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Nomenklatur
Abkiirzungen
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A Systemmatrix
b, B Eingangsvektor, -matrix
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2, 7, k Laufindizes
I, Finheitsmatrix
k[z] Menge aller Polynome in xy,...,, mit Koeffizienten in k&
M konstante Matrix
n Systemordnung

Beobachtbarkeits-Matrix
Steuerbarkeits-Matrix
kontinuierliche Zeit
kontinuierliche Eingangsgrofie
Transformation zur ABKNF

Zustandsvektor eines kontinuierlichen Systems

transformierter Zustandsvektor in die SKNF bzw. ASKNF

Zustandsvektor zum Zeitpunkt ¢
kontinuierliche Ausgangsgrofie
Vektortunktion

Operatoren und sonstige Zeichen

Multiplikation

Kronecker-Produkt

Normbildung

Operator zur Kennzeichnung einer Variablen-Rangfolge
Inversion

Transponieren eines Vektors bzw. einer Matrix

partielle Differentiation
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1 Einleitende Ubersicht

Wie in der linearen Systemtheorie ist auch bei der Behandlung nichtlinearer — und insbe-
sondere hier zustandsquadratischer — Systeme die Strukturanalyse der Ursprung grundle-
gender Frkenntnisse zum Verstandnis der Zusammenhénge zwischen Zustands- und Ein-
/Ausgangsmodellen. Die Basis dazu bilden die Eigenschaften Steuerbarkeit und Beob-
achtbarkeit einer Zustandsdarstellung. Eng verbunden mit diesen Eigenschaften sind nach

Schwarz (1991) u. a.
o Realisierungsaufgaben,
o Identifikationsaufgaben,
e Beobachter- und Filtersynthese sowie

o die Reglersynthese.

Zwischen den Problemkreisen Steuerbarkeit und Beobachtbarkeit eines Systems besteht
eine gewisse Dualitit. Wahrend bei der Beobachtbarkeit die Zustinde des Systems in
Bezug auf den Ausgang interessieren, werden bei der Steuerbarkeit die Zustidnde vom

Eingang aus beeinflufit.

Nachdem in Jelali (1993b) die Beobachtbarkeits-Analyse der zustandsquadratischen Sy-
steme mit linearer Steuerung (QLS) als Unterklasse der analytisch linearen Systeme (ALS)
durchgefithrt wurde, befafit sich der vorliegende Forschungsbericht zunéchst in Abschnitt
7 mit der Angabe expliziter mathematischer Verfahren zur Uberpriifung der jeweiligen
Beobachtbarkeits-Kriterien. Im Vordergrund stehen solche Verfahren, die sich rechner-
gestiitzt realisieren lassen. Anschlieflend wird das Problem der algebraischen Beobachtbar-
keit betrachtet. Abschnitt 8 behandelt das duale Problem der Steuerbarkeit. Nach Formu-
lierung der Steuerungsaufgabe werden die Definitionen der betrachteten Steuerbarkeits-
Formen angegeben. Auf der Basis dieser Definitionen erfolgt dann die Ableitung und
Diskussion der zugehérigen Uberpriifungskriterien. In Abschnitt 9 werden zwei symbol-
verarbeitende Programmsysteme zur Analyse der Steuer- und Beobachtbarkeit vorgestellt.
Abschnitt 10 enthélt eine Zusammenfassung der vorliegenden Arbeit sowie einen Ausblick

auf weiterfiihrende Untersuchungen im Bereich der hier behandelten Thematik.
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2 Beobachtbarkeits-Analyse

2.1 Verfahren zum Nachweis der Beobachtbarkeit

Betrachtet werden die zustandsquadratischen Systeme mit linearer Steuerung (QLS), die
eine Unterklasse der analytisch linearen Systeme (ALS) bilden und folgende Zustandsdar-

stellung besitzen:

z(t) = Ajz(t)+ Ae(l) @ x(t) + [bo + Biz(t) + Bax(l) @ @ (1)]u(t) } 2.1)
y(t) = cla(t) ;o = x(lo) ' '

An entsprechenden Stellen bedeuten die Abkiirzungen!

a(lz) = Ajx(t)+ Are(t) @ «(t)
b(x) := bo+ Biz(t) + Byz(l) ® (1)
Fle.w) = ale)+b@)u()

KS = z(t)o®(t) € R™

0 2
K = a_w’C?@ € R™X"

0 24,2
K2 = a—wlCéz)zconst. VeeR" ; KeR"*"

Uber die Approximation nichtlinearer Systeme durch QLS wird in Jelali (1993a) und
Schwarz (1993) berichtet.

Zum Nachweis der globalen Beobachtbarkeit mufl die Beobachtbarkeits-Abbildung inver-
tiert werden. Die Uberpriifung der iibrigen in Jelali (1993b) betrachteten Beobachtbarkeits-
Formen erfordert eine Ranguntersuchung der jeweiligen charakteristischen Matrix. Dieser
Abschnitt stellt einige explizite mathematische Kriterien zur Uberpriifung der eindeutigen
Umkehrbarkeit der Beobachtbarkeits-Abbildung vor. Auf die Ranguntersuchung wird in
Abschnitt 9 eingegangen.

Es gelten zunéchst die beiden folgenden Satze:
Satz 2.1 : (Kou, Elliott und Tarn 1973)

Eine Abbildung ist bijektiv (R” — R"), wenn fiir alle € R" eine positive Zahl ¢ > 0
existiert, so dafl die Jacobi-Matrix dieser Abbildung die Quotienten-Bedingung

Aq| > > > 2.2
| 1|_€7|21|_57 7|2n_1|_5 ( )

L Aus Griinden der besseren Lesbarkeit wird im weiteren das Zeitargument nicht stindig explizit

angegeben.
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erfiillt. Dabei bezeichnen A;, ¢ = 1,...,n, die Hauptabschnitts-Determinanten der
Jacobi-Matrix.

