2.3.3 Nonorthogonale ANOVA

Mehrfaktorielle Varianzanalysen mit ungleich groÿen Stichproben verletzen die
Voraussetzung der Orthogonalität von Haupt- und Interaktionse�ekten. Vari-
anzanalysen mit ungleich groÿen Stichproben werden als nicht orthogonale Va-
rianzanalysen bezeichnet.
Lösungsansätze:

1. Missing Data Techniken: Werden nur eingesetzt, wenn die Werte auch
tatsächlich fehlen. Das bedeutet, wenn ursprünglich gröÿere Stichproben
geplant waren, es aber zu Datenausfällen gekommen ist.

2. ANOVA mit proportional geschichteten Stichproben: Die Stichproben ent-
sprechen den Populationen und sind zeilen- und spaltenweise zueinander
proportional. Die Berechnung ist fast identisch mit der ANOVA mit gleich
groÿen Stichprobenumfängen.

F Faktor A
a A1 A2 A3

k B1 n11 = 5 n12 = 15 n13 = 10
t B2 n21 = 20 n22 = 60 n23 = 40
o B3 n31 = 10 n32 = 30 n33 = 20
r B3 n41 = 15 n42 = 45 n43 = 30
B

3. ANOVA mit harmonischem Mittel der Stichprobenumfänge: Für ungleich
groÿe Stichproben, die nicht proportional geschichtet sind.

Quadratsummenberechnung / Prüfgröÿen für den F -Test

QS df
QSA · n̄h p− 1
QSB · n̄h q − 1
QSA×B · n̄h (p− 1)(q − 1)
QSFehler · n̄h N − p · q

Der Einsatz des Harmonischen Mittels setzt voraus, das ursprünglich gleich
groÿe Stichproben geplant waren. Ersetzung der Stichprobenumfänge durch
das harmonische Mittel aller Stichprobengröÿen (zweifaktorieller Fall):
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HM = n̄h =
j · k

1
n11

+ 1
n12

+ . . .+ 1
njk

=
j · k

J∑

j=1

K∑

k=1

1

njk

4. ANOVA nach dem ALM
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KAPITEL 3

LOGISTISCHE REGRESSION

Ist die uns interessierende abhängige Variable metrisch, so hilft uns der bereits
besprochene lineare Regressionsansatz weiter. Es ist allerdings auch möglich,
dass die abhängige Variable nominales (also dichotom oder multinomial) Meÿ-
niveau aufweist. In diesem Fall kommen wir mit dem klassischen Regressions-
ansatz nicht weiter. Die Methode, die hier besprochen werden soll ermöglicht
es uns, nominale Variablen als abhängige Variablen zu nutzen. Wir werden uns
den Fall einer dichotomen abhängigen Variablen ansehen.
Folgend besprechen wir die Probleme, die in solchen Fällen die logistische Re-
gression zur Methode der Wahl machen, und nicht die lineare Regression:

1. Allgemein handelt es sich bei den vorhergesagten ŷ-Werten um Schätzun-
gen des bedingten Mittelwertes der abhängigen Variable. Denken wir uns
als Beispiel 10 Personen, von denen jeweils das Alter und der Familiensta-
tus erfragt worden sind:

Alter 18 25 27 29 34 35 42 42 51 60
Verheiratet 0 0 0 1 1 0 0 1 1 1

Betrachten wir den Mittelwert eines Dummies, so können wir ihn als Anteil
der mit 1 codierten Fälle betrachten. Bei unseren 10 Fällen sind 5 ledig
(mit 0 codiert) und 5 verheiratet (mit 1 codiert). Es ergibt sich folgender
Mittelwert:

0 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1

10
=

5

10
= 0.5

Den vorhergesagten Wert einer dichotomen Variablen kann man also so
interpretieren, dass ein Wert 0.5 einer Wahrscheinlichkeit für das Vor-
handensein des Merkmals von 50% entspricht. Wir haben hier also eine
50%-Wahrscheinlichkeit, eine verheiratete Person zu erwischen.

Das Problem besteht nun darin, dass wir bei entsprechend groÿen bzw.
kleinen x-Werten vorhergesagte Werte gröÿer 1 oder kleiner 0 erhalten.
Ein vorhergesagter Mittelwert von 1.2 entspräche einer 120% Wahrschein-
lichkeit, einen Verheirateten zu tre�en. Dies ist natürlich Unsinn, ergibt
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sich aber zwingend bei einer linearen Vorhersage. Es sind also nicht alle
vorhergesagten Werte inhaltlich interpretierbar.

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Abbildung 3.1: Linearer Regressionsansatz

Das logistische Regressionsmodell wurde entwickelt, um dieses Problem
zu beheben. Es ersetzt die Regressionsgerade durch eine S−förmige Kurve
die sich den Werten 0 und 1 asymptotisch nähert. Der Wertebereich ist
also hier auf [0; 1] festgesetzt, während er in der linearen Regression mit
[−∞; +∞] unbeschränkt ist

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Abbildung 3.2: Logistischer Regressionsansatz

2. Es ergeben sich Probleme mit der Homoskedastizitätsannahme der li-
nearen Regression. Hierbei soll die Varianz der Fehler für alle ŷ kon-
stant sein. Sagen wir für einen Verheirateten (1) auf Grund einer unab-
hängigen Variablen wie beispielsweise des Alters eine Wahrscheinlichkeit
von 0.6 dafür vorher, dass er verheiratet ist, so liegt ein Residuum von
yi− ŷi = 1− 0.6 = 0.4 vor. Sagen wir auf Grund des Alters für eine ledige
Person einen Wert von 0.6 vorher, verheiratet zu sein, so ergibt sich ein
Residuum von yi − ŷi = 0− 0.6 = −0.6. Es sind also nur 1− ŷi sowie −ŷi
als Residuen möglich. Die bedingte Varianz ŷi × (1− ŷi) der Residuen ist
umso gröÿer, je näher die vorhergesagten Werte an 0.5 herangehen.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Abbildung 3.3: ŷi × (1− ŷi)

Sie sind demnach per de�nitionem heteroskedatisch. Dies führt zu Proble-
men mit der Berechnung der Kon�denzintervalle der Regressionskoe�zi-
enten. Sie sind nicht mehr zuverlässig.

3.1 Grundidee

Im Gegensatz zur linearen Regression führt die logistische Regression keine Vor-
hersage der (wie in der linearen Regression) metrischen yi-Werte der abhängigen
Variablen durch, sondern eine Vorhersage der Eintrittswahrscheinlichkeit der
(dichotomen) yi-Werte. Hierzu wird der Ansatz der linearen Regression verän-
dert, so dass sich keine Regressionsgerade, sondern die oben erwähnte, für die
logistische Regression charakteristische S-Kurve ergibt. Um die Eintrittswahr-
scheinlichkeit des Ereignisses bestimmen zu können, wird eine latente Variable
z angenommen, die die y-Ausürägungen in Abhängigkeit der unabhängigen Va-
riablen xj erzeugen kann. Es gilt:

yk =

{
1 falls zk > 0

0 falls zk ≤ 0

mit

zk = b0 +

J∑

j=1

bjxij + εi = Logit

Um nun die Wahrscheinlichkeitsaussage bezüglich des Eintretens von y tre�en
zu können, benötigen wir noch eine Wahrscheinlichkeitsfunktion, die dann y = 0,
bzw. y = 1 aus zk erzeugen kann. Hier wird auf die logistische Wahrscheinlich-
keitsfunktion

pk(y = 1) =
ezk

1 + ezk
=

1

1 + e−zk

mit

zk = b0 +

J∑

j=1

bjxij + εi = Logit
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zurückgegri�en. Bei den bj Koe�zienten spricht man auch von Logit-Koe�zienten.
Die logistische Funktion stellt die Wahrscheinlichkeitsbeziehung zwischen y und
xj her, sie wird auch linking-function genannt. Es ist zu beachten, dass es sich
bei

pk(y = 1) =
ezk

1 + ezk
=

1

1 + e−zk

um einen nicht-linearen Zusammenhang zwischen dem Eintreten von y und xj
handelt (S-Kurve), das Zustandekommen der aggregierten Ein�ussstärke zk

zk = b0 +

J∑

j=1

bjxij + εi = Logit

aber als linear unterstellt wird.

Im Gegensatz zur linearen Regression wird hier keine unmittelbare je-desto-
Hypothese zwischen y und x aufgestellt, sondern zwischen x und der Eintritts-
wahrscheinlichkeit von y = 1.

3.2 Herleitung der logistischen Regressionsglei-

chung

Der Einfachheit und Übersichtlichkeit halber verkürzen wir die Schreibweise von

n∑

i=1

bixi auf bxi

also auf den bivariaten Fall und

p(Y = 1) auf p

Ebenso gilt für die Konstante a = b0. Wenn wir eine Wahrscheinlichkeit durch
lineare Regression vorhersagen wollen tre�en wir auf Probleme: Die Wahrschein-
lichkeit ist auf das Intervall von 0 bis 1 festgelegt. Sie kann nicht negativ oder
grösser 1 werden, so wie es die rechte Seite der Formel p = a + bxi kann. Um
dieses Problem zu lösen betrachtet man zuerst die Odds (Chance), also den
Quotienten aus zwei Wahrscheinlichkeiten, nämlich einmal der Wahrscheinlich-
keit des Eintretens (p(Y = 1)) und der Wahrscheinlichkeit, dass das Ereignis
nicht eintritt (1− p(Y = 1)).

p

1− p = a+ bxi

Betrachten wir ein beliebiges Ereignis, dass entweder eintreten kann, oder nicht,
wie z.B. Regen. Der Odd der Wahrscheinlichkeit, dass das Ereignis x eintritt,
es also regnet (p(x) = 0.75) beträgt p(x)

1−p(x) = 0.75
0.25 = 3. Also ist die Wahrschein-

lichkeit, dass es regnet 3 mal höher als das es trocken bleibt. Das ist schon
besser. Aber immer noch nicht OK, den die Odds können nich negativ werden,
sie besitzen einen Wertebereich zwischen 0 und +∞. Durch logarithmieren (üb-
licherweise mit dem logarithmus naturalis ln) erreichen wir einen Wertebereich
zwischen −∞ und +∞. Die logarithmierten Odds werden Logits genannt.
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ln
p

1− p = a+ bxi

Wenn wir die Gleichung nun nach p au�ösen, da uns ja gerade p interessiert,
gehen wir folgendermaÿen vor:

eln p
1−p = ea+bxi

Da gilt eln x = ln ex = x, es sich also um die Umkehrfunktion handelt, gilt
folgendes:

p

1− p = ea+bxi

Multiplikation mit 1− p(x)

p = ea+bxi(1− p)
Ausmultiplizieren

p = ea+bxi − pea+bxi

Addition, um pea+bxi auf die linke Seite zu bringen:

p+ pea+bxi = ea+bxi

Ausklammern von p

p
(
1 + ea+bxi

)
= ea+bxi

Dividieren durch
(
1 + ea+bxi

)

p =
ea+bxi

1 + ea+bxi

Hier ist in manchen Lehrbüchern Schluss, wir haben die Formel der logistischen
Regression erreicht. Doch kann man noch weiter vereinfachen: Klammern wir
unter dem Bruchstrich ea+bxi aus.

p =
ea+bxi

ea+bxi( 1
ea+bxi

+ 1)

Umschreiben, da gilt 1
a = a−1

p =
ea+bxi

ea+bxi(e−(a+bxi) + 1)

Finales Kürzen

p(Y = 1) =
1

1 + e−(a+bxi)
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3.3 Maximum Likelihood-Schätzung

Es gilt

pk(y) =

{
1

1+e−zk
für yk = 1

1− 1
1+e−zk

für yk = 0

was sich zusammenfassen lässt zu:

pk(y) =

(
1

1 + e−zk

)yk (
1− 1

1 + e−zk

)1−yk

Für alle k Fälle zusammen greift man auf den Wahrscheinlichkeitssatz für unab-
hängige Ereignisse zurück, um die Likelihood-Funktion zu bilden, die maximiert
werden soll:

L(θ) =

K∏

k=1

(
1

1 + e−zk

)yk (
1− 1

1 + e−zk

)1−yk
!
= max

Es ist einfacher, die Log-Likelihood zu maximieren, als die normale Likelihood.
Dies liegt daran, dass es einfacher ist, mit Summen zu arbeiten, als mit Produk-
ten. Die Extremwerte bleiben identisch. Es gelten folgende Regeln zum Rechnen
mit Logarithmen:

loga(u · v) = loga u+ loga v
loga(ur) = r loga u (r ∈ R)

Hier wird der Logarithmus naturalis verwendet, also loge, der logarithmus mit
der eulerschen Zahl als Basis.

L(θ) =

k∑

k=1

(
yk · ln

(
1

1 + e−zk

))
+

(
(1− yk) · ln

(
1− 1

1 + e−zk

))

Maximierung erfolgt in vielen Programmpaketen durch den Newton-Raphson-
Algorithmus (Annäherung an den Nullpunkt durch Iteration).

