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1 Einleitung

In der Regelungstechnik, aber auch in allen anderen technischen Bereichen, wird die Si-
mulation technischer Systeme regelméafiig und mit groem Nutzen eingesetzt. Dabei wer-
den meist lineare oder nichtlineare Differentialgleichungen verwendet, die vorher durch
eine Modellbildung des Systems gefunden wurden. Dieses Vorgehen setzt jedoch relativ
umfangreiche A—priori-Informationen iiber die zu modellierenden Anlagen voraus. Insbe-
sondere miissen geeignete Linearisierungen fiir Arbeitspunkte gefunden werden oder aber
zumindest die Struktur und Art der Nichtlinearitaten (z. B. statisch, dynamisch, Begren-
zung, bilineares System) bekannt sein. In der Praxis werden haufig nur lineare Modelle
eingesetzt, erst in jlingster Zeit gibt es auch Ansétze zur Nutzung nichtlinearer System-
modelle (Schwarz 1991, Reuter 1993a, Yin 1994, Jelali 1994). Ein weiteres Kennzeichen

vieler Simulationsmodelle ist deren hohe Komplexitét.

Einen neuen Ansatz zur Modellierung technischer Systeme stellt Tong (1978, 1980) mit der
Fuzzy—-Modellbildung vor. Dabei wird der Zusammenhang zwischen Ein- und Ausgangs-
grofen mit Hilfe der Fuzzy—Logik beschrieben. Das Verfahren wurde inzwischen stark
weiterentwickelt (Pedrycz 1983, 1984a, 1984b, 1985, 1991, van der Rhee und van der
Nauta Lemke 1987, 1990, Sugeno u. a. 1986, 1988, 1991, 1993, Takagi und Sugeno 1983,
1985, Xu 1989, Xu und Lu 1987), wobei zwischen Fuzzy—Relationalmodellen und Fuzzy—

Funktionalmodellen unterschieden wird. Es wurden bereits gute Ergebnisse erzielt.

Der besondere Vorteil von Fuzzy—Modellen liegt darin, daf} sie einen beliebigen, also auch
einen nichtlinearen Zusammenhang zwischen Ein- und Ausgidngen beschreiben kénnen:
Fuzzy—-Systeme sind universelle Approximatoren (Wang 1992, 1994, Kosko 1992). Aus
diesem Grund muf} bei einer Fuzzy—Modellbildung nur relativ wenig Vorwissen iiber das
zu beschreibende System vorliegen. Auflerdem kann der Aufbau eines Fuzzy—Modells unter
Umstédnden einfacher als der eines konventionellen Systems sein, da die Abbildung nichtli-
nearer Effekte keine besonderen Strukturen erfordert. Insbesondere der letzte Punkt macht
Fuzzy-Modelle dann attraktiv, wenn komplexe Systeme durch relativ einfache Modelle
beschrieben werden sollen. Es sind in Zukunft Echtzeitsimulationen mit Fuzzy-Modellen
denkbar, deren Einsatzgebiet von modellbasierten Reglern bis zu Hardware—in—the—loop—
Anwendungen reicht. Fiir diese Anwendungen muf} jedoch eine hohe Modellgiite erreicht
werden. Insbesondere ist es notwendig, eine Pradiktion iiber mehrere Abtastschritte oder
eine rekursive Auswertung der Modelle zu verwirklichen. In den meisten bisher veréffent-
lichten Arbeiten finden sich lediglich Einschrittpradiktionen.

In diesem Bericht wird ein neuer Algorithmus zur Fuzzy—Modellbildung vorgestellt, der
mit Hilfe eines stochastischen Gradientenverfahrens die Parameter des Relationalmodells
optimiert. Die Leistungsfdhigkeit des Verfahrens demonstriert die Anwendung auf ein
reales hydraulisches System, wobei insbesondere Wert aut die rekursive Auswertung des

resultierenden Fuzzy—Modells gelegt wird.

Der nachste Abschnitt erlautert die Struktur des verwendeten Fuzzy—Relationalmodells

und dessen Auswertung. Auflerdem werden einige spezielle Eigenschaften des verwendeten
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Modells naher betrachtet. Daran schliefit sich in Abschnitt 3 die Erlauterung des Identifi-
kationsverfahrens an, das auf der sogenannten stochastischen Approximation beruht. Das
untersuchte hydraulische System wird, ebenso wie die verwendeten Trainings- und Test-
signale in Abschnitt 4 beschrieben. Die Frgebnisse der Fuzzy—Modellbildung sind Inhalt
von Abschnitt 5. Sechs verschiedene Lésungsansdtze und die dazugehérigen Ergebnisse
werden ausfiihrlich vorgestellt und diskutiert. Eine Zusammenfassung und ein Ausblick
schlieflen den Bericht.
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2 Modellstruktur

2.1 Fuzzy—Relationalmodell

Die in diesem Bericht betrachteten Modelle sind relationale Fuzzy—Systeme, wie sie von
Pedrycz (1984a) eingefiithrt wurden. Im Gegensatz zu funktionalen Fuzzy—Systemen besit-
zen die verwendeten linguistischen Regeln sowohl im Bedingungsteil als auch im Schluf}-
folgerungsteil linguistische Aussagen. Bei ausschlieflicher Betrachtung von Systemen mit
mehreren Eingédngen und nur einem Ausgang (MISO-Systeme), was ohne Beschrankung

der Allgemeinheit méglich ist, nimmt eine einzelne Regel dann die Form

WENN (Eingang 1 ist klein) und (Eingang 2 ist mittel) und ...
DANN (Ausgang ist groB) | ¢ (2.1)

an. Dabei bezeichnet g > 0 den Méglichkeitsgrad der Regel und kann als Gewichtung

interpretiert werden.