Satz 2.2 : (Kou, Elliott und Tarn 1973)

Ein QLS nach GI. (7.1) ist global beobachtbar, wenn die Beobachtbarkeits-Abbildung
q(x,u) eine bijektive Abbildung darstellt, d. h. wenn die Beobachbarkeits-Matrix
Qp(x,u) die Quotienten-Bedingung nach Gl. (7.2) befriedigt.

Zur Definition von q(x,u) und Qp(@, ) sei hier auf Jelali (1993a,b) verwiesen.
Beispiel 2.1 :

Betrachtet wird das QLS

B() = L3 +aa(t)

Ta2(t) = 2i(t) 4+ a1 ()aa(t)u(t) — u(t) (B2.1-1)
y(t) = ol
Die Beobachtbarkeits-Matrix ergibt sich als Jacobi-Matrix der Beobachtbarkeits-
Abbildung

q(a,u) = [ y() ] - [ z(t) ] (B2.1-2)

z
Qp(z,u) = lxll(t) H : (B2.1-3)
Da
1A =12>1, :ij::1z1 Va € R (B2.1-4)

gilt, ist die zugehorige Beobachtbarkeits-Abbildung bijektiv (¢ = 1) und damit
das QLS global beobachtbar.

a

Bei der Anwendung kommt es oft vor, dafl sowohl der Definitionsbereich von ®(t) als auch
der Wertebereich der betrachteten Abbildung nur ein Teilbereich des Zustandsraumes R"
umfafBt. wird in der Literatur (z. B. Kou, Elliott und Tarn 1973 sowie Brandin, Kostyu-
kovskii und Razorenov 1976) zwischen rechteckigen und konvexen Definitionsbereichen
unterschieden. Fiir einen rechteckigen Definitionsbereich gelten Definition 7.1 und Satz

7.3 und fir einen konvexen Satz 7.4.
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Definition 2.1 : (Brandin, Kostyukovskii und Razorenov 1976)
Die Matrix @Qp(@,u) heifit P-Matrix (bzw. N-Matrix), wenn ihre Hauptabschnitts-

Determinanten A; im gesamten Definitionsbereich alle positiv (bzw. negativ) sind.
Sie heifit P-N-Matrix (bzw. N-P-Matrix), falls die A, fiir ungerades ¢ positiv (bzw. ne-
gativ) und fiir gerades ¢ negativ (bzw. positiv) sind, d. h. Ve € D, ; Yu € D,

P : A, >0 i=1(1)n,

N : Ai<0 o=1(1)n,
P-N : A;>0 ¢=1(2)n und A; <0 ¢=2(2)n,
N-P A, <0 =12 und A; >0 i=2(2)n

Satz 2.3 : (Brandin, Kostyukovskii und Razorenov 1976)
Ein QLS nach GI. (7.1) ist global beobachtbar, wenn die zugehorige Beobachtbarkeits-
Matrix Qp(@, u) entweder eine P-, N-P-, N- oder P-N-Matrix gemaf Definition 7.1
ist.
O

Beispiel 2.2 :
Die Beobachtbarkeits-Matrix nach Gl. (B7.1-3) des QLS nach Gl. (B7.1-1) be-

sitzt die Hauptabschnitts-Determinanten
Ay = 1>0, (B2.2-1)
Ay = 1>0 . (B2.2-2)
Damit ist die betrachtete Beobachtbarkeits-Matrix eine P-Matrix, was die glo-

bale Beobachtbarkeit des QLS beweist.
O

Satz 2.4 : (Kou, Elliott und Tarn 1973)
Existiert eine konstante Matrix M derart, daf} fiir alle @ € R”
1. det MQp(x,u) > 0 gilt und
2. MQg(z,u)+ [MQp(z,u)]’ nichtnegative Hauptabschnitts-Determinanten be-
sitzt,
dann ist die Beobachtbarkeits-Abbildung bijektiv und damit das QLS nach Gl. (7.1)

global beobachtbar.
O

Beispiel 2.3 :
Fiir das QLS aus Beispiel 7.1 gilt fir M = I,
1. det MQp(x,u)=1>0 und
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2. MQp(e, @)+ [MQp(z,w)” = l $12(t) :1;12(t) ]

:>A1:2>0Va3€R2,A2:4—x%(t)>0fur—2<:1;1(t)<2,
so daf} in diesem Bereich des Zustandsraumes die globale Beobachtbarkeit gege-

ben ist.
O

Die beiden Hypothesen in Satz 7.4 werden als ,,strenge positive Semidefinitheits-Bedingun-
gen® bezeichnet. Zwischen der strengen positiven Semidefinitheit und der Quotienten-
Bedingung von Satz 7.1 besteht keinerlei Zusammenhang. Beide stellen lediglich hinrei-
chende Bedingungen fiir die globale Beobachtbarkeit eines QLS dar und miissen ggf. suk-
zessiv liberpriift werden. Sie liefern durchaus verschiedene Aussagen tiber das Gebiet der

globalen Beobachtbarkeit (vgl. Beispiel 7.3 mit 7.1).

Ahnliche mathematische Kriterien zum Nachweis der eindeutigen Invertierbarkeit der
Beobachtbarkeits-Abbildung und damit der globalen Beobachtbarkeit findet man u. a. bei
Brandin, Kostyukovskii und Razorenov (1975) sowie Birk (1992). Die meisten Verfahren
beinhalten jedoch nur hinreichende und oft strenge Bedingungen fiir die eindeutige Inver-
tierbarkeit von g(@, ). Deshalb schlagt Birk (1992) eine heuristische Vorgehensweise zum
Nachweis der eindeutigen Auflésbarkeit des betrachteten nichtlinearen Gleichungssystems

VOr.

Diese Vorgehensweise besteht darin, zunachst méglichst viele Gleichungen nach den Zu-
stdnden x;(t) aufzulésen und dann den verbleibenden Rest der Abbildung mit den oben
erwahnten sowie anderen Kriterien auf eindeutige Invertierbarkeit zu tiberpriifen. Diese
praktische Methode wird in Birk (1992) ausfithrlich beschrieben. Der zugehérige Algo-
rithmus wurde in dem symbolverarbeitenden Programmsystem MACNON (MACsyma
program for NONlinear systems)? implementiert. Auch mit diesem Verfahren ist die glo-
bale Inversion der Beobachtbarkeits-Abbildung nur selten moglich (Rothfufl; Schaffner

und Zeitz 1993). Deshalb wird hier eine wesentlich effizientere Methode besprochen.