3.4 Interpretation

Die Logits sind nicht leicht zu interpretieren, da es sich bei ihnen, wie wir
später sehen werden, um logarithmierte Odds (Chancen) handelt. Sie werden
deshalb wieder in normale Odds zurücktransformiert, indem das entsprechende
zk in 1

1+e−zk
eingesetzt wird. Die Regressionskoe�zienten a und b werden als

Logit-Koe�zienten bezeichnet, und im Gegensatz zur OLS-Regression über das
Maximum-Liklihood-Verfahren ermittelt.
Der Logit-Koe�zient a hat Ein�uss auf die Lage der Kurve, nicht auf ihre Stei-
gung. Bei positivem a verschiebt sich die Kurve nach links, bei negativen a
nach rechts. Der Koe�zient b hat hier nicht die Eigenschaften, wie im Falle
der linearen Regression, d.h. gleiche Veränderungen von xj in unterschiedlichen
Bereichen wirken sich unterschiedlich auf die Eintrittswahrscheinlichkeiten von
y aus, da es sich ja um einen nichtlinearen Zusammenhang handelt.
Ferner gilt:
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b=0 Für alle Beobachtungen von xj liegen die Wahrscheinlichkeiten bei 0.5

0<b<1 Die Wahrscheinlichkeitswerte steigen in Abhängigkeit von xj nur sehr
langsam an

+b DieWahrscheinlichkeitswerte steigen mit gröÿer werdendenWerten xj (nicht
linear)

-b Die Wahrscheinlichkeitswerte sinken mit steigenden Beobachtungswerten xj

Mit der Möglichkeit, die logistische Regression in ein Logitmodell zu überführen,
in der Form

pi = ezi

1+ezi

ezi = pi · (1 + ezi)
ezi = pi + pie

zi

ezi = ezi(1− pi)
pi

1−pi = ezi

ln pi
1−pi = zi

ist eine bessere Interpretation des Ein�usses der unabhängigen Variablen xj
(Mehrvariablenfall) auf die Eintrittswahrscheinlichkeiten p verbunden.

�
pi

1−pi = ezk wird als der Odds bezeichnet, diese drücken ein Chancenver-

hältnis aus. Bsp.: p(Y = 1) = 0.8→ 0.8
0.2 = 4, d.h. bei einer Odds von 4 ist

die Chance des Eintretens von y vier mal gröÿer als das Nichteintreten.

� ln pi
1−pi = zi Wird als Linkfunktion bezeichnet, die den Regressionsaus-

druck mit der Wahrscheinlichkeit pi verbindet: ln pi
1−pi = α + βxi Die

Linkfunktion ist der logarithmierte Odds, sie wird als Logit bezeichnet.

Da Informationen über die der logarithmierten Erfolgschancen etwas fremd an-
muten, bedient man sich verschiedener Hilfskonstruktionen:

Vorzeicheninterpretation: Die einfachste Möglichkeit ist, sich bei der In-
terpretation der Koe�zienten auf die Vorzeichen und die relative Gröÿe
der Koe�zienten zu beschränken. Ein positives Vorzeichen bedeutet bei-
spielsweise, dass die Wahrscheinlichkeit für y = 1 mit der entsprechenden
unabhängigen Variablen ansteigt, ein negatives Vorzeichen, dass die Wahr-
scheinlichkeit fällt. Je gröÿer der Betrag der Koe�zienten, desto gröÿer das
Ausmaÿ der Veränderung. Über das genaue Ausmaÿ lassen sich aber so
keine Rückschlüsse ziehen.

Interpretation der Odds-Ratios: Da es sich bei den Logits um die loga-
rithmierten Chancen (Odds) handelt, können wir sie wieder in normale
Chancen (Odds) umrechnen. Der schnellste Weg, um die Odds-Ratios zu
erhalten, ist das direkte exponieren der b-Koe�zienten.

eb0+b1(x1+1)

eb0+b1x1
=
eb0+b1x1eb1

eb0+b1x1
= eb1

Wenn sich die unabhängige Variable xj um eine Einheit erhöht, dann steigt
die Chance für y = 1 um das ebj-fache. Steigt xj um c Einheiten, so erhöht
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sich die Chance für y = 1 um c·ebj . Man spricht im Zusammenhang mit den
Odds-Ratios von multiplikativen Einheitse�ekt, im Gegensatz zum additi-
ven Einheitse�ekt der Regressionskoe�zienten in der linearen Regression.

Wahrscheinlichkeitsinterpretation: Die Dritte Möglichkeit ist zur Interpre-
tation der Logitkoe�zienten liegt in der Umrechnung in Wahrscheinlich-
keiten. Über

p(y = 1) =
1

1 + e−zk

kann für jeden zk-Wert die entsprechende Wahrscheinlichkeit p(y = 1)
angegeben werden, also wie hoch die Wahrscheinlichkeit ist, dass für zk =
b0 +

∑J
j=1 bjxij gilt: p(y = 1). Das Problem bei der Interpretation der

Wahrscheinlichkeiten besteht nun aber darin, dass sie nicht linear mit der
Erhöhung der unabhängigen Variablen ansteigen. Eine Erhöhung von xj
um eine Einheit hat also nicht immer den selben E�ekt.

Relevant für die Interpretation ist auch der E�ekt-Koe�zient eb, der eine ge-
nauere Analyse des Ein�usses der exogenen Variablen auf die Eintrittswahr-
scheinlichkeit erlaubt. Hierzu betrachten wir jetzt erst einmal wieder den Odds
(Wahrscheinlichkeitsverhältnis von p(Y=1)

p(Y=0) und erhöhen dabei die exogene Va-
riablen um 1

pi
1− pi

= ea+b(xi+1) = ea · ebxi · eb =
pi

1− pi
· eb

Es zeigt sich, dass man den E�ekt-Koe�zienten als Faktor begreifen kann, der
das Wahrscheinlichkeitsverhältnis (Odds) verändert.

-3 -2 -1 0 1 2 3
0
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Abbildung 3.4: Exponentialfunktion f(b) = eb

Der E�ektkoe�zient eb kann Werte zwischen 0 und +∞ annehmen. Bei negati-
ven Regressionskoe�zienten b verringert sich das Wahrscheinlichkeitsverhältnis,
bei positivem b vergröÿert der Faktor eb das Wahrscheinlichkeitsverhältnis.

Beispiel:

pi
1− pi

· eb, pi = 0.6, 1− pi = 0.4, Odds =
0.6

0.4
= 1.5
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1. b = 0, 0.6
0.4 · e0 = 1.5 · 1 = 1.5

2. b = 2, 0.6
0.4 · e2 = 1.5 · 7.39 = 11.081

3. b = −2, 0.6
0.4 · e−2 = 1.5 · 0.125 = 0.203

Eine Erhöhung der unabhängigen Variablen um eins bewirkt in Abhängigkeit
von b eine Verbesserung oder Verschlechterung des Wahrscheinlichkeitsverhält-
nisses. Eine Veränderung um das eb-fache (Erhöhung der unabhängigen Va-
riablen um eine Einheit) beein�usst linear das Wahrscheinlichkeitsverhältnis
(Odds), pi jedoch in nicht-linearer Weise. Dies liegt daran, dass die Auswirkung
einer Erhöhung von xj durch die Linkfunktion vermittelt wird.
Man kann nun die Auswirkung der Erhöhung von eb danach unterscheiden, ob
sie den Odds zu Gunsten oder zu ungunsten von pi verändern.

Der Logit-Koe�zient bj ist an die Ausprägungen der xj gebunden, so dass auch
der E�ekt-Koe�zient eb von der Skalierung der xj abhängt. Möchte man eine
Vergleichbarkeit der (Variablen) E�ekte erreichen, braucht es eine Standardisie-
rung. Der normierte Logit-Koe�zient

βj = bj

√
var(xj)

führt zum standardisierten E�ektkoe�zienten

βj = ebj
√
var(xj)

3.5 Prüfung des logistischen Modells:

Für ausgewählte Fälle wird ein Vergleich von tatsächlicher (beobachteter) Grup-
penzugehörigkeit und den durch die Schätzung hervorgegangenen Gruppenzu-
ordnungen gelistet, wobei für die Zuordnung zu einer Gruppe gilt:

yk =

{
Gruppe y = 1 falls pk(y = 1) > 0.5

Gruppe y = 0 falls pk(y = 1) < 0.5
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3.5.1 Klassi�kationsmatrix

Gegenüberstellung der richtigen und falschen Zuordnungen erfolgt über eine
Kreuztabellierung in der Form, dass richtige Zuordnungen in der Hauptdiago-
nalen stehen und Fehlklassi�kationen in den übrigen Feldern.

Vorhergesagt
Gruppe y = 1 Gruppe y = 0 % richtig

Beo- Gruppe y = 1 10 2 83.3
bachtet Gruppe y = 0 2 10 83.3

Gesamt % 83.3

Man kann nun die Tre�erquote mit einer Tre�erquote vergleichen, die rein zu-
fällig entstanden wäre, d.h. durch völlig willkürliche Zuordnung der Personen
zu einer der Gruppen (Münzwurf).
Anmerkung: Da die Tre�erquoten sehr stark an die aktuelle Stichprobe ge-
bunden sind, ist davon auszugehen, dass sie in einer anderen Stichprobe niedri-
ger ist, da sie auf der Basis der Anpassung an die aktuellen Stichprobendaten
entstanden ist. Die Überschätzung der Tre�erquote kann durch Kreuzvalidie-
rung des Modells überwunden werden. Dies geschieht durch eine Berechnung
der Schätzfunktion auf Basis einer Stichprobe, die Zuordnung oder Klassi�ka-
tion der Elemente auf Basis der Schätzfunktion erfolgt aber in einer anderen
Stichprobe. In ausreichend groÿen Datensätzen (mit genügend groÿen Zellbe-
setzungen) kann die Kreuzvalidierung innerhalb des Datensatzes durchgeführt
werden.

3.5.2 Press's Q-Test

Bezieht sich auf die Klassi�kationsmatrix und überprüft die Abweichung der
Tre�erquote aufgrund der Berechnungen von der Tre�erquote auf Basis einer
zufälligen Zuordnung. Die Prüfgröÿe ist χ2-verteilt mit df = 1. Getestet wird
die H0: Die Klassi�kation der Elemente entspricht einem Zufallsprozess.
Press's Q berechnet sich über:

Q =
[n− (n · g · a)]

2

n(g − 1)

wobei:
n den Stichprobenumfang, g die Anzahl der Gruppen und a den Anteil der
korrekt klassi�zierten Elemente angibt. Liegt Q oberhalb des kritischen Wertes
(bei α = 0.05→ 3.84) wird die H0 abgelehnt, die Klassi�kationsergebnisse sind
signi�kant von denen eine zufälligen Zuordnung unterschieden.

3.5.3 Hosmer-Lemeshow-Test

Prüfung der Nullhypothese, dass die Di�erenz zwischen vorhergesagtem und
beobachtetem Wert null ist, also H0 : yk − (Zuordnung gemäÿpk) = 0. Die
Fälle werden in Gruppen aufgeteilt, dann werden beobachtete und erwartete
Zuordnungen verglichen. Liegt die Prüfgröÿe innerhalb der kritischen Grenzen,
wird H0 beibehalten.
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3.5.4 Devianzanalyse

Bei der Maximum Likelihood-Methode maximieren wir die Wahrscheinlichkeit
der Parameter bei gegebenen Daten. Das 2-fache der log-likelihood ist annähernd
χ2-verteilt mit df = N − J − 1, wobei N die Anzahl der Beobachtungen und
J die Anzahl Parameter angibt. 2 wird als Devianz bezeichnet und ist mit der
Fehlerquadratsumme der linearen Regression vergleichbar. Bei einem perfekten
Fit ist die Devianz = 0. Es wird die H0: �Das Modell besitzt eine perfekte
Anpassung� getestet, je geringer der Wert für −2 lnL, desto besser der Fit. Die
Schiefe der Verteilung der Beobachtungen hat einen Ein�uss auf die Devianz. Ein
Schiefer Datensatz hat tendentiell eine bessere Anpassung, als ein gleichverteilter
Datensatz.

3.5.5 Likelihood-Ratio-Test

Beim LR-Test vergleichen wir die Devianz des vollständigen Modells −2 lnL1

mit der Devianz des Nullmodells −2 lnL0 . Beim Nullmodell handelt es sich
nicht um das Modell mit einer Devianz −2 lnL = 0, sondern um das Modell, in
dem nur die Konstante vorhanden ist, und alle anderen Parameter auf 0 gesetzt
werden. Bei gröÿer die Di�erenz, desto mehr tragen die unabhängigen Variablen
zur Unterscheidung der y-Zustände bei.
Als H0 wird �Alle Logitkoe�zienten sind = 0� getestet.
Als Testgröÿe fungiert die absolute Di�erenz zwischen −2 lnL0 und −2 lnL1,
also:

χ2
L = −2(lnL0 − lnL1)

Diese ist annähernd χ2-verteilt mit df = J . Der χ2-Wert kann also ähnlich
dem F -Wert in der linearen Regression genutzt werden, um zu prüfen, ob alle
bj = 0 sind. Bei groÿen Werten ist die H0 abzulehnen, was auf ein für die
Daten relevantes Modell hinweist. Allerdings ist auch hier, wie beim F -Test in
der linearen Regression eine einfache Zurückweisung nicht ausreichend, um mit
dem Modell zufrieden zu sein.

3.6 Pseudo-r2

3.6.1 McFaddens - r2

Analog zum Determinationskoe�zienten der linearen Regression r2 kann die
Güte des logistischen Regressionsmodells mit McFaddens Pseudo-r2 beurteilt
werden. Hierbei handelt es sich um ein globales Gütemaÿ, das aus den logarith-
mierten Maximum-Likelihood-Schätzungen des Ausgangsmodells (nur Konstan-
te) −2 lnL0 und −2 lnL1 des Modells mit den unabhängigen Variablen berech-
net wird. Es beurteilt die Trennkraft der unabhängigen Variablen.