Eine prazisere Definition als die gerade genannte, rein linguistische Beschreibung erlaubt
die folgende Form:
Ein Fuzzy—-System habe a Fuzzy—Mengen )N(Z(:L'Z), 1 =1,2,...,aals Fingénge. Die Grund-

bereiche der Eingédnge seien D; mit
Xi(zy): Dy — [0;1] . (2.2)

Auflerdem seien auf jedem Grundbereich ¢; sogenannte Referenzfuzzy—Mengen X;i defi-
niert mit ¢ = 1,2,...,aund p; = 1,2,...,¢;. Der einzige Ausgang Y des Fuzzy—Systems
habe den Grundbereich W, auf dem b Referenzfuzzy-Mengen Y; mit 3 = 1,2,...,b defi-

niert sind. Dann besitzt das Fuzzy—System
d=]] e (2.3)
=1

Regelsitze der Form

WENN (X" ist X} ) und (X7 ist X2 ) und ... und (X* ist X7 ;)
DANN (Y ist Y3) | g0 5=1,2,...,b, 1=1,2,....d. (2.4)
Dabei besteht jeder Regelsatz aus b einzelnen Regeln, die den gleichen Voraussetzungsteil
haben, sich aber in der Referenzfuzzy—Menge Y tiir die Folgerung und im Moglichkeitsgrad
(oder Gewicht) ¢;; unterscheiden. Einige Uberlegungen erfordern es, die Gewichte g;; in
einem Tensor anzuordnen, der ,,Gewichtstensor® genannt werden soll. In der Literatur
(Pedrycz 1984a, 1984b, Xu und Lu 1989, Postlethwaite 1991) ist es jedoch tiblich, ihn als

Relationalmatriz zu bezeichnen:

AN
R = {r(p17p27"'7pa7])|r(p17p27---7pa7]):gjl(pl,pQ ..... Pa) 7
pi=1,2,. . ¢, j=1,2,...,b) (2.5)
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Diese Bezeichnung wird deshalb auch in diesem Bericht verwendet und nur an den ent-

sprechenden Stellen auf eventuell notwendige Unterscheidungen hingewiesen.

Es folgt eine Erklarung der Auswertung des Fuzzy—Systems: Nach der Fuzzifizierung der
scharfen Eingangsgroflen werden bei der hier verwendeten regelbasierten Inferenz zunéchst
die Partialpramissen ausgewertet. Dabei wird die von Pedrycz (1989) definierte Mdoglich-
keit des Eingangs X*(z;) in bezug auf die Referenzmenge X;i(l)(xi)

H()N(i|X;i(l)) = sgﬂg [min(f(i(xi),X;i(l)(xi))] (2.6)
verwendet. Der Operator darf nicht mit dem Produkt (vgl. Gl. 2.3) verwechselt werden.

Statt des Minimums kann auch jede andere t—Norm verwendet werden. Das Ergebnis sind

die Erfiilltheitsgrade der Partialpramissen, also scharfe Werte, die hier mit
i = (K|, ) (2.1

bezeichnet werden sollen. Die Zusammentassung der «j zum Erfilltheitsgrad «; der
Pramisse des Regelsatzes [ erfolgt durch die Konjunktion, die den Fuzzy-UND-Operator
in Gl. (2.4) modelliert:

o] = /\ Qy; . (28)
=1

Nach der Pramissenauswertung wird der Erfilltheitsgrad einer Regel dadurch bestimmt,
dafl der Erfiilltheitsgrad der Partialpramisse wiederum konjunktiv mit dem entsprechen-

den Regelgewicht verkniipft wird:
pi=oarNgi (2.9)

Der unscharfe Ausgang einer Regel (2.4) ergibt sich dann abschlieBend aus der wiederum
konjunktiven Verkniipfung des Erfiilltheitsgrades p;; der Regel und der Referenzmenge
fiir den Ausgang:

Yily) = pa AYily) (2.10)
Die Bestimmung des Ausgangs einer Fuzzy—Regel nach der Pramissenauswertung wird
Aktivierung genannt (Bertram u.a. 1994). Die d x b Regeln eines Fuzzy—Systems sind im
allgemeinen mit einem linguistischen ,oder® verkniipft. Nach Lee (1990) gibt es hierfiir
mehrere fuzzy—logische Realisierungsmoglichkeiten. In diesem Bericht wird der Fuzzy—
ODER-Operator, also eine disjunktive Verkniipfung, gewahlt. Dieser Aggregation genann-
te Vorgang kann noch in eine vertikale Aggregation fiir jede Referenzfuzzy—Menge des

Ausgangs

d
V=V T (2.01)
=1
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und eine horizontale Aggregation iiber den Grundbereich des Ausgangs
b
Y=\Y (2.12)
7=1

unterteilt werden.

Die bisher dargestellte und in den nachsten Abschnitten ausschliellich verwendete regel-
basierte Inferenz unterscheidet sich von der sogenannten kompositionshasierten Inferenz
(Bertram 1991, Driankow u.a. 1993). Letztere verwendet bei diskreten Grundbereichen
fiir die Ein- und Ausgénge eine sogenannte Relationalmatrix R (zu unterscheiden von
dem oben erwdhnten Gewichtstensor R), in der alle Informationen der Regelbasis, also
tiber Fuzzy—Mengen fiir Ein- und Ausgénge (analog zu den Referenzfuzzy—Mengen), de-
ren Verkniipfungen sowie verwendete Fuzzy—Operatoren, enthalten sind (Zadeh 1973, Lee
1990, Bertram 1991, Driankov u.a. 1993). Die Auswertung erfolgt {iber den Kompositi-

onsoperator o :
Y=X'0X?0...0X°0 R . (2.13)

Jedoch kann man die regelbasierte Inferenz unter bestimmten Voraussetzungen auf eine
zu Gl. (2.13) analoge Schreibweise bringen. Dazu werden zunéichst die Moglichkeiten der
Einginge X' in Bezug auf die Referenzfuzzy-Mengen (Gl. 2.6) in Vektoren angeordnet:

mi i mi ]T

me ~ . ~ . . 1T
X = (XX XX)] =7, (2.14)

Jeder Moglichkeitsvektor enthélt also in umsortierter Form die Erfiilltheitsgrade der Parti-
alpramissen «y; (Gl. 2.7). Er kann als Fuzzy-Menge auf dem Grundbereich {1,2,3,..., ¢}
interpretiert werden. Damit ist auch das kartesische Produkt der Fuzzy—Logik fiir die
Méglichkeitsvektoren definiert:

n ml m2 ma
T = X X ®...0X (2.15)
mit /Lr}«(pl,pg,...,pa) = pat(p1) Apraz(p2) Aeo o A pime(py) =
X X X