Das Inversionsproblem kann auch durch die Beziehung

p(z,u,y)=y()—q(z,u)=0; y(t) = [y(t), i), ..., u" V()" (2.1)
bzw.

pi(e,u,y) = y(t)—MJ?cT;p(t):()

pa(z,u,y) = y(t) — Mye x(t) =0

(@, y) = y" V() = My elw(t) = 0

2Das Programmsystem wird am Institut fiir Systemdynamik und Regelungstechnik der Universitit
Stuttgart entwickelt.
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beschrieben werden. Der Differentialoperator My ist erklart durch:®

Mpr(ey = D gy D)
Mis(e) = MOf()  mit Mp(e) =)

Es geht dann darum, alle Zustdnde x;(t), ¢+ # j zu eliminieren und die entstehende
Beziehung nach x;(t) aufzulésen, was eine typische Aufgabe der Eliminations-Theorie

darstellt. Schlieilich muf} die Eindeutigkeit der Inversion tiberpriift werden.

Beispiel 2.4 :

Es sei

S
@

) = y(t) —ai(t) —aa(t) = (B2.4-1)
) = g(t) —aa(t)aa(t) — a3(t) —u(t) =0 (B2.4-2)

pl(wv
p2(337

Y

S
@

Y

nach x1(¢) und 5(t) separat aufzulosen. Aus
pz(il?,’l],’g) - xQ(t)pl(wvﬁvg) =0 (B 24_3)

folgt der Zusammenhang fiir x»(t)

(0) — a1y (0) — u(t) = 0, (B2.4-1)
womit gilt
y(t) — u(t)
To(l) = —F—+—7=- . B2.4-5
2( ) y(t) ( )

Setzt man Gl. (B7.4-5) in Gl. (B7.4-1) ein, dann ergibt sich zunéchst die Beziehung
fir a4(1)

y (1) — a(ty(t) — y(t) +u(t) =0 (B2.4-6)
und damit

xl(t) _ yQ(t) + u(t) - y(t) ) (B 2‘4_7)

y(t)

v(x) steht i. allg. fiir eine beliebige Vektorfunktion, speziell hier gilt: y(z) = T =(2).

3
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Fir y(t) # 0 ist die Inversion eindeutig, was die globale Beobachtbarkeit des
zugehorigen QLS, z. B.

B = a3(0) +ult)
To(t) = a1(t)aa(t) (B2.4-8)
y(t) = xi(t) + xa(1)
impliziert.
O

Die im Beispiel 7.4 aufgezeigte Vorgehensweise erscheint zunéchst heuristisch. Trotzdem
gibt es ein mathematisches Werkzeug der kommutativen Algebra, das dies systematisch
durchfiithren kann. Gemeint sind hier die sog. Grébner Basen (GB)*. Der folgende Ab-
schnitt beschéftigt sich mit dem Einsatz der GB zur Loésung der Beobachtungsaufgabe.

2.2 Grobner Basen und algebraische Beobachtbarkeit

Einsatz der Grobner Basen

Die kommutative Algebra umfait die mathematischen Bereiche der algebraischen Geo-
metrie (Losung von Polynom-Gleichungssystemen) und der algebraischen Zahlentheorie.
Eines ihrer wichtigsten Hilfsmittel stellen die GB dar, mit denen sich die Mathematiker
etwa seit Mitte der 70er Jahre beschaftigt haben. Bald entstand ein GB-Algorithmus von
Bruno Buchberger, der dann in vielen symbolverarbeitenden Programmiersprachen, wie
z. B. MACSYMA, MAPLE und REDUCE implementiert wurde. Zum Verstdndnis der
Funktionsweise dieses Algorithmus sind vertiefte Kenntnisse der kommutativen Algebra
erforderlich, die nicht Inhalt dieser Arbeit ist. Fine umfassende Einfiihrung in die kom-
mutative Algebra sowie die genaue Definition der GB findet sich in der einschlégigen
Literatur (z. B. Forsman 1991 und 1992b). Hier werden in Anlehnung an diese Arbeiten
lediglich einige Basisdefinitionen gegeben.

Definition 2.2 :

Die Menge aller Polynome in den Variablen zq, zs,...,z, mit Koeffizienten in k& wird
mit k[xq,...,x,] = k[x] bezeichnet, z. B. Qz], R[z], Clz].
O

Definition 2.3 :

Gegeben sei P = {p1,p2,...,pm}, eine Menge von Polynomen in R[x]. Das von P

generierte [deal ist die Menge aller Polynome der Form

= ioﬁpi ;o € Rlz] . (2.9)

4Sie wurden eingefiihrt von Bruno Buchberger (Forsman 1991), einem Studenten des Algebraikers

Wolfgang Grobner (1899-1980).
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P wird eine generierende Menge des Ideals genannt und (P) notiert.

Definition 2.4 :

Eine Rangfolge der Variablen 1, xs,...,z, ist eine Permutation dieser Symbole. Zur

Kennzeichnung dieser Rangfolge eignet sich der Operator < mit den Eigenschaften:

x; < x;: x; hat eine héhere Rangordnung als z;,
x < y: alle Komponenten des Vektors y besitzen eine hohere Rangordnung als die

von &.

Definition 2.5 :

Die Polynome fi, f1,..., fn heiflen algebraisch abhingig iber k, wenn ein Polynom P €
k[x] derart existiert, daBB P(f1,..., fn) = 0 gilt. Andernfalls heiflen die f; algebraisch
unabhédngig.

