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Nomenklatur 11
Nomenklatur

A Systemmatrix

B Eingangsmatrix

b(q.q) verallgemeinerte Kreisel- und Zentrifugalkrafte

C Ausgangsmatrix

Ci(q.9)q verallgemeinertes Kreisel- und Zentrifugalmoment

f Anzahl der Freiheitsgrade

g9(q) Gewichtsmoment

h Schrittweite

I Einheitsmatrix

Kp Geschwindigkeitsriickfithrungsmatrix

Kp Positionsriickfithrungsmatrix

[ 2 Lénge

my 2 Masse

M (q) Massenmatrix

q verallgemeinerte Koordinaten oder Minimalkoordinaten

q Regelabweichungen

Q(q.9) verallgemeinerte eingepragte Krifte

R/ Menge der fx1-Vektoren

RS x RS Menge der f x f-Matrizen

t Zeit

u(t) Steuervektor

w(t) Sollvektor

y(1) Ausgang

x(t) Zustandsgrofe

B2 Winkel

0 Nullmatrix
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1 Einleitung

Mit dem zunehmenden Einsatz von Robotern wird eine immer héhere Funktionalitat ge-
fordert. Auf der einen Seite ist die Gewichtsreduktion der Roboter zu nennen, die z. B. fiir
Aufgabenstellungen der Raumfahrt unerlafllich ist. Auf der anderen Seite sollen vielseitig
einsetzbare Grofiroboter entwickelt werden, die sich durch grofie Reichweiten auszeichnen

und deshalb aus einer Hintereinanderschaltung mehrerer Arme bestehen.

Um fiir solche Mehrkérpersysteme geeignete Regelungskonzepte zu entwerfen, mufl zunéch-
st ein geeignetes Modell gefunden werden. Hierzu kénnen Newton-Euler- und Lagrange-
Gleichungen aufgestellt und ausgewertet werden. Normalerweise ist es aber schwer, solche
flexiblen Systeme mit mehreren Armen zu beschreiben, selbst wenn nur die Steifigkeit
beriicksichtigt wird. Ferner sind solche Systeme nichtlinear und zeitvariant, d. h. die Sy-
stemstruktur verdndert sich mit der Zeit und den Systemzustdnden. Zur Modellbildung
werden die Korper, aus denen sich ein System zusammensetzen 1a8t, als Objekte program-
miert. Die Programmumgebung , Mobile“ (Kecskeméthy 1993) erzeugt dann automatisch
ein Modell des gesamten Systems. ,Mobile® ist in C++ geschrieben und erlaubt die ob-

jektorientierte Modellierung der Dynamik von Mehrkoérpersystemen.

Zur Regelung dieser Systeme ist der Entwurf eines nichtlinearen Reglers notwendig. Hier
wurde ein PD-Regler mit einer nichtlinearen Vorsteuerung angewendet. Die Regelstrecke
ist ein inverses doppeltes Pendel. Um die Stabilitat des gesamten Systems nachzuweisen,
wird die Ljapunow Methode eingefiihrt. Der vorliegende Bericht dokumentiert die Simu-
lationsergebnisse der Modellierung und Regelung des inversen doppelten Pendels. Fiir die
Modellbildung wurde ,Mobile* verwendet. Die Berechnung des Zeitverlaufs erfolgte mit
dem Runge-Kutta-Verfahren 4. Ordnung.
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2 Beschreibung starrer Roboter

Ein starrer Roboter ist durch die Bewegungsgleichung

M(q)q +b(q,9) + Q(q,q) = u(t) (2.1)

zu beschreiben (in Anlehnung an Nijmeijer und van der Schaft 1990, Schneider 1993). Da-
bei ist ¢ € R/ der Vektor der verallgemeinerten Koordinaten oder Minimalkoordinaten,
M € RS x RY die symmetrische, positiv-definite Massenmatrix, b € R/ der Vektor der
verallgemeinerten Kreisel- und Zentrifugalkrifte und Q € R/ der Vektor der verallgemei-
nerten eingeprigten Krifte ohne den Steuervektor u(t) € R/. Hierbei bezeichnet f die
Anzahl der Freiheitsgrade. Mit der Lagrange-Methode zu modellieren bedeutet, dafi die
kinetische und die potentielle Energiefunktion zu berechnen und mehrmals zu differenzie-
ren ist. Bei der Newton-Euler-Methode miissen die Zwangskrafte beriicksichtigt werden,
was flir einen mehrachsigen oder einen flexiblen Roboter sehr aufwendig ist. Deswegen
ist es notig, ein Programm zur automatischen Generierung der Bewegungsgleichungen zu

entwickeln.