McFaddens− r2 = 1− −2 lnL1

−2 lnL0
= 1− lnL1

lnL0
=

lnL0 − lnL1

lnL0

Besteht kein Unterschied zwischen L0 und L1 wird, dann wird r2 den Wert null
annehmen, je gröÿer der Unterschied, desto stärker geht r2 gegen 1, ohne diesen
Wert jedoch zu erreichen. Werte zwischen 0.2 und 0.4 deuten auf einen guten
Modell�t hin.
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Während der Likelihood-Ratio-Test ein Test auf Übertragbarkeit der Stich-
probenergebnisse auf die Grundgesamtheit ist, handelt es sich bei McFaddens
Pseudo-r2 um einen Modellvergleich, der die Trennkraft der unabhängigen Va-
riablen beurteilt.

3.6.2 Cox & Snell - r2

Cox & Snell− r2 = 1−
[
L0

L1

] 2
n

Gegenüberstellung der nicht logarithmierten Likelihoodwerte. Der Koe�zient
wird über den Stichprobenumfang gewichtet. Akzeptable Werte >0.2, gute Wer-
te >0.4, Nachteil: erreicht nur Werte <1

3.6.3 Nagelkerke - r2

Erreicht im Gegensatz zu den beiden anderen Pseudo-r2-Koe�zienten den Maxi-
malwert von 1, und sollte in der Analyse vornehmlich genutzt werden. Desweite-
ren soll er eine Interpretation wie die des �originalen� Determinationskoe�zien-
ten in der linearen Regression zulassen, er gibt den Anteil der Varianzerklärung
der abhängigen Variable durch die unabhängigen Variablen an. Werte ab 0.5
deuten auf einen guten Modell�t hin. Er berechnet sich über:

Nagelkerke− r2 =
Cox & Snell− r2

1− [L0]
2
n

oder anders

Nagelkerke− r2 =
r2

r2
max

mit r2
max = 1− (L0)

2
n und L0, der Likelihood des Nullmodells, in welchem nur

die Konstante geschätzt wird, aber keine unabhängigen Variablen eingegangen
sind.

3.7 Diagnostik

3.7.1 Linearität

Bei der logistischen Regression muss die funktionale Form des Scatterplots nicht-
linear sein, da sich die Linearitätsannahme auf die Logits bezieht, nicht auf den
Zusammenhang zwischen Eintrittswahrscheinlichkeit p(y = 1) und xj , der als
S-förmig angemonnem wird. Dies kann über sogenannte LOWESS (LOcally
WEighted Scatterplot Smoother) inspiziert werden, hier liegt eindeutig keine
S-förmiger Zusammenhang vor.
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Abbildung 3.5: LOWESS

Die abhängige Variable in Abbildung 3.5 ist dichotom, um Überlagerungen zu
vermeiden wurde zu jedem y-Wert jeweils ein Zufallswert addiert, damit sie
nicht alle auf den Werten 0 und 1 liegen, sondern leicht um diese Werte herum
�zittern� (jitter).

3.7.2 Ausreiÿer

Es geht um die Beurteilung des E�ektes, den einzelne Personen auf die Modell-
güte haben. Diese können neben einer schlechten Auswahl der unabhängigen
Variablen eine schlechte Modellanpassung verursachen. Die Identi�zierung von
Ausreiÿern erfolgt über die Berechnung der Residuen, d.h. es wird die Diskre-
panz zwischen empirischem Wert und geschätzter Wahrscheinlichkeit p(y = 1)
berechnet. Als Ausreiÿer gelten Personen, deren standardisierte Residuen über
0,5 liegen. Die Berechnung der standardisierten Residuen erfolgt nach

ZResidk =
yk − p(yk = 1)√

p(yk = 1) · (1− p(yk = 1))

Bei einem beobachteten Wert für Person k mit y = 1 und einer geschätzten
Wahrscheinlichkeit p(yk = 0.073) ergibt sich dann

ZResidk =
1− 0.073√
0.073 · 0.927

=
0.927

0.2601
= 3.564

Person k kann nach dem Kriterium ZResid > 0.5 als Ausreiÿer angesehen werden.

3.8 Prüfung der Merkmalsvariablen

Angaben zur Trennfähigkeit der einzelnen Variablen geben der Likelihood-Quotienten-
Test und die Wald-Statistik.

3.8.1 Likelihood-Quotienten-Test

Ähnelt dem LR-Test, ist aber kein Vergleich des vollständigen Gesamtmodells
lnLV gegen das Nullmodell, sondern ein Vergleich unterschiedlicher reduzierter
Modelle, wobei jeweils ein Koe�zient bj = 0 gesetzt wird. Dann wird die Di�e-
renz der −2 lnL zwischen vollständigem (lnLV ) und reduzierten (lnLR )Modell
betrachtet.
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H0: Der E�ekt von bj ist Null (bj = 0) Die Testgröÿe (lnLR − lnLV ) ist χ2-
verteilt und somit kann auf dieser Basis eine Signi�kanzprüfung durchgeführt
werden.

3.8.2 Wald-Statistik

Testet die Nullhypothese, dass ein bestimmtes bj Null ist, also die unabhängige
Variablen nicht zur Trennung der Gruppen beiträgt. Die Wald-Statistik

W =

(
bj
sbj

)2

mit sbj = Standardfehler von bj

ist ebenfalls asymptotisch χ2-verteilt.
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KAPITEL 4

DISKRIMINANZANALYSE

Bei der Diskriminanzanalyse handelt es sicg um ein multivariates Verfahren zur
Analyse von Gruppen- bzw. Klassenunterschieden. Durch diese Methode ist es
möglich, G ≥ 2 Gruppen unter Berücksichtigung von xj Variablen zu untersu-
chen, und dabei zu ermitteln, in wie weit sich diese Gruppen unterscheiden. Der
Unterschied zur Clusteranalyse liegt darin, dass es sich bei der Diskriminanzana-
lyse um kein exploratives, sondern um ein kon�rmatorisches Verfahren handelt.
Es werden keine Gruppen gebildet, sondern es werden vorhandene Gruppierung
hinsichtlich ihrer Gruppierungsqualität überprüft. Die abhängige Variable, die
die Gruppenzugehörigkeit festlegt ist nominal, die unabhängigen Variablen sind
metrisch.
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Abbildung 4.1: Diskriminanzfunktion

Durch die Diskriminanzanalyse kann geprüft werden, ob das Ergebnis einer Clus-
teranalyse verbesserungsfähig ist, welche Variablen für die Gruppierung beson-
ders erklärungskräftig sind, oder in welche Gruppe ein neues Objekt eingeordnet
werden sollte.
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Der einfachste Fall besteht darin, wenn nur 2 Gruppen vorliegen - bsp. die Vor-
hersage der Zuordnung von Personen entweder zur Gruppe der SPD-Wähler oder
der Gruppe der CDU/CSU-Wähler. Diese 2 Gruppen werden dann durch die
sogenannte Diskriminanzfunktion, in die mehrere unabhängige Variablen einge-
hen können, getrennt. Sollen mehr Gruppen getrennt werden, so benötigen wir
auch mehrere Diskriminanzfunktionen. Bei beispielsweise 3 Gruppen benötigen
wir 2 Diskriminanzfunktionen.
Die Diskriminanzfunktion ähnelt derjenigen Gleichung der Regression.

y = b0 + b1x1 + b2x2 + . . .+ bjxj

SPSS beispielsweise benötigt zur Durchführung einer Diskriminanzanalyse einen
a priori -Wert. Als Voreinstellungen können aus der Gruppengröÿe berechnen
oder alle Gruppen gleich gewählt werden. Möchte man andere a priori Wahr-
scheinlichkeiten verwenden, beispielsweise aus der amtlichen Statistik oder vor-
herigen Untersuchungsergebnissen, so kann dies nur über die Syntax über den
Unterbefehl /PRIORS = X,Y,Z realisiert werden.
Für jeden Fall wird ein Diskriminanzwert berechnet. Mittels der Diskriminanz-
werte kann jedes Objekt einer Gruppe zugeordnet werden. Die Werte der Diskri-
minanzfunktion sind metrisch, stellen also noch keine Gruppenzugehörigkeiten
dar.

4.1 Ansatz über Bayes-Theorem

Betrachten wir die abhängige Variable Wahlabsicht. Die Schätzung der Koe�zi-
enten bj soll den Anteil der durch die Gruppenzugehörigkeit erklärten Varianz
maximieren Prinzipiell lässt sich keine Funktion �nden, die eine eindeutige Zu-
ordnung der Gruppen erlaubt. Tendenziell sind nach der berechneten nach bj
maximierten Diskriminanzfunktion Personen mit niedrigen Diskriminanzwer-
ten SPD-Wähler. Es kann jedoch auch eine Person mit niedrigen Werten ein
CDU/CSU-Wähler sein. Es ist folglich nicht eindeutig möglich zu sagen: ab dem
Diskriminanzwert Y ∗ wählt eine Person immer die CDU/CSU. Diesen Trenn-
wert kann man dennoch im 2-Gruppenfall zur Trennnung benutzen. Sind mehr
als 2 Gruppenzugehörigkeiten zu schätzen und in der Folge mehr Diskriminanz-
funktion, erfolgt die Prognose der Gruppenzugehörikeit mittels Bayes-Statistik.
Für jede Person lässt sich die Wahrscheinlichkeit P (Gi|Yj), bestimmen, dass sie
bei gegebenem Diskriminanzwert in Gruppe Gi gehört.

4.1.1 Klassi�kation der Fälle

Für alle Gruppen werden für jede Person die Wahrscheinlichkeiten berechnet,
in diese Gruppen zu gehören. Über alle Gruppen hinweg ergibt sich für jedes
Objekt eine Gesamtwahrscheinlichkeit von 1. Bei der Berechnung dieser Wahr-
scheinlichkeiten, kommt der Satz von Bayes zum Einsatz:

P (Gi|Yj) =
P (Yj |Gi) · P (Gi)
G∑

i=1

P (Yj |Gi) · P (Gj)
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Mittels dieses Satzes können wir die Wahrscheinlichkeit für die Gruppenzuge-
hörigkeit aus zwei bekannten Wahrscheinlichkeiten auf Grund des Diskriminan-
zwertes berechnen. Man bezeichnet P (Gi|Yj) als a posteriori- Wahrschein-

lichkeit. Diese wird auf der Basis der bedingten Wahrscheinlichkeit P (Yj |Gi)
und der a priori-Wahrscheinlichkeit P (Gi) berechnet.
Die a priori - Wahrscheinlichkeit P (Gi) ist die theoretische Wahrscheinlichkeit
in eine der beiden Gruppen zu fallen. Sie ist oftmals nicht bekannt, und muss
vom Forscher gewählt werden. Hat man gar keine Informationen über die Vertei-
lung in der Grundgesamtheit (z.B. aus der amtlichen Statistik), wird man eine
Gleichverteilung zugrundelegen. Wir gehen davon, dass unsere relativen Häu-
�gkeiten denen der Grundgesamtheit entsprechen und nutzen sie als a priori
Eingaben.
Mit dem Vergleich der Gruppenzugehörigkeits-Wahrscheinlichkeit lässt sich auch
ein Rückschluss auf die Güte der Zuweisung ziehen. Sind die Wahrscheinlichkei-
ten sehr unterschiedlich, ist die Einordnung eindeutig. Betrachtung der Grup-
penmittelwerte bzw. Centroide, die auf der Basis der Zuweisung von Diskrimi-
nanzwerten errechnet werden. Je näher die Centroide zusammenliegen, desto
schwieriger wird die Zuweisung zu einer Gruppe. Diese ist jedoch noch keinen
Test darauf, ob die Unterschiede in den Gruppencentroiden auch in der Grund-
gesamtheit gelten.
Der Eigenwert entspricht nahezu dem F -Wert der Varianzanalyse, seine Berech-
nung

λ =
QSzwischen
QSinnerhalb

=
erklärte Streuung

nicht erklärte Streuung

unterscheidet sich von der des F -Wertes der Varianzanalyse dadurch, dass hier
die Freiheitsgrade nicht ein�ieÿen. Je gröÿer der Eigenwert, desto gröÿer die
durch die Diskriminanzfunktion erklärte Streuung. Werte innerhalb der Grup-
pen sind sich ähnlich, Werte zwischen den Gruppen unterscheiden sich deutlich.
Die Diskriminanzfunktion soll die Varianz zwischen den Gruppen maximieren.
Die Maximierung erfolgt über die Gewichtungsfaktoren bj der Variablen xj .
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Abbildung 4.2: Verhältnis der Varianzen
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Der Eigenwert berechnet sich über:

λ =
(b1(x̄1,A1

− x̄1,A2
) + b2(x̄2,A1

− x̄2,A2
))2

b21s11 + b22s22 + 2b1b2s12
= max!

Das Maximum für λ erhält man nach

∂λ

∂bj
= 0 und

∂2λ

∂b2j
< 0

Die kanonische Korrelation
√

QSzwischen
QSzwischen +QSinnerhalb

misst den Zusammenhang zwischen abhängigen und erklärenden Variablen und
entspricht in der De�nition dem η der Varianzanalyse: erklärter Anteil zu Ge-
samtstreuung.

