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Nomenklatur

Skalare scharfe Grofien:

am : Amplitude des Grenzzyklusses um den Arbeitspunkt
am”™ . Sollwert fiir am
d . Alterungskoeffizient
d, . Pseudodampfungsrate
: Regelabweichung (w — y)
Ae . Anderung der Regelabweichung
JANGY . Anderung der Regelabweichung normiert auf die Abtastzeit
AZe . Anderung von Ae
I . Fuzzy-Giitemaf
g . Gewichtstaktor

GE,GE : Skalierungsfaktor fiir e
GC,GC :  Skalierungsfaktor fiir Ae
GU,GU  : Skalierungsfaktor fiir u

k; . t-ter Skalierungsfaktor

Ak; . Anderung des i-ten Skalierungsfaktors

Kp . proportionale Verstarkung (PID-Regler)

K : integrale Verstarkung (PID-Regler)

Kp . differentielle Verstarkung (PID-Regler)

K. . Verstarkungsfaktor (PID-Regler)

K, . kritische Verstarkung (PID-Regler)

meg . Anzahl der Referenz-Fuzzy-Mengen beziiglich
MAE : Anzahl der Referenz-Fuzzy-Mengen beziiglich AE
ms : Anzahl der Referenz-Fuzzy-Mengen beziiglich der Konklusion (beziiglich U)
my . Anzahl der Referenz-Fuzzy-Mengen beziiglich Y
of o Offset

ov . Uberschwingen

ov” : Sollwert fiir ov

P :  Anzahl der Modelleingénge

P . Ereignis

P . Giitemaf

Q . Ereignis

i . ij-tes Element der Relationalmatrix R (fiir 2-dimensionale R)
rt . Anstiegszeit

rt* . Sollwert fir rt

sg : Schwingungsgrad

T . Abtastzeit

Tu . Vorhaltezeit (PID-Regler)

T; : Nachstellzeit (PID-Regler)
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IV

tu : krit
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ische Periodendauer (PID-Regler)

. Stellgréfle
u : Anderung der Stellgrofe
korrigierte Stellgrofie
Fithrungsgrofie
Ausgangsgrofie der Regelstrecke (Regelgrofie)
Ausgangsgrofie des Referenzmodells
Storgrofe

Unscharfe Grofien:

fuzzifizierte Grofle e
fuzzifizierte Grofie Ae
fuzzifizierte Gréfe A2e
fuzzifizierte Grofie e,
fuzzifizierte Grofe e,,
fuzzifizierte Grofe e,
fuzzifizierte Gréfe pi, pr
fuzzifizierte Grofie u
fuzzifizierte Grofie v
fuzzifizierte Grofie w
fuzzifizierte Grofle y
fuzzifizierte Grofle y*
fuzzifizierte Grofle e
fuzzifizierte Grofle Ae
fuzzifizierte GroBe 9, 1

Vektoren und Matrizen:

Vektor, der die Mittelpunkte aller bzgl. der Konklusionen definierten
Fuzzy-Mengen enthilt (symmetrische Zugehorigkeitsfunktionen)
Relationalmatrix eines Fuzzy-Reglers

Vektor der Regelabweichungen

Vektor der Anderungen der Regelabweichungen

Vektor der Skalierungsfaktoren beziiglich e

Vektor der Skalierungsfaktoren beziiglich Ae

Einheitsmatrix

Jakobi-Matrix

Vektor der Skalierungsfaktoren bzgl. der Eingangsgrofien eines Reglers

Systemmatrix eines Inkrementalmodells
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MWM
MWM
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pe
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TI
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zweidimensionale Macvicar-Whelan-Matrix

dreidimensionale Macvicar-Whelan-Matrix

Nullmatrix

Reglerparametervektor

Vektor mit Giitemaflen

Relationalmatrix des Fuzzy-Referenzmodells

Relationalmatrix

Partialrelationalmatrix

Entscheidungstafel fiir einen Fuzzy-Regler

Entscheidungstafel fiir die Fehlerbewertung

StellgréBenvektor

Vektor der Anderung von u

Vektor der Zustandsgrofien

Ausgangsgrofenvektor

Ausgangsgrofienvektor des Referenzmodells

Vektor der Abweichungen der Referenzmodell- von den Systemausgédngen
Vektor der Anderungen von e

Parametervektor der Regelstrecke

Parameter-Variationsvektor

Fehlervektor bei Systemem mit einer AusgangsgréBe ([e, Ae]?)
Fehlervektor bei Systemem mit einer AusgangsgréBe ([e, ¢]7)
Fehlervektor bei Systemem mit einer AusgangsgréBe ([e, Ae, A%e]T)

Fehlermatrix bei Systemem mit mehreren Ausgangsgrofien

Griechische Buchstaben:

e . Anpassungsfaktor bei der PID-Regleradaption
Q; : 1-te Partialpramisse
B,y Adaptionsverstarkung
€ :  Abweichung des Referenzmodell- vom Systemausgang (y* — )
JANG . Anderung von e
0, :  t-te Komponente von O
palz) : Zugehorigkeitsfunktion zur Fuzzy-Menge A(x)
Totzeit
T : Sollwert der Totzeit
w : Gesamtpramisse

w; . Gesamtpramisse der ¢-ten Regel
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Mengen und Réaume:

A

A = {alb}
B

B,

D

Dy

G

FPunktionen:

Fuzzy-Menge

Ay ist die Menge aller Elemente a, die die Eigenschaft b aufweisen.
Parameterraum

Vektorklasse

Definitionsbereich

Definitionsbereich normierter Groflen (Dy = [—1;1])
Menge aller Referenz-Fuzzy-Mengen

Menge aller Referenz-Fuzzy-Mengen bzgl. U

Menge aller Referenz-Fuzzy-Mengen bzgl. Y

Menge aller Referenz-Fuzzy-Mengen bzgl. I

Menge aller Referenz-Fuzzy-Mengen bzgl. E

Menge der natiirlichen Zahlen

NuU {0}

Menge der reellen Zahlen

Klasse der Initialmatrizen

Rundungsfunktion auf -

Exponentialfunktion auf -

wertediskretisierte Grofle

Zuordnung zum Reglerparameter, [ € {P, I, D}
Transponierte Matrix

Laufindizes

zeitdiskrete Grofle im Abtastzeitpunkt ¢ = kT
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Operatoren:

Komposition
scharfes kartesisches Produkt

unscharfes kartesisches Produkt

Produkt aller a; (1 < ¢ < m), entspricht dem PROD-Operator

Maximum- (MAX-) Operator (auf - angewendet)

max{z;} ={2| & € {ar,...,xn}, T>ay, T#x; Y ee{l,....,n}}

1<i<n
Minimum- (MIN-) Operator (auf - angewendet)

min{z;} ={2| & €{ar,...,2n}, T<ay, T#x; Y ie{l,....,n}}

1<i<n
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1 Einfiihrung

Oft tritt in der Praxis das Problem auf, daf} die Parameter einer Regelstrecke zeitabhéngig
sind sowie zeitabhangige Stérungen auf die Regelstrecke einwirken. In solchen Féllen kann

auf Konzepte der robusten oder adaptiven Regelung zuriickgegriffen werden.

Konzepte der robusten Regelung werden angewendet, wenn Schwankungen der System-

parameter @ auf einen Parameterraum
B={®®=[04...,0;...,0,]", mi<O; <M V ic{l,...,n}} (1.1)

beschriankt bleiben. Dabel ist n die Dimension von ® sowie m; und M; Unter- bzw.
Obergrenze fiir die Schwankungen des z-ten Parameters. Die Aufgabenstellung beim Ent-
wurf eines robusten Reglers besteht darin, einen zeitinvarianten Regler so auszulegen,
dafl die Regelung eine gewiinschte Eigenschaft (Gesamtheit von Eigenschaften) besitzt,
unabhéngig davon, welche Werte @ € B annimmt (Follinger 1992). Dann heifit die Rege-
lung robust hinsichtlich dieser Eigenschaft (Gesamtheit der Eigenschaften) fiir Parame-
terdnderungen im Bereich B. Vorausgesetzt wird dabei allerdings, daf§ die Strecke durch
Zustandsdifferentialgleichungen beschreibbar ist (Follinger 1992). Ein System kann dann
mit Hilfe einer Robustheitsanalyse (Kiendl 1987) auf seine Robustheitseigenschaften hin
untersucht werden.

Je nachdem, welches Regelungskonzept betrachtet wird, grenzt der Bereich robuster Rege-
lungen eng an das Gebiet adaptiver Regelungen an. Zum Beispiel werden robuste Regler,
bei denen die Reglerparameter in Abhéngigkeit vom Streckenzustand veranderlich sind, als
strukturvariable robuste Regler bezeichnet. Regelungskonzepte, bei denen die Reglerpara-
meter in Abhingigkeit von Anderungen der Streckenparameter verinderlich sind, werden
als adaptive Regelungen bezeichnet (Unbehauen 1988). Treten relativ grofie durch Stérun-
gen verursachte (unvorhergesehene) Parameterdnderungen auf, so sind selbstanpassende

oder adaptive Regelungsstrategien besonders geeignet.

Die im 2. Abschnitt vorgestellte aus der konventionellen Regelungstechnik bekannte Fin-
teilung der adaptiven Regelungskonzepte in verschiedene grundlegende Klassen kann auch
bei adaptiven Regelungskonzepten, die Fuzzy-Logik einsetzen, vorgenommen werden. Bei
den letztgenannten Verfahren besteht prinzipiell die Méglichkeit, den adaptiven Regler als
komplette Fuzzy-Losung (fuzzy-adaptierter Fuzzy-Regler) oder als hybriden Regler (nur
der adaptierte Regler oder der Adaptionsmechanismus nutzt Fuzzy-Logik) zu entwerfen.
Bei den fuzzy-adaptierten konventionellen Reglern sind mehrere Reglertypen moglich,
wie z. B. Zustandsregler (Klein 1991, Jamshidi u. a. 1991) oder PID-Regler (He und Tan
1993, Raju und Zhou 1992, Tzafestas und Papanikolopoulos 1990, van Nauta Lemke und
Krijgsman 1991). Beim Entwurf von Zustandsreglern ist i. allg. eine deutlich genauere
Systemkenntnis notwendig als bei der Auslegung von PID-Reglern. Da in diesem Bericht

Regelstrecken, tiber die kein detailliertes Prozelwissen vorliegt oder die schlecht analytisch
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beschreibbar sind, im Mittelpunkt des Interesses stehen, beschrinken sich die Betrach-
tungen bei den hybriden Reglern im 3. Abschnitt auf fuzzy-adaptierte PID-Regler. Der
4. Abschnitt enthélt einige Verfahren zur Fuzzy-Adaption von Fuzzy-Reglern. Der Bericht
schlieft mit einer Zusammenfassung und einem Ausblick im 5. Kapitel. Im ersten Anhang
finden sich Definitionen einiger Begriffe und Methoden aus dem Bereich der Fuzzy-Logik,

die in diesem Bericht besondere Bedeutung besitzen.
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2 Strukturen adaptiver Regler

Was ist adaptive Regelung 7 In der Literatur findet sich keine einheitliche Definition dieses
Begriffes. Astrom (1983) gibt z. B. die folgende

Definition:

Adaptive Regelung ist ein spezieller Typ der Regelung mit nichtlinearer Riick-
fiihrung.
O

Die Strukturen adaptiver Regler kénnen grob in drei Klassen eingeteilt werden, die im

folgenden kurz vorgestellt werden.

2.1 Verfahren der gesteuerten Adaption

e -1
[
‘ Y
I
| feste £(t)
| Zuordnung z(t)
I T
I I
! = - p(t)
L
| e(t) u(t) y(t)
Regel-
Regler strecke >
w(t)

Bild 2.1: Struktur eines Regelungskonzeptes mit gesteuerter Adaption
(,gain scheduling®, Astrom 1983)

Das Verfahren der gesteuerten Adaption kann eingesetzt werden, wenn das Verhalten des
Regelungssystems fiir unterschiedliche Parameterdnderungen £(¢) der Regelstrecke und
Storungen z(¢) bekannt ist. Dann kann eine Anpassung der Reglerparameter p(t) {iber
eine zuvor berechnete Zuordnung (sog. ,parameter scheduling” oder ,gain scheduling®*)
oder eine Nachfithrung des Sollwertes w(¢) vorgenommen werden (siehe Bild 2.1). Bei
diesem Verfahren gibt es keine Riickkopplung zur Korrektur der Parametereinstellun-
gen selber, was sich nachteilig auswirken kann. Es handelt sich also um eine Steuerung.

Man spricht trotzdem von einem adaptiven Regelungssystem, da die Reglerparameter in

!Der Name gain scheduling riihrt daher, da in den ersten Konzepten nur der Verstarkungsfaktor
angepafit wurde.
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Abhéangigkeit von Parametervariationen und Stérungen nach einer festen Zuordnungs-
vorschrift ausgewéhlt werden. Das Hauptproblem beim Reglerentwurf ist das Finden
geeigneter Hilfsvariablen, um den Prozefizustand zu erfassen und die geeignete Regler-
einstellung auszuwéhlen. Gewohnlich ist deshalb eine genaue Kenntnis des dynamischen
Verhaltens der Regelstrecke notwendig. Wenn die Abhéngigkeit des Systems von Parame-
teranderungen nicht oder nur unzureichend bekannt ist, sollte(n) die Ausgangsgrofie(n)
der Regelstrecke zum Adaptionsmechanismus zuriickgefithrt werden. Durch Auswertung
der riickgefiihrten Signale iiber ein festzulegendes Giitekriterium zur Bestimmung der Reg-
lerparameter entsteht eine Struktur mit geregelter Adaption. Bei der geregelten Adaption
existieren Verfahren mit seriellem oder seriell-parallelem Vergleichsmodell sowie die weit

verbreiteten Verfahren mit oder ohne parallelem Vergleichsmodell (Landau 1979).