O

Die GB stellen eine systematische Methode zur Eliminierung von Variablen in Polynom-
Gleichungssystemen bereit. Dazu bildet man das Ideal (vgl. GI. (7.1))

On 1 = (y(t) — MO (1), §(t) — Mg a(t),. ..,y (1) — MF~'e (1)) (2.10)

und berechnet dafiir die GB, jeweils unter Beachtung einer bestimmten Rangfolge geméas
Definition 7.4, die angibt, in welcher Reihenfolge die Variablen z; eliminiert werden sollen.
Ein GB ist nichts anderes als eine generierende Menge des Ideals O,,_; geméf Definition
7.3. Dabei wahlt der Algorithmus die «; so geschickt, daf} alle bis auf die gewiinschte Va-
riable eliminiert werden. Dies kann in MAPLE wahlweise anhand der Funktionen finduni

und gbasis geschehen (Char u.a. 1991). Beispiel 7.5 verdeutlicht die Vorgehensweise.

Beispiel 2.5 :

Die Beobachtbarkeitsabbildung fiir das QLS

=

i1(t) = 2i(t) — wa(t)wa(t) + u(t)
(1) = aa(t) — 2ea(tu(t) (B2.5-1)
t

(1) = =)

lautet komponentenweise

y(t) = x4(t) _
g(t) = 2}(t) — zi(H)aa(t) + ult) . }(B2.5 2)

=

=2

Die Inversion kann durch die MAPLE-Programmierbefehle®

SFiir x1, 22 werden die Symbole z1, 22 verwendet. u0, vl und y0, yl bezeichnen w, % und y, y.



2 Beobachtbarkeits-Analyse 9

> with(grobner):

> pl:=y0-x1:

> p2:=yl-x1"2-x1*x2-u0:

> x1bez:=finduni(x1, [pl, p2], x1, x2);

xlbez := z1 — y0
> x2bez:=finduni(x2, [pl, p2], x1, x2);
22bez := y0 22 + y1 — u0 — y0?

> x1:=solve(x1bez=0, x1);

xl ==yl
> x2:=solve(x2bez=0, x2);
2
29— ~yl —u0 —90
y0

oder
> gbhl:=gbasis([pl, p2], [x2, x1], plex);
gbl := [yl — u0 — y0* + y0 22, —y0 + x1]

> gh2:=gbasis([pl, p2], [x1, x2], plex);

gb2 := [—y0+ 21, yl — u0 — y0? + y0 22]
> x1:=solve(gh1[2]=0, x1);
xl :=y0
> x2:=solve(gh2[2]=0, x2);
vyl — g0
y0

veranlafBt werden.

Zusammenfassen 1aBt sich die Vorgehensweise zur Uberpriifung der globalen Beobacht-
barkeit anhand der GB in folgenden Schritten:

1. Berechnung der Beobachtbarkeits-Abbildung.
2. Bestimmung der GB mit Hilfe der Funktionen finduni oder gbasis (Elimination).

3. Auflésung der gefundenen Beziehungen nach den einzelnen Variablen z;.
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4. Uberpriifung der Eindeutigkeit der Auflosbarkeit.

Im MAPLE-Programmsystem POLYCON (Forsman 1992a, 1993) ist eine Routine (obsve)
implementiert, welche die Beziehungen zwischen x;(¢) und w(t) bzw. y(t) direkt liefert,
wenn die einzelnen Zustande beobachtbar sind. In van der Schaft (1989) wird ein sukzes-
siver Algorithmus (differentialgeometrisch) hergeleitet, der allerdings nur lokal um einen
Arbeitspunkt (@4, w4, y4) und unter gewissen Rangbedingungen Giiltigkeit hat. Der glei-
che Algorithmus findet sich in Nijmeijer und van der Schaft (1990). Diop (1991) schlagt
einen differentialalgebraischen Eliminations-Algorithmus vor, der zusdtzlich ein System
von Ungleichungen beziiglich y(¢) und w(?) liefert, unter dessen Erfiilllung die Elimination
moglich ist.

Algebraische Beobachtbarkeit

Bisher wurde die Eigenschaft der Beobachtbarkeit ausschliellich aus differentialgeometri-
scher Sicht behandelt. Im folgenden soll diese Figenschaft auch rein algebraisch betrachtet
werden. Die Einfithrung des Begriffs algebraische Beobachtbarkeit geht auf Diop und Fliess
(1991) zurtick . Von Forsman (1991 und 1992c) erfolgte die Analyse der Beobachtbarkeit

aus algebra-geometrischem Standpunkt. Es gilt zunéchst der folgende Satz:
Satz 2.5 : (Forsman 1991)

Ein QLS nach Gl. (7.1) ist algebraisch beobachtbar dann und nur dann, wenn die zu-
gehorige Beobachtbarkeits-Abbildung dominant ist, d. h. wenn alle Komponenten dieser
Abbildung algebraisch unabhéngig sind.

O

Es existiert auch hier ein explizites Kriterium zur Uberpriifung der algebraischen Beob-
achtbarkeit.

Satz 2.6 : (Forsman 1991)

Ein QLS nach Gl. (7.1) ist algebraisch beobachtbar dann und nur dann, wenn die
Determinante der Beobachtbarkeits-Matrix als Jacobi-Matrix der Beobachtbarkeits-
Abbildung generisch ungleich Null bzw. dessen generischer Rang identisch n ist, also

detye, Qp(T,u) 0  bzw. Rang,_, Qp(x,u)=n . (2.3)

a

Generisch bedeutet hier strukturell (fast iiberall), d. h. unabhéngig von den Funktionen
bzw. Werten, welche die Matrizenelemente annehmen kénnen. Der generische Rang hat
den Vorteil, daf er fiir eine ganze Klasse von strukturell identischen Systemen gilt und

keine numerischen Probleme bei seiner Bestimmung auftreten kénnen (Wey 1993).
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Aus Satz 7.6 gehen zwei wesentliche Unterschiede zwischen dem oben vorgestellten Kon-
zept der algebraischen Beobachtbarkeit und dem der lokalen Beobachtbarkeit in Jelali
(1993b:12) hervor. Zum einen ist die Erfilllung der Rangbedingung fiir die algebraische
Beobachtbarkeit notwendig und hinreichend, fiir die lokale Beobachbarkeit aber nur hin-
reichend. Zum anderen muf} die Rangbedingung bei der letzteren Eigenschaft generell
(iiberall) gelten, wahrend sie bei der anderen nur strukturell (fast iiberall) erfiillt sein
muf} (vgl. Beispiel 7.6). Die algebraische Beobachtbarkeit ist daher einfacher zu testen als
die lokale.

