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1 Einleitende Ubersicht

In den letzten Jahren entwickelte sich die Differentialalgebra, die von Ritt (1950) ein-
gefiihrt wurde, zu einem exzellenten Werkzeug zur Analyse nichtlinearer Systeme. Dies ist
hauptséchlich auf die zahlreichen Arbeiten von Fliess (u. a. 1986, 1990) zurtickzufiihren.
Viele Eigenschaften nichtlinearer Systeme, wie z. B. Entkoppelbarkeit, Invertierbarkeit
und Beobachtbarkeit, konnen anhand der neuen differentialalgebraischen Ansitze auf ele-

gante Art und Weise analysiert werden.

Der vorliegende Forschungsbericht behandelt zwei eng miteinander verkniipfte Eigenschat-
ten nichtlinearer Systeme —insbhesondere Polynomsysteme—, ndmlich die Minimalrealisie-
rung und die Beobachtbarkeit. Die Analyse dieser Eigenschaften stellt eine Voraussetzung
fiir die Auslegung von Regelungskonzepten dar. Beide Problemkreise werden auf der Basis

der Differentialalgebra vorgestellt und diskutiert.

Im einzelnen gliedert sich die Arbeit wie folgt: Abschnitt 2 fiihrt einige grundlegende
Begriffe der Differentialalgebra ein, die zum Verstandnis der weiteren Ausfithrungen un-
bedingt notwendig sind. Hauptsédchlich wird auf die Algebraisierung nichtalgebraischer

Differentialgleichungen und die sog. differentiellen Kérper eingegangen.

Gegenstand des 3. Abschnitts ist die Beschreibung nichtlinearer Systeme mittels der neuen
Werkzeuge der Differentialalgebra. Im Vordergrund stehen die Ein-/Ausgangsbeziehung
und die Zustandsraumdarstellung eines Systems. Wichtige Begriffe, wie z. B. differentielle
Korpererweiterung, Transzendenzgrad und Transzendenzbasis werden im Zusammenhang

mit der Realisierung eines nichtlinearen Systems erldautert.

In Abschnitt 4 erfolgt die Behandlung des Konzepts der algebraischen Beobachtbarkeit
von Diop und Fliess (1991) sowie deren Zusammenhang mit dem Begriff der Minimal-
realisierung. Dieser Zusammenhang wird zusitzlich anhand eines technischen Beispiels
erlautert. Anschlieend wird die Beziehung der algebraischen Beobachtbarkeit zu ande-
ren Beobachtbarkeitskonzepten, hauptsachlich zu denen von Hermann und Krener (1977)

angegeben.

Abschnitt 5 befait sich mit dem Einsatz der sog. Grobner Basen zur rechnergestiitzten
Analyse der algebraischen Beobachtbarkeit sowie zur Berechnung von Ein-/Ausgangs-

Differentialgleichungen.

Der letzte Abschnitt enthélt eine Zusammenfassung des vorliegenden Berichts und gibt
einen Ausblick auf mégliche weiterfiihrende Untersuchungen im Bereich der hier behan-
delten Thematik.
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2 Grundlegende Begriffe der Differentialalgebra

Die Differentialalgebra wurde von Ritt (1950) mit der Intention eingefiihrt, die aus der
klassischen Algebra bekannten Grundsétze so aufzubereiten, dafl sie auf Differentialglei-
chungen anwendbar sind. Voraussetzung hierfiir ist, dafl sich die Differentialgleichungen
algebraisch in ihren Variablen und deren Ableitungen verhalten. Sie diirfen also keine
Funktionen wie sin, cos etc. enthalten, sondern miissen aus Polynomen bzw. rationalen
Funtkionen aufgebaut sein. Diese Forderung schrankt den Wirkungsbereich der Differen-
tialalgebra zunédchst deutlich ein, es 148t sich aber zeigen, daf} eine Reihe von nichtal-

gebraischen Differentialgleichungen in algebraische umgewandelt werden konnen (Fliess

1990).

2.1 Nichtalgebraische Differentialgleichungen

Betrachtet man z. B. die Differentialgleichung eines Pendels
i+ wisine =0 (2.1)

so kann diese in der vorliegenden Form nicht mit Hilfe der Differentialalgebra analysiert

werden. Bedenkt man aber, daf}

y =sina (2.2)
die Losung der algebraischen Differentialgleichung

Pyt 4 = i (2.3)
darstellt, so kann Gl. (2.1) alternativ auch als algebraische Differentialgleichung

(2?2 4 (28)? = wii? (2.4)
geschrieben werden®.

Dieses Verfahren fithrt fiir alle die Differentialgleichungen zum Erfolg, deren Koeffizien-
ten algebraischen Differentialgleichungen geniigen (Fliess 1990). Modelle realer Systeme
erfilllen im allgemeinen diese Voraussetzung, so dafl sich mit Hilfe der Differentialalgebra

eine groe Anzahl von systemtheoretisch relevanten Fragestellungen bearbeiten 1aft.

Im folgenden werden die grundlegenden Begriffe der Differentialalgebra diskutiert, die zur
Beschreibung von nichtlinearen Systemen benétigt werden. Weitergehende Informationen
sind z. B. in Fliess (1990) sowie Wey und Svaricek (1994) enthalten. Sie sind weitestgehend
an die in der kommutativen Algebra verwendeten Nomenklatur angelehnt (z. B. Shapiro

1975, Meyberg 1976).