2.2 Verfahren der geregelten Adaption mit parallelem Vergleichs-
modell
Neben dieser Bezeichnung (Unbehauen 1988) ist auch der Name Modell-Referenz- Verfah-

ren (Féllinger 1992) gebrauchlich, die Ubersetzung der Bezeichnung model reference ad-
aptive systems (MRAS) der englischsprachigen Literatur.

*
t
R Referenzmodell y )

Adaptions— - e(t)=y"(t)—y(t) gB

einrichtungen
e
w(t) e(t) Regel— y(t)
| Regler |/ W str%cke -

: I

z(t) £(t)

Bild 2.2: Struktur eines adaptiven Reglers nach dem Modell-Referenz-Verfahren
(MRAS, Unbehauen 1988)

Hierbei wird ein mathematisches Modell fiir das gewiinschte Verhalten des geschlossenen
Regelkreises vorgegeben (Referenzmodell). Aus den Abweichungen der Prozeflausgangs-
grofe(n) von der Modellausgangsgrofie(n) wird die Anderung der Reglerparameter so be-
rechnet, dafl der Fehler (¢) = y*(¢) — y(¢) minimal wird. MRAS-Systeme haben einen
zweischleifigen Autbau. Die innere Schleife setzt sich aus dem Regler und der Regelstrecke

zusammen, die &uflere dient zur Einstellung der Reglerparameter. Das Hauptproblem bei
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MRAS-Reglern besteht darin, den Einstellmechanismus so auszulegen, daf} ein stabiles

System entsteht, das den Fehler £(¢) gegen 0 fithrt (Unbehauen 1988, Astrém 1983).

2.3 Verfahren der geregelten Adaption ohne Vergleichsmodell

@(t)
Regler— e .
modifikationen Identifikation -
H p(t)
wi(t e(t u(t t
(t) (t) Regler (t) | o slii%g{; Y()>
z(t) £(t)

Bild 2.3: Struktur eines selbsteinstellenden Reglers (STR, Unbehauen 1988)

Diese als selbsteinstellende Regler (self-tuning regulators, STR) bezeichneten Regler
(Astrém 1983) ermitteln die schwankenden Parameter der Regelstrecke aus der Messung
ihrer Ein- und Ausgangsgrofie(n). Bei dem in Bild 2.3 gezeigten indirekten (expliziten)
STR werden Identifikation der Streckenparameter und Anpassung des Reglers vonein-
ander getrennt vorgenommen. Dabei wird von einem expliziten Modell der Regelstrecke
ausgegangen. Wenn es moglich ist, die Reglerparameter direkt zu identifizieren (ohne den
Zwischenschritt iiber die Identifikation der Streckenparameter), vereinfacht sich die Reg-
lerstruktur betrachtlich. Man spricht dann von einem direkten (impliziten) STR, da er
auf einem impliziten Modell der Regelstrecke beruht. Der STR besitzt wie der MRAS
einen zweischleifigen Aufbau. Die innere Schleife besteht wieder aus dem Regler und der

Regelstrecke, die duflere Schleife sorgt fiir die Einstellung der Reglerparameter.

2.4 Zusammenhang zwischen Verfahren der geregelten Adapti-
on mit und ohne parallelem Vergleichsmodell

MRAS und STR sind von ihrer Struktur her dhnlich. Beide besitzen einen zweischleifi-
gen Aufbau mit der gleichen Funktionalitét von duBlerer und innerer Schleife und kénnen
in Grenzfallen sogar gleich sein (Unbehauen 1988). Allerdings sind i. allg. die Entwurfs-
methoden fiir die innere Schleife und fiir die in der dufleren Schleife realisierte Parame-
teradaption unterschiedlich (Astrém 1983). Sowohl MRAS wie auch STR liefern stark

nichtlineare Regelungssysteme, bei deren Entwurf die wichtigen Aspekte

o Stabilitdt des Gesamtsystems,
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o Konvergenz der Reglerparameter und
o Einflufl von Storgrofen

beachtet werden miissen. Obwohl adaptive Regelungskonzepte bereits seit den fiinfziger

Jahren untersucht werden, liegt keine vollstandige theoretische Grundlage vor.

Die Regelung linearer Systeme mit idealen PID-Reglern fithrt dagegen zu linearen Ge-
samtsystemen, die mit den Methoden der linearen Systemtheorie (z. B. auf Stabilitit)
untersucht werden kénnen. In der Praxis aber werden PID-Regler oft einerseits nichtlinear
verdndert und anderseits zur Regelung nichtlinearer Strecken eingesetzt. In diesen Fallen
sind i. allg. theoretische Stabilitdtsnachweise nicht fithrbar. Wegen der guten Akzeptanz
von PID-Reglern bei den Anwendern und des oft zufriedenstellenden Regelungsverhaltens

wird in praxi meistens auch auf theoretische Stabilitatsuntersuchungen verzichtet.

2.5 Einsatzmoglichkeiten von Reglern mit geregelter Adaption

Beim Einsatz von MRAS- oder STR-Reglern sind verschiedene Abstufungen méglich:
e Die Adaption wird on-line durchgefiihrt.

e Die Adaptionsschleife wird zum FEinstellen (,tunen®) des Reglers eingesetzt. Die
Adaption endet, sobald das Regelverhalten des Gesamtsystems die Anforderungen
erfilllt. Dann wird die Adaptionsschleife vom Regler abgetrennt und der Regler mit
konstanten Parametern weiterbetrieben. Gegebenenfalls kann bei Verschlechterung
des Regelverhaltens der Adaptionsmechanismus wieder zugeschaltet und der Regler
nachgestellt werden. Hierzu ist eine iibergeordnete Uberwachungsstruktur erforder-
lich, die das Regelverhalten beurteilt und die Adaption zu- bzw. abschaltet.

e Die Adaptionsschleife wird benutzt, um fiir verschiedene Arbeitspunkte optimale
Reglereinstellungen zu ermitteln. Diese werden tabelliert und als Grundlage fiir eine

gesteuerte Adaption verwendet.

An dieser Stelle soll allerdings angemerkt werden, dafl wegen der Komplexitat eines adap-
tiven Reglers immer erst gepriift werden sollte, ob das regelungstechnische Problem nicht

auch mit einem zeitinvarianten Regler gelost werden kann.
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3 Fuzzy-adaptierte PID-Regler

Die im folgenden vorgestellten Regelungskonzepte verwenden zur on-line Adaption der
PID-Reglerparameter eine von Bild 2.3 etwas abgewandelte STR-Struktur, wie sie in Bild
3.1 dargestellt ist (He und Tan 1993). Hierbei werden die Parameter eines idealen PID-
Reglers

de(t)
dt

u(t) = Kpe(t) + Kr / e(t)dt + Kp (3.1)

bzw. in der Standardform
¢
1 de(t
' /e(t)dt Ty ed(t )) (3.2)
‘0

mit dem Verstarkungsfaktor K., der Nachstellzeit T; und der Vorhaltezeit T; mit Hilfe von

Fuzzy-Logik nachgestellt. Der Vorteil dieses Ansatzes liegt in der einfachen Erweiterbar-

~

u(t) = K. (e(t) +

keit bestehender konventioneller PID-Regler um die Einstellkomponente. Ausgegangen

Fuzzy— ()
Auswertung || Modifikation
des der Reglerparameter
Fehlers
p(t)
w(t) e(t) u(t) Regel- y(t)

p| PID—Regler —"

strecke

Bild 3.1: Fuzzy-adaptierter PID-Regler (He und Tan 1993)

wird dabei von einer Grundeinstellung p, = [K%, K, KY]T bzw. p; = [K2, T?, T9)T der
Reglerparameter, die z. B. durch das Verfahren von Ziegler und Nichols (1942) bestimmt

werden kann. Dabei erhdlt man die Reglerparameter zu
K.=0,6K,, T; = 0,5%,, Ty =0,125¢, (3.3)
Kp =0,6/K,, Ky =1,2K,/t,, Kp =0,075K,t, . (3.4)

Die kritische Verstarkung K, und die kritische Periodendauer ¢, kénnen z. B. mit Hilfe
der Methode des Stabilitatsrandes (Schwarz 1967, Unbehauen 1989) oder der Relais-Riick-
kopplungsmethode (He und Tan 1993) bestimmt werden.
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3.1 Verfahren mit lokalem Giitemafi und getrennter Adaption
der Reglerparameter

Tzafestas und Papanikolopoulos (1990) fithren zur Rauschunterdriickung eine Wertedis-
kretisierung des abgetasteten Fehlervektors ¥, := ¥ (t = kT) = [ex, Acg]T mit

€ = W — Yk (35)
und der Anderung der Regelabweichung
Aek = €L — €k (36)

durch und erhalten so ®%. Durch Fuzzifizierung von ¢ erhilt man ¥, = [E;, AFE]”. 2
W, wird in den Zeitpunkten ¢ = k7" mit Hilfe einer Entscheidungstafel ausgewertet, die
auf dem von Macvicar-Whelan (1976) eingefithrten Prinzip beruht. Diese Tafel wird im
folgenden als Macvicar-Whelan-Matrix (MWNM ) bezeichnet. Tabelle 3.1 zeigt die von
Tzafestas und Papanikolopulos (1990) zur Auswertung von Wy, benutzte MWM . Gemif}

AE(Xo — X)

6 5 4 3 2 1 0 40 +1 42 +3 +4 45 +6
6|6 6 5 5 4 4 3 3 =2 2 -1 -1 0 0
5|6 5 5 4 4 3 3 =2 2 -1 -1 0 0 0
4|5 5 4 4 3 3 2 =2 -1 -1 0 0 0 0
3|5 4 4 3 3 2 2 1 -1 0 0 0 41 +1
2|4 4 3 3 2 2 1 -1 0 0 0 41 +1 +2
1|4 3 3 2 2 1 -1 0 0 0 41 +1 42 +2
0|3 3 2 2 1 -1 0 0 0 41 +1 +2 42 +3
F0[3 2 2 -1 -1 0 0 0 41 +1 42 +2 +3 43
F1]2 2 1 1 0 0 0 +1 41 +2 42 +3 +3 +4
4202 -1 -1 0 0 0 +1 +1 42 42 43 +3 +4 +4
$3[-1 -1 0 0 0 +1 +1 42 42 43 +3 +4 +4 45

0 0 0 +1 +1 +2 42 43 43 +4 +4 +5 45
$50 0 0 0 41 41 42 42 43 43 44 +4 45 45 46

0 +1 +1 42 +2 43 43 +4 44 +5 45 +6 +6

Tabelle 3.1: Macvicar-Whelan-Matrix (Tzafestas und Papanikolopoulos 1990)

der iiblichen Nomenklatur wird die Menge aller Referenz-Fuzzy-Mengen G, z. B. G =

?Bei der Definition der Anderung der Regelabweichung iiber Ale, = Aey /T unterscheiden sich Aey
und A’ej, nur um den konstanten Faktor T'. Bei der iiblichen Normierung der Eingangsgréfien auf Dy =
[—1,1] sind deshalb beide Ansitze bei geeigneter Wahl der Skalierungsfaktoren identisch.
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{negativ grof, negativ mittel, negativ klein, null negativ, null positiv, positiv klein, positiv

mittel, positiv grof} einer Fuzzy-Menge durch
G= {NG,NM, NK, NN, NP, PK, PM, PG} (3.7)

abgekiirzt. Anstelle der linguistischen ist auch eine numerische Bezeichnungsweise der

Fuzzy-Mengen tiblich. Fiir das gewéhlte Beispiel erhdlt man
G={-3,-2,—-1,-0,40,+1,42,+3} (3.8)

(Entsprechendes gilt bei VergroBerung/Verkleinerung des Wertebereiches.). Die numeri-
sche Bezeichnungsweise der Fuzzy-Mengen kann eine Ordnung der Einzelmengen unter-
einander wiederspiegeln (z. B. folgt im Beispiel negativ klein auf negativ mittel), sie steht
aber in keinem direkten Zusammenhang mit dem Definitionsbereich von G. G kann sowohl
auf einem auf Dy = [—1; 1] normierten oder auch auf einem unnormierten Definitionsbe-
reich definiert werden. Die MWM ist je nach gewiinschter Auflésung zu dimensionieren
und damit an die Erfordernisse im Einzelfall anzupassen. Die Auswertung der MWM im
Abtastpunkt k liefert ein Giitemafl

PI(Ey, AEy) = Ej, 0 AE, 0o MWM . (3.9)

Da Tzafestas und Papanikolopoulos (1990) den Fehlervektor ¢ wertediskretisieren, kor-
respondiert eine Realisierung von ), immer genau mit einem Element der MWM . Bei
numerischer Bezeichnungsweise gemafl (3.8) kann der Wert jedes MWM -Elements di-
rekt als scharfer Wert piy interpretiert werden und die Defuzzifizierung entfillt. (Je nach
Wahl der numerischen Bezeichnungsweise ist pip gef. noch geeignet zu skalieren, wenn

beispielsweise pij, € Dy erwiinscht ist.) Die Reglerparameter werden nach

[(P,neu kP,alt + plk(Ekv AEk)ﬂP
Prew = | Bigew | = | kraw+ pin(Er, AE)Br | = Py + P (3.10)
[(D,neu kD,alt + plk(Ekv AEk)ﬂD

aktualisiert. Mit den 3, (I € {P, I, D}) kann die maximale Schwankungsbreite der Reg-
lerparameter pro Adaptionsschritt eingestellt und damit das Regelverhalten beeinflufit
werden. Deshalb sind bei der Festlegung der 3; Stabilitédtsgesichtspunkte und die Anfor-

derungen an den geschlossenen Regelkreis zu berticksichtigen.