/x\a
= T, Nx, A AT,

Anschaulich bedeutet dies die Bildung aller méglichen Verkniipfungen zwischen den Par-

tialpramissen. Das Ergebnis ist also ein Tensor f\” der Ordnung «a, in dem sich die Erfiillt-

heitsgrade der Pramissen oy (vgl. Gl. 2.8) wiederfinden.
Die Komposition ist wie folgt definiert (Erweiterung von Béhme 1990):

Definition 2.1
Auf den Grundbereichen Dy, Dy, ...,D, mit den Elementen zq, x4, ..., z; seien die Fuzzy—

Relationen

Rl = Rl(Dl,DQ,...,D[) C Dl XDQX...XD[

2.16
RQ = RQ(Dk,,Dn) C ]D)k><...><]Dn ,1§k§l§n ( )
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erklart. Dann ist die Komposition von R; und R, die Relation
R20R1 = RQORl(Dl, R 7Dk—17Dl—|—17 c. ,Dn) C Dl X .XDk_l XDI—I—I X .XDn ,(217)
deren Komponenten durch die Zugehorigkeitsfunktion

URyoR, = \/ (ppy (1,220 ) A prpy (g ..oy 2)) (2.18)

bestimmt sind. Der Disjunktionsoperator ist dabei kommutativ und assoziativ. a

Die regelbasierte Komposition kann nun als

mooooml w2 me M

Y=(X @X @...0X JoR (2.19)
geschrieben werden, wobei R der Gewichtstensor aus Gl. (2.5) mit der Ordnung

a + 1 ist. Das Ergebnis ist ein Vektor )/)/A mit b Elementen, der die Erfiilltheitsgrade fiir
die Referenzfuzzy—Menge des Ausgangs enthélt. Die Ausgangsfuzzy—Menge ergibt sich
demnach zu

V=V ) (2:20)

Im Vergleich zu Gln. (2.10), (2.11) und (2.12) fallt auf, daB die vertikale Aggregation durch
die Disjunktion bereits im Rahmen der Komposition abgearbeitet wird. Die Gleichheit der

Ergebnisse aus Gl. (2.12),

= v (Wﬂ AY) | (221)

=1
und GI. (2.20) ist gewahrleistet, wenn die verwendete Konjunktion distributiv tiber der
Disjunktion ist, d. h. wenn

(ANB)V(ANC)=AN(BVC) (2.22)

gilt. Das ist fiir viele der verwendeten Disjunktionen und Konjunktionen der Fall, z. B.
max — min, max — prod, sum — prod. Selbstverstindlich kann auf die Distributivitat
verzichtet werden, wenn die eingangs beschriebene Abarbeitung der Regeln entsprechend

gedndert wiirde.
Statt der Gl. (2.19) findet man in der Literatur haufig eine zu Gl. (2.13) analoge Form:

nooal o a2 AL A

Y=X oX o0...0X oR . (2.23)

Fiir eine einfache Betrachtung werden zunédchst beide Gleichungen in Form ihrer Zu-

gehorigkeitsgrade geschrieben. Aus Gl. (2.19) ergibt sich

o = \/ (l’]l)l/\1}22)2/\.../\l’;a/\,u]/;%(pl,pg,...,pa)) ) (2.24)

P1yP2--Pa
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und aus Gl. (2.23)

/Lm:\/(l’;l/\¥<$22 \/( ;a/\,um pl,pg,...,pa))...)). (2.25)

Y o1

Die beiden Ausdriicke sind wiederum identisch, wenn die verwendete Konjunktion distri-
butiv {iber der Disjunktion ist (Gl. 2.22). Also 148t sich unter dieser schwachen Bedingung
die regelbasierte Inferenz als

A2 a3 MG

YXoX oX o0...0X oR (2.26)

darstellen. Dabei ist, wenn zusétzlich die Kommutativitat des Disjunktionsoperators vor-

ausgesetzt wird, die Reihenfolge der Vektoren )/? beliebig.
Bisher wurde lediglich die allgemeine Modellstruktur beziiglich der Regelbasis, also des

,Fuzzy—Teils* eines Fuzzy—Systems beschrieben. Im Bereich der Fuzzy—Control wird je-
doch normalerweise mit scharfen (= nicht—fuzzy) Ein- und Ausgangsgrofen gerechnet.
Die sich daraus ergebende Struktur fiir das Gesamtsystem ist in Bild 2.1 dargestellt.

Die Fuzzifizierung wandelt eine scharfe Eingangsgrofe in eine Fuzzy-Menge. Ublich sind

Regelbasis

—»{| Fuzzifizierung > Inferenz | Defuzzifizierung |—

Bild 2.1: Relationaler Fuzzy—Regler

zwei Arten der Fuzzifizierung (Lee 1990). Bei der Fuzzifizierung mit Fuzzy—Einermengen
(Singletons) wird aus dem scharfen Eingangswert xg eine Fuzzy—Einermenge (Singleton)
mit dem Trager z¢. Bei der zweiten Methode wird dem scharfen Eingangswert eine andere,
etwa dreieckférmige, Fuzzy—Menge zugeordnet. Dies erscheint insbesondere bei verrausch-

ten Meflwerten sinnvoll.

In vielen anwendungsbezogenen Veréffentlichungen wird die Fuzzifizierung weiter gefafit.
Dabei geht man von iiber dem Definitionsbereich des Eingangs definierten Referenzfuzzy—
Mengen aus und faBt die Schritte , Fuzzifizierung mit Fuzzy—Finermengen (Singletons)“
und ,Bestimmung des Moglichkeitsvektors (vgl. Gl. 2.14) zusammen. Dieses Vorgehen

soll erweiterte Fuzzifizierung genannt werden.

Um das Ergebnis der Inferenz, die Fuzzy—Menge Y, in einen scharfen Wert § zuriickzuver-
wandeln, erfolgt die sogenannte Defuzzifizierung. Hier gibt es eine Vielzahl von Methoden,

von denen nur zwei kurz dargestellt werden. Bei der erweiterten Schwerpunktmethode wird
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der Schwerpunkt der Flache unter der Zugehorigkeitsfunktion py (y) von Y als Ausgangs-
wert bestimmt:

Sy (y)y dy
W

j = (2.27)

[py(y) dy
W

Um auch die Grenzen des Wertebereichs W von y erreichen zu kénnen, werden die in
den Bereichsgrenzen liegenden Zugehorigkeitsfunktionen der Referenzfuzzy—Mengen Y,

symmetrisch erweitert (sog. erweiterte Schwerpunktmethode).