Wilk's Λ

Wilk's Λ ist konträr zur kanonischen Korrelation de�niert als

Λ =
QSzwischen

QSzwischen +QSinnerhalb

und addiert sich somit mit dem Quadrat des kanonischen Korrelationskoe�zien-
ten zu eins auf. Es wird eher zur Überprüfung der Modellgüte herangezogen, da
hier mittels χ2-Transformation von Λ ein Signi�kanztest durchgeführt werden
kann: H0: Die Diskriminanzwerte sind in der Population zwischen den Gruppen
identisch.

4.2 Mehrfache Diskriminanzanalyse

Bei g Gruppen (l = 1, ..., g) der abhängigen Variablen werden durch k − 1
Diskriminanzfunktionen getrennt, die nacheinander berechnet werden.
In Abbildung4.3 werden 3 Gruppen durch 2 Diskriminanzachsen getrennt.
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Abbildung 4.3: 3 Gruppen-Fall

Die erste Diskriminanzfunktion

YA = b1AX1 + b2AX2

trennt Gruppe A1 gegen die Gruppen A3 und A2, YA trennt nicht zwischen A3
und A2. Die zweite Diskriminanzfunktion

YB = b1BX1 + b2BX2

steht orthogonal zu YA und trennt Gruppe A3 gegen Gruppen A2 und A1. YA
trennt nicht zwischen A2 und A1. Wir benötigen beide Diskriminanzfunktionen
zur Trennung der Gruppen.

4.2.1 Prozedere

Bildung der ersten Diskriminanzfunktion als Linearkombination der Variablen
x1, . . . , xk mit den Gewichten bjA

YA = b1AX1 + b2AX2 + . . .+ bkAXk

Wie im 2-Gruppenfall wird auch hier der Wert für die Gewichte bj gesucht der
die Funktion maximiert.

λA =
QSzwischen
QSinnerhalb

= max!

Die zweite Diskriminanzfunktion ist die Linearkombination der Partialvariablen
erster Ordnung xj−A:

YB = b1−A,BX1−A + . . .+ bk−A,BXk−A

Durch Transformation der Gewichte lässt sich die Funktion jedoch als Linear-
kombination der Ursprungsvariablen schreiben
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YB = b1BX1 + b2BX2 + . . .+ bkBXk

und wie YA wird sie nach bj maximiert. Alle weiteren Diskrimanzfunktionen
werden als Linearkombinationen von Partialvariablen höherer Ordnung gebildet
xj−A,B,....
Die Klassi�kation nach dem Satz von Bayes ist ab dem Fall mehrerer Gruppen
erst nachvollziehbar. Wir können jetzt nicht mehr einfach mit einem Trennin-
dex arbeiten, wie im Zweigruppenfall. Ab jetzt ist die Klassi�zierung einfacher
mittels anderer Verfahren.

P (GI |Yji) =
P (Yji|GI) · P (GI)
g∑

I=2

P (Yji|GI) · P (GI)

Die Wahrscheinlichkeit wird für Person i für alle Gruppen mit allen Diskriman-
zwerten berechnet. Die Zuordnung zu einer Gruppe erfolgt nach dem Maximal-
wert von:

K∑

J=A

P (GI |YJi)

4.3 Varianzzerlegung

Ähnlich der Varianzanalyse, lässt sich bei der Diskriminanzanalyse eine Vari-
anzzerlegung durchführen

Gesamte Abwei-
chung

= Erklärte Abwei-
chung

+ Nicht erklärte Ab-
weichung

Summe der qua-
drierten Gesamtab-
weichung

= Summe der qua-
drierten Abweichun-
gen innerhalb der
Faktorstufen

+ Summe der qua-
drierten Abweichun-
gen zwischen den
Faktorstufen

G∑

g=1

Ig∑

i=1

(ygi − ȳ)2 =
G∑

g=1

Ig(ȳg − ȳ)2 +
G∑

g=1

Ig∑

i=1

(ygi − ȳg)2

SSt = SSb + SSw

SSt(otal) = SSb(etween) + SSw(ithin)
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Die Schätzung der Koe�zienten bj soll den Anteil der durch die Gruppenzu-
gehörigkeit erklärten Varianz maximieren. Kleine Überschneidungsbereiche der
Häu�gkeitsverteilungen auf der Diskriminanzachse bedeutet gute Trennung.
Jede Gruppe besitzt einen Centroid (mittleren Diskriminanzwert):

ȳg =

Ig∑

i=1

ygi

Ig

Ein Maÿ für die Unterschiedlichkeit zweier Gruppen Gruppen ist beispielsweise

|ȳA − ȳB |

Die Parameter der Diskriminanzfunktion sollen nun so geschätzt werden, daÿ
sich die Gruppen maximal unterscheiden. |ȳA − ȳB | ist als Maÿ aber ungeeignet,
da es die Streuung der Gruppen nicht berücksichtigt.
Wenn

1. nur 2 Gruppen vorliegen

2. die annähernd gleich groÿ sind

3. mit ungefähr gleicher Streuung s

dann ist

U =
|ȳA − ȳB |

s

ein geeigneteres Diskriminaznmaÿ. Dazu ist äquivalent:

U2 =
(ȳA − ȳB)2

s2

Um die Voraussetzungen 1. und 2. aufzuheben, muÿ (ȳA − ȳB)2 in der obigen
Formel durch ein Maÿ für die Streuung zwischen den Gruppen ersetzt werden.
Dies geschieht durch

SSb =

G∑

g=1

Ig(ȳg − ȳ)2

wobei
G = Anzahl der Gruppen
Ig = Anzahl der elemente in Gruppe g
ȳg = Mittlerer Diskriminanzwert in Gruppe g
ȳ = Gesamtmittel der Diskriminanzwerte aller Elemente

Um die Vorausssetzung 3.aufzuheben, muÿ s2 in der Formel für U2 durch ein
Maÿ für die gesamte (gepoolte) Streuung innerhalb der zwei oder mehr Gruppen
ersetzt werden. Ein Maÿ dafür ist:

SSw =

G∑

g=1

Ig∑

i=1

(ygi − ȳg)2

wobei ygi den Diskriminanzwert von Element i in Gruppe g bezeichnet.
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Das Diskriminanzkriterium, dass bei 2 oder mehr Gruppen verwendet wird, um
die Unterschiedlichkeit der Gruppen zu messen ist:

Γ =
SSb
SSw

=
Streuung zwischen den Gruppen

Streuung in den Gruppen

Γ =

G∑

g=1

Ig(ȳg − ȳ)2

G∑

g=1

K∑

k=1

(ygk − ȳg)2

Γ kann als Quotient aus erklärter zu nicht erklärter streuung interpretiert
werden, also

Γ =
erklärte Streuung

nicht erklärte Streuung

Die Diskriminanzwerte und damit auch Γ sind abhängig von den zu schätzenden
Koe�zienten. Das Problem der Schätzung der Diskriminanzfunktion läÿt sich
nun so formulieren: Wähle die Koe�zienten b0, b1, . . . , bj so, daÿ Γ maximal
wird

4.4 Schätzen der Diskriminanzfunktion

Hierfür benötigen wir 2 Matrizen, die Matrix der Streuung zwischen den Grup-
pen, die Between-Matrix:

B =

g∑

i=1

Ig(ȳg − ȳ)(ȳg − ȳ)′

sowie die Matrix der Streuung innerhalb der Gruppen, die Within-Matrix:

W =

g∑

k=1

W k

W =

g∑

g=1

Ig∑

i=1

(ȳgi − ȳg)(ȳgi − ȳg)′

Das Diskriminanzkriterium Γ soll maximiert werden. Man kann Γ kann mit Hilfe
der Matrizen W und B schreiben:

Γ =
ϑ′Bϑ

ϑ′Wϑ

wobei ϑ der Vektor der unbekannten Parameter der Diskriminanzfunktion ist.
Um Γ zu maximieren, muss die erste Ableitung nullgesetzt werden (sowie die
zweite Ableitung an diesem Punkt negativ sein). Dies ergibt folgende Bedingung
für den Wert λ:

(B − λW )ϑ = 0
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Was zu

Bϑ = λWϑ

führt. Durch invertieren der Matrix W erhalten wir

(W−1B)ϑ = λϑ

Es handelt sich bei λ um den maximalen Eigenwert der Matrix W−1B, ϑ ist
der dazugehörige Eigenvektor.
Dies führt zu der nicht-normierten Diskriminanzfunktion:

y = ϑ1x1 + ϑ2x2 + . . .+ ϑjxj

Die normierte Variante lautet:

bj =
1

s
ϑj mit s =

√
1

I −Gϑ′Wϑ

und b0 = −
J∑

j=1

bj x̄j

4.5 Güte der Diskriminanz

Wir wissen, dass für den maximalen λ des Diskriminanzkriteriums Γ gilt:

λ =
erklärte Streuung

nicht erklärte Streuung

Dieses Unterschiedlichkeitsmaÿ ist allerding nicht auf den Bereich 0 ≤ λ ≤ 1.
Folgende Werte sind auf diesen Bereich genormt:

λ

1 + λ
=

erklärte Streuung
gesamte Streuung

sowie

1

1 + λ
=

nicht erklärte Streuung
gesamte Streuung

welcher Wilk's Lambda genannt wird.
Wilk's Λ ist ein sogenanntes �inverses Gütemaÿ�, d.h. kleinere Werte bedeuten
höhere Unterschiedlichkeit der Gruppen, bzw. höhere Trennkraft der Diskrimi-
nanzfunktion.

4.5.1 Signi�kanz der Diskriminanzfunktion

Es werden folgende Hypothesen getetstet:

H0 : Gruppen unterscheiden sich nicht
H1 : Gruppen unterscheiden sich
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Aus Wilk's Λ lässt sich eine Prüfgröÿe berechnen, die annähernd χ2-verteilt ist
mit df = J · (G− 1), mit der die Hypothesen geprüft werden können.

χ2 = −
[
N − J +G

2
− 1

]
ln Λ

wobei
N : Gesamtzahl der Fälle
J : Anzahl der Merkmalsvariablen
G : Anzahl der Gruppen

Wenn mehr als zwei Gruppen vorhanden sind, so wird mehr als eine Diskrimi-
nanzfunktion verwendet. Bei G Gruppen: höchstens G−1 Diskriminanzfunktio-
nen. Aber: nicht mehr Diskriminanzfunktionen als Merkmalsvariablen. Zu jeder
Diskriminanzfunktion gehört ein Eigenwert. Für diese Eigenwerte gilt:

λ1 > λ2 > . . . > λg−1 >

Die zweite Diskriminanzfunktion wird so ermittelt, daÿ sie einen maximalen An-
teil jener Streuung erklärt, die nach Ermittlung der ersten Diskriminanzfunktion
als Rest verbleibt.
Ein Maÿ für die relative Wichtigkeit der kten Diskriminanzfunktion ist der so-
genannte Eigenwertanteil:

EAk =
λk

λ1 + λ2 + . . .+ λK

Er gibt die durch die k−te Diskriminanzfunktion erklärte Streuung als Anteil
jener Streuung an, die durch alle K Diskriminanzfunktionen erklärt wird. Die
Wichtigkeit der Diskriminanzfunktionen nimmt schnell ab. Meist genügen 23
Diskriminanzfunktionen.
Zum Prüfen der Unterschiedlichkeit der Gruppen müssen alle Diskriminanzfunk-
tionen und deren Eigenwerte berücksichtigt werden. Man verwendet dazu das
multivariate Wilks Λ:

Λ =

K∏

k=1

1

1 + λk
=

1

1 + λ1
· 1

1 + λ2
· . . . · 1

1 + λK

Wobei λk der Eigenwert der k-ten Diskriminanzfunktion ist. Das multivariate
Wilks Λ ergibt sich als Produkt der univariaten. Es kann wiederum die χ2-
Prüfgröÿe gebildet werden, um auf Signi�kanz zu testen.
Wilks Λ kann einem in unterschiedlichen Schreibweisen begegnen:

Λ =
det(W )

det(T )
=

det(W )

det(B + W )
= det(I + W−1B)−1 =

q∏

k=1

(1 + λk)−1

.0



ANHANG A

MATRIX-ALGEBRA

Eine Matrix besteht aus m Zeilen und n Spalten. Matrizen werden mit fetten
Groÿbuchstaben bezeichnet. Eine m× n-Matrix sieht folgendermaÿen aus:

A =




a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
. . .

...
am1 am2 am3 . . . amn




A.1 Skalarmultiplikation

Um eine Matrix mit einem Skalar zu multiplizieren muss jedes Element der
Matrix mit diesem Skalar multipliziert werden.