!Das Ergebnis aus Gl. (2.4) 148t sich leicht verifizieren, denn mit der Substitution y = sin z folgt aus
Gl. (2.1) sowohl & = —w?y als auch 2 = —w?§. Stellt man dann Gl. (2.3) noch nach &% um und setzt
die gefundenen Ergebnisse in Gl. (2.4) ein, so folgt die Identitét.
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2.2 Differentielle Kérper

Ein differentieller Kéorper K ist eine Menge, in der neben den Verkniipfungen Addition

und Multiplikation auch eine einfache Differentiation d/dt definiert ist?. Diese entspricht

den bekannten Regeln

d .
d

J(ab) = ab+ab  VabeK

Ein Element ¢ des differentiellen Kérpers K wird als Konstante bezeichnet, wenn ¢ = 0

(2.5)

gilt. Die Menge aller Konstanten in K ist demzufolge eine Teilmenge von K. Typische
Beispiele fiir solche trivialen Mengen sind Q, R und C.

Fir die differentialalgebraische Definition eines Systems ist der Begriff der differentiellen
Kérpererweiterung von wesentlichem Interesse. Man betrachtet hierzu zwei differentielle
Koérper L und K, fiir die K C L gilt. Die zugehdrige Korpererweiterung, die mit L/ K

bezeichnet wird, kann grundséatzlich einer von zwei Klassen zugeordnet werden:

a) Ein Element a € L ist differentiell algebraisch iiber K, wenn eine Differentialglei-
chung P(a,a,...,a'®) = 0 existiert, wobei P einem Polynom beliebigen Grades mit

Koeffizienten in K entspricht.

Eine Korpererweiterung L/ K heifit differentiell algebraisch, wenn alle Elemente von
L differentiell algebraisch iiber K sind.

b) FEin Element a € L ist differentiell transzendent iiber K, wenn es nicht differentiell
algebraisch ist. Existiert wenigstens ein Element von L, das differentiell transzen-
dent ist, so wird die Korpererweiterung L/ K ebenfalls als differentiell transzendent

bezeichnet.

Die maximale Anzahl von transzendenten und untereinander unabhéangigen Elemen-
ten in L ist eine wichtige Grofe fiir die Beschreibung von Systemen. Sie wird als

differentieller Transzendenzgrad von L /K bezeichnet und im weiteren durch
diff. Trg L/K (2.6)

abgekiirzt.
Wird ein Korper M so gewdhlt, dal K € M C L gilt, dann 1a8t sich der differentielle

Transzendenzgrad von L/K in Analogie zur kommutativen Algebra indirekt bestimmen

(Fliess 1986):
diff. Trg (L/K) = diff. Trg (L/M) + diff. Trg (M/K) . (2.7)

?Die hier gemachten Betrachtungen bleiben auf gewdhnliche Differentialgleichungen beschrinkt, d.
h., daBl die Aussagen nur fiir gewdhnliche differentielle Korper mit einer einzelnen Differentiation d/dt
zutreffen, nicht aber fiir Kérper mit mehreren partiellen Differentiationen.
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3 Differentialalgebraische Beschreibung nichtlinea-

rer Systeme

Im folgenden wird aufgezeigt, wie die bisher erlauterten Begriffe der Differentialalgebra
gezielt aut die Problemstellungen, die sich bei der Analyse nichtlinearer Systeme ergeben,
angewendet werden kénnen. Die Betrachtungen sind aus Griinden der Anschaulichkeit auf

analytisch lineare Systeme (ALS) mit dem Zustandsmodell®

i(1) = a(@(t)) + Ble())ul)

> oiLs y(t) = Ca(t) () € R u(l) € R™ yll) € B (3.1)

beschrankt. Aber auch allgemeinere Systemklassen als diese lassen sich mit Hilfe der
Differentialalgebra beschreiben. Bevor ndher auf Zustandsraumdarstellungen eingegangen
wird, soll zunéchst die differentialalgebraische Beschreibung von Ein-/Ausgangssystemen

erlautert werden.

3.1 Ein-/Ausgangsbeschreibung nichtlinearer Systeme

In der Algebra ist es iiblich, mit einer umfassenden Menge als Grundkérper zu arbeiten
und die fiir eine Problemlésung benétigten Elemente als Teilmenge dieses Grundkérpers
anzusehen. In der Differentialalgebra geht man analog vor, indem in einem ersten Schritt
0 als differentieller Grundkérper definiert wird. D. h., Q geniigt den in Abschnitt 2 for-

mulierten Anforderungen an einen differentiellen Kérper und beinhaltet alle Elemente.

Mit £ C Q wird ein differentieller Kérper bezeichnet, der zumindest alle Koeffizienten der
zu betrachtenden System-Differentialgleichungen beinhaltet. Im allgemeinen reichen fiir k
die Mengen der rationalen Zahlen Q oder reellen Zahlen R aus. Weil differentielle Kérper
Ableitungen {é,...,a®} als Elemente enthalten kénnen, bieten sich aus Griinden der

Ubersicht die folgenden Abkiirzungen an:

o k{x} steht fir alle Polynome in den Variablen {x, &, &, ...} mit Koeffizi-

enten aus k,

o k<x> steht fiir alle rationalen Funktionen in den Variablen {z, #,%,...}

mit Koeffizienten aus k.
Fiir nichtdifferentielle Kérper werden dementsprechend die Symbole:

o k[x] steht fiir alle Polynome in der Variablen & mit Koeffizienten aus k,

e k(x) steht fiir alle rationalen Funktionen in der Variablen « mit Koeffi-

zienten aus k

3Die Annahme einer linearen Ausgangsgleichung y(t) = Cz(t) bedeutet keine Einschrinkung der
Allgemeingiiltigkeit (Schwarz 1991).
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verwendet.