Die Hohenmethode (Driankov u. a. 1993) verzichtet auf die horizontale Aggregation
(Gl. 2.12). Stattdessen werden die y—Koordinaten y; .. der Maximalwerte der aus der
vertikalen Aggregation stammenden Fuzzy—Mengen f/] (vgl. Gl 2.11) mit ihren Maximal-

werten g, gewichtet gemittelt:

b
j=1"_ (2.28)

b
Z Iu]ma.r
=1

Bisher wurden alle Gleichungen fiir allgemeine Operatoren der Fuzzy-Logik (Bertram
1991, Lee 1990) beschrieben. Fiir die in diesem Bericht betrachteten Fuzzy—Systeme finden

jedoch im weiteren ausschliellich die folgenden Operatoren Verwendung:
e Fuzzifizierung tiber Fuzzy-Einermengen (Singletons).
e Konjunktion bei der Pramissenauswertung (Gl. 2.8): Produkt.

e Konjunktion bei der Verkniipfung von Pramisse und Regelgewicht (Gl. 2.9): Pro-
dukt.

e Konjunktion bei der Verkniipfung von Erfilltheitsgrad und Referenzfuzzy—Menge
(Gl. 2.10): Produkt.

e Disjunktion bei der vertikalen Aggregation: Summe.
e Disjunktion bei der horizontalen Aggregation: Summe.
o Defuzzifizierung: Erweiterte Schwerpunktmethode.

Es ist iiblich, alle oben angefithrten Konjunktionen bzw. Disjunktionen gleich zu wahlen
und zum Kompositionsoperator zusammenzufassen. In diesem Bericht wird also die ,,sum-—
prod—Komposition“ (Mizumoto 1987, Larsen 1980) verwendet. Fiir diese Komposition
(und gleichgrofie Flachen unter den Referenzfuzzy—Mengen des Ausgangs) entsprechen

sich aulerdem die beiden oben angefiihrten Defuzzifizierungsmethoden.
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Alle Ein- und Ausgangsgrofien sind auf das Intervall [—1; 1] normiert. Als Referenzfuzzy—
Mengen werden Mengen mit gleichverteilten, gleichschenkligen Dreiecken als Zugehorig-
keitsfunktionen verwendet, die ein sogenanntes Fuzzy—Informationssystem (Meyer—Gra-
mann und Jingst 1993) bilden. Thre Anzahl pro Eingang ist variabel. Fiir den Ausgang

werden nur zwei Mengen verwendet (Bild 2.2). Bertram, Kiipper und Schwarz (1993) zei-

A

\

-1 0 1
Bild 2.2: Referenzfuzzy—Mengen fiir den Ausgang

gen, dafl mit diesen Mengen bei der sum—prod-Komposition beliebige andere Mengen oh-
ne Einschrdnkung ersetzt werden kénnen. Die gewdhlten Operatoren und Fuzzy—Mengen

fiihren zu einem geschlossenen Ausdruck fiir den Ausgang y des Fuzzy—Modells:

hES

j ar (—gu + g21)

j = (2.29)

= |~

; a; (gu + g921)

Die Herleitung findet sich in (Kiipper 1993b).

1

In diesem Bericht findet, wie auch in den meisten anwendungsbezogenen Veréffentlichun-
gen, ausschlielich die regelbasierte Inferenz Anwendung. Mit diesen Einschrankungen

kann deshalb die Notation im folgenden etwas vereinfacht werden: Der Tensor der Moglich-

keitsgrade der Regeln wird nur als R bezeichnet (statt 1/)%), die Vektoren der Moglich-
keitsgrade als X bzw. Y (statt )/? und )/)/A) So wird die Lesbarkeit der Formeln deutlich

verbessert, ohne dafl auf Exaktheit in der Darstellung verzichtet werden muf.

2.2 Dynamische Modelle

Fuzzy—Systeme koénnen als statische, nichtlineare Kennfelder interpretiert werden. Sie
stellen eine Abbildung der Eingangsgrofien auf die Ausgangsgréfien dar. Erst durch die
Riickfithrung des Ausgangs entsteht ein dynamisches System. Da Fuzzy—Systeme in den
allermeisten Féallen auf Digitalrechnern abgearbeitet werden, beschrankt sich dieser Be-
richt auf zeitdiskrete Betrachtungen von Fuzzy—Modellen. In diesem Fall sind die Eingénge
des Fuzzy—Modells zum einen die Eingangsgrofien des zu modellierenden Prozesses und
zum anderen dessen abgetastete und zeitverzogerte Ausgangsgrofien (Bild 2.3). Damit
erhélt das Fuzzy—System Informationen iiber die Dynamik des Prozesses und kann diese
abbilden. Es ist selbstverstandlich auch méglich, zeitliche Ableitungen als Modelleingédnge
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Bild 2.3: Fuzzy—Modell, Einschrittpradiktion

zu verwenden. Davon soll hier allerdings kein Gebrauch gemacht werden. Der Fehler e(k)
zwischen dem abgetasteten ProzeBausgang y(k) und dem des Fuzzy—Modells (k) wird,
wie im nachsten Abschnitt beschrieben, als Lernsignal fiir das Fuzzy—Modell benutzt.

Werden die Totzeitglieder wie in Bild 2.3 aus dem ProzeBausgang gespeist, soll von ei-
ner Kinschrittprddiktion gesprochen werden. Es ist in diesem Fall zur Modellauswertung
immer nétig, auf den realen Prozel — wenn auch um einen Abtastschritt zeitverzogert
— zugreifen zu kénnen. Erst durch den Ersatz des ProzeBausganges durch den Model-
lausgang als Eingang fiir die Totzeitglieder ist ein ,Stand-alone-Betrieb® des Fuzzy—
Modells moglich (Bild 2.4). Es liegt dann ein Fuzzy—System vor, das durch eine externe
Riickfithrung dynamisiert ist. Eine solche Auswertung des Fuzzy—Modells soll rekursiv ge-
nannt werden. Sie erlaubt erst die Verwendung des Modells fiir Systemsimulationen, den
Einsatz als Mehrschrittpradiktor und Simulationen mit Hardware—in—the—loop, raumlich

und zeitlich unabhéngig vom modellierten Prozef3.
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3 Identifikationsalgorithmus

Sowohl die klassische wie auch die Fuzzy—Modellbildung besteht aus drei grundséitzlichen
Schritten (Unbehauen 1988, Sugeno und Yasukawa 1993): Zunéchst mufl die Modellstruk-
tur gefunden und festgelegt werden. Darauf folgt die Bestimmung der Modellparameter,
die sogenannte Parameteridentifikation. Die Verifikation des gefundenen Modells mit Test-
daten, die sich von den zur Parameteridentifikation verwendeten Trainings- oder Identifi-
kationsdaten unterscheiden sollten, schliefit die Modellbildung ab.

