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1 Einleitende Ubersicht

Beobachter und Schétzfilter zur Zustandschdtzung werden benétigt, wenn Zusténde dyna-
mischer Systeme nicht direkt der Messung zugéanglich sind. Ein Beobachter oder Schétzer
wurde erstmalig von Luenberger (1963) fiir lineare Systeme eingefiithrt und untersucht.
Diese Systeme bestehen aus einem Modell des dynamischen Systems, dessen Zustand
fortlaufend (indirekt) gemessen oder geschatzt werden soll und einer Riickfiihrung, die
den Fehler zwischen gemessenen Systemausgéngen und den am Beobachter geschétzten
Groflen asymptotisch gegen Null fithrt. Diese grundsitzliche Beobachterstruktur 148t sich
auch auf einige Klassen nichtlinearer Systeme erweitern. Zu diesem Problemkreis ist eine
grofle Anzahl von Arbeiten erschienen, von denen in diesem Bericht nur einige besonders
interessante Arbeiten aufgefiithrt sind: Zeitz (1984, 1985 und 1987); Keller (1986); Walcott
u. a. (1987). Eine umfassende Ubersicht, sowie rechnergestiitzte Analyse- und Synthese-

verfahren, sind in der neuen Arbeit von Birk (1992) zu finden.

Von Schwarz (1990) wurde ausgehend von den Beobachtern fiir lineare Systeme eine sehr
elementare Finfithrung der Beobachter fiir ALS auf der Basis der Beobachternormalform
gegeben. In diesem Bericht wurden dabei auch die BLS knapp behandelt. Wie sich in-
zwischen aber zeigte (Ingenbleek, 1991), war die Darstellung fiir BLS nicht ausfithrlich
genug, da sie sich auf einen recht speziellen Sonderfall bezog, bei dem zur Erzeugung der

Beobachternormalform die fiir lineare System bekannte Transformation ausreichte.

Der vorliegende Bericht dient zum Auffiillen der Liicken in dem Bericht des Autors
(Schwarz, 1990),' aber auch hier wieder mit dem Ziel, eine einfithrende Darstellung so
zu geben, daf} eine praktische Anwendung bei technischen Problemstellungen auch fiir

den mit der Materie weniger Vertrauten leicht méglich ist.

In Abschnitt 2 wird die Beobachternormalform (NBNF) fiir ALS von Zeitz (1987) ein-
gefithrt, die sich von der NBNF von Keller (1986) unterscheidet, die meinem Forschungs-
bericht 7/90 zugrundeliegt. Daran anschlieBend wird in Abschnitt 3 die Bestimmung einer
nichtlinearen Transformation behandelt, die ein gegebenes ALS gebenenfalls in die NBNF
tiberfithrt. Darauf folgt in Abschitt 4 eine Spezialisierung auf die Unterklasse der BLS, fiir
die im Falle der vollstdndigen Beobachtbarkeit die Transformation auf die NBNF nach
Zeitz immer moglich ist. Besonders tibersichtlich sind die Verhdltnisse, wenn das BLS
keine Nulldynamik im Endlichen hat. Deshalb wird auf diesen Fall ndher eingegangen
und im Abschnitt 5 werden einige technische Systeme aufgefiithrt, die dieser speziellen
Systemklasse angehéren. In dem Ausblick wird angedeutet, welche Systemklassen nach

Ansicht des Autors ahnlich detailiert untersucht werden konnen.

LAn dieser Stelle mdchte ich den Herren Dipl.-Ing. R. Ingenbleek und Dr. F. Svaricek fiir zahlreiche
klarende Gespriche und Bemerkungen aufrichtig danken.



2 Peobachternormalform fur ALS 2

2 Beobachternormalform fiir ALS

Ich beschranke mich hier auf analytische Systeme mit linearer Steuerung (ALS) dieser
Form:

SaLs #(1) = ala(t)+bnu(t) : @ = () o

y(t) = cl=(t) , x(t) e R ) '

also den zeitinvarianten Fingréflen-ALS mit linearer Mefigleichung ohne direkten Durch-
griff der Steuerung u(t) auf die Mefigrofie y(t). Dies stellt fiir die praktische Anwendung
keinerlei Beschrankung der Allgemeinheit dar, denn bei technischen Systemen existiert al-
lein schon aus energetischen Griinden keine direkte Verbindung zwischen Stellsignal und
Ausgangsgrofe. Systemtheoretisch bedeutet dies dann aber auch, daff das System (?7)
immer eine SStruktur im Unendlichen” hat. Um diese Aussage zu prézisieren haben wir

zunachst

Definition 2.1
Das Analytisch-Lineare-System (??) hat den Differenzengrad oder relativen Grad d in

einer Umgebung U um @, wenn gilt:?

i) LyLfc(z) =0 fiir alle  in der Nihe von &, und Vk < d — 1 }

i) LI le(m)£0 (2.2)

a

bzw. mit gleicher Bedeutung

Definition 2.2
Das Analytisch-Lineare-System (??) hat den Differenzengrad oder relativen Grad d in

einer Umgebung U um x, wenn gilt:
fy(t) =y W) = Lic(®)  Vk<d
(2.3)
und y D () = Lic(x) + LyLi " e(@) - u(t)
O

Der Differenzengrad eines Systems definiert dann die Nulldynamik” sowie die Nullstellen-

struktur im Unendlichen” wie folgt:

Definition 2.3
Der durch Zustandsriickfithrung eines Systems (??) (zusétzlich) unbeobachtbar zu ma-

chende Systemteil heifit die Nulldynamik des Systems.
Die Nulldynamik hat eine Dimension gleich dem Differenzengrad d; mit 1 < d < n.