Der differentielle Kérper k<w> entspricht demnach der Menge aller rationalen Funktionen
in den Elementen w = {uy, ..., u,} sowie deren zeitlichen Ableitungen mit Koeflizienten
in k. Die Ein-/Ausgangs-Differentialgleichungen, die ein Regelungssystem mit Eingangs-
vektor u(t) und Ausgangsvektor y(t) beschreiben, werden nun mittels der Kérpererwei-
terung k<u,y>/k<u> modelliert, wobei der differentielle Kérper k<u,y> gegeniiber
k<u> zusétzlich die p AusgangsgréBen yy,...,y, sowie deren zeitliche Ableitungen bein-
haltet:

Definition 3.1 (Rudolph 1992)

Ein nichtlineares Ein-/Ausgangssystem Y mit dem Eingang w = {uy,...,u,} und dem
Ausgang y = {y1,...,y,} ist eine differentielle Kérpererweiterung k<w,y>/k<u>, die
differentiell algebraisch ist. Folglich gilt fiir den differentiellen Transzendenzgrad der Zu-

sammenhang
diff. Trg k<u,y>/k<u>=0 . (3.2)
O
Die Eingangsgrofen u; sind hierbei als voneinander unabhéngig angenommen, d.h.
diff. Trg k<u>/k = diff. Trg k<uy,...,un>/k=m . (3.3)

Definition 3.1 gibt wieder, da$ fiir ein System Y°* die Komponenten von  und y durch

eine endliche Anzahl impliziter Differentialgleichungen verkniipft sind:

glu,w,u,...,94,9,9,...)=0 . (3.4)

Diese Aussage korrespondiert mit der in der Regelungstheorie {iblichen Definition eines
Systems (Isidori 1989, Schwarz 1991, Follinger 1992). Im weiteren werden die Betrach-
tungen auf Systeme beschrankt, die durch algebraische Differentialgleichungen in w und
y beschrieben werden kénnen. Andere Systeme kénnen eventuell unter Zuhilfenahme der
in Abschnitt 2.1 vorgestellten Methode algebraisiert werden.

3.2 Zustandsraumdarstellung nichtlinearer Systeme

Anstatt ein System durch Differentialgleichungen héherer Ordnungen zu beschreiben, ist
es oftmals zweckmaéaBiger, ein Zustandsmodell zu verwenden. Hierbei wird mittels einer
Zustandsvariablen @(t) € R™ ein System durch mehrere, im allgemeinen miteinander
gekoppelte, Differentialgleichungen erster Ordnung dargestellt. Fiir ein ALS erhdlt man
somit die Zustandsraumdarstellung (3.1).

4Die Bezeichnung Y steht in den folgenden Abschnitten fiir die ein System beschreibende Kérperer-
weiterung k<w,y>/k<u>.
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Ein Zustand & = {z1,...,z,} sollte hierbei als eine Menge mit n Elementen aus {2 ange-
sehen werden, so dafl zum einen alle zeitlichen Ableitungen {i;| £ = 1,...,n} und zum

anderen die AusgangsgroBen {y;| ¢ = 1,...,p} Funktionen in den Variablen @, u, w, @, . ..

sind (Fliess 1986).

Neben dem in Definition 3.1 eingefiihrten differentiellen Transzendenzgrad eines Systems
k<w,y>/k<u> ist der (nichtdifferentielle) Transzendenzgrad dieser Koérpererweiterung
eine wesentliche Kenngréfle. Er entspricht, vollkommen analog zum differentiellen Trans-
zendenzgrad, der maximalen Anzahl von Elementen a in k<w, y>, die voneinander (nicht-
differentiell) unabhéngig sind und fiir die kein (nichtdifferentielles) Polynom P(a°, a,a?, .. .)

= 0 mit Koeffizienten in k<u> existiert. Er wird im folgenden mit n,,;, bezeichnet:
Nin = 1rg k<w,y>/k<u> . (3.5)

Eine Menge von n,,;, transzendenten Elementen wird auch als Transzendenzbasis bezeich-

net.

W4&hlt man eine beliebige Transzendenzbasis zu k<wu, y>/k<u> aus und bezeichnet diese
mit & = {x1,...,2,, . }, so fihrt dies zu folgenden Abhéngigkeiten:

Pulip,z ..., u®)) = 0: k=1,... nmn (3.6)
3.6
Qilyi,x,uw,w, ..., ul®) = 0; i=1,...,p

P, und @); stehen hierbei fiir Polynome mit Koeffizienten in £.