Ein Punkt bei der Strukturidentifikation fiir Fuzzy—Modelle besteht in der Auswahl ge-
eigneter Operatoren. Dafiir gibt es noch keine anerkannten oder allgemein giiltigen Re-
geln. Jedoch haben sich die in Abschnitt 2 gewdhlten Operatoren sowohl beziiglich ihrer
Implementierbarkeit als auch beziiglich ihrer Leistungsfihigkeit in fritheren Versuchen
bewihrt (Bertram u.a. 1993, Bertram und Schwarz 1993, Kiipper 1993a,b). Deshalb wur-
de auf notwendigerweise heuristische Versuche zu ihrer optimalen Bestimmung verzich-
tet. Ein weiterer wichtiger Aspekt bei der Strukturidentifikation liegt in der Wahl der
Modellein- und -ausgédnge sowie der Wahl der Referenzfuzzy—Mengen. Eine hervorragen-
de Ubersicht zu diesem Thema geben Sugeno und Yasukawa (1993). Bei dem in diesem
Bericht untersuchten Modell ergeben sich Ein- und Ausgénge sehr schnell. Die wenigen
notwendigen Versuche sind im Abschnitt 4 beschrieben. Als Zugehorigkeitsfunktionen der
Referenzfuzzy-Mengen wurden gleichverteilte, gleichschenklige Dreiecke mit einem Uber-

schneidungsgrad von 0,5 gewéhlt.

Bevor die Parameteridentifikation diskutiert werden kann, miissen selbstversténdlich die
zu identifizierenden Parameter ausgewihlt werden. Bei den relationalen Fuzzy—Systemen
bieten sich die Elemente der Relationalmatrix an. Dieser Ansatz wird hier verfolgt (Kiipper
1993a). Eine Identifikation der Schwerpunkte der Ausgangsfuzzy—Mengen erscheint schon
wegen der Begrenzung auf zwei Referenzmengen fiir den Ausgang nicht sinnvoll. Wie
jedoch bereits angesprochen, ist eine Riickfithrung solcher Modelle aut das hier verwende-
te jederzeit moglich. Eine Anpassung der Fuzzy—Mengen der Einginge (Form, Lage) ist
ebenfalls moglich (Sugeno und Yasukawa 1993). Erste Untersuchungen im Zusammenhang

mit relationalen Fuzzy—Modellen finden sich in Suprijadi (1994).

Die erste Identifikation eines Gewichtstensors wird von Pedrycz (1984a,b) beschrieben.

Sie basiert auf der Auflésung der relationalen Fuzzy—Gleichung
Y=XoR (3.1)

nach R. Dies geschieht fiir jedes Mefitupel; die resultierenden Teilrelationalmatrizen wer-
den anschliefend {iberlagert. Dieses Verfahren wurde von Bertram und Schwarz (1993),
Kiipper (1993a,b) sowie Bertram, Kiipper und Schwarz (1993) verbessert und angewen-
det. Jedoch liefert es keine sehr genauen Ergebnisse. Das ist insbesondere darauf zuriick-
zufithren, daff das Verfahren nicht iterativ angewendet wird. Zwar liefern die Teilrelatio-

nalmatrizen fiir ihre jeweiligen MeBtupel exakte Werte (Bertram, Kiipper und Schwarz
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1993), jedoch nimmt die Genauigkeit durch ihre Uberlagerung rapide ab. Eine Optimie-
rung wie bei herkdmmlichen Identifikationsmethoden findet nicht statt. Die erste Idee zur
numerischen Optimierung findet sich schon bei Pedrycz (1983). Xu und Lu (1987) stellen
ein selbstlernendes Modell vor, das eine gewisse Optimierung durch wiederholtes Lernen
der MeBwerte erlaubt (vgl. auch Postlethwaite 1991, Angenendt 1993). Das Verfahren
beruht auf einem heuristischen Lernansatz und liefert bereits bessere Ergebnisse. Weitere
Verbesserungen lassen sich durch nichtlineare Optimierungsverfahren im off-line-Betrieb
erreichen (Kiipper 1993a,b). Der grofie zeitliche Aufwand und die mangelnde Eignung zur
on—line-Anwendung dieser Verfahren legt die Entwicklung von on-line—fahigen lernenden
oder adaptiven Modellen nahe. Verschiedene Ansétze finden sich bei Liu (1993), Pfeiffer
(1993), Wang (1994), Wang und Mendel (1993), Brown und Harris (1991), Moore und
Harris (1992) und Glorennec (1991).

In diesem Bericht wird der Gewichtstensor der relationalen Fuzzy—Modelle ausgehend
von Gl. (2.29) mit dem Verfahren der stochastischen Approximation bestimmt, das 1951
von Robins und Monro (Ljung und Soéderstrom 1983) eingefiithrt wurde. Die folgende
Beschreibung lehnt sich eng an die sehr gute Darstellung von Ljung und Séderstrém

(1983) an.
Gegeben sei eine Funktion Q(@(k), @), wobei @ die Parameter der Funktion sind und @ (k)

Zufallszahlen, deren Verteilungsdichtefunktion unbekannt ist. Q(k) sei streng monoton

fallend. Ziel ist die Losung der Gleichung
EQ(x(k),®)] = f(®) =0, (3.2)
wobei F der Erwartungswert von () iiber &(k) ist. Die Losung von (3.2) kann dann mit
Ok +1) = O(k) + (k) Q (2(k),O(k — 1)) (3.3)

rekursiv berechnet werden. Die Folge von Lernfaktormatrizen ~(k) wird im folgenden zu

einem Skalar v(k) vereinfacht. Die Konvergenz des Verfahrens ist fiir

R 20, Y () = oo, A <o (3.

nachgewiesen (Tsypkin 1971). Genauere Konvergenzuntersuchungen, insbesondere bei
schwicheren Annahmen, finden sich bei Ljung (1974) sowie Ljung und Soderstréom (1983).