Ferner hat das System (?7) mit (¢) € R" eine Nullstellenstruktur im Unendlichen mit

einer n — d-fachen Nullstelle im Unendlichen. O

Hiir das System (?77?) ist c(x) = T a(1)
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Auch die lineare Ausgangsgleichung in (?7) bringt keine Beschrankung der Allgemeinheit,

denn hat ein zu untersuchendes System eine nichtlineare Beobachtungsgleichung wie in

y(t) = c(z(l)) (2.4)

dann kann es in einfacher Weise auf die Form in (??) {iberfithrt werden, indem y(t) zeitlich

abgeleitet wird:

i(0) = gyt = | %52

] a(@) + b@u(t)] . (25

Mit dem neuen (erweiterten) Zustandsvektor:

(1) = l ";((tt)) ] € R (2.6)

T
erhalten wir mit cg = [M]

[ e ba) ],
0 = catarater | * L catopter |10

= (x{1)) + b (=(0)ul) (2.7
y(t) = [ 0 --- 0 1 ] z(t) = zppa(t) 5 2o = l y;(nt(;) ]

also ein ALS der hier zu behandelnden Form (?7).

Definition 2.4
Ein lokal beobachtbares ALS (?7?) liegt in Beobachternormalform nach Zeitz (1987) vor,

wenn sein Zustandsmodell diese Form hat:

0 cee e 0
1 0 0 Clo(y,U,l:L,...,uE”::;)
a0 o= | P
© - ' (2.8)
I 1 0 an—1(y,u)
= E.a'(l) - a(y.u’) = aple’w) ;@ (k)
y(t) = xZ(t):[O 0 0 1];13* £)
mit (1) = [u(t),0(0),....u" V(0] (2.9)
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Der Name Beobachternormalform riihrt daher, daf fiir ALS in dieser Struktur (??) analog
zu dem Fall der linearen Systeme ein Identitdtsbeobachter, der eine lineare Fehlerdynamik

liefert, angegeben werden kann.

So wie es auch eine Vielzahl von Beobachtbarkeits- /Unterscheidbarkeitskriterien gibt,
so existieren auch unterschiedliche NBNF. Eine einfacher aufgebaute NBNF ist die von
Keller (1986) angegebene:

Definition 2.5
Ein lokal beobachtbares ALS liegt in Beobachternormalform vor, wenn es ein Zustands-

modell dieser Form hat:

0 0 0 ao(y(1)) bi(y(1))
s = 1 0 0 2(t) - ar(y(t)) . ba(y(1)) u(t)
(2.10)
10, 10 an—1(y(1)) bu(y(t))
= E.x*(1) —a’(y) +b"(y) - u(t)
y(t) = [0 0 -+ 0 1]e(t)=a3(0)
O

Insbesondere fiir die ALS in der Form (?7?) ist einfach nachzuweisen, dafi nach Transfor-
mation auf die zugehorige NBNF GI. (??) (falls sie existiert) ein Identitdtsbeobacher mit

linearer Fehlerdynamik zu konstruieren ist.

Satz 2.1
Ein ALS liege in der NBNF nach GI. (??) vor:

B1) = Ball) —a(yl1) + b (o)) o)
y(t) = [0 0 oo 0 1]a(t)=x.(t) '
Dann liefert ein Beobachter der Form
2(t) = E.&(t) — a™(y(1) + b (y(1)u(t) + k [y(t) — &a(t)] (2.12)
mit dem Koeffizientenvektor k = [ ko, ki, ..., kn_l]T eine Schatzung &(t) des Systemzu-
standes mit einem Schatzfehler
x(t) =ax(t) — x(t) , (2.13)

der einer linearen homogenen Differentialgleichung geniigt, deren Eigenwerte beliebig vor-
gebbar sind. O

Der Beweis kann vollig analog wie bei dem linearen Luenbergerbeobachter gefiihrt wer-

den, wie von Keller (1986) gezeigt wurde:
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Bild 2.1: Identitatsbeobachter eines ALS in nichtlinearer Beobachternormalform (NBNF)
nach Keller (1986)

Wird die Differentialgleichung (?7?) von der des Systems in NBNF (??) subtrahiert, erhéalt

man zunachst:
x(t) — ;i:(t) =FE,x(t)— E,&(t)— ky(t) — ,(1)] (2.14)