A · ϕ = ϕ




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =




ϕa11 ϕa12 ϕa13

ϕa21 ϕa22 ϕa23

ϕa31 ϕa32 ϕa33




Rechenregeln für Skalarmultiplikation

(α+ β)A = αA + βA
α(A + B) = αA + αB

α(βA) = (αβ)A = (βα)A = β(αA)
α(AB) = (αA)B = A(αB) = αAB
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A.2 Multiplikation

In der Rechnung mit Matrizen ist Einiges zu beachten, was uns auf den ersten
Blick unlogisch oder verwirrend erscheint. So ist jedem von uns aus dem Alltag
bekannt, dass 3 mal 5 identisch ist mit 5 mal 3. Dies gilt in der Matrizenrechnung
nicht, oder nur für ganz bestimmte Matrizen A und B, nämlich für idempotente
Matrizen. Im �Normalfall� gilt:

A ·B 6= B ·A
Berechnen wir A ·B mit

A =

(
2 −3 1
−1 4 0

)
;B =




3 1
4 2
5 −3




erhalten wir folgendes:

(
2 −3 1
−1 4 0

)
·




3 1
4 2
5 −3


 =

(
−1 −7
13 7

)

Berechnen wir nun B ·A erhalten wir ein anderes Ergebnis:




3 1
4 2
5 −3


 ·

(
2 −3 1
−1 4 0

)
=




5 −5 3
6 −4 4
13 −27 5




Matrixmultiplikation ist also nicht kommutativ! Wann können wir überhaupt
zwei Matrizen miteinander multiplizieren? Dies ist nicht immer möglich. Man
kann zwei Matrizen nur multiplizieren, wenn die Anzahl der Spalten der ersten
Matrix identisch ist mit der Anzahl der Zeilen der zweiten Matrix. Wir können
als eine 4× 5-Matrix mit einer 5× 6-Matrix multiplizieren und erhalten so eine
5 × 5-Matrix als Ergebnis. Es ist jedoch nicht möglich, eine 5 × 6-Matrix mit
einer 4× 5-Matrix zu multiplizieren.

Matrixmultiplikation

3× 4 · 4× 5 = 3× 5 4× 3 · 5× 4 = /
5× 6 · 6× 5 = 5× 5 6× 5 · 5× 6 = 6× 6
7× 5 · 5× 3 = 7× 3 5× 7 · 3× 5 = /

Als Beispiel multiplizieren wir nun die schon angesprochenen Matrizen A und
B, um zu sehen, wie wir an die Werte kommen, die in der resultierenden Matrix
C stehen. Wir berechnen:

A ·B = C

also (
2 −3 1
−1 4 0

)
·




3 1
4 2
5 −3


 =

(
c11 c12

c21 c22

)
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Welchen Wert hat nun beispielsweise der Eintrag c11?

(
2 −3 1
−1 4 0

)
·




3 1
4 2
5 −3




Der Wert von c11 ergibt sich durch

c11 = 2 · 3 + (−3) · 4 + 1 · 5 = −1

Es wird also das erste Element der ersten Zeile der Matrix A mit dem ersten
Element der ersten Spalte der Matrix B multipliziert. Dann wird das zweite
Element der ersten Zeile der Matrix A mit dem zweiten Element der ersten
Spalte der B multipliziert und dieses Ergebnis zu dem vorherigen Ergebnis ad-
diert. Zu guter Letzt wird das Ergebnis der Multiplikation des dritten Elements
der ersten Zeile der Matrix A mit dem dritten Element der ersten Spalte der
Matrix B zu den beiden vorherigen addiert. Wir erhalten folgende 4 Werte:

c11 = 2 · 3 + (−3) · 4 + 1 · 5 = −1
c12 = 2 · 1 + (−3) · 2 + 1 · (−3) = −7
c21 = (−1) · 3 + 4 · 4 + 0 · 5 = 13
c22 = (−1) · 1 + 4 · 2 + 0 · (−3) = 7

Also erhalten wir als Ergebnis der Multiplikation A ·B die Matrix

C =

(
−1 −7
13 7

)

Rechenregeln zur Matrixmultiplikation

Assoziativgesetz (AB)C = A(BC)

(AB)C = ABC

A(BC) = ABC

linksseitiges Distributivgesetz A(B +C) = AB +AC

rechtsseitiges Distributivgesetz (A+B)C = AC +BC

im Allgemeinen AB 6= BA

AI = IA = A

A.3 Addition und Subtraktion

Addition und Subtraktion von Matizen sind einfacher zu bewerkstelligen als
Multiplikation oder Division von Matrizen. Eine Einschränkung ist jedoch, dass
nur Matrizen der gleichen Ordnung addiert oder subtrahiert werden können.
Schauen wir uns nun die Addition zweier Matrizen an:




3 1
5 2
2 4


+




5 4
1 2
1 3


 =




3 + 5 1 + 4
5 + 1 2 + 2
2 + 1 4 + 3


 =




8 5
6 4
3 7



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die Subtraktion zweier Matrizen verläuft analog. Auch hier ein Beispiel:



3 1
5 2
2 4


+




5 4
1 2
1 3


 =




3− 5 1− 4
5− 1 2− 2
2− 1 4− 3


 =



−2 −3
4 0
1 1




Rechenregeln Addition und Subtraktion

(A + B) + C = A + (B + C)
A + B = B + A
A + 0 = A

A + (−A) = 0

Wobei A, B und C = n×m-Matrizen und 0 die n×m-Nullmatrix

A.4 Transponieren

Als transponieren einer Matrix wird der Vorgang bezeichnet, durch den die
Zeilen einer Matrix zu Spalten werden und Spalten zu Zeilen. Technischer ge-
sprochen: Aus dem Eintrag aij wird der aji. Die transponierte Matrix von A
wird mit A′ oder auch At bezeichnet.

A =

(
a b c
x y z

)
transponieren→ A′bzw.At =




a x
b y
c z




Transponieren und multiplizieren wirken sich kombiniert folgendermaÿen aus:

� A×B = Multiplikation Reihe mal Spalte von A und B

� A×B′ = Multiplikation Reihe mal Reihe von A und B

� A′ ×B = Multiplikation Spalte mal Spalte von A und B

� A′ ×B′ = Multiplikation Spalte mal Reihe von A und B

Rechenregeln für Transponierte

(A′)′ = A
(A + B)′ = A′ + B′

(αA)′ = αA′

(AB)′ = B′A′

(ABC)′ = C ′B′A′

A.5 Diagonalmatrizen

Bei einer symmetrischen Matrix handelt es sich um einen Sonderfall einer qua-
dratischen Matrix (n×n-Matrix). Hierbei sind die Matrix und ihre Transponierte
identisch, es gilt: A = A′. Eintrag aij und aji sind identisch, also aij=aji.
Bei einer Diagonalmatrix handelt es sich um eine Matrix, in der alle Wert, bis
auf die der Hauptdiagonalen gleich Null sind. Es gilt also:
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


a 0 0
0 b 0
0 0 c




Bei einer Skalarmatrix handelt es sich um eine Diagonalmatrix, die durch den
Skalar gebildet wird. Sie steht für den Skalar und unmegekehrt. Es gilt:

ω =




ω 0 0
0 ω 0
0 0 ω


 = ω

ωA = Aω = ωA = Aω

Ein Spezialfall einer Diagonalmatrix ist die sogenannte Einheits- oder Identi-
tätsmatrix, abgekürzt mit E oder I. In ihr stehen nur Einsen auf der Haupt-
diagonalen.

E bzw. I =




1 0 0
0 1 0
0 0 1




A.6 Die Spur einer Matrix

Als Spur einer Matrix sp(A) oder tr(A), Abkürzung des englischen �trace� für
�Spur�) bezeichnet man die Summe der Elemente der Hauptdiagonalen. Sie ist

de�niert als tr(A) =

n∑

i=1

aii.

In der Matrix 


1 0 0
0 1 0
0 0 1




beträgt die Spur 1 + 1 + 1 = 3
In der Matrix 


5 −5 3
2 3 4
6 −7 4




beträgt die Spur 5 + 3 + 4 = 12

Rechenregeln für die Spur einer Matrix

tr(A + B) = tr(A) + tr(B) tr(A′) = tr(A)
tr(αA) = αtr(A) tr(AB) = tr(BA)

tr(BCA) = tr(CAB) = tr(ABC) tr(B−1AB) = tr(A)
(i. Allg.) tr(AB) 6= tr(A)tr(B)

Für partionierte Matrizen

tr

(
A11 A12

A21 A22

)
= tr(A11) + tr(A22)
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A.7 Determinante

Die Determinante einer 2× 2-Matrix errechnet sich wie folgt:
für die Matrix A:

A =

(
a11 a12

a21 a22

)
→ det(A) = a11a22 − a12a21

Wie aber berechnet man die Determinante von höher dimensionierten Matrizen?
Hier als Beispiel eine 3× 3-Matrix:




a11 a12 a13

a21 a22 a23

a31 a32 a33




Es bestehen nun mehrere Möglichkeiten, die Determinante einer 3 × 3-Matrix
zu berechnen (Laplace'scher Entwicklungssatz). Wir können die Determinante
über die gewichtete Summe der Elemente einer Reihe oder Spalte (egal welcher)
bestimmen.

� Für jedes Element der gewählten Spalte oder Zeile, hier a11, a21 und a31,
wird ein Gewicht berechnet.

� Dieses Gewicht ist die Determinante einer 2× 2-Matrix.

� Diese 2 × 2-Matrix erhält man, wenn man alle Elemente streicht, die in
der gleichen Spalte sowie Zeile stehen, wie das Element, für das man das
Gewicht berechnen will.

Also berechnen wir wie folgt für die Matrix A:



a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

(
a22 a23

a32 a33

)
= a22a33 − a23a32 = α




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

(
a12 a13

a32 a33

)
= a12a33 − a13a32 = β




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

(
a12 a13

a22 a23

)
= a12a23 − a13a22 = γ

.
Die Determinanten der Restmatrizen werden Kofaktoren der Einzelelemente ge-
nannt. Das Vorzeichen des Kofaktors erhält man, indemman den Spalten/Zeilen-
Index des Einzelelements addiert. Bei einer geraden Summe des Indexes ergibt
sich ein positives Vorzeichen, bei einer ungeraden Summe ein negatives Vorzei-
chen. Also:

α → a11 = agerade da 1 + 1 = 2, also : +
β → a12 = aungerade da 1 + 2 = 3, also : −
γ → a13 = agerade da 1 + 3 = 4, also : +

Zusammengefasst ergibt sich die Determinante der 3× 3-Matrix aus:
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Det(A) = a11 · α− a12 · β + a13 · γ
Ebenso lässt sich die Determinante einer 4× 4-Matrix berechnen, allerdings ist
dies verschachtelter, und somit aufwendiger. Hier ist es erforderlich, aus der 4×4-
Matrix auf analoge Weise erst vier 3×3-Matrizen zu extrahieren, um danach mit
der eben dargestellten Methode aus diesen 3×3-Matrizen deren Determinanten
zu errechnen. Also wird dieses Verfahren sehr schnell sehr aufwendig.
Eine alternative Berechnung der Determinante einer 3 × 3-Matrix funktioniert
folgendermaÿen (Regel von Sarrus): Die Spalten der Matrix

A =




a1 b1 c1
a2 b2 c2
a3 b3 c3




stellt man wie folgt angeordnet dar:

a1 b1 c1 a1 b1
a2 b2 c2 a2 b2
a3 b3 c3 a3 b3

Nun werden Elemente nach einem bestimmten Muster multipliziert und addiert
bzw. subtrahiert.

Abbildung A.1: Rechenschema

Wir rechnen:

det(A) = a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a1b3c2 − a2b1c3

Eine weitere Möglichkeit besteht darin, die Matrix in Stufenform zu bringen.
Hierbei ist das Vertauschen von zwei Zeilen oder das Multiplizieren einer Zeile
mit einer Zahl (z.B. mit (−1)) nun aber nicht erlaubt bzw. verändert den Wert
der Determinante.
Beispiel:
Die Matrix X

X =




4 7 6 2 3 4

0 2 1 5 4 5

4 7 7 5 6 6

0 2 1 8 6 6

0 4 2 16 16 14

8 14 13 7 9 12



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wird Schrittweise in Stufenform gebracht. Diese Matrix hat eine Determinante
mit dem wert 192. Auf die ausführliche Darstellung der Berechnung der Deter-
minante sowie der herstellung der triagonalisierten Matrix (Stufenform) wird an
dieser Stelle verzichtet. Wir erhalten folgende Matrix als Ergebnis:




4 7 6 2 3 4

0 2 1 5 4 5

0 0 1 3 3 2

0 0 0 3 2 1

0 0 0 0 4 2

0 0 0 0 0 2




Das Produkt der Hauptdiagonalen 4× 2× 1× 3× 4× 2 = 192 ergibt wiederum
det(A) = 192.

Regeln für Determinanten

Für eine n× n-Matrix A gilt:

1. Wenn alle Elemente in einer Zeile oder Spalte von A gleich 0, dann
det(A) = 0

2. det(A) = det(A′)

3. Wenn alle Elemente in einer Zeile oder Spalte von A mit ϕ multipliziert
werden gilt ϕ det(A) = 0

4. Wenn zwei Spalten oder Zeilen vonA vertauscht werden wechselt det(A)
das Vorzeichen, der Absolutwert bleibt identisch.

5. Wenn zwei Zeilen oder Spalten von A proportional sind, dann det(A) =
0

6. det(A) bleibt unverändert, wenn das Vielfache einer Zeile oder Spalte
zu einer anderen Zeile oder Spalte von A addiert wird.

7. Wenn B ebenfalls eine n× n-Matrix ist, dann:

det(AB) =det(A)·det(B)

8. Für ϕ ∈ R gilt det(ϕA) = ϕndet(A)

A.8 Adjunkte

Um die Adjunkte (abgekürzt mit: adj(A) ) einer Matrix zu bestimmen müssen
wir folgendes berechnen:

� Für jedes Matrixelement wird der Kofaktor bestimmt

� Jedes mit Element der Matrix wird durch seinen Kofaktor ersetzt

� Die Kofaktoren werden mit (+1) multipliziert, wenn die Indexsumme ge-
rade ist, mit (-1), wenn die Indexsumme negativ ist.
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� Danach wird die Matrix der Kofaktoren transponiert.