Van Nauta Lemke und Krijgsman (1991) benutzen im Gegensatz zu Tzafestas und Pa-
panikolopoulos (1990) [e(t=kT),é(t=kT)|T =: [er. éx]T =: @b, als Fehlervektor. Nach Nor-
mierung auf Dy und ohne vorherige Wertediskretisierung wird {bk fuzzifiziert. Der so
erhaltene unscharfe Fehlervektor ¥, = [Ek,Ek]T wird zur Berechnung der Reglerpara-

meterdnderung fiir jeden Reglerparameter einzeln iiber eine Relationalmatrix R, (I €
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{P,I,D}) ausgewertet. Die Fuzzy-Logik verwendet trapezférmige Zugehorigkeitsfunktio-
nen, verkniipft die Partialprdmissen durch den MIN-Operator und fithrt die vereinfachte

Aggregations-Defuzzifizierungsstrategie durch. Das Adaptionsgesetz

Plnew = Plo + Pl - B le{P1,D} (3.11)

dhnelt (3.10). Allerdings tritt an die Stelle von p,,, Py = [pro, P10, Ppo)’, die konstan-
te Grundeinstellung des PID-Reglers (siehe Einfithrung des Abschnittes 3). Auflerdem
erfolgt in (3.11) im Gegensatz zu (3.10) eine getrennte Giitebewertung fiir alle drei Reg-
lerparameter. Es folgt pz,, dessen Komponenten sich jeweils nur auf den zugehoérigen Reg-
lerparameter beziehen. Die Mengen aller Referenz-Fuzzy-Mengen Gg bzw. G beziiglich
der Fehlergrofien E bzw. E enthalten (analog zu (3.7) und (3.8)) jeweils 5 Fuzzy-Mengen.
Bei Darstellung der Fuzzy-Regeln fiir die Anderung eines der drei PID-Reglerparameter
iiber eine Relationalmatrix R; erhdlt man damit Matrizen der Dimension 5 x 5. Dagegen
umfafit die Menge aller Referenzmengen beziiglich der Anderung der Reglerparameter 7
Referenzmengen. Die Fuzzy-Mengen der Konklusionen der Fuzzy-Regeln und damit die
Elemente der Relationalmatrizen R; bestehen allerdings jeweils aus einer Verkniipfung
zweier benachbarter Referenzmengen. Bei einer Relationalmatrix R = (r;;) kann diese
Verkniipfung durch eine gewichtete Kombination der zu den benachbarten Fuzzy-Mengen

Ay und Ajyy gehorenden Zugehorigkeitsfunktionen pa, und pa,,, als

A A
fry = g3 pa, U (1= g7 M peag,, (3.12)

geschrieben werden. g;jf bezeichnet das der Fuzzy-Menge A; zugeordnete Gewicht. Die-
sem Adaptionsmechanismus fiir die PID-Reglerparameter ist ein Fuzzy-System {iberge-
ordnet, das das Verhalten des geschlossenen Regelkreises anhand von Kriterien wie Uber-
schwingen, standiger Regelabweichung u. 4. bewertet. Damit werden die Regeln zur PID-
Reglerparametermodifikation (d. h. die Matrizen R;) gedandert. Genauere Angaben hierzu
fehlen allerdings.

3.2 Verfahren mit lokalem Giitemaf3 und kombinierter Adaption
der Reglerparameter

He und Tan (1993) benutzen ebenfalls 1,ka als Fehlervektor, der im Gegensatz zu dem Al-
gorithmus von Tzafestas und Papanikolopoulos (1990) nicht wertediskretisiert wird. Nach
der Fuzzifizierung von 1) ; erhélt man W,. Das Verhiltnis von proportionaler, integraler
und differentieller Verstarkung (d. h. das Verhéltnis der 3; in (3.10) zueinander) wird fest
vorgegeben. Letzterem liegt die Idee zugrunde, die PID-Reglerparameter nur von einem
Parameter o abhingig zu machen. Durch qualitative Uberlegungen des Zusammenhangs
von PID-Reglereinstellung und resultierender Regelstreckenantwort haben He und Tan
(1993) das folgende Adaptionsgesetz aufgestellt:

K. = 1,2a K,
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1

T a (3.13)
1
Ty = 0,257, =0,187T5 —— ¢,
1+«
bzw. beziiglich (3.1)
Kp = 1,2a K,
i K,
Ki = 1,6a(l+a) - (3.14)
a

Kp = 0,225 Ky t,
D 9 1—|—Oé g\

Fir a = 0,5 folgt aus (3.13) eine Reglereinstellung nach Ziegler und Nichols (1942).
Der Adaptionsfaktor PIj; wird wieder durch Auswertung des Fehlervektors \ilk mit einer
7T X T-MWM analog zu (3.9) bestimmt (siehe Tabelle B.1 im Anhang B). Als Zugehorig-

keitsfunktionen werden Exponentialfunktionen

u(z) = exp {— (“’ ;“’)2} (3.15)

benutzt (iber die Wahl der «; und o; werden keine Angaben gemacht).

P T s

14 1
0,5
0

0,5+ /

-0,5

/

1
0 0,5 1 -
o<k

W
N

Bild 3.2: Verlauf des Anpassungsfaktors ayyq als Funktion von «y fiir verschiedene kon-
stante Werte von v puy

Durch MAX-MIN-Komposition wird aus W, Pl bestimmt und PI, nach dem Schwer-
punktverfahren auf einen scharfen Wert pi;, € Dn abgebildet. Der neue Anpassungsfaktor

ay1 berechnet sich fiir alle £ =0,1,...00 zu

(1
e = { ag + ypix( ag) Va, > 0,5 (3.16)

ay + ypirag Vo, <0,5

mit ag = 0,5 (Initialisierung des Reglers nach Ziegler-Nichols) und einer positiven Kon-

stante v (Adaptionsverstarkung). Durch (3.16) wird ein stetiger Verlauf von a1 = F(ay)
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fiir ypiy = konst und oy € [0,1] ¥ k =0,1,...00 gewihrleistet (siche Bild 3.2). Uber
~ 1aBt sich die Konvergenzgeschwindigkeit des Einstellalgorithmus beeinflussen, wobei
v € 0,2;0,6] nach He und Tan (1993) fiir die meisten Regelstrecken eine geeignete Wahl
darstellt. Um « € [0; 1] zu gewéhrleisten, darf 4 nicht grofer als 1 gewéhlt werden. Damit
folgt D, = [0; 1] als Definitionsbereich fiir ~.

3.3 Verfahren mit globalen und lokalen Giitemaflen

Raju und Zhou (1992) werten Regelgrofie und Fiithrungsgrofie iiber vier analytische Giite-
mafe aus, um einen PI-Regler zu adaptieren. Die Ergebnisse der Giitebewertung werden
fuzzifiziert und iiber die in Anhang C aufgefithrten Fuzzy-Regeln ausgewertet. Die Fuzzy-
Logik verkniipft die Partialpramissen durch den MIN-Operator und fithrt die vereinfachte
Aggregations-Defuzzifizierungsstrategie durch. Anwendung finden die folgenden Giitema-

Be:

o Pseudoddmpfungsrate d,

g, = 1) (3.17)

r(t) =y*(t) +g (fl—i) (3.18)

mit der Regelgréfle y, einem Gewichtsfaktor ¢ und ¢ =¢; + T

e Schwingungsgrad sg

Die Trajektorie des Verlaufs von [y, %] starte im Punkt A in Bild 3.3. Sie schneide

die Linie OC bei t = t; in S;, dann wieder bei t = #;;4 in S;;; usw. Dann ist der
Schwingungsgrad sg¢(t;) im Zeitpunkt ¢ = ¢; definiert als

0S:;
0S,

sg(t;) = (3.19)

wobei OS die Linge der Strecke zwischen den Punkten O und S in Bild 3.3 ist. sg

kann bei jedem neuen Schnittpunkt der Trajektorie mit OC neu bestimmt werden.

o Offset of

of = [ y(t)dt (3.20)

im Beobachtungszeitraum [t{,1}].
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Sit1 }
Ol ~TPi+a
I

—
y

Bild 3.3: Trajektorienverlauf

e Uberschwingen os

max {y(t) - ysoll}| (321)

tr<e<t

0S8 =

im Beobachtungszeitraum [¢7,¢3].

3.4 Ansatze zur Verbesserung

Es ist zu priifen, ob die Verbesserung der Rauschverhaltens von Regelungssystemen durch
die Wertediskretisierung des Fehlervektors den Verlust an Informationen und Stetigkeit
bei der Auswertung aufwiegen kann. Die Untersuchungen des Adaptionsverhaltens ei-
nes selbstorganisierenden Fuzzy-Reglers von Kahlstorf (1992) lassen vermuten, dafl bei
rauscharmen Anwendungen auch beim fuzzy-adaptierten PID-Regler mit besserem Rege-
lungsverhalten zu rechnen ist, wenn der Fehlervektor nicht wertediskretisiert wird. Fer-
ner ist zu priifen, ob eine kiinstliche Vergréflerung der Auflésung der zweidimensionalen
MWM durch Anwendung der Fenstertechnik (Kahlstorf 1992, Song und Park 1993)
das Regelungsverhalten verbessert. (Durch die Anwendung der Fenstertechnik auf einen
selbstorganisierenden Fuzzy-Regler konnte Kahlstorf (1992) eine Verbesserung des Rege-
lungsverhaltens erreichen (siehe Abschnitt 4.1.5).)

Bei den ersten beiden Adaptionsalgorithmen wird die Einstellung der Reglerparameter
nur in Abhingigkeit vom Fehlervektor 4, bzw. ¢ durchgefiithrt. Die dabei vorausge-
setzte Unabhéngigkeit der gewiinschten Prozefantwort von der Regelgréfie y gilt aber
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i. allg. bei nichtlinearen Prozessen nicht. Verbesserungen kénnen deshalb durch eine Ver-
arbeitung der Arbeitspunktinformation im Adaptionsgesetz, d. h. eine Bestimmung von
p = F(e,Ae,y) bzw. p = F(e,Ae,w) an Stelle von p = F(e, Ae), moglich sein. (Die
gleichen Uberlegungen gelten, falls statt Ae ¢ verwendet wird.) Damit wird aus (3.9)

I(Ey, AELY)=FEy0oAE,0Y o MWM (3.22)

bzw.

PI(Ew, AE, W) = Eyo AEyo W o MWM (3.23)

mit Y und W, der fuzzifizierten Ausgangs- bzw. Fiithrungsgroffe. MWM entsteht durch

dreidimensionale Erweiterung der (zweidimensionalen) MWM .
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4 Fuzzy-adaptierte Fuzzy-Regler

Im letzten Abschnitt wurde ein linearer (PID-) Regler durch einen nichtlinearen Algo-
rithmus adaptiert. Gerade bei nichtlinearen Regelstrecken kann es vorteilhaft sein, auch
nichtlineare Regler anzuwenden (Schwarz 1991). Deshalb wird in diesem Abschnitt ein
nichtlinearer (Fuzzy-) Regler im inneren Regelkreis eingesetzt, der &hnlich zum vorherge-

henden Abschnitt nichtlinear adaptiert wird.

4.1 Explizite selbsteinstellende Regler ohne on-line Identifikati-
on

Die ersten Untersuchungen zu fuzzy-adaptierten Fuzzy-Reglern wurden von Procyk und
Mamdani (1979) durchgefithrt. Der von ihnen vorgeschlagene selbstorganisierende Regler
(self-organizing controller, SOC) ist fiir Multivariablensysteme einsetzbar. Eine Realisie-
rungsstruktur fir SISO-Systeme zeigt Bild 4.1. Weil keine Modellidentifikation erfolgt,
handelt es sich hierbei um einen direkt adaptierenden Regler. Da sich der Regler in meh-
reren Lernlaufen selbst generiert, kann er auch bei Regelstrecken mit wenig a priori Pro-
zefwissen angewendet werden. In der von Procyk und Mamdani (1979) vorgeschlagenen
Struktur (auf die sich im folgenden die Bezeichnung ,,SOC* einzig beziehen soll) wird al-
lerdings davon ausgegangen, dafl die gewiinschte ProzeBantwort arbeitspunktunabhingig
ist, da nur Fehlersignale ausgewertet werden. Weil dies bei nichtlinearen Regelstrecken
i. allg. nicht gilt, ist die Anwendbarkeit des Reglers eingeschréankt. Zur Adaption und

pi(E, AE,)
P
inverses
Modell
Jlr
w(t Quantisierung |E
0, e s . .
Fuzzifizierung -~
Fuzzy Defuzzi— |AUy }f
Regler fizierung +
+ Ae, | Quantisierung | AE, Uy
b oy +
T Fuzzifizierung
Regel—
y(t) strecke

Bild 4.1: Struktur eines selbstorganisierenden Reglers (SOC, Procyk und
Mamdani 1979)

Regelung wird die Komponente e bzw. Ae des Fehlervektors @ mit den festen Faktoren
GFE bzw. GGC skaliert und dann wie bereits in Abschnitt 3.1 beschrieben wertediskretisiert
und fuzzifiziert.
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4.1.1 Regelung

Der Fuzzy-Regler wertet den als Relationalmatrix R gegebenen Regelsatz iiber MAX-
MIN-Komposition aus. Die Defuzzifizierung nach der MOM-Methode liefert die Anderung
der StellgroBle Auy, die noch mit G'U skaliert wird, bevor sie mit uy zur neuen Stellgréfie
up41 aufaddiert wird. Die Wahl der Skalierungsfaktoren wird von Procyk und Mamdani
(1979) als nicht kritisch eingestuft, durch sie kann aber gezielt die Regelungscharakteristik

beeinflufit werden:

e Fine Erhohung (Erniedrigung) von GE bewirkt ein schmaleres (breiteres) Toleranz-

band um den Arbeitspunkt.

e Bei Erhéhung (Erniedrigung) von G'C'werden nur kleinere (noch grofiere) Anderun-

gen um den Arbeitspunkt toleriert.

o Insgesamt gilt also, daBl eine Erhéhung von GF und GC zu einer Sensibilisierung
der Regelung in der Umgebung des Arbeitspunktes und zu einer Desensibilisierung

in der transienten Phase fiithrt.

e Eine Erniedrigung von G'U zieht eine groflere Anstiegszeit und einen gréfleren Wert
der quadratischen Regelfliche (ISE-Kriterium) nach sich.