2.1 Zustandsmodell eines inversen doppelten Pendels

Als ein einfaches Beispiel starrer Mehrkorpersysteme wird ein inverses doppeltes Pendel

betrachtet (Bild 2.1), dessen Position durch zwei Gelenkwinkel g7 = [3;, 32] beschrieben
wird. u(t) € R? bezeichnet den Vektor der auf die Gelenke ausgeiibten Stellmomente. Die
Dynamik des Pendels ist durch die Gleichung

M(q)g+Ci(q.9)q +9(q) = u(t) (2.2)

zu beschreiben (Slotine und Li 1991), wobei Ci(q,q)q € R? dem Kreisel- und Zentrifu-

galmoment und g(q) € R? dem Gewichtsmoment entspricht.

Der Zustandsvektor & € R* des Systems wird aus den Minimalkoordinaten q und deren

ersten zeitlichen Ableitungen q gebildet:

= [2]-13] .

Durch Auflésen der Gleichung (2.2) nach ¢ kann der Vektor @ gebildet werden:

’""3:lzl]:lg]:lM*(uiTaq—g) | .

Dann gilt fiir das Zustandsmodell

= Ax + Bu — Bg , (2.5)
= CTz . (2.6)
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Bild 2.1: Ein inverses doppeltes Pendel

Die Matrizen des Modells sind erklart zu

A:[g _MI_ICI],B:[]‘;_I]undCT:[I 0. (2.7)

Es ist offensichtlich, dafl das inverse doppelte Pendel ein zeitvariantes und stark nicht-
lineares MIMO-System darstellt. Um M (q), Ci(q,q) und g(q) zu bestimmen, kénnen
auch die Euler-Lagrange-Gleichungen verwendet werden. Ein solches Vorgehen ist aber
sehr aufwendig, wenn ein Roboter mehrere Freiheitsgrade hat. Deswegen wurde die Mo-

dellbildung unter der Programmierumgebung ., Mobile* durchgefiihrt.
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2.2 Modellbildung und Simulation mit ,,Mobile*

Mit ,Mobile* kann eine Modellierung der Statik, Kinematik und Dynamik von Mehrkérper-
systemen durchgefithrt werden. Dazu miissen alle Glieder des Systems mit C++4 definiert
und die Verbindungen zwischen den Gliedern beschrieben werden. Obwohl ., Mobile* kein
symbolisches Modell anbieten kann, 1a8t sich die Dynamik durch numerische Berechnung
aller Arbeitspunkte bestimmen. Beispielweise konnen bei gegebenen ¢, q, verallgemeiner-
ten eingepriagten Kraften Q(q, ¢) und Steuervektor u(?) die Massenmatrix M (q) und die
verallgemeinerten Kreisel- und Zentrifugalkrifte b(q, q) berechnet sowie nach ¢ aufgelost
werden. Um die dynamischen Figenschaften des Mehrkoérpersystems zu erreichen, mufl
wahrend jeder Schrittweite Modellierung, Auflésung und Integration von ¢ durchgefiihrt
werden. Das Fluldiagramm des Programmes ist in Bild 2.2 dargestellt. Als Beispiel wurde

( Anfang )
'

t =0, 4(0) 4(0), Qlq.q), u(0)

»‘

t=t+nh

#

M(g), b(gq,q) berechnen

#

¢ = [u— Qq.q) — bleq)] / Mq)

'

4. ¢ durch Integration von ¢ berechnen

<

de?
Ja
< Ende >

Bild 2.2: Flufidiagramm des Simulationsprogramms

Nein

das in Bild 2.1 dargestellte inverse doppelte Pendel betrachtet. Es besteht aus zwei Dreh-
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gelenken Ry und Rj, deren Achsen in z-Richtung zeigen. Die zwei Stangen des Pendels sind
homogene steife Korper, deren Massenmittelpunkte auf ihren geometrischen Mittelpunk-
ten liegen. Die Referenzsysteme sind hier willkiirlich mit Ky, K3 und K3 bezeichnet. Die
Gelenkvariablen sind die Winkel g; und f,. Hier betragt iy = [, = 1m, my; = my = lkg.
Aufler den Stellmomenten wurde nur die Gewichtskraft berticksichtigt. Der Quelltext des

Programms steht im Anhang.