Um eine Funktion f zu minimieren, wird Q in Gl. (3.2) durch ihren negativen Gradienten

ersetzt:

Qa(t). @) = -0 (3.5)

Es ist zu beachten, dal mit diesem Verfahren nur lokale Minima zu finden sind.

Im Fall der Parameteridentifikation ist der Ausgangspunkt der Uberlegungen der Fehler
zwischen dem Ausgang des Fuzzy—Modells § und dem gemessenen Ausgang y des zu

identifizierenden Systems:

e(k) = (y(k) = g(=(k),®)) . (3.6)
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Dabei enthilt der Vektor (k) alle Eingange des Fuzzy—Modells zum Zeitpunkt k& und der
Vektor @ alle Elemente der Relationalmatrix. Optimierungsziel ist es, die Varianz V' des

Fehlers iiber den Parametervektor ® zu minimieren:

min V(e(z,©)) = min (5 Blly— 1)) (3.7)

Dabei ist E[-] der Erwartungswert. Der Faktor 1/2 wird zur Rechenerleichterung ein-
gefithrt. Gemafl Gl. (3.5) und (3.2) ergibt sich

Bl 0] = El s 5y =i =0 (3.3

bei der Erwartungswert und Differentiation vertauscht wurden.
Die rekursive Gleichung zur Bestimmung des optimalen Parametervektors & lautet
Ok +1) = Ok) +(k) (~55 3 (v(k) = i(k))?) (3.9)
= O(k) +5(k) (§(k) — y(k)) 255

50
Dieser Algorithmus wird auch stochastisches Gradientenverfahren genannt und findet im

Bereich der Neuronalen Netze als Least—-Mean—Squares—Verfahren (LMS) haufig Anwen-
dung (Ljung und Soderstrom 1983).

Zur Berechnung der partiellen Ableitungen in Gl. (3.9) wird § gemaf Gl. (2.29) getrennt
nach g1, und gsp, p € [1,2,...,d], differenziert:

d
Py 2 Qp gau
. Y = 24, =1 . (3.10)
g1 d
g (IZ ar (gu+ 921))
=1
5
83} & ap g21
= 2« = 3.11
agzp 14 ( )

d 2
(121 ar (gu+ 921))

Mit diesen Gleichungen kénnen die Anderungen von O(k) nun berechnet werden. Der
rechnerische Aufwand bei der Implementierung ist relativ gering, weil die einzelnen Sum-
men in Gln. (3.10) und (3.11) bereits fiir die Auswertung von g (Gl. 2.29) zu berechnen
sind. SchlieBlich muf} die Frage nach einer geeigneten Gewichtsfolge v(k) beantwortet wer-
den. Eigene Experimente ergaben, daf ein geeignet gewéhltes, konstantes v in fast allen
Féllen die Konvergenz des Fehlers garantiert. Deshalb wurde zunéchst auf eine zeitvari-

ante Folge, wie etwa (k) = £, verzichtet.

Letzter, aber nicht unwichtigster Aspekt der Modellbildung ist die Verifikation des gefun-
denen Modells. An erster Stelle steht sicherlich der Vergleich zwischen den Trainingsdaten
y(k) und dem Ausgang des Modells §(k). Wird dabei eine ausreichende Ubereinstimmung

erzielt, miissen auflerdem andere Signale, im folgenden Testsignale genannt, aut das reale
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System und das Modell gegeben werden. Dies ist insbesondere bei Fuzzy—Modellen wich-
tig, da hier wegen der teilweise sehr hohen Parameterzahl (sie steigt exponentiell mit
der Zahl der Eingange) die Gefahr der Uberparametrisierung besteht. Das bedeutet, daf
das Modell nicht die Modellstruktur, sondern vielmehr das Eingangssignal modellieren
wiirde. Fin geeignetes Fehlermaf fiir den Vergleich zwischen Soll- und Ist—Verlauf stellt
der mittlere quadratische Fehler dar:

0= S (vl) = (4 (3.12)

Es sei jedoch angemerkt, dafl die Fehler, die den Fortschritt eines Lernvorgangs dokumen-
tieren, nicht wihrend des Lernens bestimmt werden. Das heifit, dal zundchst ein Lern-
schritt mit allen Trainingsdaten durchgefiihrt und dann, ohne Lernen, also mit (k) = 0,

der Ausgang des Modells fiir die Trainingsdaten berechnet und der Fehler bestimmt wird.
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4 Untersuchtes System

4.1 Beschreibung

Das untersuchte hydraulische System ist Teil eines Priifstandes, der aus einigen hydrau-
lischen Komponenten einer aktiven hydropneumatischen Federung eines PKW besteht.
Es umfaBt die Drossel und die Speichereinheit (Bild 4.1). Als einziges technisches Da-

untersuchtes

Teilsystem i
elsystem Gasdruckspeicher

Drossel

Pumpe

Tank

Hydraulik+ +
zylinder Regler

Solldruck

Rad

Bild 4.1: Aktive hydropneumatische Federung

tum ist der Vorspanndruck des Stickstoffs in dem Speicher bekannt; er betragt 17 bar.
Als MefgroBien stehen der Druck p; im Speicher und der Systemdruck py zur Vertiigung.
Die Auflésung der Aufnehmer betrdgt 2047 bit bei einem Meflbereich von 0 — 200 bar.
Das ergibt eine Auflésung von 0,0977 %. Durch Stérungen im MefBsystem schwankt der
Meflwert bei konstantem Druck um 4+ 1 bit ~ £0,1 bar. Der Systemdruck liegt wie der

Speicherdruck zwischen 30 bar und 90 bar.