Nun kann y(t) = x,(¢) notiert werden zu:

wa(t)=10 0 - 0 1]a(t)=c"a() (2.15)
ebenso
Bat)=[0 0 o 0 1]a(t)=c"a(t) (2.16)

so daff wir fiir (??) erhalten:
2(1) = |E, — ke'| &(t) = Fa(t) . (2.17)

Die Eigenwerte dieser homogenen linearen Differentialgleichung lassen sich iiber die Ko-

effizienten des Vektors k beliebig vorgeben:

C(\) = |Ir—F
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A0 0 ko
-1 A ky .
= —1 - : = > kAN + A"
O . . : 1=0
—1 (A + kpo1)
_ [ =) =0 (2.18)
v=1

O
In Bild ?? ist ein Blockschaltbild eines Identitatsbeobachters fiir ein ALS in NBNF nach
Keller dargestellt.
Die NBNF nach Keller (1986) ist deutlich {ibersichtlicher als die nach Zeitz (1987) und
wurde deshalb ausschliefilich in dem Bericht Schwarz (1990) verwendet. Diese NBNF stellt
aber wesentliche einschrankendere Strukturforderungen an ein System, so dafl hdufig keine
Transformation fiir ein gegebenes ALS existiert, die die NBNF nach Definition ?? erzeugt.
So muf} ein BLS schon sehr speziell strukturiert sein (Schwarz 1990; Ingenbleek 1991)
damit ein NBNF nach GIl. 77 existiert. Dagegen kann gezeigt werden, dafl jedes BLS in
die NBNF nach Def. ?? Gl. (??) transformiert werden kann.
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3 Transformation eines ALS auf NBNF

Liegt ein ALS nach GI. (??) nicht in einer gewiinschten NBNF vor, dann muf} versucht
werden, eine Transformation zu finden, die das gegebene System in die verlangte NBNF
tiberfithrt, womit dann gegebenenfalls auch die Existenz dieser NBNF geklart ist. Je nach
Definition der NBNF z. B. Definition ?? oder auch ?? wird eine jeweils spezielle zugehori-
ge Transformation zu suchen sein, die dann auch zusétzlich stark von der Struktur des

gegebenen Systems z. B. seinem Differenzengrad (Definition ?? oder ??), abhéangt.

Eine notwendige Voraussetzung fiir die Existenz eines jeden Beobachters ist die vollstandi-
ge Beobachtbarkeit des gegebenen Systems, die vorab zu klaren ist. Hierbei existieren bei
nichtlinearen Systemen (NLS) anders als im Falle der linearen Systeme (L.S) eine Vielzahl
unterschiedlicher Beobachtbarkeitsdefinitionen und damit auch zugehériger Beobachtbar-
keitskriterien (Schwarz 1991). Im Rahmen dieses Berichtes beschranke ich mich auf die

lokale (Punkt-)beobachtbarkeit (Birk 1992):

Definition 3.1 °
Ein System der Form ALS (??) heifit beobachtbar in einem Punkt @, des Zustandsvek-

torraumes, wenn alle Anfangszustande @o = @(ty) in einer Umgebung U von @,:
[0 — @[] < p (3.1)

aus y(?) und u(t) eindeutig rekonstruierbar sind.

Das System ist lokal beobachtbar, wenn diese Eigenschaft fiir alle 2 im gesamten Defini-
tionsbereich des Systems also V&, € D, und Yu(t) € D, erfillt ist. O

Die Beobachtbarkeits-Analyse nichtlinearer Systeme basiert auf einer Abbildung der Zu-
standsgroBen und Eingangsgrofen auf die Ausgangsgrofen des betrachteten Systems (Birk
1992). Einen solchen Zusammenhang bekommt man fiir hinreichend oft differenzierbare
Systemgleichungen (??) durch die Taylorreihenentwicklung der Ausgangsgrofie y(¢):

t2 tn—l

y(0)=y(O0) + 0+ §O)5 + -+ O

TR (3.2)

Die benétigten n — 1 Entwicklungskoeffizienten lassen sich als Zeitableitungen der Aus-
gangsgleichung in Abhéngigkeit von ®(t) und u(t) berechnen, was die Beobachtbarkeits-
abbildung y*(1) liefert:

y(t) dcT;v(t)
y (1) = ylilg) = ?J(:t) _ € :a:(t)
y(=1(1) & cTa(t)

3Auch in diesem Abschnitt beschrinke ich mich aus Griinden der Ubersichtlichkeit auf SISO Systeme
mit linearer Ausgangsgleichung der Form (2.1).
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0
Ly
Ly
n—1
Lf
Hierin ist der Differentialoperator Ly mit (?7):

fla(t),u(t)) = a(@(1)) + b(2(1))u(l) (3.4)

erklart zu,
Ly = g )+ -4 } (3.5)
Ly = Ly(LY'y) mit L9y =~ ,

wobei zur Abkiirzungen fiir u(¢) und die gegebenenfalls auftretenden zeitlichen Ableitun-

gen verwendet wird:

w(t) = [u(t), (t), ..., V(@) (3.6)