Wegen der Wertediskretisierung des Fehlervektors wird es moglich, die durch Relational-
matrix und Wahl der Operatoren definierte Abbildung zwischen (wertediskretem) Fehler-
vektor ¥=[e, Ae]’ und StellgréBeninderung Au im voraus fiir alle Kombinationen von
e und Ae zu berechnen. Man erhélt dadurch eine Entscheidungstafel T'=(t;;), die je-
der Realisierung von % die resultierende Stellgrofendnderung Aw zuordnet. Diese wird
dann als sogenannte Nachschlagtabelle (look-up-table) zur Regelung verwendet. Anhang
D enthélt die von Procyk und Mamdani (1979) verwendete Tafel.

4.1.2 Gutemal}

Zur Beurteilung der Regelgiite wird die tatsédchliche Systemantwort mit der eines minimal
tolerierbaren Referenzmodells verglichen. Dieser Vergleich ist &hnlich zu Abschnitt 3 rea-
lisiert: Die Fehlermatrix {bk = (ex, Aey) eines MISO-Systems mit den Vektoren ey bzw.
Aey, deren Komponenten die Regelabweichungen bzw. Anderung der Regelabweichung
fiir den korrespondierenden ProzeBausgang angeben, wird iiber eine Entscheidungstafel
T" (entsprechend der MWM ) ausgewertet, in der das Wissen {iber das Referenzmodell
abgelegt ist. Fiir eine bestimmte Fehlermatrix {bk erhélt man einen Vektor pi({bk), dessen
n Komponenten die Giitebewertung der n Systemausgénge enthalten. Das in T" impli-
zierte Referenzmodell besitzt eine allgemeine und damit nicht prozefspezifische Form. Es
zeichnet sich laut Procyk und Mamdani (1979) durch einen ausreichend schnellen Anstieg

zum Arbeitspunkt sowie gute Dampfung und Toleranz in seiner Umgebung aus. Die dort
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AFE

6 5 4 3 -2 -1 0 +1 +2 43 +4 +5 +6

6| 6 6 6 6 6 6 6 0 0 0 0 0 0
S5 6 6 6 6 6 6 6 3 2 2 0 0 0
416 6 6 6 6 6 4 3 4 2 0 0 0
3/ 6 5 5 4 4 4 4 3 2 2 0 0 0
2016 5 4 3 2 2 2 0 0 0 0 0 0
116 4 5 2 1 1 1 0 0 0 0 0 0
0|4 3 2 1 0 0 0 0 0 0 0 0 0
0] 0 0 0 0 0 0 0 0 0o -1 -2 3 H4
+; 0 o0 o0 o o O -1 -1 -1 -2 3 4 -5
+2,0 0 0 o O 0 -2 2 2 3 4 5 6
70 0 0 -2 5 5 4 4 4 4 S5 5 6
+4, 0 0 0 -2 5 5 4 6 6 6 6 6 6
0 0 0 -2 3 3 6 6 6 6 6 6 6
+, 0 0 0 o o o0 6 6 6 6 6 6 6

Tabelle 4.1: Entscheidungstafel 7" zur Beurteilung der Regelgiite beim selbstorganisie-
renden Regler (SOC, Shao 1988)

fiir SISO-Systeme angegebene Entscheidungstafel ist allerdings uniibersichtlich struktu-
riert. Shao (1988) verwendet eine gilinstigere Darstellungsform (siehe Tabelle 4.1).

4.1.3 Adaption

Aus der Giitebeurteilung pz({bk) einer Fehlermatrix {bk wird tiber ein inverses Modell der
Regelstrecke auf die nétige Anderung der Regeln des Fuzzy-Reglers geschlossen. Dazu wird
kein genaues mathematisches Modell der Regelstrecke benétigt; ein Inkrementalmodell,
das die Monotonieeigenschaften zwischen Modellein- und -ausgang richtig beschreibt,
reicht aus. Das Inkrementalmodell fiir ein MIMO-System sei als allgemeines Zustands-
raummodell & = F'(¢,u), y = Ce mit dem Zustandsvektor &, dem Eingangsvektor bzw.
dem StellgréBenvektor w und dem Ausgangsvektor y gegeben. Fiir C = I, d. h., wenn die
Zustands- mit den Ausgangsgréfien iibereinstimmen, kénnen im folgenden die Betrach-
tungen auf y = F(y, w) beschrankt werden. Dieses Inkrementalmodell 148t sich {iber die
zum System gehorige Jakobi-Matrix J beziiglich des Eingangsgrofienvektors w gewinnen:
Fiir eine inkrementale Anderung du der Eingangsgrofen folgt die inkrementale Anderung

der Ausgangsgrofien nach

Sy = Jou . (4.1)
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Damit 148t sich die Systeminderung nach einer Abtastperiode T abschétzen durch
Ay =TJAu = MAu . (4.2)

M kann als Systemmatrix des Inkrementalmodells interpretiert werden. Wenn die Inverse
M ™! existiert und Ay die Abweichung des realen vom gewiinschten Systemverhalten
darstellt, 148t sich nach

Au=M""Ay (4.3)

die notwendige Korrektur Aw der StellgréBe berechnen. Beim SOC wird die notwendige

A

Korrektur der Ausgangsgrofien durch Auswertung der Fehlermatrix iiber pz(t)) berechnet.
Damit ergibt sich die Stellgrélenkorrektur zu

Au=M""pi(¢p) . (4.4)

Bei SISO-Systemen wird dann unter der Annahme, dafl nur eine Regel fiir die Abwei-
chung des realen vom gewiinschten Verhalten verantwortlich ist, diese durch eine Regel
ersetzt, die die Korrektur Awu der Stellgrofie nach (4.4) beriicksichtigt. Die Zulassigkeit
dieser Naherung wurde von Procyk und Mamdani (1979) durch Simulationen exempla-
risch tiberpriift. Die Auswahl der richtigen zu korrigierenden Regel setzt die Kenntnis der
(a priori zu bestimmenden) Totzeit 7 = mT im System voraus. Zum Zeitpunkt k liefert
die Giitebeurteilung den Wert piy, aus dem mit (4.4) die notwendige Korrektur Auy_,
der Stellgrofle uy_,, berechnet wird. Die korrigierte Stellgrofe vy._,, berechnet sich zu

Vkem = Uk—m + Auk_m . (45)
Dann wird die fiir uy_,, verantwortliche Relationalmatrix

R;g—m — Ek—m @ AEk—m ® Uk—m (46)
durch

Rg_m = Ek—m & AEk—m @ ‘/k—m (47)
ersetzt. Man erhélt aus der derzeit giiltigen Relationalmatrix

R, = E, @ AE, @ Uy (4.8)
des Reglers die aktualisierte Matrix zu

R, =(R.NR,_,)UR]_,_ : (4.9)

Zur Inkrementalmodellmatrix M ist anzumerken, daf} sie bei linearen Regelstrecken aus
konstanten Koeffizienten besteht. Bei linearen SISO-Prozessen gilt nach Normierung sogar

M = 1. Bei nichtlinearen Prozessen sind die Koeffizienten von M 1. allg. Funktionen des
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Zustandes und koénnen deshalb unter Umstdnden schwer zu bestimmen sein. In solchen
Fallen kann M in erster Naherung als konstant angesetzt werden mit der Hoffnung, die
daraus resultierenden Ungenauigkeiten durch einen iterativen Lernprozefl auszugleichen.
Diese Art der Selbstkorrektur konnte durch Simulationen bei verschiedenen Regelstrecken

nachgewiesen werden (Procyk und Mamdani 1979).

Nach Procyk und Mamdani (1979) strebt der SOC immer nach Konvergenz. Wenn keine
Konvergenz eintritt, z. B. bei zu geringen Stérabstdnden, 18t sich i. allg. trotzdem nach
wenigen Lernlaufen gutes Regelverhalten erzielen. Fiir die Generierung vieler Regeln sind
Rauschen und anfangliche Stérungen sogar férderlich. Deshalb mufl konvergentes Verhal-
ten nicht zwangslaufig auch zum besten Regelverhalten fithren. Mit zunehmender Totzeit

im Prozef} verlangsamt sich die Konvergenz der Regeladaption.

4.1.4 Reduzierung des Speicherplatzbedarfs durch spezielle Wahl der Rela-
tionalmatrix R

Um Rechenzeit und Speicherbedarf zu verringern, verwendet Shao (1988) beim Fuzzy-

Regler des SOC nach Procyk und Mamdani (1979) Relationalmatrizen
R=E@QAE®U =:[bys],  byy€{0,1} (4.10)

mite =1,...,mg; j=1,...,mag; f =1,...,my und einen darauf abgestimmten
Algorithmus zur Regelanderung. Dabei bezeichnen mpg, map und my die Anzahl der
Referenzmengen bzgl. F,AE und U. R wird mit MAX-MIN-Komposition und MOM-
Defuzzifizierung ausgewertet. Damit 148t sich wie beim SOC eine Entscheidungstafel T =
[t;;] fiir den Fuzzy-Regler bestimmen. Vor der Erlauterung der Regelmodifikationen wird
die folgende Klassifikation eingefithrt: Eine Relationalmatrix R nach (4.10) sei aus einer

zweidimensionalen Matrix
D=F®AFE=[b;] , (4.11)
wobei jedes Element der Matrix ein Vektor

b;; = [bijs] (4.12)

bijp€{0,1} YV 4,5 f (4.13)
ist, aufgebaut. Es sei eine Klasse B; von Vektoren definiert als
By ={ by [ I :bijpe =1, by =0 Vf#[f} . (4.14)

Matrizen R mit b;; € B; V¢, 5 bezeichnet Shao (1988) als Initialmatrizen (Klasse Ry).
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Der Regelalgorithmus startet mit einem R € R;. Im Auswertezeitpunkt {=kT werde we-
gen der (a priori festzulegenden) Systemtotzeit r=mT der wertediskretisierte Fehlervektor
Vi =lerom, Aex_m]|T des Zeitpunktes t=(k-m)T betrachtet. Nach dem von Procyk und
Mamdani (1979) vorgestellten Verfahren wird die StellgroBe vi_,, berechnet, die an Stelle
von Ug_n, bei t=(k-m)T hitte aufgeschaltet werden miissen, um das gewiinschte Verhalten
zu erreichen. Im Abtastpunkt & wird das f*, das bei Einsetzen fiir f* in (4.14) zu vp_p,
fiithrt, bestimmt. Zur Fallunterscheidung bei der Regelmodifikation werden die folgenden

Ereignisse definiert:

Ereignis P: R € Ry, d.h. R ist eine Initialmatrix®.

Ereignis Q: €hom = €h—my1 =€

AN Aep_ym = A€p_pmy1 = Ae’
A Ug—m = Uk—m41 = uf
(Die hochgestellten Indizes von ¢’, Ae! und u/ sind mit den 4, j, f
in (4.11) und (4.12) identisch.)

Dann gilt fiir die Regelmodifikation:

PAQ:

PAQ:

Im Zeitpunkt kT wird das bisherige b;; s+ mit b;;p+=1 auf b;;;»=0 und dafiir
b;; ;=1 gesetzt. Bei der Entscheidungstafel T" wird t};=vj._,, gesetzt.

Im Zeitpunkt kT wird das bisherige b;; s+ mit b;;p+=1 auf b;;;»=0 und dafiir
b;;7+=1 gesetzt. Bei der Entscheidungstafel T" wird {{;=vi_,, gesetzt. Es
wird auferdem das f** (b;;f+»=1) im Abtastpunkt k+1 bestimmt, mit dem
die gewiinschte Stellgrofie vy_,,41 bei t=(k+1)T erreicht wird. b;; wird so
gedndert, daf b;;; = 1 fir f € {f*,f**} und sonst b;; ;=0 gilt. Ist f*:f**
bzw. vg_;=Vk_my1, so bleibt R € Ry. Ansonsten hat b;; zwei Komponen-
ten bijz, =1, bz, =1, fi # fa. ti; der Entscheidungstafel T' wird dann im
Abtastpunkt k+1 zu t}; = RND{%(vk_m + Vk—mt1)} gesetzt.

b;; wird so gedndert, daf} zusatzlich b;;;=1 fiir f:f* gilt. In der Entschei-
dungstafel T" wird bei kT 1}, = RND{%(lt/»q“ + Vpom )} gesetzt.

271

4.1.5 Fenstertechnik und geinderte Regeladaption

Kahlstorf (1992) sowie Song und Park (1993) erweitern den SOC von Procyk und Mam-
dani (1979) um die Fenstertechnik und verwenden ein gedndetes Regelmodifikationsver-

fahren. Dabei skalieren Song und Park e und Ae gleich. Die Fehlervektorauswertung bzgl.

3Im Sinne des von Shao (1988) vorgeschlagenen Algorithmus ist aber R € Rj nicht erforderlich,

sondern lediglich b;; € B; .
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der Regelmodifikation erfolgt wie bei Procyk und Mamdani (1979), allerdings wird eine
7 x T- anstelle einer 13 x 13-Entscheidungstafel verwendet. Auflerdem &nderten Song
und Park das Regelmodifikationsverfahren nach (4.9) zur Aktualisierung der Regler-
Relationalmatrix in

Ry = (RNR_,)U((R_, "R_,)URL,) . (1.15)

Dabei ist R, = Ry_,,, da R wegen der Systemtotzeit immer erst nach t=mT" gedndert

werden kann *. Den positiven Effekt der Fenstertechnik auf das Regelungsverhalten des

SOC stellte bereits Kahlstorf (1992) fest.