Auf eine genaue Modellierung des Systems wurde verzichtet, da dieses Wissen nicht Vor-
aussetzung fiir die Modellierung als Fuzzy—System ist. Das Zeitverhalten des Systems soll
anhand von Bild 4.2 betrachtet werden. Deutlich sind die unterschiedlichen Zeitkonstan-
ten des Systems fiir Spriinge bei niedrigem und bei hohem Druckniveau zu erkennen.
Aufféllig ist auch, dafl bei einem Sprung auf ein héheres Druckniveau ein anderer Verlauf
als beim Riicksprung auftritt. Schlieilich sei noch auf die physikalisch leicht erklarbare
Tatsache hingewiesen, dafl sich nach einer gewissen Zeit Druckgleichheit zwischen Spei-
cher und System einstellt. Kleinere Abweichungen sind auf nicht ausgeglichene Offsets der

Druckaufnehmer zuriickzufithren.
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Bild 4.2: Verlauf von System- und Speicherdruck (Trainingssignal)

4.2 Testdaten

Es ist eine charakteristische Eigenschaft des verwendeten Fuzzy—Modells, daff durch die
gewahlten dreieckigen Zugehérigkeitsfunktionen die Regeln im Raum der Eingangsgrofien
nur lokal wirken. Liegen also wéhrend der Identifikation in einzelnen Unterrdumen keine
Daten vor, kénnen dort spater auch keine sinnvollen Ausgédnge generiert werden. Das ist
ein entscheidender Unterschied etwa zu linearen Modellen. Daher mufy das Trainingssignal
moglichst den gesamten Eingangsraum abdecken. Der fiir die Identifikation verwendete
Verlauf des Systemdrucks wurde bereits in Bild 4.2 dargestellt. Durch die kleinen, mittle-
ren und groflen Spriinge auf allen Druckniveaus ist ein weiter Bereich des Eingangsraums
abgedeckt. Ein ahnlicher Signalverlauf wird von Bertram, Kiipper und Schwarz (1993)

verwendet.

Zur Verifikation der gefundenen Modelle standen verschiedene Testsignale zur Verfiigung.
Das war zum einen ein Signal, das dem Trainingssignal entsprach, aber zu einem anderen
Zeitpunkt gemessen wurde (Signal 1), ferner drei sinusféormige Signale mit unterschied-
lichen Frequenzen (Signal 2 mit 0,75 Hz, Signal 3 mit 1,5 Hz und Signal 4 mit 2 Hz).
SchlieBllich fand noch eine Folge von Spriingen Verwendung, die im Trainingssignal nicht
enthalten waren (Signal 5 und Signal 6), wobei das Signal 6 nur halb so grofie Haltezeiten
wie Signal 5 besaf. Alle Signale sind im Anhang A dargestellt.

Die Abtastzeit betridgt bei allen Signalen 7' = 15 ms. Diese waren zunéchst mit 7' =5 ms
aufgezeichnet worden, vor allem wegen der fiir die Regelung des Gesamtsystems not-
wendigen kurzen Abtastzeiten. Jedoch zeigte eine Abschatzung der optimalen Abtastzeit
anhand der Sprungantworten im Trainingssignal (Reuter 1993b), dafl die Verwendung

einer dreifach grofleren Abtastzeit ohne signifikanten Informationsverlust méglich ist.
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5 Losungsansatze

5.1 Festlegungen

Um die moglichen Variationen bei der Strukturfestlegung fiir die verschiedenen Modelle zu
begrenzen, seien zunichst Form und Anzahl der Referenzfuzzy—Mengen fiir die Eingénge
und die Normierungen festgelegt. Fiir jeden Eingang gibt es auf dem normierten Grund-
bereich [—1; 1] je fiinf Fuzzy—Mengen mit dreieckigen Zugehorigkeitsfunktionen (Bild 5.1).

Um eine sichere Erfassung aller Driicke zu gewahrleisten, wird der Bereich von 20 bar bis

1 X, X, Xy o X, Xi
v | 0 T 1
| D i

Bild 5.1: Zugehorigkeitsfunktionen fiir die Referenzfuzzy—Mengen des Eingangs

100 bar erfafit. Die Normierung erfolgt mit

T (p — 60bar) . (5.1)
Werden Druckdifferenzen erfait, erfolgt die Normierung tiber
1
Ap, = Ap . 2
P 30bar 7 (5.2)

Es sei besonders darauf hingewiesen, daf bei der rekursiven Auswertung nicht direkt die

pradizierte Fuzzy—Menge Y zuriickgetithrt wird, sondern diese zunachst defuzzifiziert und
dann wieder fuzzifiziert wird. Das hat zum einen den Vorteil der leichteren Implemen-

tierung des rekursiven Modells, zum anderen wird die Umsetzung von den zwei Fuzzy—
Mengen des Ausgangs (dargestellt durch den Vektor )/)/A) in die fiinf Mengen des Eingangs

( )/? ) erleichtert. Ebenso vereinfacht sich die bei einigen der untersuchten Modellstruktu-
ren notwendige Summation der Signale. Schliefllich wird eine immer starkere Fuzzifizie-
rung zweier Signale, die durch mehrfache Riickfiihrung bis zur Wertlosigkeit fithren kann,
vermieden. Alle Werte des Relationaltensors waren mit dem Wert 0,5 initialisiert, der
Lernfaktor v(k) ist in allen Fillen konstant v = 0,05.

5.2 Modell 1

Bei einer ersten Betrachtung des Trainingssignals erscheint das Systemverhalten néhe-
rungsweise als das eines Pri—Systems mit einer vom Arbeitspunkt abhéngigen Verstér-

kung. Dementsprechend erscheint es sinnvoll, die Eingangs- und Ausgangsvariablen analog
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zu denen eines zeitdiskreten Pri—Systems zu wahlen:

Als Eingangsvariablen werden p;(k—1) und py(k—1) gewidhlt, als Ausgangsvariable p; (k).
Die Blockschaltbilder fiir eine Einschrittpradiktion und eine rekursive Auswertung sind
in Bild 5.2 dargestellt. Zundchst soll iiberpriift werden, ob die gewéhlte zeitliche Diffe-

pak-1) o palk—1) -
(k—1) Fuzzy—Modell % Su(k—1) Fuzzy—Modell ) >
_PRE ) P1 .
1 — gl
L »
T
Einschrittpradiktion rekursive Auswertung

Bild 5.2: Struktur von Modell 1

renz von k = 1 zwischen den Eingangsvariablen und dem Ausgang wirklich die optimale