Mittels des tiber (?7?) eingefiihrten Vektors g(@, w*) ist die Beobachtbarkeitsmatrix
Qp(x, u*) erklart als Jakobimatrix von ¢(@,w*) (Birk 1992):

Qulw.u’) = qlw,uw) (3.7)
Das wichtige Ergebnis fiir die lokale Beobachtbarkeit (Def. ??) fassen wir als Satz zusam-
men in:
Satz 3.1

Das nichtlineare System (?7) ist lokal beobachtbar, wenn die Beobachtbarkeitsmatrix (?7)

im gesamten Definitionsbereich Va, € D, ; Vu* € D] den Rang n besitzt:
Rang Qp(x,u™) =n Ve, € D, Vu" € D : (3.8)
O

Die lokale Beobachtbarkeit eines Systems ALS (?7) ist eine notwendige Voraussetzung fiir
die Transformation auf die NBNF (??). Zur Bestimmung einer Zustandstransformation
des Zustandes @(t) des gegebenen Systems in den Zustandsvektor &*(t) des Systems in
NBNF nach (??) setzen wir an

x(t) = t(x*(1),u* (1)) baw. &*(1) = t 7' (z, u") . (3.9)

Diese Transformation ist also in beiden Richtungen von dem in (??) erklarten Vektor aus

u(t) und den zeitlichen Ableitungen

. d
ul(t) = () =01 n—1 (3.10)
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abhéngig. Um die Transformation (??) zu bestimmen, muf} ein System nichtlinearer par-
tieller Differentialgleichungen {iber die Jacobi Matrix zu (??) gelost werden (Isidori 1989,
Birk 1992):

at * *
% = [s, adss, ..., ad?_ls] . (3.11)
Hierin ist der Differentialoperator (eine erweiterte Lieklammer) als Abkiirzung erklart zu:
3 -
adss = [f,s] = %s — B f— 25
(3.12)
adz}s = [f,adz}_ls] : ad?cs =5

In (?7?) ist ferner s(@,u*) ein Startvektor fiir den Aufbau der gesuchten partiellen Dif-
ferentialgleichungen, der nach Zeitz (1987) aus der letzten Spalte der inversen Beobacht-

barkeitsmatrix bestimmt ist zu:*

s=Qz (xz,u)[00...01]7" . (3.13)

Hat man so das System partieller Differentialgleichungen (??) konstruiert, dann ist die
Integration dieser Gleichungen ein im allgemeinen sehr schwieriges Problem, das nur in
speziellen Féllen gelingen wird. Fiir die mich besonders interessierenden BLS gelingt dies
aber in letzlich trivialer Weise, womit dann, wie im né&chsten Abschnitt dargestellt, fiir

BLS die NBNF nach Zeitz immer existiert, wenn Qg regular ist.

Zur Klarung der Verhéltnisse wird hier nun noch kurz auf die Transformation auf die
NBNF nach Keller (Definition ??) eingegangen, die in Schwarz (1990) bereits einfithrend
behandelt wurde. Bei dieser NBNF wird eine wesentlich iibersichtlichere Struktur voraus-
gesetzt bzw. verlangt. Damit folgt aber auch, daf§ die Klasse der NLS, fiir die eine Form
nach GlL.(??) existiert, wesentlich kleiner ist. So existiert selbst fiir die einfachsten NLS,

die BLS, nur in Spezialfidllen die NBNF nach Definition ?? (Ingenbleek 1991).

Nach Keller (1986) wird fiir den Zusammenhang zwischen dem ALS in (??) und der NBNF

nach (??) eine von u(t) unabhéngige Transformation angesetzt.
x"(t) = t(x(l)) : (3.14)

Die zeitliche Ableitung liefert zusammen mit (?7):

) = )= () a0)
= Dyl faw () + b)) (3.15)

4Zeitz (1987) 148t in der NBNF eine nichtlineare Mefgleichung y(t
(?7) entsprechenden Gleichung noch ein Term % steht, der wegen (

von mir hier behandelten ALS den Wert 1 ergibt.

¢*(«*) zu, weshalb dann in der

) =
) e*(2*) = [0 ... 01]T&* bei den
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Ein Vergleich mit der zu (??) gehérenden NBNF in (??) liefert dann diesen Zusammen-

hang:
L%’f)).a(w(t)) = B, () —a(y(1)) (3.16)
M) pwry = v 317

Diese Beziehungen fassen partielle Differentialgleichungen zusammen. Die Gleichung (?7)
1483t sich beziiglich ¢(x) komponentenweise notieren, wobei aus Abkiirzungsgriinden die

Zeitparameter nicht notiert werden:?