Beispiel 2.6 :
Das QLS aus Beispiel 7.5 besitzt die Beobachtbarkeits-Abbildung

_ 1 0
Qp(x,u) = 2ur(t) — malt) —ma(t) | (B2.6-1)

Das QLS ist algebraisch beobachtbar wegen
Rang, , Qp(®,u)=2=n . (B2.6-2)

Die lokale Beobachtbarkeit ist fiir @1(¢) = 0 nicht gegeben, da diese Stelle eine
Singularitat fir Q@p(e,w) darstellt.
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3 Steuerbarkeits-Analyse

Die Steuerbarkeitsaufgabe besteht darin, die Frage zu kléren, ob sich der Anfangszustand
xo = (o) eines QLS durch einen geeignet gewahlten Verlauf der Steuerung u(¢) in einen
beliebigen Zustand @(#;) tiberfiihren 1aft. Dies erméglicht eine gezielte Einfluinahme auf
den Verlauf der Trajektorie @ () des Systems. Die Eigenschaft der Steuerbarkeit eines QLS
stellt somit eine wichtige Voraussetzung fiir dessen Regelung dar, die einen gewiinschten

zeitlichen Verlauf des Zustandes bzw. des Ausganges zum Ziel hat.

3.1 Formen der Steuerbarkeit

Wegen der Komplexitit der nichtlinearen — und hier auch speziell zustandsquadratischen
— Systeme wird von verschiedenen Autoren (u. a. Hermann und Krener 1977, Zeitz 1983,
Aeyels 1984, Casti 1985, Isidori 1989, Zeitz 1989, Nijmeijer und van der Schaft 1990 sowie
Schwarz 1991) eine Vielzahl von Steuerbarkeits-Begriffen eingefiihrt, z. B. Steuerbarkeit,
lokale Steuerbarkeit, lokale weiche/schwache Steuerbarkeit, Erreichbarkeit, lokale Erreich-
barkeit, lokale weiche/schwache Erreichbarkeit. Daher werden auch verschiedene Wege zur

Analyse und Losung der Steuerungsaufgabe eingeschlagen.

In dieser Arbeit werden die Steuerbarkeits-Formen
e globale Steuerbarkeit,

o lokale Steuerbarkeit und

o Arbeitspunkt-Steuerbarkeit

behandelt und soweit wie moglich auf die QLS spezialisiert.

Es werden folgende Definitionen der jeweiligen Steuerbarkeits-Form zugrundegelegt:
Definition 3.1 : (Hermann und Krener 1977, Schwarz 1991 u. a.)

Ein Zustand @. € R" heifit erreichbar von &y zur Zeit t;, wenn eine beschrankte mefibare

Steuerung u(t) so existiert, daff die Trajektorie &(t) des Systems die Bedingungen
z(0) =29 und =z =x(t)

erfillt.
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Definition 3.2 : (Zeitz 1983, Aeyels 1984)

Ein QLS nach GI. (7.1) heifit global steuerbar, wenn fiir jeden Anfangspunkt @, = 2(0)
und jeden Endpunkt «(t.) eine mefibare Steuerung u(?) existiert, die beide Punkte
entlang der Trajektorie @(t) des Systems verbindet.

O

Definition 3.3 : (Aeyels 1984)

i) Ein QLS nach Gl. (7.1) heifit lokal steuerbar in @¢, wenn fiir alle T' > 0 eine Umgebung
Uy von @, existiert, die entlang der Trajektorie ®(¢) des Systems innerhalb von T

erreicht werden kann.

ii) Das QLS heifit lokal steuerbar, wenn die Eigenschaft i) fiir alle &y € R™ erfiillt ist.
O

Definition 3.4 : (Birk 1992)

Ein QLS nach Gl. (7.1) heifit arbeitspunkt-steuerbar (steuerbar in einem Arbeitspunkt
x;), wenn jeder Anfangszustand @, in einer Umgebung (||@o— || < €a, |Ju—us|| < )
des stationdren Arbeitspunktes (@, us) mit f(@;,us) = 0 erreicht werden kann.

O

3.2 Steuerbarkeitskriterien

Dieser Abschnitt beinhaltet die Einfithrung einiger fiir eine Steuerbarkeits-Analyse sehr
wichtigen Begriffe der Steuerbarkeits-Normalform, der Steuwerbarkeits-Matriz und der Ar-
beitspunkt-Steuerbarkeits-Matriz. Basierend darauf werden algebraische Kriterien zur Uber-
prifung der im vorigen Abschnitt angegebenen Steuerbarkeitsformen behandelt.

3.2.1 Globale Steuerbarkeit

Steuerbarkeits-Normalform

In Analogie zur linearen Steuerbarkeits-Normalform®

—arai(t) | 1
v1(t) — azay (1) 0
(1) = x5(t) — asz(t) + 1 0 | u(t) (3.1)
| 2o () = anay(t) | L 0]

“Die Ausgangsgleichung wird im folgenden bewuft nicht aufgeschrieben, da sie bei der Untersuchung
der Steuerbarkeit nicht von Interesse ist.
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wird fiir die QLS eine nichtlineare Steuerbarkeits-Normalform (Zeitz 1983 und 1989,
Schwarz 1991) durch

—ay(ar) 1
21 (t) — ax(x}) 0
(1) = w3(t) —as(ay) |+ | 0 | u(?) (3.2)
et —aen) | o]
= a*(x") + b u(t) (3.3)

definiert. Im Zusammenhang mit dieser Steuerbarkeits-Normalform (SKNF) gilt:
Satz 3.1 : (Zeitz 1983)

Ein QLS, das in der SKNF vorliegt oder in diese transformiert werden kann, ist direkt
global steuerbar. Da die Existenz der Steuerung u () (vgl. Definition 8.2) nicht von den

Nichlinearitaten

a(e}) = [a(e}), ax(}), .. an(2])] (3.4)

abhéngt, ist das QLS dann sogar streng strukturell steuerbar.