Die impliziten Differentialgleichungen (3.6) beschreiben die wohl allgemeinste Form einer
Realisierung (Diop 1992), entsprechende explizite Zusammenhénge sind unter Umstédnden
nur lokal giiltig. Das Vorhandensein von zeitlichen Ableitungen der Eingangsgrofie auch in
den expliziten Differentialgleichungen wird durch eine Spezialisierung auf die Klasse der
ALS ausgeschlossen. Es ist jedoch moglich, durch Zustandstransformation die maximal
vorkommende Ordnung von Eingangsableitungen in einem System zu verringern (Delaleau

1992).

Eine Transformation eines Zustandsvektors in einen anderen wird aus differentialalgebrai-

scher Sicht wiederum durch die Existenz von Polynomen charakterisiert. Nimmt man z. B.

zwei Zustande ® und ® = {z4,...,2,, . }, so sind deren Elemente durch die Beziehungen
Pk(xi,;fz,u,li,...,u(@)) = 0; izl,...,nmm
- _ (3.7)
Qi(zi, ®,u,u,..., ul®)) = 0

miteinander verkniipft, wobei die Polynome P, und Q; nur Koeffizienten in k aufweisen.

Obwohl die grundsétzliche Beschreibung von Zustandsmodellen mit Hilfe der Differenti-

alalgebra keine Probleme bereitet, ist es verhaltnisméfig autwendig, aus einer gegebenen
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Ein-/Ausgangsbeziehung eine zugehorige Zustandsraumdarstellung abzuleiten. Denn ne-
ben der Tatsache, daBf das Realisierungsproblem im allgemeinen nicht eindeutig 16sbar ist,
miissen eventuell Ungleichungen zu vorhandenen Ein-/Ausgangsgleichungen hinzugefiigt
werden, um eine Realisierung zu finden (Diop 1991). Ansétze zur Losung des Realisie-

rungsproblems sind z. B. in Forsman (1991a) enthalten.
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4 Beobachtbarkeit nichtlinearer Systeme

Unter dem Begriff der Beobachtbarkeit eines Systems > ist grundséatzlich die Problematik
zu verstehen, aus Kenntnis der Ein- und Ausgangsgrofien die Zustandsgréfien zu ermitteln.
Das heifit, da} dieser Begriff in keiner Weise eine innere Systemeigenschaft wiedergibt,
sondern vielmehr abhdngt von der Existenz und Verfiigbarkeit einer Zustandsraumdar-
stellung. Im weiteren wird die algebraische Natur des Konzeptes der Beobachtbarkeit von
ALS diskutiert und, darauf aufbauend, die Fignung der Differentialalgebra zur Untersu-
chung dieser Kenngrofle verifiziert. Anschlielend erfolgt die Behandlung der Beziehung
der algebraischen Beobachtbarkeit zu anderen Konzepten.

4.1 Algebraische Beobachtbarkeit

Eng verkniipft mit der Analyse der Beobachtbarkeit ist der Begrift der Minimalrealisie-
rung. Denn es 14t sich der folgende direkte Zusammenhang angeben:

Satz 4.1 (Diop 1992)
Wenn fiir ein Ein-/Ausgangssystem 3 eine Zustandsdarstellung gemafl Gl. (3.1) existiert,
so sind die beiden folgenden Aussagen dquivalent:

(i) Die Zustandsdarstellung (3.1) von }_ ist eine Minimalrealisierung, d. h. die Anzahl
n der Zustdnde stimmt mit der Ordnung von } iiberein.

(ii) X ist beobachtbar.

a

Die Ordnung eines Systems entspricht hierbei dem im vorherigen Abschnitt definierten

Transzendenzgrad n,,;, eines Systems:
Nnin = 1rg k<w,y>/k<u> . (4.1)

Anmerkung:

Der hier verwendete Begriff der Minimalrealisierung steht in einem Widerspruch zu dem
von Kalman (1969) gefundenen Ergebnis fiir LS, dal ein minimal realisiertes System im-
mer steuerbar ist. Dies liegt daran, daf Kalmans Ansatz sich an der Ubertragungsmatrix

orientiert und dadurch die Anfangswerte unberiicksichtigt bleiben koénnen (Fliess und

Glad 1993):

Beispiel 4.1
Untersucht man das durch die Differentialgleichung y = @ beschriebene LS, so
kommt der hier verwendete Ansatz in Gl. (4.1) zu dem Ergebnis, da eine Mini-

malrealisierung die Ordnung n,,;, = 1 hat:

x = 0

r+u g x(tg) = o
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Dieses System ist wegen Satz 4.1 beobachtbar. Allerdings ist es offensichtlich nicht
steuerbar.

Demgegeniiber ist die Ubertragungsfunktion fiir j = @ durch F'(s) = 1 gegeben, da-
mit hat eine minimale Realisierung nach Kalman die Ordnung 0 und ist vollsténdig
steuer- und beobachtbar. Allerdings vernachlassigt dieser Ansatz die Anfangsbedin-

gung xo.

Anschaulich bedeutet Satz 4.1, daf eine Systemrealisierung dann minimal (und damit beo-
bachtbar) ist, wenn die Zustandsvariablen gerade eine Transzendenzbasis der Korperer-
weiterung k<w,y>/k<u> bilden. Voraussetzung hierfiir ist allerdings, dafl - durch alge-
braische Ein-/Ausgangs-Differentialgleichungen beschrieben werden kann. Wird von einem
nichtalgebraischen System ausgegangen und das in Abschnitt 2.1 besprochene Verfahren
zur Algebraisierung verwendet, so ist die Aussage von Satz 4.1 fiir das algebraisierte Sy-
stem richtig. Fiir das Originalsystem mufl Satz 4.1 aber nicht gelten, da die Algebraisierung
zu einer Anderung der Ordnung fithren kann (vgl. Fliess 1986).