Beispiel:



2 1 2
2 0 0
4 2 2




Wir ersetzen die ursprünglichen Elemente der Matrix durch die zugehörigen
Kofaktoren. Dies geschieht durch die oben dargestellte Methode. Die Matrix
der Kofaktoren sieht so aus:




0 4 4
−2 −4 0

0 −4 −2




Nun wird für eine gerade Indexsumme mit (+1) multipliziert, mit (-1) bei un-
gerader Indexsumme. Also ergibt sich folgendes Schema:




a11 a12 a13

a21 a22 a23

a31 a32 a33


→




gerade ungerade gerade
ungerade gerade ungerade
gerade ungerade gerade


→




+ − +
− + −
+ − +




Also ergibt sich folgendes:



+(0) −(4) +(4)
−(−2) +(−4) −(0)
+(0) −(−4) +(−2)


→




0 −4 4
2 −4 0
0 4 −2




Schlussendlich transponieren wir diese Matrix und erhalten so die Adjunkte.



0 −4 4
2 −4 0
0 4 −2


 transponieren→




0 2 0
−4 −4 4

4 0 −2




A.9 Inverse

Bleibt noch die Inverse einer Matrix, auch Reziprokmatrix genannt. Sie ist nur
für quadratische Matrizen de�niert. Die Inverse vonA wird mitA−1 abgekürzt.
Es gilt: A ·A−1 = I. Wenn man sich die Zahlen, mit denen wir tagtäglich rech-
nen als eindimensionale, also 1× 1-Matrizen vorstellt, dann ist die Inverse zu 7
1/7, oder anders geschrieben 7−1, da 7 · 1/7 = 1 ist. 1 ist die Identitätsmatrix
im eindimensionalen Raum. Sie besteht nur aus einem Eintrag, nämlich 1, da
dieser einzige Eintrag gleichzeitig die gesammte Hauptdiagonale ist. Für höher-
dimensionale Räume wird die Berechnung der Inversen aufwendiger, sofern sie
überhaupt existiert.

� Die Inverse einer Matrix existiert nur für quadratische Matrizen, da nur
quadratische Matrizen eine Determinante haben, die zur Berechnung der
Inversen notwendig ist. Vorsicht: nicht jede quadratische Matrix besitzt
eine Inverse!
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� Die Inverse existiert nur, wenn die Determinante der Matrix von Null
verschieden ist. Solche Matrizen heissen regulär oder nicht-singulär. Qua-
dratische Matrizen besitzen also nicht immer eine Inverse sondern können
Inversen besitzen. Müssen sie aber nicht.

� Eine Matrix mit det(A)= 0 heisst singulär.

� Eine det(A)=0 resultiert dann, wenn man eine Zeile oder Spalte als Line-
arkombination einer oder mehrerer Spalten darstellen kann.

Berechnung der Inversen:

A−1 =
adj(A)

det(A)

Hier mag man sich noch einmal vor Augen führen, dass die Adjunkte einer Ma-
trix wieder eine Matrix ist, die Determinante einer Matrix jedoch keine Matrix
sondern ein Skalar. Ein Beispiel:

A =




2 1 2
2 0 0
4 2 2


 ; adj(A) =




0 2 0
−4 −4 4

4 0 −2


 ; det(A) = 4

Wir setzen diese Werte ein:

A−1 =
adj(A)

det(A)
= adj(A) · det(A)−1

A−1 =




0 2 0
−4 −4 4

4 0 −2


 · 4−1 =




0 0.5 0
−1 −1 1

1 0 −0.5




wir erinnern uns, dass nun gilt A ·A−1 = I




2 1 2
2 0 0
4 2 2


 ·




0 0.5 0
−1 −1 1

1 0 −0.5


 =




1 0 0
0 1 0
0 0 1




Wir sehen hier, warum nur Matrizen mit einer det(A) 6= 0 eine Inverse besit-
zen: ganz einfach deshalb, weil die Berechnung möglich ist. Matrizen mit einer
det(A)=0 stoÿen bei der Berechnung der Inversen auf das altbekannte Problem
einer Division durch Null, dem einen �groÿen Verbot� aus Schultagen neben dem
Wurzelziehen aus negativen Zahlen. Es liegt also schlichtweg daran, das wir auf
dem Rechenweg in einer Sackgasse enden.
Eine alternative Methode die Inverse einer Matrix auszurechnen funktioniert
folgendermaÿen: Wir schreiben links die Matrix, z.B. A, die wir invertieren
wollen und rechts die gleichdimensionierte Einheitsmatrix I

(A|I)




2 1 2 1 0 0
2 0 0 0 1 0
4 2 2 0 0 1




Zeile I
Zeile II
Zeile III

A.9
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Nun formen wir die linke Seite schrittweise so um, dass sie zur Einheitsmatrix
wird. Dadurch verändert sich die Einheitsmatrix auf der rechten Seite so, dass sie
zur Inversen wird. Resultiert auf der linken Seite eine komplette Nullzeile oder
Nullspalte, so hat die Matrix A nicht vollen Rang, und sie ist nicht invertierbar.
Als 1. Schritt subtrahieren wir Zeile I von der Zeile II




2 1 2 1 0 0
2 0 0 0 1 0
4 2 2 0 0 1


 −I

Als 2. Schritt subtrahieren wir 2·I von III



2 1 2 1 0 0
0 −1 −2 −1 1 0
4 2 2 0 0 1



−2 · I

Als 3. Schritt multiplizieren wir III mit (-1)



2 1 2 1 0 0
0 −1 −2 −1 1 0
0 0 −2 −2 0 1




(−1)

4. subtrahieren wir III von I



2 1 2 1 0 0
0 −1 −2 −1 1 0
0 0 2 2 0 −1



−III

5. addieren wir III zu II



2 1 0 −1 0 1
0 −1 −2 −1 1 0
0 0 2 2 0 −1


 +III

6. addieren wir II zu I



2 1 0 −1 0 1
0 −1 0 1 1 −1
0 0 2 2 0 −1




+II

7. dividieren wir I und III durch 2 und multiplizieren II mit (-1)



2 0 0 0 1 0
0 −1 0 1 1 −1
0 0 2 2 0 −1



÷2
(−1)
÷2

Das Ergebnis sieht wie folgt aus:



1 0 0 0 0.5 0
0 1 0 −1 −1 1
0 0 1 1 0 −0.5




(I|A−1)
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Wir erreichen hier wiederum, wie in der vorherigen Rechnung:

adj(A) =




0 0.5 0
1 1 −1
1 0 −0.5




Die Division zweier Matrizen kann als Multiplikation zweier Matrizen aufgefasst
werden. Dazu benötigt man die Inverse.

A

B
= A ·B−1, deshalb auch

A

A
= A ·A−1 = I

Rechenregeln für Inverse

Sofern die Matrizen A, B und C invertierbar sind:

(A−1)−1 = A

AV = I, wenn V = A−1

(AB)−1 = B−1A−1

(ABC)−1 = C−1B−1A−1

(A′)−1 = (A−1)′

(ϕA)−1 = ϕ−1A−1

Lösen von Gleichungen mittels Inversen:

AX = B ⇔X = A−1B

XA = B ⇔X = BA−1

A.10 Der Rang einer Matrix

Der Rang ist innerhalb der Mathematik ein Begri� aus der linearen Algebra.
Man ordnet ihn einer linearen Abbildung oder einer Matrix zu. Übliche Abkür-
zungen sind rang(A) oder rg(A). Bei einer linearen Abbildung ist der Rang als
Dimension des Bildes dieser Abbildung de�niert. Zu einer Matrix exisitiert ein
Zeilenrang und ein Spaltenrang. Der Zeilenrang ist die Dimension des von den
Zeilenvektoren aufgespannten Vektorraumes und entspricht der Anzahl der un-
abhängigen Zeilenvektoren. Entsprechendes gilt für den Spaltenrang. Man kann
zeigen, dass der Zeilenrang und der Spaltenrang identisch sind. Man spricht des-
halb vom Rang einer Matrix. Fasst man eine Matrix als Abbildungsmatrix einer
linearen Abbildung auf, so besitzen beide -die Matrix und die lineare Abbildung-
den gleichen Rang.
Um den Rang einer Matrix zu bestimmen, formt man sie mittels gauss'schem
Eliminationsverfahren in eine äquivalente Matrix in Stufenform um. Die Anzahl
der von Null verschiedenen Zeilen ergibt den Rang der Matrix. Eine n×n-Matrix
heiÿt regulär, wenn sie vollen Rang aht, also wenn rg(A) = n.
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Beispiel :

A =




3 4 6
0 3 2
0 6 5


 ∼




3 4 6
0 3 2
0 0 1


⇒ rang(A) = 3

B =




2 1 6
0 6 4
0 3 2


 ∼




2 1 6
0 6 4
0 0 0


⇒ rang(B) = 2

Die einzige Matrix mit dem Rang 0 ist die Nullmatrix 0. Für eine m×n Matrix
gilt: rang(A) ≤ min (m,n).
Alle reduzierten Korrelationsmatrizen, die von einem gemeinsamen Faktor ge-
bildet werden haben eine Gemeinsamkeit: ihr Rang ist 1. Wenn die Matrix von
zwei gemeinsamen Faktoren gebildet wird ist ihr Rang 2. Ein rg(A)=1 bedeu-
tet, dass alle Spalten durch eine andere Spalte fehlerfrei reproduziert werden
können. ein rg(A)=2 bedeutet, dass alle Spalten durch eine linearkombination
von zwei anderen Spalten �vorhergesagt� werden können. Wenn wir wissen, dass
k gemeinsame Faktoren gegeben sind, können wir daraus schleissen, dass der
Rang der reduzierten korrelationsmatrix eben�ls k ist. Bei zwei oder mehr Fak-
toren sind jedoch zusätzliche Annehmen nötig, um das Modell zu formulieren.
Sind die Faktoren korreliert, und mit welchen Variablen stehen die Faktoren in
Beziehung? Verschmutzung der Daten durch Sampling- oder Messfehler können
ebenfalls problematisch sein.

A.11 Idempotente Matrix

Eine quadratische Matrix heisst idempotent, wenn gilt: AA = A2 = A.

Für idempotente Matrizen X und Y gilt:

XY = Y X →XY idempotent

I −X → idempotent

X(I −X) = (I −X)X = 0

A.12 Diverses

A.12.1 Gramian Matrix

Als Gramian Matrix bezeichnet man eine quadratische Matrix, wenn sie sym-
metrisch ist, und alle Eigenwerte ≥ 0 sind. Korrelations- und Kovarianzmatrizen
sind immer gramian.
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A.12.2 Spektralzerlegung einer Matrix

Die Matrix R sei Reell und Symmetrisch. Dann kann sie in die drei Matri-
zen A, Λ und A′ zerlegt werdn. Dabei handelt es sich bei A um eine Matrix,
deren Spalten aus den Eigenvektoren von R bestehen. Die Matrix Λ ist eine
Diagonalmatrix, deren Hauptdiagonale die Eigenwerten von R enthält. Es gilt:

R = AΛA′

Die Matrix

R =

(
4 2
2 1

)

lässt sich zerlegen in AΛA′, also:

AΛA′ =

(
a11 a12

a21 a22

)(
λ1 0
0 λ2

)(
a11 a21

a12 a22

)

mit den entsprechenden Werten:

AΛA′ =

(
1√
5

2√
5

− 2√
5

1√
5

)(
0 0
0 5

)( 1√
5
− 2√

5
2√
5

1√
5

)
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ANHANG B

MAXIMUM LIKELIHOOD

Im Kern geht es darum, dass wir eine konkrete Stichprobe vorliegen haben, und
uns fragen, welche Parameterwerte θ (z.B. Mittelwert und Varianz bei Normal-
verteilung) das Zustandekommen dieser konkreten Stichprobe am wahrschein-
lichsten macht. Dazu müssen wir allerdings a-priori wissen, aus welcher Vertei-
lung diese Stichprobe gezogen wurde. Wenn wir wissen, dass die Stichprobe aus
einer normalverteilten Grundgesamtheit gezogen wurde, stellt sich die Frage der
Gestalt: welcher Mittelwert µ und welche Varianz σ2 macht die Stichprobenda-
ten am wahrscheinlichsten?
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0.6

0.7

2 4 6 8 10
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µ = 2
σ = 1

µ = 3
σ = 0.8

µ = 4.5
σ = 0.6

µ = 5
σ = 0.85

µ = 7
σ = 0.75

µ = 8.5
σ = 0.6

µ = 9
σ = 1.6

µ = 4
σ = 1.3

Abbildung B.1: Maximum Likelihood

In dieser Graphik sehen wir einige rot gekennzeichnete Meÿwerte. Um intui-
tiv verstehen zu können, wie die ML-Methode funktioniert, wollen wir hier auf
Berechnungen verzichten. Gestrichelt sind mehrere Normalverteilungen einge-
zeichnet, wir sehen jedoch recht deutlich, dass es bei einigen eher, bei anderen
weniger wahrscheinlich ist, dass die Meÿwerte aus einer dieser Normalvertei-
lungen gezogen worden sind. Der Wahrscheinlichste Kandidat ist keine dieser
gestrichelten Verteilungen, sondern die blau eingefärbte Normalverteilung. Für
diese Normalverteilung ist die Wahrscheinlichkeit maximal, solche Meÿwerte
zu erreichen. Als Ergebnis erhalten wir die Parameter θ, nämlich µ = 5 und
σ = 0.85.