Transformation der QLS in die SKNF
Aus Satz 8.1 geht hervor, daf} die Existenz einer eindeutig umkehrbaren Transformation
r=v(z*) bzw. z"=v'(z) , (3.5)

die ein QLS nach GIl. (7.1) in die SKNF nach Gl. (8.2) iiberfiihrt, eine hinreichende
Bedingung fiir die globale Steuerbarkeit des Systems darstellt. In die zeitliche Ableitung

_ dv(x™) _ Jv(x*)

x(1) o - (1) (3.6)
von Gl. (8.5) wird Gl. (8.3) eingesetzt:
= P gy o

Aus dem Vergleich von Gl. (8.7) mit (7.1) ergeben sich die beiden Vektor-Differentialgleich-

ungen zur Bestimmung der Transformation v(ax*) zu:

Jv(x*)
Ox*
Jv(x*)

TSt = bot Bua(l) + Bax(1) © (1) = b(x) . (3.9)

a’ (") = A1x(t) + Arx(t) @ 2(t) = a(x) (3.8)
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Definiert man die Steuerbarkeits-Matrix

aue) - ) [t ) )]
dann erhilt man wegen der speziellen Struktur von a*(z*) und b* (Schwarz 1991):

Qs(z) = [b(z),adsa(z),....ad; " a(x)] (3.11)

L~ Qi @adjala) (3.12)

mit dem Lie-Klammer-Produkt (Isidori 1989)

adya(e) = [blx).afe)] = "0 () - P2y

wdja(z) = [b(e)ada@)] ; j>1 .
Hieraus folgt, dafl die beiden Bedingungen
1. Regularitat der Steuerbarkeits-Matrix Qgs(x) und
2. Integrierbarkeit des Systems partieller Differentialgleichungen in Gln. (8.11) und (8.12)

notwendig und hinreichend fiir die Existenz der Transformation v(«*) sind.

Beispiel 3.1 :
Betrachtet wird die bekannte Rauber-Beute-Beziehung (Keller 1986)

#1(t) = axy(t) — baq(t)aq(t) _
iy(t) = —duy(t) + cxy(t)za(t) — exa(t)u(t) } . (B3.1-1)

die ein QLS nach Gl. (7.1) darstellt. Die Systemmatrizen lauten:

a 0 0 —b 0 0
Al_[o —d] ’ AQ_[O 000]

0 0
0 —e

(B3.1-2)

B, = l ] ;i By=0 ; by=0

Die Konstanten a, b, ¢, d und e seien alle von Null verschieden. Der Definitionsbe-
reich sei durch xy > 0; x5 > 0; u > 0 festgelegt. Die Steuerbarkeits-Matrix ergibt
sich mit GI. (8.11) zu

(B3.1-3)

Qs(z) - [ 0 wmwuuw

—exa(t) 0
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Die Auswertung von Gl. (8.12) liefert dann fiir das betrachtete System

e b<§><t> ol(t)] =2

Durch Integration von Gl. (B8.1-4) erhalt man

a(ry,) = [ ! ] (B3.1-4)

—ea(t)

hierbei wurden die Integrationskonstanten zu Null gesetzt. Damit ergibt sich die

SKNF zu

& (1) = lwi(t) 0 (t)]—l—[(l)]u(t) . (B3.1-5)

a

Da es nur in seltenen Fallen gelingen, das System partieller Differentialgleichungen zu inte-
grieren, wird weiter unten die einfach zu untersuchenden Eigenschaft lokale Steuerbarkeit

auf der Basis der Steuerbarkeits-Matrix nach GI. (8.11) behandelt.

Allgemeine Steuerbarkeits-Strukturen

Wie bei der Beobachtbarkeits-Analyse der QLS (Jelali 1993b) sind auch hier allgemeine
Steuerbarkeits-Strukturen von grofler Bedeutung, da durch sie die Anwendung aufwendi-
ger mathematischer Verfahren zur Uberpriifung der Steuerbarkeit evtl. umgangen werden
kann. Analog zur allgemeinen Beobachtbarkeits-Normalform von Gauthier und Bornard

(1981) kann eine allgemeine Steuerbarkeits-Normalform (ASKNF) angegeben werden zu:

[ —a(Fr w3 | [ bBE, ) ]

| F1(t) — ay(Fo,. .., En) 0

z(t) = To(t) —as(Ts,...,2,) | + 0 u(t) (3.6)
I Tpo1(1) — an(Tn) | I 0 |

mit b(E1,...,80) £0 .
Eine noch allgemeinere SKNF wird von Zeitz (1989) durch

S @) ] [ aE, )
JiQ(:I;l,...,:I;n) 0

w(t) = | fs(@2.30) | + 0 u(t) (3.7)

fn(i’n—lvin) 0
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,n—1

mit  §(&1,...,4,) #0 und 9afi~+17£0; i=1,...
Z;

erklart und mit der ,impliziten Steuerbarkeits-Dreiecks-Normalform® bezeichnet. Damit

kann man den folgenden Satz formulieren:

Satz 3.2 :
Ein QLS nach GI. (7.1) ist global steuerbar, wenn es in einer ASKNF geméf Gl. (8.6)

bzw. (8.7) vorliegt oder in diese iiberfithrt werden kann.
O

Beispiel 3.2 :

Anhand der Transformation (Indextausch)

l”(t) ] (B3.2-1)

gelingt es, das QLS nach Gl. (B8.1-2) in die implizite Steuerbarkeits-Dreiecks-
Normalform nach Gl. (8.7) mit der Zustandsdarstellung

AN

l —dF, (1) + iy (1),
To(

(1) aia(t) — bin(1)

zu {iberfithren. Die Bedingungen —e1(¢) # 0 und % = —biy(t) # 0 sind wegen
e # 0 und x5(t) > 0 bzaw. b# 0 und x4(¢) > 0 erfillt.