4.2 Explizite selbsteinstellende Regler mit on-line Identifikation

Graham und Newell (1989) fithren eine on-line Identifikation eines expliziten Fuzzy-
Relationalmodells durch, das fiir den Reglerentwurf benutzt wird. Da kein Referenzmodell
verwendet wird, handelt es sich um einen expliziten selbsteinstellenden Regler (STR). Die
fiir SISO-Anwendungen erlduterte Struktur besteht aus den drei Komponenten Fuzzy-
Prozefimodell, Realisierung eines GiitemafBes sowie dem Entscheidungs- und Regelblock,

der aus einem Satz moglicher Stellgrofien eine auswihlt und aufschaltet (Graham und

Newell 1988).

4.2.1 Modell

Graham und Newell (1989) verwenden ein dynamisches, diskretes Fuzzy-Relationalmodell,
das bei MISO-Systemen die Form

Yigi =Ulo...oUl o Ry, (4.16)

besitzt (fiir Einzelheiten zur Fuzzy-Modellbildung siehe z. B. Aliev und Mamedova (1990),
Bertram und Schwarz (1993) oder Pedrycz (1984 und 1991)). Die ModelleingangsgroBien

U i=1,....p , (4.17)

die externe Eingangsgrofen des Modells oder zur Erfassung der Systemdynamik auch ak-
tuelle oder zuriickliegende Ausgangsgrofien Yi_; (7 € NY) sein kénnen, erhéalt man durch
Normierung der wahren Gréflen mit festen Skalierungsfaktoren auf Dy. Die pradizierte
ModellausgangsgroBe Yi41 wird mit einem weiteren Skalierungsfaktor normiert. Ry ist die
bei t = kT giiltige Modell-Relationalmatrix. Die Komposition wird mit dem MAX-MIN-
Verfahren, die Fuzzifizierung iiber Singletons und die Defuzzifizierung iiber Schwerpunkt-
bildung durchgefithrt. Zwei Modellstrukturen wurden von Graham und Newell (1989)

4Die hier wiedergegebenen Gleichungen entsprechen der verbalen Beschreibung und nicht den Glei-
chungen von Song und Park (1993). Da Formeln und Text voneinander abweichen, wurde als Grundlage
der schliissigere Text ausgewertet.
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untersucht: Beim , relationalbasierten® Modell werden bei jeder Pramisse jeweils alle Aus-
gangsgroBen-Referenzmengen beriicksichtigt. Bei p Eingdngen und einem Ausgang ist Ry,
folglich (p+1)-dimensional. Ein regelbasiertes entsteht aus einem relationalbasierten Mo-
dell, wenn alle Regeln mit gleicher Pramisse (eine ,Regelgruppe”) durch Bildung des
Schwerpunktes zu einer dominanten Regel zusammengefafit werden. Damit hat Ry bei
p Eingdngen und einem Ausgang die Dimension p und einen dementsprechend reduzier-
ten Speicherplatzbedarf. Dagegen fiihrten die relationalbasierten Modelle bei den von
Graham und Newell (1989) durchgefithrten Simulationen i. allg. zu kleineren Fehlern im
Sinne der absoluten Regelflache (IAE-Kriterium) und zu groferer Robustheit gegeniiber

Rauscheinfliissen.

4.2.2 Modelladaption durch on-line Identifikation

Ausgehend von einem durch Plausibilitatsiiberlegungen abgeleiteten Apriori-Modell (z. B.
MWM , Graham und Newell 1989) oder einer leeren Modellmatrix Ry = 0 wird die
Modellmatrix in jedem Abtastschritt durch on-line Identifikation adaptiert. Falls dann
der Fall eintreten sollte, daf} fiir einen bestimmten Systemzustand keine Pradiktion mit
Pramissenwerten w (w € [0, 1]) grofer als ein festzulegendes Minimum wp, (2. B. wiin, =
0, 1) moglich sein sollte, so muf zur Uberbriickung ein Hilfsalgorithmus angewendet wer-
den. Fine einfache Methode besteht darin, wieder die alte Stellgrofie aufzuschalten (Gra-
ham und Newell 1988). Moore und Harris (1992) schlagen fiir diesen Fall die Bestimmung
der erforderlichen Stellgréfle durch Interpolation der pradizierten Stiitzstellen vor. Wenn
der zu modellierende Prozef sich beziiglich der Eingangsgréflen symmetrisch verhalt, kann
ein symmetrisches Fuzzy-Modell angesetzt werden. Dann beschleunigt sich die Identifika-
tion, da in jedem Abtastzeitpunkt aus einem Datum zwei Elemente von R, (anstelle von
einem im unsymmetrischen Fall) bestimmt werden kénnen. Graham und Newell (1989)
beschreiben den Algorithmus fiir Modellidentifikation und -adaption fiir ein Modell mit
Dynamik 0-ter Ordnung, d. h. die ModellausgangsgroBe ist direkt von der Modelleingangs-
grofle abhangig. (Der Algorithmus ist direkt auf Modelle hoherer Ordnung (p > 1 in (4.16)
erweiterbar.) Es werden hier also SISO-Modelle der Form

)/k-l-l == Uk o] Rk (418)
betrachtet. Beim relationalbasierten Modell wird bei ¢ = (k+1)7T aus Uy und Yiiq die

Partialrelationalmatriz
R, =U; @Y (4.19)

identifiziert. Der Einflul der alten Modellmatrix Rj_y wird vor dem Verrechnen mit R,
zu Ry, abgeschwécht, um die adaptiven Figenschaften der Modellierung zu verbessern. R,
wird nach folgender Vorschrift berechnet:

Bei my=my Referenzmengen tiir Uy bzw. Y} gilt fir alle: =1,....my

WENN  max {R,x(7,j)} > 0,5
1<5<m/!



4 Fuzzy-adaptierte Fuzzy-Regler 23

DANN Ry(i,j) =d Rpu(i,j) + (1 — d)Ryr(i,j), 1<j<m/ (4.20)
SONST Rk(lvj) = lgifn,{Rp,k(ivj)vRk—l(ivj)}v

mit m’ als der Anzahl der Ausgangsgréfien-Referenzmengen. Eine Vergroferung des Al-
terungskoeffizienten d € [0, 1] fiithrt zum Anstieg der Adaptionsgeschwindigkeit aber auch
der Rauschempfindlichkeit und damit zu verminderter Robustheit. Als guten Kompromif}
geben Graham und Newell (1989) d=0,5 an.

Beim regelbasierten Modell wird zur Zeit t=(k+41)T" aus Uy und Y41 nur eine Regel RpJﬂ
identifiziert. Besitzt die Pramisse der identifizierten Regel R%k

WENN (U IST U;) DANN (Y 1S Y} (4.21)
die gleiche Form wie die Préimisse einer der Modellregeln

WENN (U IST U,) DANN (Y IS VY,), (4.22)
d. h. gilt U; = U,, so wird, falls ¥; # Y} ist, die Regel des Modells (4.22) durch

WENN (U IST U;) DANN (Y IS Y)), (4.23)

[ =RND{(1—d)p+d-i}, de0,1] (4.24)

(gewichtetes Mittel) ersetzt. d bezeichnet wie beim relationalbasierten Modell einen Al-
terungskoeffizienten. Fir V; = Y, gilt Ry = Ry_1. Gilt U; # U, in (4.21) und (4.22), so
wird R%k R;._, direkt hinzugefiigt.

Anstelle der SystemausgangsgroBe Y modellieren Graham und Newell (1989) die Ande-
rung von Stellgrofie

Aup = up — Up_q (4.25)
und Regelabweichung

Aejy1 = gy — €5 mit e, =w —y, . (4.26)

Mit dem Systemmodell wird in jedem Abtastzeitpunkt &7 fiir das gegebene Aey fiir jede
mogliche Stellgrofenanderung Auy  Aegyq berechnet (Einschrittpradiktion). Es wird das

Auj,, ausgewdhlt, das |epy1| minimiert und zusétzlich
sign(ep (Aug, ) = sign(ey) (4.27)

erfiillt. (4.27) dient zur Verminderung des Uberschwingens, das durch Abtastregelung und

Modellierungsfehler hervorgerufen wird.
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4.3 Regler mit parallelem Vergleichsmodell ohne on-line Iden-
tifikation

Bei Reglern mit parallelem Vergleichsmodell gibt es Konzepte mit und ohne on-line Iden-
tifikation eines (expliziten) ProzeBmodells. In diesem Abschnitt werden Verfahren ohne
on-line Identifikation vorgestellt, die einzig die Fuzzy-Regeln der Regelbasis oder zusatz-

lich auch die Skalierungsfaktoren der Ein- und Ausgangsgréfien des Reglers adaptieren.

4.3.1 Verfahren zur Adaption der Fuzzy-Regeln

Layne u. a. (1992) stellen einen selbsteinstellenden Fuzzy-Regler (SOC nach Procyk und
Mamdani 1979) mit parallelem Referenzmodell vor (MRAS-Struktur). Sie bezeichnen die-
ses Regelungskonzept als ,lernenden Fuzzy-Referenzmodell-Regler* (Fuzzy model refe-
rence learning controller, FMRLC). Im Gegensatz zum SOC ist der FMRLC ein Reg-
ler mir mehreren Eingdngen und einem Ausgang (MISO-Regler), d. h. fiir die Regelung
von Regelstrecken mit mehreren Ein- und Ausgdngen (MIMO) wird eine der Anzahl
der Regelstreckenausgange entsprechende Anzahl von Reglern benétigt. Man erhélt aus
der beim SOC verwendeten Reglerstruktur fiir eine Ein- und Ausgangsgrofe (SISO) eine
MISO-Reglerstruktur dadurch, daf3 die Pramissen der Regeln des Fuzzy-Reglers um die
Partialprdmissen bzgl. der weiteren Eingangsgrofien erweitert werden. Zwar verwenden
Laynes u. a. (1992) als zweite Reglereingangsgrofe Ae’y, = (e — ex—1)/T anstelle von
Aep = e, — ex_1. Wegen der Skalierung der Reglereingénge e, und Ae’y mit GE bzw.
GC auf Dy sind die vom Fuzzy-Regler verarbeiteten unscharfen Grofen (bei geeigneter
Wahl der Skalierungsfaktoren) aber identisch. Im Gegensatz zum SOC nach Procyk und
Mamdani (1979) findet keine Wertediskretisierung des Fehlervektors statt.

Der Adaptionsmechanismus bewertet nicht wie der SOC den Fehlervektor, sondern die

Abweichung
I (1.28)

sowie deren Anderung

€k — Ek-1
T
von den Ausgangsgroflen y, der Regelstrecke und yj des Referenzmodells (beliebiges

Agj, = (4.29)

dynamisches System). Mit Hilfe eines inversen Fuzzy-Modells der Regelstrecke werden bei
t = kT die notwendigen Korrekturen Auy der vorhergehenden Stellgrofie u;_y berechnet
(e und Aej werden mit den Skalierungsfaktoren GE und GC auf Dy normiert, Awy
wird tiber den Faktor GU entnormiert). Im nachgeschalteten Teil zur Regeldnderung
werden die Regeln, die im letzten Abtastschritt eine Gesamtpramisse wy_q > 0 besaflen,

so gedndert, daf}
ul™ = uit, + Auy (4.30)
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gilt. (Im Gegensatz zum SOC werden keine Totzeiten berticksichtigt.) (4.30) entspricht ei-
ner Verschiebung der Zugehéorigkeitsfunktionen fiir die Ausgangsgréfien des Fuzzy-Reglers
um Awuy. Bei Verwendung von symmetrischen Zugehérigkeitsfunktionen fiir die Ausgangs-
groflen des Fuzzy-Reglers entspricht (4.30) einfach einer Verschiebung derer Mittelpunkte
Cp um Auk

Cp = Cp_1 + Auk . (431)
Layne u. a. (1992) beméangeln beim SOC, dafl das benutzte inverse Modell ein explizi-

tes mathematisches Modell ist und stark einschrdnkende Annahmen beziiglich der Re-
gelstrecke voraussetzt. Dagegen modelliert das von ihnen bei der Regelung eines Anti-
Blockiersystems eingesetzte inverse Fuzzy-Modell nur die hierbei vorausgesetzte inkre-
mentale Monotonitat zwischen Regelstreckenein- und -ausgéngen und besitzt deshalb eine
der in Tabelle 3.1 gezeigten MWM &hnliche Struktur. Wegen der Regelmodifikation nach
(4.31) entspricht allerdings dieser Ansatz fast genau dem beim SOC verwendeten Algorith-
mus, wenn bei letzterem ein inverses Modell M = I angesetzt wird. In seiner Implementie-
rung entspricht die Fehlerinformationsauswertung von Laynes u. a. (1992) also einer ver-
einfachten Version des SOC. Bei der Fuzzy-Logik werden dreieckférmige Zugehorigkeits-
funktionen (nur die duBersten Zugehorigkeitsfunktionen beziiglich der Eingangsgrofien
sind trapezformig), MAX-MIN-Komposition und Schwerpunkt-Defuzzifizierung verwen-
det.

4.3.2 Verfahren mit Adaption von Fuzzy-Regeln und Skalierungsfaktoren

Maeda und Murakami (1992) stellten einen als selbsteinstellenden Fuzzy-Regler (self-
tuning fuzzy controller, STFC) bezeichneten adaptiven Fuzzy-Regler mit MRAS-Struktur
vor. Dieser Regler adaptiert die zur Normierung der realen Ein- und Ausgangsgréfien
eingesetzten Skalierungsfaktoren sowie die Konklusionen der Fuzzy-Regeln. Die in Bild

4.2 dargestellte Reglerstruktur kann in 4 Teilkomponenten zerlegt werden:

o [uzzy-Regler mit Skalierung von Ein- und Ausgéngen,
e Subsystem zur Adaption der Skalierungsfaktoren,
o Adaptionsmechanismus fiir die Fuzzy-Regeln und

e Referenzmodell und Giitemafe.