(@) a(@) = du(z)alz) — aly)
dty(z) - a(z) : ti(x) —ai(y) (3.18)

dt, - a(®) _ tho1(®) — an_1(y)

Nach Umstellen dieser Beziehungen und Einfiihrung des Lie- Differentialoperators erhalten

wir die zu 16senden partiellen Differentialgleichungen zu:

toor(®) = dip(®)a(®) + an—1(y) = Lato(®) + an1(y)
tho(®) = L2, ()4 Loan_1(y) + an_2(y)
: (3.19)
t(e) = Ly ta(®) + Ly 2aa(y) + .o + Laaz(y) + ai(y)
0 = Lato(®) + L apa(y) + ...+ Laar(y) + ao(y)

Die letzte Gl. in (??) wird von Keller (1986) als nichtlineare charakteristische Gleichung
bezeichnet und ist in Analogie zu dem Satz von Cayley-Hamilton fiir lineare Operatoren

zu sehen. Die a;(y) sind die Terme in der NBNF (?7).

Das Gleichungssystem (?7?) ist nur noch durch die Systemausgangsgleichung
y(t) =t(x) = 2=(t) =[00 --- 01]z*(1) = " x(1) (3.20)

zu ergénzen. Mit der von Keller (1986) angegebenen Zweistufen-Transformation kann
es gelingen die partiellen Differentialgleichungen in (??) zu integrieren und insbeson-
dere die a;(y), ¢ = 0,1,...,n — 1 zu bestimmen; und damit dann tber (??) auch die

bi(y), e =1,2,...,n der NBNF (??) zu berechnen.

Eine Auswertung dieser Beziehungen fiir LS und BLS wurde in Schwarz (1990) vorgenom-
men. Die dort fiir BLS der Form:

YpLg «(t) = Aa:(t)—l—[Na:(t)—l—b]u(t)}
y(t) = c=(t)

Sdi;(x) bezeichnet also einen transponierten - als Zeilenvektor notierten - Gradienten einer Vektor-

(3.21)

funktion nach @
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angegebene Transformation

th(x)
" (t)=Te(t) = : (3.22)
to()

tu(z) = cla(t)
th-1(x) = (:13) Az(t) 4 an_1(y(t)) = T Az (t) + ap_1cTx(t)
thoal®) = iy ()A2(0) + ,-2(0)
= cTA%(t) + ap_1cT Az(t) + ap_syct (1) (3.23)

ti(x) = A" te(t) +an_1cT AV 22(t) + ...+ agcl Az(t) + a1t (2(1))
0 = clA"2(t) +a,1cT A" + .+ arch Az(t) + apel (1) )

worin die a; die Koeffizienten des charakteristischen Polynomes von A sind, liefert nur

dann die NBNF nach Keller, wenn die mit (??) transformierte Matrix
N*=TNT™' (3.24)

diese Form hat (Ingenbleek 1991):

* K K

(3.25)

*

In (??) darf also nur die letzte Spalte von Null verschiedene Elemente haben.

Ferner gilt aber auch, dafl abhéngig vom Differenzengrad mit 1 < d < n nur dien—d+1
ersten Zeilen von IN™ mit von Null verschiedenen Elementen besetzt sind, wenn das zu-
gehorige LS (mit N = o) in linearer Beobachternormalform vorliegt; also fiir d = n
koénnen nur die ny; (¢ = 1,2,...,n) in IN™ von Null verschieden sein oder fiir d = n — 1

die ersten beiden Zeilen in N* u.s.w.

FaBt man die beiden Ergebnisse zusammen, hat man

Satz 3.2
Fiir ein BLS (??) mit dem Differenzengrad d nach Definition ??7 existiert die NBNF (?7)
nach Keller nur dann, wenn die mit (??) und (??) transformierte Matrix N™ in (??) nur

diese von Null verschiedenen Elemente hat
n;, #0 mit:=12....n—d+1;1<d<n (3.26)

a
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Die Konsequenz dieses Tatbestandes ist, dafl bei den fiir die Anwendung sehr oft auftre-
tendne BLS mit d = n (Abschnitt 5), die NBNF nach Keller nur existiert, wenn allein das

Element ny, in (??7) von Null verschieden ist.
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4 Transformation von BLSn. auf NBNF

Die in den Abschnitten 2 und 3 behandelten NBNFn fiir ALS bzw. die notwendigen
Transformationen auf diese Formen werden nun fiir die einfachsten NLS, den fiir die
Anwendung z. B. bei Antriebsregelungssystemen so interessanten BLS, spezialisiert und
ausfithrlicher diskutiert. Es werden im folgenden SISO-Systeme der Form