Beriicksichtigt man Gl. (2.7), die sowohl fiir den nichtdifferentiellen als auch den diffe-
rentiellen Transzendenzgrad Giiltigkeit hat, so fiihrt dies zu einer weiteren Moglichkeit
zur algebraischen Charakterisierung der Beobachtbarkeit. Denn wenn @ eine Transzen-
denzbasis zu Y mit 1., Elementen bildet, konnen nach Gl. (3.6) alle Ausgangsgrofien y;

durch Differentialgleichungen in den Variablen & und w,w, %, ... beschrieben werden. Es

gilt deshalb
Trg k<wu,y>(@)/k<u> = i, = Trg k<w,y>/k<u> (4.2)

so daff nach Gl. (2.7) der Zusammenhang

Trg k<u,y>(@)/k<u,y> = Trg k<u,y>(x)/k<u> —Trg k<u,y>/k<u> 13)
folgende Definition erméglicht:
Definition 4.1 (Diop und Fliess 1991, Forsman 1991a)
Ein System >~ wird als algebraisch beobachtbar bezeichnet, wenn gilt:
Trg k<u,y>(x)/k<u,y>=0 . (4.4)
O

Ein System ist demzufolge algebraisch beobachtbar, wenn alle seine Zustandsgréfien x;
algebraisch tiber k<wu,y> sind.
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Beispiel 4.2 Ein frei rotierender Starrkoérper, wie z. B. ein Satellit, kann durch die

nichtlinearen Differentialgleichungen

Lan(t) = (I — I)ws(tws(t) +
Lin(t) = (I — L)wr (Hws(t) + uz
Las(t) = (I — L)wy (Hws(t) + us

beschrieben werden (Frayman 1974). Die Eingangsgrofen u; entsprechen den angrei-
fenden Drehmomenten in Richtung der orthonormalen Achsen {e;,es, e3}, I; den
Haupttrigheitsmomenten und w; den Winkelgeschwindigkeiten. Als Ausgangsgréfie
wird w; verwendet. Die Analyse eines solchen Systems ist z. B. fiir die Hohenregelung

von Raumfahrzeugen von Interesse (Kang und Krener 1991).

Mit den Abkiirzungen

L1y 1 - 1 L1 1

ap = T ,%ZE;&— T ; Be=— m= A ,%ZE

erhédlt man das System als Zustandsmodell eines ALS:

1 ToT3 as 0 0
r = frrizs |+ 0 By 0 |u
stm N T1To 0 0 7
y = 1 0 0|

Die Fragestellung, ob aus der Kenntnis einer Winkelgeschwindigkeit sowie der wir-
kenden Drehmomente die gesamte Kérperbewegung bestimmt werden kann, 148t sich

durch eine Analyse der Beobachtbarkeit klaren.

In differentialalgebraischer Schreibweise ist das Beispielsystem als Koérpererweite-
rung R<uy, us, us, y>/R<uq, uz, us> beschreibbar. Gema Gl. (4.1) ist fir die Ele-
mente der Menge {y, 9,4, ...} zu priifen, ob diese algebraisch oder transzendent {iber

der Menge R<uy, ug, us> sind. Fiir die zeitlichen Ableitungen gilt

¥y = I
Yy = Q1TaT3+ Qaug
Y = QiToT3+ T3 + Qg

2 2 .
o ey xs + o Parsus + a5 + Qg yataus + antly

Zunéchst wird eine generische Betrachtung vorgenommen, so dafl die Zahlenwerte

von &, v und y sowie der Parameter «;, 3;,~; unberiicksichtigt bleiben. Dann ist
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y nicht als rationale Funktion in w darstellbar, ebenso kann g nicht ausschlieflich
durch u beschrieben werden. Lést man die beiden ersten Gleichungen nach zy und

9 auf

rp =Yy
Y — ayuy

13

o =

und setzt das FErgebnis in die Gleichung fiir § ein, so fithrt dies zu einer Funktion
§ = f(u,xs3). Also ist auch § transzendent {iber k<u>, eine Minimalrealisierung
muf} demzufolge mindestens die Ordnung 3 aufweisen. Das System 7, ist bereits

minimal und damit algebraisch beobachtbar.

Eventuell auftretende Singularitdten kénnen ebenfalls analysiert werden. Gilt z. B.
a1 = 0, so sind sowohl § = asuy, §J = asuy als auch alle weiteren Ableitungen von y
algebraisch tiber k<wu>. Eine Minimalrealisierung héatte folglich die Ordnung 1, so
dafl 37,1 nicht beobachtbar wére.

Dieses Verfahren zur Analyse der Beobachtbarkeit kann relativ einfach als Algorithmus in
einer symbolverarbeitenden Sprache realisiert werden. Hierauf wird im Abschnitt 5 ndher

eingegangen.

4.2 Beziehung zu anderen Beobachtbarkeitsformen

In Diop und Fliess (1991) erfolgte bereits die Herleitung des Zusammenhangs zwischen

der algebraischen Beobachtbarkeit und der lokal weichen Beobachtbarkeit nach Hermann

und Krener (1977) mit Hilfe der sog. Kahler-Differentiale. Auf diesen Zusammenhang wird

im folgenden eingegangen.