Insgesamt verwendet der Regler drei heuristisch gefundene Regelsitze (sieche Anhang E).

Der Fuzzy-Regler wertet die Regelabweichung e, = wy, — yx, die Anderung der Regel-
abweichung Aep = e, — e;_1 und die Anderung von Aey @ AZe; := Aer — Aep_y aus
und bestimmt mit 27 Fuzzy-Regeln (FL3 in Bild 4.2 mit Regelsatz 3 aus Anhang E) die
Anderung der StellgroBle Auy. Dazu wird zuerst der Fehlervektor P = [ek,Aek,Azek]T

durch Skalierung mit k = [kq, ko, kg]T auf Dy normiert und dann fuzzifiziert®.

®Die Fuzzifizierung wird von Maeda und Murakami (1992) nicht weiter erliutert.
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Bild 4.2: Selbsteinstellender Fuzzy-Regler nach Maeda und Murakami (1992), GroBen

und Blocke werden in Abschnitt 4.3.2 erlautert

Die Referenz-Fuzzy-Mengen negativ, null und positiv (N, NP und P) der Partialpramissen
sind durch triangulare Zugehorigkeitsfunktionen definiert (siehe Bild 4.3). Die Referenz-
Fuzzy-Mengen der Konklusionen sind jeweils durch eine von 7 Singleton-Zugehorigkeits-
funktionen festgelegt (Bild 4.3, zur Nomenklatur siehe auch Abschnitt 3.1). Die Verkniip-
fung der Partialpramissen erfolgt mit dem MIN-Operator und die vereinfachte Aggrega-
tions-Defuzzifizierungsstrategie findet Anwendung. Mit der Gesamtpramisse w; und der

Stiitzstelle b; der singletonférmigen Referenz-Fuzzy-Menge der Konklusion der z-ten Regel
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erhalt man die Anderung der StellgroBe als

27
> wib;
Ay = =1 : (4.32)

27

2 wi
=1

NG NM NK N|P PK PM PG

1 1 — JEE

e, he, Ne B Au

Bild 4.3: Definition der Referenz-Fuzzy-Mengen (links: Pramisse, rechts: Konklusion)

Es existieren also 27 getrennt zu betrachtende b;. Bei Verwendung der numerischen an-
stelle der linguistischen Bezeichungsweise (analog zu der in (3.7) und (3.8) eingefiihrten
Bezeichnungsweise, allerdings mit nur einer Fuzzy-Menge ,Null“) ist der Wert von b; ge-

rade der numerische Bezeichner selbst. Falls die Konklusion der z-ten Regel als Referenz-
Fuzzy-Menge PK enthélt, gilt in Bild 4.3 dann b; = b7'%,

Zur Bewertung der Regelgréfle wird ein Referenzmodell mit dem in Bild 4.4 gezeigten
transienten Verhalten vorgegeben. Zum Referenzmodell gehéren aulerdem noch Sollwer-

te fiir Uberschwingen ov* und Amplitude des Grenzzyklus um den Arbeitspunkt am*.

vt

W+

* — -
T rt t

Bild 4.4: Referenzmodell (Maeda und Murakami 1992) mit stationdrem Endwert w,

Totzeit 7% und Anstiegszeit rt*

Fiir die Adaption der Skalierungsfaktoren wird nach einem kompletten Regelvorgang das

globale Fuzzy-Giitemafl

fp = min{pou(€on)s pire(€rt), fram(€am)} (4.33)
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mit den Abweichungen von Uberschwingen, Anstiegszeit und Grenzzyklusamplitude von

ihren Vorgabewerten berechnet:

€ov = OU— OV,
e = rt—rt* und (4.34)
Com = am —am”

Dabei haben g, p+ und pg,, triangulare oder trapezartige Form und bewerten die Ab-
weichung der entsprechenden Systemcharakteristik von der Vorgabe. Diese Abweichungen
werden fuzzifiziert und dann F,, und F,; iiber zwei und F,, {iber eine Regel (FL1 in Bild
4.2 mit Regelsatz 1 aus Anhang E) ausgewertet. Es wird also nur das Vorzeichen der
Abweichung bewertet. Jede dieser Regeln besitzt vier Ausgénge (fiir die vier Skalierungs-
faktoren). Die Auswertung der Regeln erfolgt wie beim Fuzzy-Regler und liefert die Ande-
rung Ak; (7 € {1,2,3,4}) der vier Skalierungsfaktoren k;. Die neuen Skalierungsfaktoren
berechnen sich gemé&f

B =k + (1= fp)Ak i=1,....4 . (4.35)
Die Adaption endet, wenn fp einen vorgegebenen (scharfen) Schwellwert iiberschreitet

oder wenn Y |eg| einen vorgegebenen (scharfen) Schwellwert unterschreitet.
k

Nach jedem Abtastschritt werden die Konklusionen (i. allg. mehrere) der Regeln geandert,
die am wahrscheinlichsten dafiir verantwortlich sind, daf der gegenwértige Systemzustand
von der Vorgabe abweicht. Dazu ist die systemimmanente Totzeit T=mT a priori zu
bestimmen. Aus Modell- und Systemantwort wird die Abweichung e, = y; — yx und deren
Anderung Aep = & — €p—pm berechnet und mit 9 Fuzzy-Regeln (FL2 in Bild 4.2 mit
Regelsatz 2 aus Anhang E) ausgewertet. Diese Auswertung liefert einen Korrekturfaktor
Ab zur Verschiebung der Stiitzpunkte b; der singletonférmigen Referenz-Fuzzy-Mengen
der Konklusionen. Bei den Konklusionen, die vor m Abtastschritten eine Gesamtpramisse
Wr—m # 0 besaflen und somit zur Stellgrofe beitrugen, werden die Referenz-Fuzzy-Mengen

auf der Au-Achse verschoben. Man erhélt damit die neuen Stiitzpunkte der Singletons als

- b+ (1 — fp) Ab w}%_m i=1,...,13
’ bt — (1 — fp) Abwi_ 1 =15,...,27

Dabei bezeichnet ¢ = 1...13 (¢ =15...27) die 13 Regeln des Fuzzy-Reglers, bei denen
die Stiitzpunkte der singletonformigen Referenz-Fuzzy-Menge im Bereich Au > 0 (Au <
0) liegen. Der Stiitzpunkt des Singletons der 14. Regel liegt bei Au = 0 und bleibt un-
verdndert. Bei der Bestimmung von Ab werden analog zum Fuzzy-Regler drei Referenz-
Fuzzy-Mengen bzgl. ¢, und Aey, sowie sieben bzgl. Ab verwendet (siehe Bild 4.3).
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I

Regler— Fuzzy—Modell-
Entwurf Identifikation

w(t) | Fuzzy— | u(t) Regel— y(t) _
Regler strecke

Bild 4.5: Indirekt adaptierter Fuzzy-Regler (Moore und Harris 1992)

4.4 Regler mit parallelem Vergleichsmodell und on-line Identi-
fikation eines expliziten Prozeflinodells

Moore und Harris (1992) stellen einen Regler mit parallelem Vergleichsmodell (MRAS-
Struktur) fiir SISO-Systeme vor (siehe Bild 4.5). Wie bei Graham und Newell (1989)
wird ein selbstorganisierendes, relationales Systemmodell R on-line identifiziert. Bei Vor-
gabe eines relationalen Referenzmodelles P wird das Steuergesetz des Fuzzy-Reglers aus
R analytisch bestimmt. Wie beim selbstorganisierenden Regler (SOC) nach Procyk und
Mamdani (1979) wertet der Fuzzy-Regler nicht Systemausgangs- und Fithrungsgréfe son-
dern Fehlersignale aus. Wegen der Verwendung eines expliziten Systemmodells handelt
es sich bei dem vorgestellten Verfahren um eine indirekte Adaption. Die Trennung von
Modellidentifikation und Reglersynthese bietet die folgenden Vorteile:

o Lang- bzw. Kurzzeitstabilitdt, d. h. Stabilitdt der Modelladaption bzw. des Regel-

kreises, sind getrennt und damit einfacher analysierbar.

e Um die Charakteristik des geschlossenen Regelkreises zu &ndern, mufl weder auf das

Systemmodell zuriickgegriffen werden, noch muf} es gedndert werden.

4.4.1 Adaptives Fuzzy-Relational-Modell

Die Regelstrecke wird durch ein SISO-Fuzzy-Relational-Modell beschrieben. Das Relatio-
nalmodell beschreibt {iber eine Abbildung R den Zusammenhang zwischen den Modell-
Eingangsgrofen und der AusgangsgroBe Yiyq,,. Dabei bezeichnet 7 € N° die Totzeit zwi-
schen Modellein- und -ausgang. Als Eingangsgréfien finden im einfachsten Fall nur Yy oder
Ui Verwendung. Je nach Erfordernis sind z. B. noch zeitliche Ableitungen von Y (¢t=kT)
mit zu berticksichtigen. Zur Vereinfachung der Schreibweise wird im folgenden die Totzeit
7 nicht mehr bei der Indizierung berticksichtigt. Ohne Beschrankung der Allgemeinheit

beziehen sich die folgenden Ausfiihrungen auf ein Modell

ViU, oy, (4.36)
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bzw.
)/k-l-l == Uk o] i/k o] Rk . (437)

Die Modelladaption wird dadurch bewirkt, dafl in jedem Zeitschritt (k+1)7T aus dem

Datenvektor [V}, Uy, Yk_|_1]T eine neue Partialrelationalmatrix R, ; nach
R, =Y:NUp) N Yy (4.38)

bestimmt wird. Ahnlich wie bei Graham und Newell (1989) wird vor der Berechnung
von Ry Rj_1 ,gealtert”, d. h. in seinem Einflul abgeschwécht, um die Zeitvarianzen des
Systems zu erfassen. Dieser Alterungsprozef ist durch Gewichtung von Rj_; mit dem

Alterungskoeffizienten d € [0, 1] realisiert. Somit erhalt man Ry als
R,.=dR,_ UR,; . (4.39)

Zu Beginn der Modellidentifikation ist Ry die Nullmatrix.

Im Gegensatz zu herkdmmlichen Parameteridentifikationsverfahren, bei denen die Mo-
dellstruktur a priori festzulegen ist, sind bei der Fuzzy-Modellbildung nur die Ein- und
Ausgangsgdfien sowie die zugehorigen Totzeiten 7 festzulegen. Durch diese Black-Box-
Modellierung kénnen auch strukturvariante Systeme adaptiert werden, bei denen Verfah-
ren mit fester Modellstruktur schnell an ihre Leistungsgrenze geraten. Die Konvergenz
des zugrundeliegenden Adaptionsmechanismus konnte von Brown und Harris (1992) fiir

eine bestimmte Wahl von Fuzzy-Operatoren nachgewiesen werden.

4.4.2 Reglerentwurf

Die Reglersynthese beruht auf dem Prinzip der kausalen Invertierung der Modellmatrix

R. Die Modellmatrix R beschreibt die kausale ¢ Abbildung

vi.u, By . (4.40)

Gesucht ist der kausale Zusammenhang
-1

Vivin B U, . (4.41)

R~ kann mit Hilfe der autoassoziativen Eigenschaften von R bestimmt werden: Sei
R, . eine fiir das Datum [Y},, Uy, Yiy1]T nach (4.38) identifizierte Partialrelationalmatrix.
Ist dieses Datum auch fiir R~ relevant, so wird die gesuchte Inverse von R, bestimmt

zu

k=N Yi) U, . (4.42)

6Ein System heifit kausal, wenn zu jedem Zeitpunkt ¢ das Ausgangssignal des Sytems nur von Ein-
gangssignalen s(t) mit ¢ < ¢ abhingt.
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Eine geeignete Wahl der Verntipfungsoperatoren fiithrt zu kommutativen und assoziativen
Figenschaften der Schnittmengenbildung. Dann folgt aus (4.38) und (4.42)

R, =R, (4.43)
und damit
R'=R . (4.44)

Ausgenutzt werden hierbei die autoassoziativen Figenschaften der Matrix R. Die Modell-
identifikation kann als Anlernen eines Musters (Konfiguration der Matrixelemente von R)
interpretiert werden. Das angelernte Muster unterscheidet bei seiner Auswertung nicht
zwischen Bedingungs- und Folgerungsteil, so dafl eine beliebige Schnittstellengréfie aus
der Vorgabe der iibrigen Groéflen bestimmt werden kann. Die kausale Invertierung kann
alternativ bei gegebenem Y}, durch Prédiktion von Yy fiir verschiedene Uy mit Hilfe von
R und anschlielender Interpolation auf das zum gesuchten Y;1, gehdérende Uy vorgenom-

men werden.

Zur Bestimmung des Steuergesetzes C des Fuzzy-Reglers in

U,.=WioY,0C (4.45)
wird ein durch die Relationalmatrix P festgelegtes Referenzmodell

Y =WioY,oP (4.46)

benutzt. Mit der Forderung Y, = Y,* konnen (4.37), (4.45) und (4.46) ineinander einge-
setzt werden:

Vi = Y
WkOnOP = Ukoi/koRk (447)
== (WkO}/kOC)O}/kORk

Existiert die Inverse R; ', so liefert (4.47) den Zusammenhang
(WiyoYioP)oY,oR;' =Wo0Y,0C | (4.48)

der das Steuergesetz C algebraisch festlegt.