S ) = Az(t)+[Na(t)+blu(t) : z==(0)
BL5 y(t) = cTa(l)

s (4.1)

mit @(t) € R" und u(t) € C* behandelt. Fiir die NBNF nach Zeitz Definition ?? und
Gl (??) muB also u(t) hinreichend glatt und mindestens n — 1 mal zeitlich differenzierbar
sein. Es soll nun zu (??) die NBNF GI.(??) und insbesondere der Zusammenhang der

a;(...)mit7=0,1,...,n—1 mit der BLS-Realisierung { A, b, N, ¢} aufgezeigt werden.
Dazu bestimmen wir zundchst die Beobachtbarkeitsabbildung nach GI1.(?7) mit
0
Flar.u) = Aa((t) + Na(u(t) 4 bu(t) © - flw.u)= A+ Nuft (12)

und dem Differenzialoperator (??) sowie w*(¢) nach (??) erhalten wir:

clz(t)
§ cT[Az(t) + Nzu(t) + bu(t))] §
y(t)= c'[A+ Nu][Az + Nzu +bu]+ ¢ [Nz + bl | — q(x(t),w(1)) (4.3)
Mit (??) folgt daraus die Beobachtbarkeitsmatrix zu:
1
A+ Nu
0 T (4.4)

Qp(w’) = q(@(t).w' () =c | (1 L N4+ Nu)+ Ni

Zunichst ist zu erkennen, dafl wegen der Linearitat beziiglich & bei den BLS die Beobacht-
barkeitsmatrix @g(u*) nicht von @ sondern nur von w*(¢) abhéngt, was dann ebenso fiir
die Inverse Q' (w*(t)) gilt. Bei nicht niher spezifizierter Systemstruktur, also nicht fest-
gelegtem Differenzengrad d ist y*(¢) und damit Q z(u*) sehr komplex aufgebaut, so dafl
hier eine weitere Untersuchung keine besonderen Einsichten erbringt. Im Anwendungsfall
eines zahlenméafig parametrisierten Systems mufl deshalb zweckméfigerweise eine rech-
nergestiitzte Untersuchung erfolgen (Birk 1992).

Die Verhéltnisse werden fiir den bei praktischen Anwendungen wichtigen Sonderfall des

Differenzengrad d = n wesentlich iibersichtlicher. Denn dann ist y(¢), y(¢), ..., y" (1)
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nicht von u(?) abhangig, womit dann fiir die Beobachtbarkeitsabbildung (?7) gilt:

cTAn—l
und daraus fiir die Beobachtbarkeitsmatrix iiber (??) folgt:
Qg =[c, Ae, ..., (AT 1]t , (4.6)
mit der Folge:

Satz 4.1
Ein BLS mit dem Differenzengrad d = n ist dann vollstdndig - sogar global - beobachtbar,

wenn das Matrizenpaar {e?, A} ein vollstindig beobachtbares lineares System beschreibt.

O
Die Berechnung der NBNF nach (??) fiir den Sonderfall d = n ist besonders iiber-
sichlich, wenn das BLS in einem ersten Schritt mittels der Transformation auf lineare
Beobachtbarkeits-Normalform “vorbehandelt” wird. Durch Anwendung der Transforma-

tion (?7) und (??) hat das BLS (??) dann diese Form fiir d = n:

o --- --- 0 —ag
1 0 tee 0 —dadq
&*(1) = 2*(1)+
O
L 1 —ldp—-1 |
i 11 Nin bl (4 7)
0
o N R ZCE  RTG
L 0
y(t) = [ 0 .- 0 1 ]

Bei einem Differenzengrad d < n sind A und ¢ von der in (??) angegebenen Form,
wahrend in N die ersten (n — d) + 1 Zeilen und/oder in " die ersten (n — d) Elemente
von Null verschieden sein kénnen. In Bild 77 ist ein Strukturgraph zu dem transformierten

BLS nach Gl. (??) gezeigt.

Ein ALS und damit auch alle BLS haben einen Differenzengrad d = n, wenn der Signal-
flu vom Eingang zum Ausgang keinen Systemzustand “iiberspringt”: d. h. werden die
Systemzustinde so nummeriert, dafl das Eingangssignal auf den Zustand “1” und der
Zustand “n” auf den Systemausgang wirkt, dann diirfen bei einem vollstindig steuerba-
ren und beobachtbaren System bei den in Reihe geschalteten Zustdnden jeweils nur der
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Bild 4.1: Strukturgraph zu GI. (4.7)

erste Zustand auf den zweiten, dieser auf den dritten bis hin zum (n — 1)-ten auf den

n-ten einwirken. Verbindungen in “Riickwértsrichtung” vom i-ten auf Knoten r mit r <

sind zuldssig. Fiir ein BLS mit dem Differenzengrad d = n haben wir dieses allgemeine

Besetzungsmuster

aiy
a21

A = 0

by

a12
22

a32

a1.n
a2.n

Upn—1 Apnp

N1

0

Mn

0

(4.8)

Aus dieser Besetzungsstruktur folgt dann auch unmittelbar die folgende Besetzung der

Beobachtbarkeitsmatrix als untere Dreiecksmatrix:

0 0 0 0 an
0 0 0 2,1 q2,n
Qp = (4.9)
. 0
0 Qn—l,Q Qn—l,n—l Qn—l,n
L Qn,l Qn,Q Qn,n—l Qn,n 1
Die Inverse Qz' := Q% ist damit eine obere Dreiecksmatrix und hat dann diese Beset-
zungsstruktur:
qr 1 qin
Qp = , (4.10)
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wobei insbesondere gilt: ¢f , = ¢, . (4.11)

Genau dieses Element wird mit (??) fiir den Sonderfall d = n benétigt und 148t sich daher

sehr einfach bestimmen.