Betrachtet werden hier EingroBen-Polynomsysteme (PLS) der Form
() = ¥ Awl()+ 3 Bl (Hu(t) = f(z,u) 43

1= 7= .
W1) = calt)i=c@) ; () R

die eine Unterklasse der ALS bilden. Zur tibersichtlichen Darstellung wird die Kronecker-
Potenznotation

YN =2t)o.. o) (4.6)

i—mal

verwendet. Zunéchst sei folgende Definition angegeben:

Definition 4.2 (Hermann und Krener 1977, Schwarz 1991)
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i) Zwei verschiedene Anfangszustande «,(0) und «;(0) des PLS nach Gl. (4.5) heiflen
nicht unterscheidbar, wenn fiir jedes Eingangssignal u(t) € U gilt: y,(t) = (1) VI €
[0, 7. Hierbei sind y,(?) und y;(¢) die Systemantworten fiir u(¢) und @,(0) bzw. u(t)
und @,(0). T sei eine beliebige, aber feste reelle Zahl.

ii) Ein PLS nach GI. (4.5) heifit lokal weich beobachtbar in @,, wenn eine offene Um-
gebung Uy von @ so existiert, daf} fiir jede offene Umgebung V C Uy die Menge der

nicht unterscheidbaren Punkte xq selbst ist.

iii) Das PLS heifit lokal weich beobachtbar, wenn die Figenschaft ii) fiir alle € R”
gilt.

O
Es gibt ein mathematisches Kriterium zur Uberpriifung der lokal weichen Beobachtbarkeit:

Satz 4.2
Das PLS nach nach Gl. (4.5) ist lokal weich beobachtbar, wenn die Beobachtbarkeitsmatrix
Qp(x,u) im gesamten Zustandsraum Ve € R den vollen Rang

Rang Qp(x,u) =n (4.7)

besitzt.

Die Beobachtbarkeitsmatrix @p(®, ) kann anhand des Differentialoperators

Neta) = ) T prie X i | 2]

Nic(w) = Np(Nj~'c(z)) mit Nje(x)=c(x) ; w=|ui,. .. u"">

durch
Ny
N
Qulew=| |52 (18)
N;Z_l

gebildet werden. Sie ist die Jacobi-Matrix der Beobachtbarkeitsabbildung q(@,w), die
den Systemzustand und das Eingangssignal auf das Ausgangssignal abbildet. Sie kann
mit dem Differentialoperator
_ Oc(®) de(x) .

Mfc(w) - aw f(a:,u) + aﬁ u(t) ”
Mjc(®) = Mp(M; " c(z)) mit Mjc(z) = c(2)
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in der kompakten Form
Mg
qlz,u)=| |z (4.9)
e
dargestellt werden. Mit der Beobachtbarkeitsabbildung bzw. der Beobachtbarkeitsmatrix
gilt:

Satz 4.3 (Forsman 1991a)

Ein PLS nach GI. (4.5) ist dann und nur dann algebraisch beobachtbar, wenn die zugehorige
Beobachtbarkeitsabbildung dominant ist, d. h. wenn alle Komponenten dieser Abbildung
algebraisch unabhingig sind. Dies ist genau dann der Fall, wenn die Beobachtbarkeitsma-

trix die Rangbedingung
Rang,., Qp(x,u) =n (4.10)

erfillt.
O

Es gibt also einige wesentliche Unterschiede zwischen dem oben vorgestellten Konzept
der algebraischen Beobachtbarkeit und dem der lokal weichen Beobachtbarkeit von Her-
mann und Krener (1977) geméaf Definition 4.2. Einerseits stellt die Rangbedingung fiir
die algebraische Beobachtbarkeit eine notwendige und hinreichende, fiir die lokale weiche
Beobachbarkeit aber nur eine hinreichende Bedingung dar. Andererseits muf} die Rang-
bedingung bei der letzteren Eigenschaft generell (iiberall) gelten, wihrend sie bei der
anderen nur strukturell (generisch) erfiillt sein muf. Damit werden die Probleme auf-
grund evtl. auftretender Singularititen umgangen. Die Uberpriifung der algebraischen
Beobachtbarkeit ist daher wesentlich einfacher als die der lokal weichen Beobachtbarkeit.
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5 Grobner Basen und Rechnereinsatz

Nun besteht die Aufgabe darin, die bereits in Abschnitt 3.1 angesprochene Kérpererwei-
terung k<w,y>/k<u>, die ein in Ein-/Ausgangsform gegebenes System beschreibt, zu
bestimmen. Weil dies bereits fiir Systeme niedriger Ordnung umfangreiche analytische
Berechnungen erfordert, ist eine Rechnerunterstiitzung praktisch unentbehrlich. Dazu
werden in den letzten Jahren in verstirktem Mafle symbolverarbeitende Programmier-

sprachen, wie z. B. Maple oder Macsyma, eingesetzt.

Gl. (4.5) lautet in Komponenten-Schreibweise:

fi(x,u)
falx,u)

(1) = ar(@e,u)+ bi(xe,u)u(t)
Bo(t) = as(@e,u)+ ba(x,u)u(t)

In(t) : an(®,u) + by, u)u(t) = fo(xe,u)
y(t) = c(=) .