4.5 Analytisch beschreibbare Fuzzy-Regler mit parallelem Ver-
gleichsmodell

Bei realen Systemen existiert i. allg. keine exakte analytische Beschreibung der Regel-

strecke und auch eine Approximation iiber lineare Teilsysteme ist nicht immer méoglich.
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Referenz— Y*Ot)
modell
inverses
Streckenmodell
u'(t)
Regler— - inverses
modifikation Au(t) u’(t) Streckenmodell

wit e(t)|  Fuzzy- uft ;
. ¥ Rggfgr L Regelstrecke y ),

Bild 4.6: Realisierung des korrigierten Reglerausgangs (Behmenburg und Bertram 1993)

Deshalb verwendet Behmenburg (1993) ein Gradientenmodell zur Beschreibung des Zu-
sammenhangs zwischen der Abweichung der Regelstrecken- von der Referenzmodellaus-
gangsgroBe und der resultierenden Stellgrofenkorrektur Aw. Eine einfache Form eines
Gradientenmodells beschreibt wie beim Inkrementalmodell bei Procyk und Mamdani
(1979) nur die Monotonie zwischen Modellein- und -ausgang und stellt damit ein P-Glied
dar. Mit Hilfe des Gradientenmodells wird die Stellgréenkorrektur berechnet. Auf deren
Grundlage werden die Normierungsfaktoren k, mit denen die scharfen Eingangsgréfien des
Fuzzy-Reglers auf Dy normiert und die Ausgangsgréfie denormiert werden, adaptiert. Aus-
genutzt wird hierbei, dafl Fuzzy-Regler bei geeigneter Wahl der Verkniipfungsoperatoren
analytisch beschreibbar sind. Bei dem zur Adaption notwendigen stetig differenzierbaren
Fuzzy-Regler werden die Partialprdmissen multiplikativ verkniipft, die Implikation nach
Larsen durchgefithrt sowie SUM-Aggregation und Schwerpunkt-Defuzzifizierung angewen-
det. Damit wird die scharfe Reglerausgangsgréfie als Funktion der scharfen Eingangs-
groflen und der Normierungsfaktoren k darstellbar (Behmenburg und Bertram 1993).
Als Zugehoérigkeitsfunktionen kénnen dabei beliebige auf Dy definierte analytische Funk-
tionen eingesetzt werden. Das Verfahren wurde in eine MRAS-Struktur umgesetzt und
benutzt ein Fuzzy-Modell als Gradientenmodell. Wegen des starken Néherungscharakters
des verwendeten Gradientenmodells sind i. allg. mehrere Adaptionsschritte nétig, bevor

der Regler richtig angepafit ist.

Die Normierungsfaktoren k werden so adaptiert, dafl das quadratische Giitekriterium

pi(k) = %Aqﬁ (4.49)

minimal wird.
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Dazu werden die Normierungsfaktoren in Richtung des negativen Gradienten von pu ge-

andert

ok dpi

2 4.

or ok (4.50)
wobei v den Adaptionsverstarkungsfaktor darstellt. Mit (4.49) folgt aus (4.50)

ok ou’

mit der iiber das inverse Streckenmodell berechneten Stellgréfie «’. Wird vorausgesetzt,
dafl die Parameteradaption langsamer ablauft als der Regelvorgang des Fuzzy-Reglers,

gilt ndherungsweise

ou' _ Ou

P, (4.52)

Dann kann die Empfindlichkeitsfunktion % mit Hilfe der analytischen Beschreibung des
Fuzzy-Reglers ausgewertet werden. Bei zu komplexen Reglerstrukturen oder bei nicht ana-
lytisch beschreibbaren Fuzzy-Reglern kann die Empfindlichkeitstunktion auch analytisch

approximiert werden (Behmenburg und Bertram 1993).
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5 Zusammenfassung

In diesem Bericht wurde ein kurzer Uberblick iiber einige der bekannten Strukturvarianten
adaptiver Regler gegeben, namentlich die Verfahren der gesteuerten sowie der geregel-
ten Adaption mit und ohne parallelem Vergleichsmodell. Anschlielend wurden exempla-
risch einige Realisierungsmoglichkeiten durch Konzepte von fuzzy-nachgestellten PID-

und Fuzzy-Reglern vorgestellt.

Die in diesem Bericht vorgestellten Verfahren zum Fuzzy-Tuning von PID-Reglern weisen
eine STR-Struktur auf. Oft werden lokale Giitemafle zur Bestimmung der Reglerpara-
meterdnderung benutzt (Tzafestas und Papanikolopoulos 1990, van Nauta Lemke und
Krijgsman 1991, He et al. 1993). Die wesentlichen Unterschiede liegen in den Adapti-
onsgesetzen. Man findet die separate Modifikation der drei PID-Reglerparameter (Tza-
festas und Papanikolopoulos 1990, van Nauta Lemke 1991) sowie auch die kombinierte.
Im letzteren Fall wird aus der lokalen Giitebeurteilung des Systemverhaltens ein Para-
meter berechnet, von dem alleine die Anderung der Reglerparameter abhéingt (He et al.
1993). Die hier genannten Verfahren beriicksichtigen beim Adaptionsmechanismus nicht
die Systemausgangsgrofe(n). Da bei nichtlinearen Systemen aber i. a. die optimale Reg-
lereinstellung arbeitspunktabhéngig ist, besteht hier Verbesserungspotential. Raju und
Zhou (1992) stellen ein Verfahren zur Adaption eines PI-Reglers vor, das lokale (Pseu-
dodampfungsrate, Schwingungsgrad) mit globalen GiitemaBen (Offset, Uberschwingen)

kombiniert.

Als Ausgangspunkt der fuzzy-adaptierten Fuzzy-Regler kann der selbstorganisierende
Regler (self-organizing controller, SOC) von Procyk und Mamdani (1979) angesehen wer-
den. Diese urspriingliche Version des SOC adaptiert nur die Konklusionen der Fuzzy-
Regeln des Fuzzy-Reglers mit Hilfe einer lokalen Giitebewertung des Systemverhaltens.
Darauf aufbauend wurden viele Anderungen vorgeschlagen: Spezielle Formen der Re-
lationalmatrizen des Fuzzy-Reglers zur Reduzierung des Speicherbedarfs (Shao 1988),
gednderter Mechanismus zur Regelmodifikation (Song und Park 1993), Einfithrung der
Fenstertechnik (Kahlstorf 1992, Song und Park 1993) wie auch eine Umstrukturierung
des SOC in ein MRAS-Regelungskonzept (Layne et al. 1992). In diesen Ansatzen ist im
allgemeinen ein a priori zu bestimmendes zeitinvariantes (explizites oder implizites) Mo-
dell der Regelstrecke enthalten, dessen Bestimmung bei realen Prozessen Schwierigkeiten
bereiten kann. Losungsansatze bieten hier on-line Identifikation von Fuzzy-Modellen der
Regelstrecke (Graham und Newell 1988 und 1989, Moore und Harris 1992) oder die Re-
duktion der Modellfunktion auf eine Beschreibung der Monotonitat zwischen Fin- und
Ausgangsgrofen der Regelstrecke (Behmenburg 1993). Letzteres fithrt zu den einfacher

zu bestimmenden sog. Gradientenmodellen.

Eine wirkliche Erweiterung des SOC-Konzeptes erzielen Maeda und Murakami (1992)

durch eine zusétzliche Adaption der Skalierungsfaktoren. Im Unterschied zur Fenstertech-
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nik, die auf eine Vergroferung der Aufldsung von Relationalmatrizen bei Beibehaltung
der Matrixdimension abzielt, wird hier in Abhingigkeit von einer globalen Bewertung
des Verhaltens des geschlossenen Regelkreises eine Anderung der Verstiarkung bzgl. des
proportionalen (e) und der differentiellen Einginge 1. und 2. Ordnung (Ae und A%e) vor-
genommen. Einen neuen Weg beschreiben auch Moore und Harris (1992), die bei einer
MRAS-Struktur das Steuergesetz analytisch bestimmen. Dabei verwenden sie die inverse
Relationalmatrix des on-line identifizierten Fuzzy-Modells der Regelstrecke. Bei der Inver-

tierung werden die autoassoziativen Eigenschaften von Relationalmatrizen ausgenutzt.
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A Definitionen

Im Bereich der Fuzzy-Logik und -Regelung werden z. Zt. noch héufig unterschiedliche No-
menklaturen und Begriffsdefinitionen verwendet, wodurch sich Interpretationsspielraume
ergeben konnen. Dieser Abschnitt enthalt deshalb die Definitionen einiger (fiir die in
diesem Bericht beschriebenen Regelungskonzepte) wichtiger Begriffe. Dabei wird auf De-
finitionen von Bohme (1990), Kahlert und Frank (1993), Lee (1990b) und Puppe (1990)

zuriickgegriffen und diese ggf. modifiziert oder ergénzt.

Im allgemeinen ist fiir den im folgenden verwendeten Definitionsbereich D, D = R zulassig.
Zunehmend werden aber die von einem Fuzzy-System zu verarbeitenden Groflen auf
Dy = [—1, 1] normiert, um eine einfache Ubertragharkeit implementierter Regelungs-

konzepte zu gewahrleisten.

: Fuzzy-Menge, diskrete Fuzzy-Menge, Zugehorigkeitsfunk-
tion, Zugehorigkeitsgrad
Ist D ein Definitionsbereich, so heifit die Abbildung A : D — [0, 1] eine
Fuzzy-Menge (unscharfe Menge, fuzzy-set) in D. p4 ist die zu A gehorige
Zugehorigkeitsfunktion, die jedem Element 2 € D einen Zugehorigkeits-
grad p4(x) aus dem Intervall [0, 1] zuordnet. Eine diskrete Fuzzy-Menge
A? ist eine auf einer endlichen Menge D? definierte Fuzzy-Menge und kann

iiber eine Menge von Tupeln

A= {(g jae()) | y €D, puaaly) €0, 11} (A1)

beschrieben werden.

O
: Singleton, Singleton-Fuzzy-Menge, Stiitzpunkt eines
Singletons
Ist D ein Definitionsbereich, so heifit die Abbildung
S, :D— [0, 1]
mit
1V z=a reD
) = ’ A2
psa(2) {0 V z2#a , 2€D (4.2)

ein Singleton oder eine Singleton-Fuzzy-Menge, wobei a € D der Stiitz-

punkt des Singletons ist.
O
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: Fuzzifizierung, Fuzzifizierung iiber Singletons

Ist D ein Definitionsbereich * € D und X eine Fuzzy-Menge, so bezeichnet
Fuzzifizierung die Abbildung

r— X (A.3)

eines scharfen Wertes @ auf X. X heifit dann auch der x zugeordnete unscharfe
Wert. Die Fuzzifizierung tiber Singletons ordnet einem x € D den Single-

ton S, zu.
O

: Defuzzifizierung

Ist D ein Definitionsbereich und U eine Fuzzy-Menge, so bezeichnet Defuzzi-
fizierung die Abbildung

U— u, (A4)

von U auf eine (scharfe) Zahl u, € D.

Die Maximum- (M AX-) Defuzzifizierung bildet U auf die Stelle u, € D
ab, bei der py(u) (u € D) sein absolutes Maximum erreicht:

u. ={w €D | pp(a) > pu(u) V ueD, u # u} : (A.5)

Falls das absolute Maximum nicht eindeutig ist, ist u. nicht definiert. Kénnen
solche Fille nicht ausgeschlossen werden, so ist eine Auswahlstrategie tiir das
auszuwertende absolute Maximum festzulegen oder die absoluten Maxima sind

geeignet zu verrechnen (siehe z. B. Methode des mittleren Maximums).

Bei der Defuzzifizierung nach der Methode des mittleren Maximums
(Maximum-Mittel-Methode, mean of maximum method, MOM) gilt

l
> i
=1

U, = i

(A.6)
mit

we{ueD | pw(a) > pu(u) ¥V ueD, u#a}l . (A7)
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Hierbei bezeichnet [ die Anzahl der absoluten Maxima von py auf dem Defi-

nitionsbereich D.

Bei der Detuzzifizierung nach der Schwerpunktmethode gilt

/ u pp(u) du
Ue = / () du (A.8)

u€D

bzw. bei diskreten Fuzzy-Mengen

u%ﬁ u pp(u)
we= ey (89)

=

a

Anmerkung : Uber (A.7) werden nicht die relativen Maxima im Sinne der Funktional-
analysis (Bronstein u. a. 1987) ausgewertet, sondern alle absoluten Maxima im Definiti-
onsbereich. Auch werden hierbei im Gegensatz zur Definition der relativen Maxima die

Réander des Definitionsbereichs beriicksichtigt.