Auch wenn die Beobachtbarkeitsmatrix Qg eines BLS bei Differenzengrad d = n nicht
von der Steuerung u(t) abhangt, so gilt dies nicht fiir die zugehorige Transformation (?7?),
wenn ein BLS auf die NBNF nach Zeitz (??) transformiert werden soll. Fiir BLS hat die
Zustandstransformation (??) diese Form:

z(t) =t(2"(1).u (1) =T (w ()2 (1) : «(t)=T" (u'(1))=(1) (4.12)

mit w*(t) aus (77?).

Soll ein gegebenes BLS auf die NBNF nach Zeitz transformiert werden, dann muf} (?7?)

zusammen mit (?7) so angewendet werden:

a % LA 3
8u*T(u JE T . (4.13)

Umstellen nach @*(¢) und einsetzen von (?7) zusammen mit (?7?) liefert die Zustandsglei-

chung des Systems in NBNF:

#(1) = (T )a(t)) = T(u)i +

0
Ju*
Hier ist bereits zu erkennen, dafl ein BLS in der NBNF nach Zeitz im allgemeinen kein

BLS mehr ist.

(1) = T (u")[A+Nu|T(u*)e*+ T (u)bu—T ' (u*)—T(u)z"u"  .(4.14)

Dieser Zusammenhang soll an zwei einfachen Beispielen verdeutlicht werden.

Beispiel 1
Ein BLS mit d = n = 2 sei gegeben zu:

2(1) = “ _“O]w(tH[”gl né’zlw(t)u(t)—l-[glu(t)
(4.15)
y(t) = [0 1]a()
Die zugehorige Beobachtbarkeitsmatrix ist:

0 1 -1 _ Clll
-\ L |=ae-|7 ]

Fir die Zustandstransformation erhalten wir mit (??) und (??) und dem Startvektor s
aus (?7):

1
L ] " (4.16)

0 1
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_ 1 —n11U
T ' (u) = ’ 1.1
W=y (.17
Die Auswertung von (?7?) liefert die NBNF des BLS (??) zu:
Cx 0 | nlgu—al—l—alnllu b
) = : : (¢ ¢
=) [1 | niiu = a ]w()+l0]u()+
0 n171 . %
R O Sy
y(t) = [0 1 ]2 (1)

also ein System, das wegen der Abhéangigkeit von 4(?) nicht zur Klasse der BLS gehért.O

Beispiel 2
Ein BLS mit d = n = 3 habe diese Systemrealisierung { A, N, b, ¢’} mit
—dag ni1 M2 M3 by
A= |10 —a N=| 0 0 0 b= 0
—ay 0 0 0 0 (4.19)

=100 1]

Die Transformation auf NBNF nach Zeitz liefert dann dieses System:

0 | 0 | nig dt2 +(—n12 — a2n1,1)cfl_? +(n13+ agny g+ aing 1)u — ap
z*(l) = 1 | 0 | —27111% +(n12+ agnyq)u—aq
0 1 N1 — dag
y(t)y = [0 0 1] : (4.20)
das neben u(t) auch von Eu(t) u(t) und (t) abhangt. O

Diese beiden Beispiele zeigen deutlich, dafl zwar fiir BLLS immer eine NBNF existiert, daf
aber eine praktische Realisierung z. B. beim Einsatz in einem Beobachter faktisch aus-
geschlossen ist, da zeitliche Ableitungen der Stellgrofie bendtigt werden. Fiir den Einsatz
bei der Losung technischer Systeme ist die NBNF nach Keller noch wesentlich besser ge-
eignet, da fiir BLS die Zustandstransformation & = T'x* eine lineare Transformation ist,
die weder von () noch von u(t) abhéngt. Dle Existenzbedingung ist aber sehr streng
und wird haufig nicht erfiillt sein (s. a. Satz ?7).
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5 Der Differenzengrad d =n

Aus systemtheoretischer Sicht ist ein Differenzengrad d = n, der besagt, dafl ein ALS
keine endliche Nulldynamik sondern ausschlieflich eine Nullstruktur im Unendlichen hat,
ein sehr spezieller Sonderfall. Dieser Sonderfall ist vor allem dadurch ausgezeichnet, dafl
viele Problemstellungen z. B. Beobachtbarkeit, Steuerbarkeit, Beobachterentwurf, Linea-
risierung, Entkopplung von Mehrgrofiensystemen u. v. a. besonders einfach und/oder auch

vollstandig losbar sind (Isidori 1989, Schwarz 1991).

Bemerkenswert ist aber, daf} dieser systemtheoretische Sondertall d = n bei einer Vielzahl
von technischen Systemen der Normalfall ist und zwar immer dann, wenn Speicher in
Kaskaden angeordnet sind (Bild ??). Diese Speicher kénnen fiir Energie - potentielle oder

kinetische - und/oder Masse und/oder Information sein.