Gesucht wird ein Differentialpolynom nur in v und y fiir das Ideal
I = (l'l(t) - fl(wv u), jj?(t) - fZ(wv u)v SRR xn(t) - fn(wv u)v y— c(a:)) (51)

in k{x,u,y}. Un die Anzahl der Variablen in [ zu reduzieren, betrachtet man das equi-
valente Ideal (Forsman 1991)

O, = (y(t) = Mjc(x). §(t) — Myc(=),....y"(t) — Mjc(z)) . (5.2)

Demzufolge miissen in O, die Variablen x; eliminiert werden, um die gesuchte Fin-
/Ausgangs-Differentialgleichung zu erhalten. Dies kann anhand der sog. Grobner Basen

verwirklicht werden. Denn es gilt:

Satz 5.1 (Forsman 1991a)
Ein Grobner Basis fiir O,, mit einer Rangfolge vom Typ & > {u, @, ..., u" ™ y g,...,y"™}
enthélt eine Ein-/Ausgangsbeziehung fiir das PLS nach GI. (4.5).

O
Die Rangfolge gibt an, welche Variablen zuerst eliminiert werden sollen:
Definition 5.1 (Forsman 1991a)
Eine Rangfolge der Variablen xy,zs,...,2, ist eine Permutation dieser Symbole. Zur

Kennzeichnung dieser Rangfolge eignet sich die Relation < bzw. > mit den Eigenschaften:

x; < x;: x; hat eine héhere Rangordnung als x;,
x < y: alle Komponenten des Vektors y besitzen eine hohere Rangordnung

als die von .
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Der Zusammenhang zur algebraischen Beobachtbarkeit kann auch folgendermaflen formu-

liert werden:

Satz 5.2 (Forsman 1991a)
Ein PLS nach Gl. (4.5) ist algebraisch beobachtbar, wenn es keine Ein-/Ausgangs-Differen-
tialgleichung der Ordnung kleiner als n in y(#) existiert.

O

Die Grébner Basen sind ein niitzliches mathematisches Werkzeug der kommutativen Al-
gebra und entsprechen den konstruktiven Methoden der Differentialalgebra, den sog. Ritt-
schen charakteristischen Mengen . Sie kénnen auch als Verallgemeinerung der Gauflschen
Elimination angesehen werden. Ein Vorteil der Verwendung der Grébner Basen zur Eli-
minierung von Variablen liegt in der Tatsache, daf} diese in vielen symbolverarbeitenden
Programmiersprachen, wie z. B. Maple (Char u. a. 1991) und Macsyma (Symbolics 1988),
implementiert sind. In dieser Arbeit wird auf die GB-Grundfunktionen in Maple sowie die

in Polycon® zu findenden Routinen zuriickgegegriffen.

Es existieren 3 Methoden zur Berechnung der Ein-/Ausgangsbeziehung von PLS anhand

der Grobner Basen:

1. Bestimmung einer sog. Kontraktion des Ideals O, auf k<u,y>[y(™] mit Hilfe der
Maple-Funktion finduni.

2. Berechnung der Grobner Basen des Ideals O, mit der Rangfolge {z1,...,2,} <
{u,a, ..., u™} <y < <4 mit Hilfe der Maple-Funktion gbasis.

3. Berechnung der Grébner Basen des Ideals O, mit der Rangfolge {z1,...,z,} <y

n—1)

und mit wu, 1w, ..., ul und v, 7, ...,y als Parameter.

Diese Methoden werden in Form von Maple-Prozeduren torel, iorel2 und iorel3 bei Fors-
man (1991a) beschrieben. Aulerdem existieren in Polycon u. a. zum einen eine weitere
Routine ss2ioc zur Berechnung des Fin-/Ausgangsverhaltens und zum anderen obsuvc,
welche die Analyse der algebraischen Beobachtbarkeit fiir PLS ermdglicht. Sie liefert die
Zusammenhénge der einzelnen Zustdnde z;(t) mit dem Eingangssignal u(t), dem Aus-
gangssignal y(t) sowie deren Zeitableitungen. Dazu geniigt es i. allg., den Eliminationsal-

gorithmus der Grébner Basen fiir das Ideal
Op1 = (y(1) = Mie(@), (1) — Mgc(@), ...,y (t) = Mj~'e(=)) (5.3)

unter Beachtung einer bestimmten Rangfolge auszuwerten. Die Verwendung der beiden

Routinen verdeutlicht Beispiel 5.1.

>Polycon ist ein Maple-Programmsystem, das an der Universitit Linképing in Schweden von Forsman
(1992 und 1993) entwickelt und in der Share-Bibliothek von Maple implementiert wurde.
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Beispiel 5.1 Die bekannte Rauber-Beute-Beziehung stellt ein PLS mit der Zu-
standsdarstellung

. l axy — brizs ] l 0 ]
r = + U
E —dzy + cx179 —€xy
bsp2
y = [ 01 ] T

dar. Die Maple-Programmierbefehle zur Analyse der algebraischen Beobachtbarkeit

und zur Berechnung der Ein-/Ausgangsbeziehung lauten®:

> f:=vector([a*xl-b*x1*x2, -d*x2+c*x1*x2-e*x2%ul]):
> h:=x2:

> xl:=obsvc(f, h, x1);