: Relationale Fuzzy-Regel, Partialpramisse, Pramisse, Kon-
klusion, Wahrheitswert, Erfiilltheitsgrad, Referenz-Fuzzy-
Menge, MAX-MIN-Partialpramissenauswertung

Eine relationale Fuzzy-Regel hat die Form

WENN (X7 1ST A1) UND ... UND (X, IST A,)

Al
DANN (U 18T V}) (A-10)

Dabei bezeichnet ein Term (X; IST A;) eine Partialprédmisse und die Ver-
kntipfung aller p Partialpramissen die (Gesamt-) Pramisse. Anstelle einer
konjunktiven Verkniipfung kénnen zwei Partialpramissen auch disjunktiv (ODER)
verkniipft werden. Beim gemeinsamen Auftreten von konjunktiven und dis-
junktiven Verkniipfungen in einer Pramisse muf} die Auswertereihenfolge fest-

gelegt werden. Ist D; ein Definitionsbereich fiir x; (j =1,...,p) also
a::[:zjl,...,xp]T E]D)1><...><Dp (All)
und X = [X,..., X,]T der unscharfe Wert von @, dann ist

a; = (X; 15T A;) € [0,1] (A.12)
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der Erfiilltheitsgrad (Wahrheitswert) der j-ten Partialpramisse bzgl. X;.
(X bezeichnet also einen Vektor, dessen Komponenten Fuzzy-Mengen dar-
stellen.) Dabei ist «; ein MaB fiir die Ubereinstimmung der vorgegebenen
Referenz-Fuzzy-Menge A; der Pramisse mit der unscharfen Eingangsgrofie
X;. Im Fall der Fuzzifizierung iiber Singletons sind die X; (1<5<p) Single-
tons und die Berechnung des Erfiilltheitsgrades einer Partialpramisse (A.12)
erfolgt nach

aj = pa;(z;) (A.13)

Falls X; kein Singleton ist, mufl die Auswertung von (A.12) definiert werden.
Allgemein tiblich ist eine Schnittmengenbildung mit Auswahl des Maximums

nach

a; = max{min{uyx,(z;) . pa,(z;)}} (A.14)

x5 €l

der MAX-MIN-Partialpramissenauswertung.

w € [0, 1] bezeichnet den aus der Verkniipfung aller Partialpramissen «;
(1<j<p) berechneten Erfiilltheitsgrad (Wahrheitswert) der Pramisse bzgl. X.
Bei Verkniipfung der p Partialpramissen durch den MIN-Operator gilt

w= min{a;} (A.15)

1<;<p

bei der Verkniiptung der Partialprdmissen durch den PROD-Operator gilt
P
7=1

Der Term (U 1ST V; ) in (A.10) bezeichnet die Konklusion. V; ist die Referenz-
Fuzzy-Menge der Konklusion und U eine Fuzzy-Menge, die die Auswertung
der Konklusion fiir einen gegebenen Erfiilltheitsgrad der Pramisse darstellt
(Implikation).

O

Anmerkung : Da eine Regel mit mehreren Ausgangsgréfien durch eine der Ausgangsgro-
Benanzahl entsprechende Zahl von Regeln mit einer Ausgangsgrofie ersetzt werden kann
(Lee 1990b), beschranken sich die Betrachtungen in Definition A.5 auf Regeln mit einer
Ausgangsgrofe.

: Aggregation, MAX-Aggregation, SUM-Aggregation, ver-
tikale und horizontale Partialaggregation
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Ist D ein Definitionsbereich und sind Uy, ..., U, die auf D definierten Fuzzy-

Mengen, so heifit die Verkniipfung der U; (1<i<n) zu einer Fuzzy-Menge U

Aggregation. Bei MAX-Aggregation berechnet sich U fiir alle v € D zu
po(u) = max {pg,(v)}, weD (A.17)

1<i<n

und bei SUM-Aggregation berechnet sich U zu

n
po(u) = Y pu(u), vweD . (A.18)
=1
Wenn die Aggregation zur Verkniipfung der n Regeln eines Fuzzy-Reglers an-
gewendet wird, bezeichnen Uy, ..., U, die Auswertungen der Konklusionen der

n Regeln fiir gegebene Erfiilltheitsgrade der Pramissen.

Die Aggregation 1t sich auch als serielle Abarbeitung einer vertikalen und
einer horizontalen Partialaggregation beschreiben. Die vertikale Parti-
alaggregation verkniipft die ausgewerteten Schlufifolgerungen bzgl. der glei-
chen Referenz-Fuzzy-Mengen der Konklusion miteinander (und liefert damit
maximal my Fuzzy-Mengen). Die anschlieflende Durchfithrung der horizonta-
len Partialaggregation verkniipft diese Fuzzy-Mengen zu einer resultierenden
Fuzzy-Menge.

a

In der Literatur findet man haufig einen Spezialfall der Kombination von Aggregation und
Defuzzifizierung. Zur abkiirzenden Schreibweise soll deshalb der Begriff der vereinfachten

Aggregations-Defuzzifizierungsstrategie eingefithrt werden.

: Vereinfachte Aggregations-Defuzzifizierungsstrategie

Als vereinfachte Aggregations-Defuzzifizierungsstrategie wird das fol-
gende Aggregation und Defuzzifizierung kombinierende Verfahren bezeichnet:
Die Referenz-Fuzzy-Mengen V; (1<:<n) der Konklusionen von n Regeln wer-
den direkt durch MAX-Defuzzifizierung auf scharfe Werte v; abgebildet, falls
sie nicht bereits als Singleton-Zugehoérigkeitsfunktion V; = 5, vorliegen, denen
ja direkt ihre Stiitzstellen v; zugeordnet sind. Wenn die von den Zugehorig-
keitsfunktionen der Referenz-Fuzzy-Mengen (py,(u)) und der Abzissenachse
(u) eingeschlossenen Flachen alle gleich grof sind, erfolgt die Aggregation der
Einzelbeitrage der Regeln unter Beriicksichtigung der Erfiilltheitsgrade w; der
Préamissen nach

3

Wy Vg

K3

Il
—

U, =

(A.19)

r

Wy

=1
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Sonst sind noch Flachengewichte F; bzgl. der V; zu beriicksichtigen, indem in

(A.19) w; durch w; F; ersetzt wird.
O

Anmerkung 1 : Bei diesem Vorgehen geht (bis auf die Flacheninformation) das in der

Form der Referenz-Fuzzy-Mengen der Konklusion enthaltene Wissen verloren.

Anmerkung 2 : Das Ergebnis der vereinfachten Aggregations-Defuzzifikationsstrategie
kann auch durch andere Wahl der Operatoren erreicht werden (Preufl 1992).

Anmerkung 3 : Bei der vereinfachten Aggregations-Defuzzifizierungsstrategie muf} die
Defuzzifizierung nur einmal bei der Auslegung des Fuzzy-Reglers durchgefiihrt werden.
Beim Betrieb des Reglers ist bei jedem Abarbeiten des Regelalgorithmus nur eine Ver-
rechnung scharfer Werte v; unter Beriicksichtigung der Erfiilltheitsgrade w; (und ggf. der
Flachengewichte F}) notwendig.

: Implikation, Implikation nach Larsen oder Mamdani

Ist D ein Definitionsbereich, so heifit die Verkniipfung des Erfiilltheitsgrades
w der Pramisse einer Fuzzy-Regel mit der Referenz-Fuzzy-Menge V' der Kon-

klusion zur Fuzzy-Menge U Implikation. Die Implikation beschreibt also eine

Abbildung
w,V—=U (A.20)

mit U : D — [0, 1]. Bei der Durchfiithrung der Implikation nach Larsen
gilt

po(u) =w py(u) (A.21)
bei der Implikation nach Mamdani ist U definiert als
po(u) = minfw, po(u)} (A.22)

mit v € D.
O

Anmerkung : Die Implikation stellt die Interpretation des linguistischen DANN in (A.10)
dar.

Inferenz, Inferenzstrategie, Inferenzmechanismus
Inferenz, Inferenzstrategie und Inferenzmechanismus bezeichnen die Problemlésungs-

methode zur Auswertung von Basiswissensreprisentation (Puppe 1990). Die Auswertung



A Definitionen 45

kann durch Vorwérts- und Riickwartsverkettung geschehen. Bei Fuzzy-Regeln liegt eine
Vorwirtsverkettung (modus ponens) vor. Zur Durchfiihrung einer Inferenz, d. h. zum
Beispiel zur Auswertung eines Datums mit Hilfe eines Regelsatzes, sind die bei Partial-
pramissenauswertung, Pramissenbestimmung, Implikation und Aggregation auftretenden

Verkniipfungen zu spezifizieren.
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: Komposition, compositional rule of inference

Sind R:Dy xDy — [0, 1] und S : Dy, xD3 — [0, 1] zwei Fuzzy-Relationen und
ist X eine Fuzzy-Menge, dann ist Ro S : Dy xDs — [0, 1] die Komposition
der beiden Fuzzy-Relationen und X o R : Dy — [0, 1] die Komposition der
Fuzzy-Menge X mit der Fuzzy-Relation R. Beit MAX-MIN-Komposition, von
Zadeh (1973) auch als compositional rule of inference bezeichnet, gilt

HRoS (- 2) = max {min{ug (r.) . #5(y.2)}} (A.23)
mit (z,z) € Dy x Dy und
poR (v) = max {min {ux(2), ug (+.4)} } (A.24)

O

Anmerkung : Die Konklusion kann zur Durchfithrung eines Teils der Auswertung von
(Fuzzy-) Regeln verwendet werden. Die Ausfiihrung von Implikation und vertikaler Par-
tialaggregation entspricht der Durchfithrung der Komposition, wenn Konjunktion und
Disjunktion tiber die gleichen Operatoren umgesetzt werden. So entspricht die MAX-MIN-

Komposition der Implikation nach Mamdani zusammen mit vertikaler MA X-Partialaggregation.

: Kreuz-Produkt, kartesisches Produkt
Seien My und M, zwei Mengen. Dann ist das (scharfe) kartesische Produkt

dieser Mengen gegeben als

mit dem scharfen konjunktiven Verkniipfungsoperator A (der booleschen Al-

gebra).

Seien A% D, — [0, 1] und Ad: D, — [0, 1] diskrete Fuzzy-Mengen. Dann ist

das unscharfe kartesisches Produkt (Kreuz-Produkt) dieser Mengen
Al @ AL Dy xDy — [0, 1]

gegeben durch

A;l ® Ag = {(l‘, Y, :uAf@Ag(xv y))| (l‘, y) € Dl X D27
fadoag(e,y) = min{pf (2), 4, ()3} (A.26)
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B Regelsatz zum Regler von He und Tan (1993)

3 -2 -1 0 1 2 3

313 -3 -2 -2 -1 -1 0
2013 -2 -2 -1 -1 01
-17-2 -2 -1 -1 0 11

E,l1 02 -1 -1 0 1 1 2
(-1 -1 0 1 1 2 2
21-1 0 12 2 3
310 1 2 2 3 3

Tabelle B.1: Entscheidungstafel zur Bestimmung des Adaptionsfaktors a beim fuzzy-
adaptierten PID-Regler von He und Tan (1993).
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C Regelsitze zum Regler von Raju und Zhou (1992)

ov

sg

of
NG NK Normal PK PK
Klein || PK PK NP NP NK
Normal || NP NP NP NP NP
Grof PK NP NP NP NK
Zu grof | PK NP NP NP NK
d.,
Sehr Etwas Etwas Zu .
schnell schnell Normal langsam langsam Instabil
Sehr klein NP NP NP PK PM PG
Klein NP NP NP PK PK PM
Normal NP NP NP PK PK PM
Grof NK NK NP PK PK PK
Zu grofl NM NK NP PK PK NK

Tabelle C.1: Regelsitze zur Einstellung der proportionalen Verstarkung des PI-Reglers
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NG NK Normal PK PK

Klein || PM PK PK PK PM
Normal || PK  PK NP PK PK
Grof NP PK NP PK PM
Zu grof || NK NK NK NK NM

ov

dy
Sehr Etwas Etwas Zu .
schnell  schnell Normal langsam langsam Instabil

s Sehr klein NP NP PK PK PM PM
Klein NP NP NP NP PK PK

Normal NK NP NP PK NK NM

Grof NK NK NK NK NK NM

Zu grof NM NK NK NK NM NL

Tabelle C.2: Regelsédtze zur Einstellung der integralen Verstarkung des PI-Reglers
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D Entscheidungstafel zum selbstorganisierenden Reg-
ler von Procyk und Mamdani (1979)

AFE

6 5 4 3 -2 -1 0 +1 +2 +3 +4 +5 +6
66 6 6 4 4 4 6 6 0 0 0 0 0
S0 6 6 6 6 2 6 6 6 0 0 0 0 0
416 6 6 4 4 4 6 6 0 0 0 0 0
306 6 6 6 5 5 4 3 3 2 2 -1 4
206 6 5 6 6 5 4 3 2 2 2 -1 4
-1yp6 3 3 5 6 6 3 1 0 -1 o -1 -3
0}6 6 1 4 6 6 3 -1 -1 -1 -2 -3 -4
0,6 3 1 1 1 2 3 6 -6 -6 -4 -4 -4
Fi+1}6 2 2 1 -1 03 6 6 -6 -6 -4 -4
+2y5 1 -2 -2 3 3 4 -5 5 -5 4 -6 -4
/4 1 3 3 3 3 3 6 6 -5 -5 -6 -5
+412 0 4 3 4 5 6 6 6 -6 -6 -5 -5
+/0 -2 3 3 5 3 3 -2 -2 -2 -6 -5 -6
+/0 -1 -2 -2 0-2 -2 3 3 6 -6 -5 -5

Tabelle D.1: Entscheidungstafel 77 des Fuzzy-Reglers beim selbstorganisierenden Reg-
ler (SOC) nach Procyk und Mamdani (1979) (gednderte Wiedergabe entprechend der
Darstellung von 7" in Kapitel 4.1.2 nach Shao (1988))
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E Regelsiatze zum selbsteinstellenden Fuzzy-Regler
von Maeda und Murakami (1992)

Akl Akg Ak:g Ak4
Eov Nl NGll PK12 PKIS PG14
Pl PGll NK12 NKIS NG14

E,¢ | Ny || PGy | NGaa | NGas | NGoy
Py | NGay | PGoy | PGas | PGay

Eum | P3 || PGai | NGay | NGas | NKay |

Tabelle E.1: Regelsatz 1 zur Adaption der Skalierungsfaktoren

&
N |NP| P
N || NG | NK | PK
AE | NP || NM | NP | PM
P || NK | PK | PG

Tabelle E.2: Regelsatz 2 zur Adaption der Konklusionen
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A2E
] N NP P
N | NG |[NM| NP |NG|NK|PK|NM| NP |PM
AE|NP | NG | NK | PK |[NM|NP | PM | NK | PK | PG
P [[NM| NP |PM|NK|PK|PG]|NP|PM| PG
| | NINP[ P | N[NP|P | N[NP| P |
E

Tabelle E.3: Regelsatz 3 zur Fuzzy-Regelung