Fiir das Strukturmerkmal d = n ist entscheidend, dafl zwar alle “Riickwirkungen” von hin-
ten nach vorne erlaubt sind, dafl aber die Stellgrée nur aut den ersten Speicher wirkt und
keine Signalverbindungen zum Ausgang hin gerichtet sind, die einzelne Speicher “iiber-
briicken”. Beispiele fiir Systeme mit d = n sind der in Bild ?? als Gerateplan und Block-
schaltbild dargestellte Gleichstromantrieb und der elektrohydraulische Antrieb in Bild 77.

Bild 5.1: Blockschaltbild eines physikalischen Systems mit dem Strukturmerkmal d = n.
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Bild 5.2: Gleichstromantrieb als Beispiel fiir ein System mit d = n; a) Gerdteplan
b) Blockschaltbild.
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Bild 5.3: Elektrohydraulischer Antrieb a) Gerateplan b) Blockschaltbild.



6 Zusammentassung und Ausblick

6 Zusammenfassung und Ausblick

In diesem Bericht wurden die Beobachterstrukturen fiir bilineare Systeme in nichtlinearer-
Beobachter-Normalform (NBNF) nach Zeitz bzw. Keller sowie die damit zusammenhé&ngen-
de Transformation des Systemzustandes ausfithrlich besprochen. Insbesondere wurde der
Sonderfall: Differenzengrad d = n , der bei vielen technischen Systemen anzutreffen ist,

genauer untersucht.

Auf die hier dargestellten Ergebnisse aufbauend soll einmal die Zustandsregelung bilinea-
rer Systeme mit Zustandsschdtzung genauer untersucht werden, z. B. darauf, ob &hnlich
wie bei linearen Systemen ein Seperationsprinzip beziiglich der Stabilisierung der geregel-
ten Systeme bzw. auch bei der Optimierung stochastisch erregter Systeme existiert. Eine
andere Arbeitsrichtung betrifft den Beobachterentwurf fiir etwas komplexere nichtlineare
Systeme wie z. B. zustandsaffine Systeme oder Polynomsysteme, fiir die dann dhnlich wie

bei den hier behandelten BLS explizitere Ergebnisse gefragt sind.



/ Literatur

7 Literatur

Birk, J. 1992. Rechnergestiitzte Analyse und Losung nichtlinearer Beobachtungsaufgaben.
Diss. Universitat Stuttgart.

Birk, J. und M. Zeitz. 1988. Extended Luenberger observer for nonlinear multivariable
systems. Int. J. Control 47, 6, 1823-1836.

Ingenbleek, R. 1991. Zur Fzistenz der nichtlinearen Beobachternormalform fir analy-
tisch lineare Systeme. Forschungsnotiz 10.91. MSRT, UNI-Duisburg.

Ingenbleek, R. 1992. Die nichtlineare Beobachternormalform am Beispiel eines bili-
nearen Systems mit vollem Differenzengrad. Forschungsnotiz 5.92. MSRT, UNI-
Duisburg.

Isidori, A. 1989. Nonlinear Control Systems. Berlin u.a.: Springer.

Keller, H. 1986. Entwurf nichtlinearer Zeitvarianter Beobachter durch Polvorgabe mit
Hilfe einer Zwei-Schritt-Transformation. at 34, 271-274, 326-331.

Luenberger, D.G. 1963. Observing the state of a Linear System. I[EFE Tr. MIL-8, T4-
80.

Walcott, B.L., M.J. Corless und S.H. Zak. 1987. Comparative study of non-linear
state-observation techniques. Int. J. Control 45, 6, 2109-2132.

Williamson, D. 1977. Obserbation of Bilinear Systems with Application to Biological
Control. Automatica 13, 243-254.

Schwarz, H. 1989. Differenzengrad und Nulldynamik fir Analytisch-Lineare-Systeme.
Forschungsbericht 5/89 MSRT, UNI-Dusiburg.

Schwarz, H. 1990. ALS-Beobachter und Filter. Forschungsbericht 7/90 MSRT, UNI-
Duisburg.

Schwarz, H. 1991. Nichtlineare Regelungssysteme. Miinchen, Wien: Oldenbourg.

Svaricek, F. 1992. Personliche Mitteilung zur Anwendung von Strukturgraphen zur Er-
mittlung des Differenzengrades von ALS und BLS.

Zeitz, M. 1984. Observability canonical (phase-variable) forms for non-linear time va-
riable systems. Int. J. System Science 15,9 , 949- 958.

Zeitz, M 1985. Canonical forms for nonlinear systems. in Jakubczyk, K.B. und W. Re-
spondek und K. Tchon (Ed.) Geometric Theory of Nonlinear Control Systems. War-
schau: sc. papers of the Inst. of Cybernetics Techn. Univ.

Zeitz, M 1987. The extended Luenberger observer for nonlinear systems. Systems &
Control Letters 9, 149-156