Simulationsergebnisse des inversen doppelten Pendels ohne Regler(wu(?) = 0) sind in Bild
2.3 und Bild 2.4 dargestellt. Um die Figendynamik des Systemes deutlich darzustellen,
werden die Betrage der Winkel 1(¢) und £5(t) durch 360° nomiert. Hier sind /1(0) = 10°
und 32(0) = 20°. Die Simulationsergebnisse zeigen, dafl die beiden Winkel eine aperiodi-
sche Dynamik haben.
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Bild 2.3: Zeitverlauf des Winkels /3;
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Bild 2.4: Zeitverlauf des Winkels /3,

3 Analyse und Synthese steifer Roboter

Die Analyse eines Systems ist sehr wichtig fiir die Simulation und den Entwurf eines Rege-
lungskonzepts, das normalerweise wiederum von der Analysemethode abhiangt. Wie oben
erwahnt, sind die Mehrkorpersysteme nichtlineare Systeme, die schwierig zu analysieren
sind. Trotzdem wurden einige Theorien zur Analyse der nichtlinearen Systeme entwickelt,
wie z. B. die Ljapunowtheorie, Beschreibungsfunktionen usw. Die Ljapunowtheorie be-

zieht sich oft auf die direkte Methode von Ljapunow.

3.1 Die direkte Methode von Ljapunow

Die direkte Methode von Ljapunow stellt die wichtigste bisher bekannte Methode zur
Stabilitdtsanalyse bei nichtlinearen Systemen dar. Sie bietet die Moglichkeit, eine Aussage
iiber die Stabilitat der Ruhelage eines dynamischen Systems zu machen, ohne dazu die
das System beschreibende Differentialgleichung zu 16sen. Da es haufig bei nichtlinearen
Systemen nicht méglich ist, explizite Losungen anzugeben, ist dies ein entscheidender
Vorteil. Die Ruhelage eines physikalischen Systems ist dadurch gekennzeichnet, daf} die
Gesamtenergie, also die Summe aus kinetischer und potentieller Energie gleich Null ist. In
jedem anderen Bewegungszustand dagegen ist sie positiv, und die zeitliche Anderung der
Gesamtenergie des Systems wird in der Umgebung der Ruhelage nie positiv sein. Gelingt
es nun, die Energie als Funktion der Zustandsgréflen darzustellen und fiir diese skalare
Funktion V(&) zu zeigen, daf}

L. V(x) >0 Ve #0,
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2. V() =0 fir 2 =0 und

3. V(e) <0,

dann ist das betrachtete System stabil (Unbehauen 1989).

3.2 Regelungsentwurf mit der direkten Methode von Ljapu-
now

Es gibt zwei Wege zur Auslegung eines Regelungskonzeptes mit der direkten Metho-
de von [japunow: Eine besteht darin, zuerst einen Regler anzunehmen und dann eine
Ljapunow-Funktion zu finden. Die andere funktioniert umgekehrt: Nach der Annahme
einer [japunow-Funktion wird ein Regler so gewahlt, daf§ die Funktion wirklich die Eigen-
schaften der Ljapunow-Funktion (Punkt 1., 2. und 3.) aufweist. Fiir die Positionsregelung
von Robotern werden PD-Regler angewendet. Es gibt aber keinen allgemeinen Beweis
fiir die Stabilitat solcher Systeme, weil die Dynamik stark nichtlinear ist (Slotine und Li
1991).

Der Steuervektor w besteht aus einem PD-Regler und einem Gewichtskraftkompensator:
u=-Kpqg+ Kprq+g(q), (3.1)

wobei Kp und Kp € R/ x R/ konstante, positiv-definite Matrizen sind. Die Regelabwei-
chung berechnet sich zu ¢ = w — q. Das PD-Glied des Reglers ist die Riickfiihrungsrege-
lung und der Gewichtskraftkompensator die Vorsteuerung, die die folgende Form hat:

L. Iy . )
al(g) = mlgglsmﬁ+m29(§231HQ2+1181H91) ; (3.2)

ly .
9(q) = ng%smqg . (3.3)
Bild 3.1 zeigt das Blockschaltbild des gesamten Systems. Aufgrund der physikalischen
Gegebenheiten kann folgende Ljapunow-Funktion fiir das System gefunden werden:

1., . N
V = §[qTMq +¢"Kpq) >0 . (3.4)

Der erste Teil entspricht der kinetischen Energie des Pendels, wihrend der zweite Teil die
potentielle Energie wiedergibt, die sich wie eine virtuelle Feder im Regler auswirkt. Nach
dem mechanischen Energiesatz ist die Anderung der kinetischer Energie gleich der von

den eingepriagten Kraften entwickelten Leistungen, namlich

: . T ~

V=q"(u(t)—g(q)+q Krq, (3.5)