3.2.2 Lokale Steuerbarkeit
Mit Hilfe der Steuerbarkeits-Matrix kann die lokale Steuerbarkeit iiberpriift werden:

Satz 3.3 :
Ein QLS nach GI. (7.1) ist lokal steuerbar, wenn die Steuerbarkeits-Matrix Qs(«) nach
Gl. (8.11) im gesamten Definitionsbereich Y& € D, den vollen Rang
(3.3)

Rang Qs(x)=n ; Ve € D,

besitzt.
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Fiir QLS 3. Ordnung kann die Steuerbarkeits-Matrix Qs(x) = [go(®), q1(x), ..., g1 (2)]"

zeilenweise

qo(x) = bo+ Bixe(t)+ BQIC%
q1(z) = [A1+ AKL)[bo + Biz(t) + B:KY] — [By + BoKL][ A2 (t) + A,K0)
g2(x) = {AK1L, @ [bo+ Bix(t) + BoK2] + [Ay + AKL][By + BoKL]—

— BoKAL, @ [Ayz(1) + Aok — [By + BoKL][Ar + A2KL]} %

x [bo + Biz(l) + BoK] —

— [Bi + BoKL) {[ AL+ AuKL][bo + Bia(t) + BoKY |-

— [B: + BKL][As2(t) + A:K2]}

angegeben werden.
Die lokale Steuerbarkeit eines QLS stellt nur eine notwendige Bedingung fiir die Existenz

der Transformation zur SKNF nach Gl. (8.2), da zusétzlich die Integrierbarkeitsbedingung

erfillt sein mub.

Beispiel 3.3 :
Die Steuerbarkeits-Matrix lautet fiir das QLS aus Beispiel 8.1:

B 0 bew(t)xo(t)
Qs(z) = —era(l) 0 : (B3.3-1)

Da im gesamten Definitionsbereich
Rang Qs(x) =2=n (B3.3-2)

gilt, ist das QLS dort lokal steuerbar.
O

Auch bei der Untersuchung der lokalen Steuerbarkeit ist die durch GI. (8.6) definierte
ASKNF von besonderem Interesse. Fiir ein QLS dieser Form lautet die Steuerbarkeits-
Matrix:

() = *
Q@)= | be) o . (3.3)
: 0 .. *
0 ... 0 ba&)

Die ,,*“ bezeichnen hierbei die nichtverschwindenden iibrigen Matrizenelemente. Wegen
der Dreiecks-Struktur von Qg(&) und b(&) # 0 ist die Rangbedingung nach Gl. (8.3)
unabhéngig von den Nichtlinearitdten a(@) immer erfiillt. Damit ist auch die lokale Steu-

erbarkeit direkt gegeben und Satz 8.1 kann wie folgt erweitert werden:
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Satz 3.4 :

QLS, die in der ASKNF nach Gl. (8.1) vorliegen oder sich in diese {iberfiithren lassen,
sind direkt global und lokal steuerbar.
O

Beispiel 3.4 :

Fir das transformierte QLS nach Gl. (B8.2-2) ergibt sich die Steuerbarkeits-

Matrix zu:

Qs(&) = _eil(t) besi:l(?):z;z(t) . (B3.4-1)

Wie zu erwarten ist, bleibt die Struktureigenschaft lokale Steuerbarkeit im gesam-

ten Definitionsbereich unter der Transformation erhalten.

3.2.3 Arbeitspunkt-Steuerbarkeit
Arbeitspunkt-Steuerbarkeits-Matrix

Zur Bildung der Arbeitspunkt-Steuerbarkeits-Matrix Qs, wird Gl. (7.1) um den stati-

ondren Arbeitspunkt (@, us) linearisiert:

Of(x,u)

A = == A AL+ (B B ()] | (3.2)
b = W o= B+ B+ B2 | (3.3)
Das linearisierte System lautet dann
x(l) = ATa:(t) + bu(l) } ' (3.4)
y(t) = cra(l) i ®o = z(lo)
Hierzu gehort die Arbeitspunkt-Steuerbarkeits-Matrix
Qs = [b. Ab, ..., A'b] (3.5)
womit gilt:
Satz 3.5 :

Ein QLS nach Gl. (7.1) ist arbeitspunkt-steuerbar in (@, us), wenn die Steuerbarkeits-
Matrix Qgs in diesem Punkt die Rangbedingung

Rang Qss = n (3.6)
erfiillt.
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Wurde die Steuerbarkeits-Matrix Qgs(@&) zuvor berechnet, kann Qg aus

Qss = Qs(z)l,, .. (3.7)

bestimmt werden. Dies bedeutet, dafl fiir ein im gesamten Definitionsbereich lokal steu-

erbares QLS auch die Arbeitspunkt-Steuerbarkeit gegeben ist.

Beispiel 3.5 :

Fir das QLS nach Gl. (B8.1-2) folgt aus f(@,us) = 0 und u, = 0 der stationére

T
Punkt &, = [ % % ] , woflir das zugehorige linearisierte System die Matrizen
_bd 0
A:[& K ] ; b:[_%] (B3.5-1)
b b

besitzt. Die Arbeitspunkt-Steuerbarkeits-Matrix lautet:

e V]
Qss = [b, Ab] = ae . (B3.5-2)
_T 0

Das System ist also in x arbeitspunkt-steuerbar.
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4 Einsatz symbolverarbeitender Software

Die Anwendung der Analyseverfahren der QLS erfordert bereits fiir Systeme niedriger
Ordnung umfangreiche analytische Berechnungen, die ohne Rechnerunterstiitzung prak-
tisch kaum durchfithrbar sind (vgl. hierzu Jelali (1993b) am Beispiel der Beobachtbarkeits-
Analyse sowie Abschnitt 8 dieser Arbeit am Beispiel der Steuerbarkeits-Analyse). Dazu
werden in den letzten Jahren in verstarktem Mafle symbolverarbeitende Programmierspra-
chen, wie z. B. MACSYMA, MAPLE und REDUCE, eingesetzt. Diese konnen autwendige
mathematische Rechenoperationen sowohl numerisch als auch symbolisch vornehmen. Die

symbolische Verarbeitung erleichtert die Durchfithrung von Parameterstudien erheblich.