=yl —y0d —y0eul

zl = J0c

> x2:=obsvc(f, h, x2);
x2 = y0
> ss2ioc(f, h);
y2y0 —y12 + byl y0* —ayl y0+ eu0by0® + dby0’—
—day0? — culay0d? + ul e y0?
Das betrachtete System 37, 5 ist damit algebraisch beobachtbar, da beide Zustande

y + dy + euy
cy

€1

Ty = Y

algebraisch iiber k<u,y> sind, womit }~,,,, der Bedingung nach Gl. 4.4 geniigt.
Dariiber hinaus kann Y, , durch die Ein-/Ausgangs-Differentialgleichung

gy — 4% + byy® — ayy + ebuy® + dby® — day® — eauy® + uy* =0

beschrieben werden. O

Viele Autoren befafiten sich mit der Aufgabe der Bestimmung von Ein-/Ausgangs-Differen-
tialgleichungen nichtlinearer Systeme. In van der Schaft (1989) wird ein differentialgeo-
metrischer sukzessiver Algorithmus hergeleitet, der allerdings nur lokal um einen Arbeits-
punkt (@4,ua,y4) und unter gewissen Rangbedingungen Giiltigkeit hat. Der gleiche
Algorithmus findet sich in Nijmeijer und van der Schaft (1990). Diop (1991) schlagt
einen differentialalgebraischen Eliminations-Algorithmus vor, der zusdtzlich ein System
von Ungleichungen beziiglich y = [y,9,...,y" '] und @ liefert, bei dessen Erfiillung die
Ein-/Ausgangsbeziehung Giiltigkeit hat.

5Fiir 1, x5 werden die Symbole x1, 22 verwendet. 40, vl und y0, y1,y2 bezeichnen u, « und ¥y, ¥, 3.
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6 Zusammenfassung und Ausblick

Der vorliegende Bericht” hat die Beobachtbarkeitsanalyse nichtlinearer Systeme mit Hilfe
eines algebraischen Ansatzes zum Thema. Diese wird insbesondere fiir Polynomsysteme
diskutiert.

Die Basis fiir die hier vorgestellte Analyse bildet die Verwendung der Differentialalgebra.
Zunichst werden in einem ersten Schritt die wichtigsten Begriffe dieser Theorie, insoweit
sie fiir die genannte Problematik von Interesse sind, kurz erldutert. Die anschlielende
Anwendung auf nichtlineare Systeme zeigt, dafl das Konzept der Differentialalgebra sich
nicht nur zur Beschreibung von Ein-/Ausgangssystemen sondern auch von Systemen in
Zustandsraumdarstellung gut eignet. Damit ist eine algebraische Definition der Beobacht-

barkeit eines Systems moglich.

Der Begrift des Transzendenzgrades, der einen direkten Zusammenhang zwischen einer
Realisierung und der korrespondierenden Ein-/Ausgangsdarstellung herstellt, erweist sich
als wichtiges Kriterium zur Beobachtbarkeitsanalyse. Mit seiner Hilfe kann die Aquivalenz
der Begriffe algebraische Beobachtbarkeit und Minimalrealisierung nachgewiesen werden.
Aufbauend auf dieser Verkniipfung 1a88t sich ein {iberschaubares Verfahren zur Analyse
der Beobachtbarkeit angegeben, welches anhand eines Beispiels verifiziert wird. Aufler-
dem kann ein Bezug zu den Beobachtbarkeitskonzepten von Hermann und Krener (1977)

aufgezeigt werden.

Fiir die Analyse komplexer nichtlinearer Systeme ist die Verwendung rechnergestiitz-
ter Verfahren praktisch unentbehrlich. Die Grundlage fir die algebraische Analyse der
Beobachtbarkeit bildet der Ubergang von einer Zustandsdarstellung zu einer Ein-/Aus-
gangsdarstellung. Hierfiir existieren bereits effiziente Algorithmen, die mit dem Begriff der
Grobner Basen (Forsman 1991b) in engem Zusammenhang stehen. Anhand eines Beispiels
wird die Anwendung dieser Methode in der symbolverarbeitenden Programmiersprache
Maple dargestellt.

Zwischen der Beobachtbarkeit einer nichtlinearen Zustandsdarstellung und der Beobach-
barkeit des korrespondierenden linearisierten Zustandsmodells besteht ein unmittelbarer
Zusammenhang (Diop und Fliess 1991). In weiteren Arbeiten ist daher zu klaren, in
welchem Verhéltnis die algebraische Beobachtbarkeit zu den Ergebnissen steht, die sich
anhand des Tangentialsystems ergeben. Im Laufe dieser Untersuchungen kénnte eventuell
ein noch effizienterer Algorithmus zur rechnergestiitzten Systemanalyse gefunden wer-
den. Dariiber hinaus sollte geklart werden, ob aus der Theorie linearer Systeme bekannte
Ansétze, wie z. B. eine strukturelle Beobachtbarkeitsanalyse (Reinschke 1988), auch auf

nichtlineare Systeme tibertragbar sind.

"Die Arbeit entstand im Rahmen der von der Deutschen Forschungsgemeinschaft geférderten Pro-
jekten [ Qualitative Analyse nichtlinearer Systeme mittels Digraphen“ und ,Zustands- und Parame-
terschdtzung bei analytischen Systemen mit linearer Steuerung®.
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