Der wichtigste Hintergedanke bei ML ist der, dass wir nicht die Wahrschein-
lichkeitsdichte f(Y |θ) betrachten, bei der es sich um eine Funktion von Y bei
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�xiertem θ handelt, sondern uns die Likelihood Funktion L(θ|Y ) genauer an-
schauen, bei der es sich um eine Funktion von θ für �xes Y handelt. Also ziehen
wir hier nicht aus einer über θ genau spezi�zierten Funktion beliebige Werte
Y , sondern wir betrachten die Werte Y der Zufallsstichprobe als �xiert, und
schlieÿen von diesen Werten auf ein ganz bestimmtes Set von Parametern θ.

B.1 ML formaler

Die Maximum Likelihood Methode (Gröÿte Dichte Methode) erfordert Kennt-
nisse über die Verteilungsfunktion der Zufallsvariable und schätzt dann die Pa-
rameter θ dieser Verteilung. Dies geschieht so, dass das Produkt der Wahrschein-
lichkeiten der Stichprobe maximal wird. Geht man von dem Parameter θ, der
höherdimensional sein kann, dann gilt für den Fall n unabhängiger identischer
Wiederholungen die Dichte:

L(y1, . . . yn|θ) = f(y1|θ)f(y2|θ) . . . f(yn|θ)
Anstatt für feste Parameter θ die Dichte der beliebigen yi Werte zu verändern
kann man ebensogut für feste Werte yi die Dichte als Funktion von θ au�assen:

L(θ) = f(y1, . . . yn|θ)
Diese Funktion heisst Likelihoodfunktion und besitzt als Argument den Para-
meter θ bei festen Realisationen von yi. Diese Funktion ist zu maximieren:

L(θ) = f(y1|θ)f(y2|θ) . . . f(yn|θ) =

n∏

i=1

f(yi|θ) !
= max

Diese Funktion wird partiell nach den Parametern abgeleitet und dann Null
gesetzt. Also:

∂L(θ)

∂θ
= 0

Damit hinreichende und notwendige Bedingung für ein Maximum beide erfüllt
sind, muss die zweite Ableitung kleiner Null sein. Also:

∂2L(θ)

∂θ2
< 0

Da die Likelihood eines einzelnen Falles etwas ähnliches ist wie eine Wahrschein-
lichkeit, kann sie einen Wertebereich von [0;1] annehmen. Das Produkt vieler
Zahlen zwischen Null und Eins wird allerdings sehr klein, sodass sich ausge-
sprochen schlecht damit umgehen lässt. Um das Problem von Zahlen zu nahe
an Null zu vermeiden, wird die Likelihood üblicherweise logarithmiert. Da Lo-
garithmieren eine monotone Transformation und somit die Extremwerte bei
den gleichen Werten für x vorkommen, kann ebenso gut (und einfacher!) der
Logarithmus der Likelihood Funktion, die sogenannte Log-Likelihood Funktion,
maximiert werden. Dies hat den groÿen Vorteil, dass sie leichter abzuleiten ist.

L(θ) = f(y1|θ) · f(y2|θ) · . . . · f(yn|θ) =

n∏

i=1

f(yi|θ)

B.1
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Diese Funktion wird logarithmiert, da die Produkte im Term zu unerfreulichen
Ergebnissen führen können und sich Summen leichter ableiten lassen. Produkt-
terme werden beim logarithmieren in Summen, Exponenten in Produkte umge-
wandelt. Es resultiert also:

L(θ) = lnL(θ) = ln f(y1|θ) + ln f(y2|θ) + . . .+ ln f(yn|θ) =

n∑

i=1

ln f(yi|θ)

Logarithmen

Es existieren unendlich viele Logarithmen. loga bezeichnet einen Logarithmus
zur Basis a. Häu�g verwendete Logarithmen sind:

ln = loge = Logarithmus naturalis, Basis e = 2, 718281828 . . .
lg = log10 = Dekadischer / Briggscher Logarithmus, Basis 10

ld / lb = log2 = Logarithmus Dualis / Binärlogarithmus, Basis 2

lg 100 = log10 100 gibt als Ergebnis, welchen Exponent für 10 man bennötigt,
um 100 als Ergebnis zu erhalten. Also log10 100 = 2, da 102 = 100
Gesetze zum Rechnen mit Logarithmen:

loga(u · v) = loga u+ loga v

loga(uv ) = loga u− loga v

loga(ur) = r loga u (r ∈ R)

loga
n
√
u = 1

n loga u (n ∈ N\1)

Es gilt übrigens− 2 lnL(θ) ∼ χ2

Wahrscheinlichkeitssätze

Multiplikationssatz für abhängige Ereignisse

p(A1 ∩A2 ∩A3 ∩ . . . ∩Ak) =
p(A1)p(A2|A1)p(A3|A1 ∩A2 ∩A3) . . . p(Ak|A1 ∩A2 ∩A3 ∩ . . . ∩Ak−1)

Multiplikationssatz für unabhängige Ereignisse

p(A1 ∩A2 ∩A3 ∩ . . . ∩Ak) =

p(A1)p(A2)p(A3) . . . p(Ak) =

k∏

i=1

p(Ak)
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BAYES STATISTIK

Bei der Bayes-Statistik handelt es sich nicht einfach um eine weitere Methode
der herkömmlichen Statstik, sondern viel mehr um einen anderen Ansatz.

� In der klassischen parametrischen Inferenzstatistik werden die Daten unter
der Annahme verschiedener Parameterwerte analysiert. Nach bestimmten
Kriterien werden dann einige ausgewählt.

� In der Bayesianischen Statistik wird die Verteilung der Schätzparameter
analysiert. Dies geschieht unter der Annahme einer bestimmten Vertei-
lungsstruktur der Daten sowie der a-priori Verteilung der gesuchten Pa-
rameter.

Ein Vorteil der Bayes-Statistik ist ihre Anwendbarkeit bei kleinen Fallzah-
len. So können komplexe Modelle bei kleinem n berechnet werden, die mit her-
kömmlichen Methoden nicht zu bearbeiten wären. Ebenso kann qualitatives und
quantitatives Wissen gemeinsam in die Vorannahmne der a-priori -Verteilung
der Parameter eingehen.

Ein oft hervorgehobener Nachteil ist die groÿe Bedeutung subjektiver Ver-
teilungsannahmen der Parameter, die auf Vermutungen, früheren Erfahrungen
oder -starken- Überzeugungen beruhen können. Dies ist ein Einfallstor für Kriti-
ker. Ein anderes Problem, das mit der Leistungsfähigkeit heutiger und zukünfti-
ger PCs an Bedeutung verliert ist die analytische Intraktabilität vieler Modelle,
die sich nur durch numerische Schätzverfahren wie Jackknife, Bootstrap oder
Markov Chain Monte Carlo-Simulationen lösen lassen.

C.1 Frequentisten vs. Bayesianer

Der Hauptunterschied zwischen Bayesianern und �normalen� Statistikern liegt
in der grundsätzlichen Untersheidung des Begri�es der Wahrscheinlichkeit. Die
klassische, frequentistische Sicht de�niert Wahrscheinlichkeit wie folgt:

lim
n→∞

P

(∣∣∣∣
fa
n
− p(A)

∣∣∣∣ < ε

)
= 1
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Das frequentistische Wahrscheinlichkeitskonzept ist unabhängig von subjektiven
Wahrscheinlichkeitsvorstellungen.
Die bayesianische Sichtweise hingegen geht von subjektiven Wahrscheinlichkeiten
aus. Nur so ist es möglich, Aussagen über die unbedingte a-priori Parameter-
wahrscheinlichkeit p(θ) zu machen. Wahrscheinlichkeit ist demnach die subjek-
tive Einschätzug von Unsicherheit, z.B. durch Erfahrung, Epertisen, Forschung
(qualitativ oder quantitativ) oder Aberglaube, wie mancher Kritiker polemisch
meinen wird.

In der Praxis ist der bayesianische Ansatz gerade bei kleinen Stichproben dem
klassischen, frequentistischen Ansatz überlegen. Zwar ist hier die Wahl der a-
prioir -Verteilung von stärkerer Bedeutung, jedoch ist die Anwendung von baye-
sianischen Methoden besser -oder überhaupt- möglich als frequentistische Ver-
fahren.

Der frequentistische Standarfehler wird durch die bayesianische Standardabwei-
chung der a-posteriori -Verteilung ersetzt, das 95%-Kon�denzintervall durch das
2,5% bis 97,5%-Perzentil-Intervall der a-posteriori -Verteilung.

C.2 Grundlagen und Idee

Während in der frequentistischen Statistik z.B. über die Maximum Likelihood-
Methode bei gegebenen Daten der wahrscheinlichste Parameter gesucht wird, so
geht die Bayes-Statistik einen anderen Weg. Hier wird nicht nur nach dem Para-
meter gesucht, der die Datenwahrscheinlichkeit maximiert, sondern auch nach
der tatsächlichen Wahrscheinlichkeit der verschiedenen möglichen Parameter-
werte. Der Bayes Ansatz gibt sich nicht mit der konditionalenDatenwahrscheinlichkeit

p(X|θ)1

zufrieden, sondern ermittelt die konditionale Parameterwahrscheinlichkeit. Die-
se wird auch als
a-posteriori -Wahrscheinlichkeit bezeichnet:

a-posteriori2 : p(θ|X)

.
Dies geschieht durch den bekannten Satz von Bayes:

p(θ|X) =
p(X|θ)p(θ)
p(X)

Bei genauerem hinsehen entdecken wir ein Problem:

a-priori3 : p(θ)

die sogenannte a-priori -Wahrscheinlichkeit, ist unbekannt. Da sie nicht objektiv
gegeben ist, muss hier eine Schätzung vorgenommen werden, die -wie wir ge-
hört haben- auf Vermutungen, Überzeugungen oder Erfahrungen beruhen kann,

1Wahrscheinlichkeit der Daten unter Bedingung der Parameter
2Wahrscheinlichkeit der Parameter unter Bedingung der Daten
3Wahrscheinlichkeit der Parameter
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und eine argumentative Schwachstelle des Bayes-Ansatzes darstellt, da sie als
subjektiv unwissenschaftlich angesehen werden könnte.

Die unbedingte Datenwahrscheinlichkeit p(X) beruht indirekt auf der angenom-
men a-priori -Wahrscheinlichkeit. Warum ist das so? Über den Satz der to-

talen Wahrscheinlichkeit kann sie als Summe aller möglichen Konditional-
wahrscheinlichkeiten ermittelt werden:

p(X) =
∑

θ

p(X|θ)p(θ)

Im Falle stetiger Parameter ersetzen wir
∑

einfach durch
∫
.

A2
A3

· · ·A4

B

A1

Abbildung C.1: Satz der totalen Wahrscheinlichkeit

Setzt man die Gleichung etwas anders ergibt sich:

p(θ|X) =
p(X|θ)p(θ)
p(X)

in anderer Form: p(θ|X) =
p(X|θ)p(θ)∑

θ

p(X|θ)p(θ)

Der letzte Bruch zeigt uns -noch einmal auf andere Weise-, dass die a-posteriori-
Wahrscheinlichkeit für jeden Parameter angibt, wie hoch seine Wahrscheinlich-
keit, gegeben die Daten, ist.

Begriffe

a priori p(θ) unbedingte Parameterwahrscheinlichkeit
a posteriori p(θ|X) bedingte Parameterwahrscheinlichkeit

p(X|θ) bedingte Datenwahrscheinlichkeit
p(X) unbedingte Datenwahrscheinlichkeit
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Beispiel: Satz der totalen Wahrscheinlichkeit

Betrachten wir Abbildung C.2: Um p(B) zu berechnen, müssen wir nach dem
Satz der totalen Wahrscheinlichkeit

p(B) =

m∑

i=1

p(B|Ai)p(Ai)

berechnen. Hier ergibt sich

p(B) = p(B|A1)p(A1) + p(B|A2)p(A2) + p(B|A3)p(A3) + p(B|A4)p(A4)

Warum ist dies richtig? Wir wissen, dass

p(A ∩B) = p(B|A)p(A)

gilt.
Wenn wir also substituiern, erhalten wir:

p(B) = p(A1 ∩B) + p(A2 ∩B) + p(A3 ∩B) + p(A4 ∩B)

Dies entspricht den 4 grauen Teilstücken, da es sich bei diesen um genau die
Bereiche handelt, die Ai und B abdecken. Addiert man diese, so erhält man
p(B).