Zur Zeit sind Programmsysteme zu finden, die die Analyse und Synthese nichtlinearer
Systeme ermdglichen. Hier interessieren zum einen das Programmsystem MACNON und

zum anderen das Programmsystem POLYCON?

Das MACSYMA-Programmsystem MACNON
MACNON enthélt eine Anzahl von Analyseverfahren beziiglich
e Beobachtbarkeit,

e Steuerbarkeit und

e Stabilitét,

sowie Syntheseverfahren beziiglich

e Beobachterentwurf und

e Zustandsregelung.

Auflerdem stellt das Programmsystem einige wichtige mathematische Funktionen, wie
z. B. die Berechnung der Jacobi-Matrix, die Taylorlinearisierung und die interaktive Un-
tersuchung des Vorzeichens eines skalaren Ausdrucks bereit. Zur Ranguntersuchung wird
eine interaktive Vorgehensweise vorgeschlagen, die darin besteht, die Determinante der
jeweiligen Matrix symbolisch zu berechnen und auf Nullstellen, d. h. Singularitdten zu
untersuchen. Fine ausfithrliche Beschreibung des Programmsystems findet man in Birk

und Zeitz (1991) sowie Birk 1992.

Das MAPLE-Programmsystem POLYCON

POLYCON erméglicht die Analyse nichtlinearer Polynomsysteme und zwar:

e Bestimmung von Ein-/Ausgangsdifferentialgleichungen,

"Das Programmsystem wird an der Universitit Linképing (Schweden), hauptsichlich von Forsman

(1992a und 1993), bearbeitet.
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e Realisierung von Ein-/Ausgangsbeziehungen,

e (algebraische) Beobachtbarkeit,

e Zustandstransformation von Systemen und

e Berechnung der Transformation zwischen dquivalenten Polynom-Systemen.

Diese Funktionen sind als Routinen sowohl fiir zeitkontinuierliche als auch fiir zeitdiskrete
Polynom-Systeme in die Share-Bibliothek von MAPLE implementiert. Die Beschreibung
der einzelnen Routinen, die auf Verfahren der kommutativen Algebra basieren, ist Forsman

(1992a und 1993) zu entnehmen.
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5 Zusammenfassung und Ausblick

Die vorliegende Arbeit® beschiftigt sich mit der Steuer- und Beobachtbarkeits-Analyse
zustandsquadratischer Systeme mit linearer Steuerung, die eine nichtlineare Unterklas-
se der analytisch linearen Systeme bilden. Diese Analyse stellt eine Vorraussetzung zum

Entwurf einer Zustandsregelung bzw. eines Zustandsschétzers der QLS dar.

Einige in der Literatur angegebene mathematische Verfahren zur Uberpriifung der Beo-
bachtbarkeit werden angegeben. Die meisten Verfahren stellen nur hinreichende und damit
strenge Kriterien zur Verfiigung. Die Grobner Basen, die als Verallgemeinerung der Gauf-
schen Elimination angesehen werden kénnen, sind dagegen ein sehr niitzliches Werkzeug
sowohl zur Uberpriifung der globalen als auch der algebraischen Beobachtbarkeit. Die
letztere Eigenschaft ist von besonderer Bedeutung, da sie einfacher nachgewiesen werden
kann als die sonstigen Beobachtbarkeits-Formen (Jelali 1993b). Vor allem treten bei ihrer

Uberpriifung keine numerischen Probleme auf.

Im weiteren Teil der Arbeit erfolgt die Behandlung der in enger Verbindung mit der
Beobachtbarkeit stehenden Eigenschaft der Steuerbarkeit. Es werden aus der Vielzahl der
in der Literatur angegebenen Steuerbarkeits-Formen fiir nichtlineare Systeme die globa-
le Steuerbarkeit, die lokale Steuerbarkeit und die Arbeitspunkt-Steuerbarkeit besprochen
und auf die QLS spezialisiert. Es hat sich auch hier gezeigt, dal es sehr giinstig ist, die
QLS in eine allgemeine Steuerbarkeits-Normalform zu tiberfithren, bei der sowohl die glo-
bale als auch die lokale Steuerbarkeit direkt gegeben ist. Dadurch wird die Anwendung

komplizierter und strenger mathematischer Uberpriifungsverfahren vermieden.

In Zukunft kann das Problem der algebraischen Steuer- und Beobachtbarkeit auf der
Basis der Differentialalgebra behandelt werden, die in letzter Zeit in verstiarktem Mafle
zur Analyse nichtlinearer Systeme herangezogen wird und sich als geeignet erweist (Weyh
1992 und Wey und Swaricek 1994). Sehr interessant ist vor allem der Zusammenhang zwi-
schen den Problemkreisen der Steuer- und Beobachtbarkeit, der Minimalrealisierung und
der Ein-/Ausgangsdarstellung durch Ein-/Ausgangsdifferentialgleichungen eines Systems,
worauf nur vereinzelt in der Literatur eingegangen wird. Fin-/Ausgangsbezichungen las-

sen sich mit Hilfe der Grébner Basen elegant berechnen.

Da bisher nur akademische Beispiele zur Erlauterung der vorgestellten Analyseverfahren
herangezogen wurden, ist es naheliegend, in weiteren Arbeiten die Anwendung auf tech-
nische Systeme, z. B. hydraulische und pneumatische Antriebe, vorzunehmen. Dies setzt
die Bestimmung zustandsquadratischer Modelle fiir diese Systeme voraus, was entweder

analytisch oder anhand von Identifikationsverfahren geschehen kann.

8Die Arbeit entstand im Rahmen des von der Deutschen Forschungsgemeinschaft geférderten Projek-
tes ,Zustands- und Parameterschitzung bei analytischen Systemen mit linearer Steuerung®.
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