. . . ~ T ~

V=¢"(-Kpg+Krqg+g(q)—g(q)+q Krq. (3.6)
Wenn w konstant ist, dann gilt (} = —q und

Damit ist das System global asymptotisch stabil (in Anlehnung an Yuan, Book und Hugg-
ins 1993).
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-g(q)
W a + —Uu das inverse X T y
> KP - C E—
+ - _ doppelte Pendel
q q

Bild 3.1: Blockschaltbild des gesamten Systems

3.3 Simulationsergebnisse

Betrachtet wurden die Riickfithrungsmatrizen Kp = 1001, Kp = 20K p. Als Anfangs-
werte wurden 3;(0) = 10°, 52(0) = 20° und als Sollwert w(¢) = 0° € R? verwendet. Den
Zeitverlauf der Winkel 1(¢) und f5(t) und des Steuervektors u(?) zeigen Bild 3.2 bis 3.5.
Mit dem PD-Regler wurde eine stabile Positionsregelung erreicht.
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4 Zusammenfassung und Ausblick

Der vorliegende Bericht informiert iiber den Stand der Arbeiten in dem Projekt ,,Modell-
bildung, Simulation und Regelung flexibler Roboter®. Die Modellierung und Simulation
eines starren Roboters, hier am Beispiel eines inversen doppelten Pendels, erfolgten in der
objektorientierten Programmiersprache C++ unter Verwendung der Programmierumge-
bung ,,Mobile®“. Um mit ,Mobile* zu modellieren, sind sowohl C+-+- Programmier- als
auch Kinematikkenntnisse notwendig. Nach der Einarbeitung in ,,Mobile* kann allerdings
viel Zeit gespart werden, insbesondere bei komplexen mechanischen Systemen. Eine Be-
stimmung der Differentialgleichungen ist nicht nétig, stattdessen erfolgt eine Definition
aller Glieder des Systems und eine Beschreibung ihrer Verbindungen in C++. Zwar kann
man kein symbolisches Modell erhalten, die Dynamik aller Arbeitspunkte ist aber l6sbar.
Zur Regelung eines starren Roboters wurde mit Hilfe der direkte Methode von Ljapu-
now ein PD-Regler mit einem nichtlinearen Vorsteuerungskompensator ausgelegt und die
globale Stabilitét des geregelten Systems nachgewiesen. Simulationsergebnisse fiir das ex-

emplarisch betrachtete inverse doppelte Pendel wurden vorgestellt.
In der Fortfithrung dieser Arbeit kénnen

1. die Verbindung zwischen ,,Mobile* und elektrischen Antriebsmotoren oder hydrau-

lischen Antriebselementen,
2. die Regelung einer Regelstrecke, die mehr als zwei Freiheitsgrade besitzt, sowie

3. alternative Regelungskonzepte, wie z. B. adaptive Regler oder Sliding-Mode Rege-

lungen

untersucht werden.
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A Quelltext des Programms

Ein inverses doppeltes Pendel 1a8t sich durch das folgende Mé&bile-Programm beschreiben:

//reference frames
Frame KO, K1, K2, K3 ;

//defining variables

AngularVariable beta_1,beta_2 ;

//defining joints
Joint R1( KO, Ki1,beta_1, x_axis ) ;
Joint R2( K2, K3,beta_2, x_axis ) ;

//vectors
Vector a_1, r_1, a_2, r_2;

//defining links connecting joints
RigidLink arm_a (K1, K2, a_1) ;

//defining masses

real ml, m2 ;

InertiaTensor THETA_d1, THETA_d2;
MassElement M1( K1, THETA_ d1 , ml, r_1 ) ;
MassElement M2( K3, THETA_ d2 , m2, r_2 ) ;

//defining parameter values
a_1 = a_2 = NullState ;

a_1l.z =1.0 ;
rl.z=a.1.z2/2 ;
a_2.z =1.0 ;
r 2.z=a.2.z/2 ;

mli =m2 =1.0 ;

THETA_d1 = THETA_d2 = NullState ;
THETA d1 = ( 0.0,0.0,0.0833 ) ;
THETA 42 = ( 0.0,0.0,0.0833 ) ;

//building up the Pendulum

MapChain pendulum ;

pendulum << Rl << arm_a << R2 << M1 << M2 ;
VariablelList q ;

q << beta_1 << beta_2 ;

//defining gravitation
Vector gravitation ( 0.0,0.0,-9.8 ) ;
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//values of the independent variables
beta_1.q =DEG_TO_RAD * 30 ;
beta_2.q =DEG_TO_RAD * 60 ;

EgqmSolver system ( q, pendulum, KO, gravitation ) ;
system.buildEquations () ;
system.saveEquations () ;

system.solveEquations () ;