A2

A3 A4

A1

B

Abbildung C.2: Beispiel zum Satz der totalen Wahrscheinlichkeit
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ANHANGD

DAS ALLGEMEINE LINEARE MODELL

Die Gleichung des allgemeinen linearen Modell (ALM) entspricht der Gleichung
der multiplen Regression für Fall i

yi = β0 + β1xi1 + β2xi2 + β3xi3 + . . .+ βjxij + εi

Das Allgemeine Lineare Modell ist ein Ansatz, der viele varianzanalytische Ver-
fahren verbindet. Hierzu zählen als Kernstücke die multiple Regressions- und
Korrelationsanalyse und zudem die Diskriminanzanalyse, die Varianzanalyse,...
Es handelt sich um einen Integrationsansatz, dem die einzelnen Verfahren vor-
ausgingen. Im allgemeinen linearen Modell (ALM) sind die Parameter additiv
verknüpft und treten (höchstens) in der ersten Potenz auf. Produkte oder Po-
tenzen der Parameter sind nicht zulässig, sind es aber bei den Variablen.

yi = β0 + β1xi1 + β2x
2
i1 + β3xi1xi4 + εi

wobei diese Form wieder in die allgemeine Form des ALM überführbar ist, indem

xi1xi4 = xi3 sowie x2
i1 = xi2

gesetzt wird. So erhält man wieder die Form

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

Die Prädiktorvariablen bzw. unabhängigen Variablen können sowohl Intervalls-
kalenniveau als auch qualitatives Messniveau besitzen. Auch das Kriterium (ab-
hängiger Teil) kann mehrdimensional sein. In diesem Falle werden sowohl die
Prädiktorvariablen als auch die Kriteriumsvariablen als Linearkombinationen
dargestellt.
Geht man von nur einer abhängigen Variablen und mehreren unabhängigen
Variablen aus, sieht die Grundgleichung des ALM wie folgt aus:

y = Xβ + ε

oder
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ny1 =n Xppβn +n ε1

mit

� Dem n× 1 Spaltenvektor y, der abhängigen Variablen.

� Der Matrix X, die die Werte der n Personen auf den p Variablen enthält.

� Dem Spaltenvektor β, der die Gewichte für die p Variablen enthält.

� Dem Spaltenvektor ε, der die Fehlerterme der n Personen enthält.

� Die Prädiktoren sind fest / konstant

� ε und y sind Zufallsvariablen

� E(ε) = 0

� E(εε′) = I

E(εε′) =




ε1

ε2

...
εn



(
ε1 ε2 . . . εn

)

Multipliziert sich aus zu:



E(ε2
1) E(ε1ε2) . . . E(ε1εn)

E(ε2ε1) E(ε2
2) . . . E(ε2εn)

...
...

. . .
...

E(εnε1) . . . . . . E(ε2
n)


 =




σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2




Also

e ∼ N (0, σ2I)

Dies entspricht der Varianz-Kovarianzmatrix der Fehlerterme wegen E(ε) = 0.
Die Fehlervarianz ist konstant und es gibt keine Kovarianzen, d.h. die Fehler
sind unkorreliert. Rückschlüsse auf die Population / Hypothesentests setzen die
Annahme der Normalverteilung der Fehler voraus.
Werden im ALM Variablen mit nominalem Meÿniveau betrachtet, müssen sie
verschlüsselt werden. Die Varianzanalyse kann mit unabhängigen Variablen auf
Nominalniveau durchgeführt werden. Verschlüsselungsarten sind Dummycodie-
rung, E�ektcodierung und Kontrastcodierung.

D.1 Kodierung

Nehmen wir zum beispiel die nominale Variable Parteizugehörigkeit mit den
Ausprägungen

D.1
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SPD : 1
CDU : 2
FDP : 3
Grüne : 4

Sind die Nominalvariablen codiert, können sie als Prädiktoren in einer multi-
ple Regressionsgleichung zur Vorhersage einer abhängigen Variablen eingesetzt
werden Welche Bedeutung haben die jeweiligen b-Gewichte?

Dummycodierung

In der Dummy-codierung werden aus den m Ausprägungen der ursprünglichen
nominalen Variablen m− 1 Dummyvariablen generiert. Dies geschieht deshalb,
da sich ansonsten Multikollinearitätsprobleme ergeben, da die Information im
letzten Dummy als redundant angesehen werden kann, da sie sich 100% aus
den vorherigen m−1 Dummys reproduzieren lässt. Hier die drei Dummys SPD:
ja/nein, CDU: ja/nein und Grüne: ja/nein.

Partei x1 x2 x3

SPD 1 0 0
CDU 0 1 0
FDP 0 0 1
Grüne 0 0 0

Die Dummycodierung mit der Regressionsgleichung

ŷi = b0 + bi1x1 + bi2x2 + +bi3x3

Hat Person i die Parteipräferenz Grüne, so ergibt sich

ŷi = b0 + 0 + 0 + 0, a = ȳ4 = ŷ nach KQ

Eine andere Person präferiert die SPD:

ŷi = ȳ1 = bi1 + 0 + 0 + ȳ4,

bi1 = ȳ1 − ȳ4

Die Konstante y entspricht dem Mittelwert der Referenzgruppe, die Gewichte
bi, drücken die Di�erenzen zwischen Referenzgruppe und Gruppe i aus.

E�ektcodierung

Personen, die in allen Kategorien eine Null haben, werden mit -1 codiert.

Partei x1 x2 x3

SPD 1 0 0
CDU 0 1 0
FDP 0 0 1
Grüne -1 -1 -1

D.1
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Die Regressionsgleichung lautet wieder wie folgt:

ŷi = b0 + bi1x1 + bi2x2 + +bi3x3

Nach der KQ-Methode gilt als bester Schätzer für Personen mit Parteipräferenz
Grüne ȳ4, es ergibt sich

ȳ4 = −b1 − b2 − b3 + b0

Für die übrigen Personengruppen ergeben sie die Mittelwerte

ȳ1 = b1 + b0
ȳ2 = b2 + b0
ȳ3 = b3 + b0

Nach Einsetzen und Au�ösen nach b0 ergibt sich

b0 =
ȳ1 + ȳ2 + ȳ3 + ȳ4

4
= Ḡ

und damit
b1 = ȳ1 − Ḡ
b2 = ȳ2 − Ḡ
b3 = ȳ3 − Ḡ
Die Konstante b0 entspricht bei E�ektcodierung dem Gesamtmittelwert der ab-
hängigen Variablen. Die bi entsprechen den Di�erenzen der Gruppenmittel zum
Gesamtdurchschnitt.

Kontrastcodierung

Entspringt dem Gedanken einzelne Mittelwerte einer Varianzanalyse zu verglei-
chen. Dies geschieht mittels Gewichten ci, für die gilt

∑

i

ci = 0

Partei x1 x2 x3

SPD 1 0 1
2

CDU -1 0 1
2

FDP 0 1 - 1
2

Grüne 0 -1 - 1
2

Kontrastieren von SPD/CDU

c1 = 1, c2 = −1, c3 = 0, c4 = 0 → x1

Kontrastieren von FDP/Grüne

c1 = 0, c2 = 0, c3 = 1, c4 = −1 → x2

Kontrastieren von SPD/CDU mit FDP/Grüne

c1 =
1

2
, c2 = −1

2
→ x3

Die Regressionsgleichung lautet wieder wie folgt:

ŷi = b0 + bi1x1 + bi2x2 + +bi3x3

Die beste Schätzung ist auch hier

D.1



Seite: 100 ANHANG D. DAS ALLGEMEINE LINEARE MODELL

ȳ1 = b0 + 1b1 + 0b2 + 1
2b3

ȳ2 = b0 + (−1b1) + 0b2 + 1
2b3

ȳ3 = b0 + 0b1 + 1b2 +
(
− 1

2

)
b3

ȳ4 = b0 + 0b1 + (−1)b2 +
(
− 1

2

)
b3

� x1 konstrastiert Zugehörigkeit zu CDU oder SPD, sonst 0.

� x2 konstrastiert Zugehörigkeit zu FDP oder Grünen, sonst 0.

� x3 konstrastiert Zugehörigkeit CDU/SPD oder FDP/Grüne.

Für die 4 Gleichungen mit 4 Unbekannten erhält man nach Au�ösung für
b0, b1, b2, b3:

b1 =
ȳ1 − ȳ2

2

b2 =
ȳ3 − ȳ4

2

b3 =
ȳ1 + ȳ2

2
− ȳ3 + ȳ4

2

b0 =
ȳ1 + ȳ2 + ȳ3 + ȳ4

4
= Ḡ

b0 entspricht dem Gesamtmittelwert der abhängigen Variablen y. Die b-Gewichte
entsprechen dem jeweils codierten Kontrast.

D.2 Verallgemeinertes lineares Modell

Das verallgemeinerte Lineare Modell subsummiert auch das Allgemeine Lineare
Modell. Die Schätzung für dichotome und poissonverteilte abhängige Variable
lässt sich im Rahmen der verallgemeinerten linearen Modelle vereinheitlichen.
Die Basis des Verallgemeinerten Linearen Modells sind die Wahrscheinlichkeits-
funktionen der �Exponentialfamilie�. Entwickelt wurde die Idee der Exponen-
tialfamilie von Fisher, wobei es darum geht, eine einheitliche allgemeine ma-
thematische Struktur einer Funktion zu scha�en, innerhalb derer verschiedene
Subfunktionen darstellbar sind. Exponentialfamilie meint nun, dass verschiede-
ne Unterfunktionen in der Exponentenkomponente der natürlichen Exponenti-
alfunktion (e = 2.71828 . . .) enthalten sind. Jede Subfunktion kann in den Expo-
nenten gebracht werden, wobei der Transfer über den natürlichen Logarithmus
geschieht.

D.2.1 Beispiele

� Für die Poisson-Verteilung

f(y|µ) =
e−µµy

y!

→ exp {y log(µ)− µ− log(y!)}

D.2
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� Für die Binomialverteilung

f(y|n, p) =

(
n

y

)
py(1− p)n−y

→ exp

{
log

(
n

y

)
+ y log(p) + (n− y) log(1− p)

}

� Für die Normalverteilung

f(y|µ, σ2) =
1√

2πσ2
exp

{
− (y − µ)2

2σ2

}

→ exp

{
−1

2
log(2πσ2)− 1

2σ2
(y2 − 2yµ+ µ2)

}

D.2.2 Generalisierung

Die Generalisierung des linearen Modells geschieht wie folgt:

1. y ist die Zufallskomponente des Modells, diese ist entsprechend einer der
Wahrscheinlichkeitsfunktionen der drei Exponentialfamilien (siehe oben)
verteilt

2. Θ = Xβ ist die systematische Komponente des Modells. Die erklärenden
Variablen x beein�ussen y nur indirekt über die Funktion g()

3. Die Linkfunktion Θ verbindet die systematische und die Zufallskomponen-
te des Modells

4. Die Linkfunktion sorgt dafür, dass im linearen Modell mit Variablen ge-
arbeitet werden kann, die den Modellkriterien nicht entsprechen.

Die Schätzung der Parameter bzw. Maximierung der Liklihoodfunktion ge-
schieht über den Newton-Raphson-Algorithmus. Zur Kategorie der verallgemei-
nerten linearen Modelle zählt beispielsweise die logistische Regression.

D.2


	Multiple Regression
	Least Squares & Varianzzerlegung
	OLS mathematisch
	Multipler Fall
	Matrixnotation

	Partielle Korrelation und Regression
	Semipartielle Korrelation und Regression

	Relevante Koeffizienten
	Determinationskoeffizient r2
	Der Standardfehler des Schätzers: RMSE
	Der F-Test
	Regressionskoeffizienten

	Statistische Tests bei multipler Regression
	Der Test der multiplen Regressionskoeffizienten
	Test der Korrelationskoeffizienten
	Test des multiplen Regressionsmodells

	Spezielle Modelle und Erweiterungen
	Interaktionseffekte
	Dummy-Regression

	Voraussetzungen
	Das Anscombe-Quartett
	Heteroskedastizität
	Multikollinearität
	Autokorrelation
	Nichtlinearität
	Erwartungswert der Störgrößen ungleich Null
	Residuen nicht Normalverteilt

	Varianzanalyse
	Einfaktorielle ANOVA
	Voraussetzungen
	Varianzzerlegung
	Ungleiche Stichprobengrössen
	Einzelvergleiche
	A priori-Tests vs. a posteriori-Tests

	Zweifaktorielle ANOVA
	Beispiel
	Hypothesen
	Wichtige Interaktionsformen
	Feste und zufällige Effekte
	Einzelvergleiche

	Dreifaktorielle ANOVA
	Hypothesen
	Quasi-F-Brüche/Pooling-Prozeduren
	Nonorthogonale ANOVA

	Logistische Regression
	Grundidee
	Herleitung der logistischen Regressionsgleichung
	Maximum Likelihood-Schätzung
	Interpretation
	Prüfung des logistischen Modells:
	Klassifikationsmatrix
	Press's Q-Test
	Hosmer-Lemeshow-Test
	Devianzanalyse
	Likelihood-Ratio-Test

	Pseudo-r2
	McFaddens - r2
	Cox & Snell - r2
	Nagelkerke - r2

	Diagnostik
	Linearität
	Ausreißer

	Prüfung der Merkmalsvariablen
	Likelihood-Quotienten-Test
	Wald-Statistik

	Diskriminanzanalyse
	Ansatz über Bayes-Theorem
	Klassifikation der Fälle

	Mehrfache Diskriminanzanalyse
	Prozedere
	Varianzzerlegung
	Schätzen der Diskriminanzfunktion

	Güte der Diskriminanz
	Signifikanz der Diskriminanzfunktion

	Matrix-Algebra
	Skalarmultiplikation
	Multiplikation
	Addition und Subtraktion
	Transponieren
	Diagonalmatrizen
	Die Spur einer Matrix
	Determinante
	Adjunkte
	Inverse
	Der Rang einer Matrix
	Idempotente Matrix
	Diverses
	Gramian Matrix
	Spektralzerlegung einer Matrix

	Maximum Likelihood
	ML formaler
	Bayes Statistik
	Frequentisten vs. Bayesianer
	Grundlagen und Idee
	Das allgemeine lineare Modell
	Kodierung
	Verallgemeinertes lineares Modell
	Beispiele
	Generalisierung


