Losung darstellt. Zu diesem Zweck wurde die Modellstruktur zu

pr(k) = f(p2(k — 7o), pr(k — 7)) (5.3)

geandert. Die Berechnung des Fehlers nach 100 Lernschritten, jeweils mit allen Trai-
ningssignalen, fiir verschiedene diskrete 7y und 7 erlaubt dann die Wahl der geeigneten
Verzégerungen. Die FErgebnisse sind in Tabelle 5.1 zusammengefafit. Der geringste Feh-
ler ergibt sich fiir 7y = 7, = 1 und bestétigt somit die Modellstruktur aus Bild 5.2.
Mit dieser Struktur wurde wéhrend des Lernens der in Bild 5.3 dargestellte Verlauf des

Tabelle 5.1: Mittlerer quadratischer Fehler fiir verschiedene Verzégerungen 7 und
nach 100 Lernschritten

1
1 2 3 4 )
1 1,1189931  3,0494782 5,3158722 6,9058264 8,0875009
7o 2 1,6699501 3,4300284 5,0704816 6,1642116 6,9475419
3 4,1494426  4,3843221 5,4002957 6,1517117 6,6432140

mittleren quadratischen Fehlers gefunden. Ein Lernschritt entspricht dabei dem Lernen
aller Daten des Trainingssignals. Zur besseren Ablesbarkeit wurde eine halblogarithmi-
sche Darstellung gewéhlt. Nach 1100 Lernschritten verbessert sich das Fuzzy—Modell nur
noch unwesentlich, so dafl an dieser Stelle der Lernvorgang abgebrochen wurde. Mit der

dann vorliegenden Relationalmatrix sind alle weiteren in diesem Abschnitt vorgestellten
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Bild 5.3: Verlauf des mittleren quadratischen Fehlers

Ergebnisse erzielt worden. Bild 5.4 zeigt den Verlauf des gemessenen Druckes p; und
den Ausgang p; des Fuzzy—Modells bei Einschrittpradiktion. Abweichungen sind prak-
tisch nicht zu sehen. Erst der Graph der Differenz zwischen p; und p; (Bild 5.5) 1aBt

90 -
80 [ [IC-L\\L 7
70 1
5 60 1
a
.
=50 ]
— reales System
407 —-— Fuzzy-Modell |
30 ~
20
0 D 10 15 20 25 30 35

t/s
Bild 5.4: Speicherdruck p; und Einschrittpradiktion py

den Fehler erkennen. Dabei wird allerdings bereits der Einflufl des Mefirauschens und des
Quantisierungsfehlers deutlich. Die rekursive Auswertung (Bild 5.6) ergibt dagegen bereits
sichtbare Abweichungen. Dennoch kann das Ergebnis als sehr gut gelten; die nichtlinearen
Charakteristiken sind hier klar wiedergegeben. Die Qualitat des gefundenen Modells wird
allerdings noch deutlicher, wenn man es mit den Testsignalen, die eine andere Charakte-

ristik besitzen, beaufschlagt und rekursiv ausgewertet.
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Bild 5.5: Differenz zwischen p; und der Einschrittpradiktion p;, Modell 1

90

80 r b ]
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Bild 5.6: Speicherdruck p; und rekursive Auswertung p;, Modell 1

Das Ergebnis fiir das Testsignal 2 ist als Beispiel in Bild 5.7 dargestellt. Auch hier wird
eine sehr gute Ubereinstimmung zwischen Soll- und Istwert erreicht. Insbesondere wird
deutlich, daB keine Uberparametrisierung eintritt und auch solche Signale, die nicht trai-

niert wurden, gut modelliert werden.

Die Ergebnisse in Form des mittleren quadratischen Fehlers fiir das Trainingssignal und
alle Testsignale sind in Tabelle 5.2 angegeben. Neben der Einschrittpradiktion und der re-
kursiven Auswertung ist auch der Fehler eines sogenannten Minimalmodells gegeben (Klu-
ge 1992). Dabei ist der Ausgang (k) des Modells der Ausgangswert des realen Systems
vom vorherigen Tastschritt y(k—1). Hier ist eine rekursive Auswertung selbstverstandlich
nicht méglich. Die Plots fiir einige der in Tabelle 5.2 aufgefiihrten Fille finden sich im
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Bild 5.7: Speicherdruck p; und rekursive Auswertung p;, Modell 1, Testsignal 2

Anhang B. Abschlielend sei auf einen weiteren interessanten Aspekt hingewiesen: Bekann-
termaflen kann ein Fuzzy—System als Kennfeld dargestellt werden. Bei zwei Eingéngen,
die das betrachtete Modell aufweist, ist eine graphische Darstellung moglich (Bild 5.8).

Wie erwartet, stellt sich das Kennfeld in weiten Bereichen als nahezu linear dar. Erst

Tabelle 5.2: Mittlerer quadratischer Fehler fiir verschiedene Signale, Modell 1

¢m(Einschritt) g, (rekursiv) ¢, (Minimalmodell)
Trainingssignal 0,0199 0,4983 0,1843
Testsignal 1 0,0217 0,6013 0,1718
Testsignal 2 0,0302 0,7336 1,1293
Testsignal 3 0,0308 0,9787 0,3143
Testsignal 4 0,0534 0,5511 3,4162
Testsignal 5 0,0218 0,6452 0,1475
Testsignal 6 0,0262 0,7612 0,2102

bei genauerer Untersuchung findet man auch in diesen Bereichen Nichtlinearitiaten. Die
starken Abweichungen an den Ecken erkléren sich daraus, daf sich hier keine Werte des
Trainingssignals finden, also die Initialwerte fiir die Relationalmatrix unveréndert blieben.
Zur Verdeutlichung sei das Bild 5.9 betrachtet, auf dem neben den Héhenlinien des Kenn-
feldes die Eingangsgrofien des Modells fiir das Trainingssignal eingezeichnet sind. In den
genannten Bereichen gibt es keine Werte. Die zundchst schwach scheinende Nichtlinea-
ritdt legt es nahe, als konventionelles Vergleichssystem zu dem Fuzzy—Modell ein lineares

Pri—System zu betrachten. Dies geschieht im folgenden Abschnitt.
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Bild 5.8: Kennfeld des identifizierten Fuzzy—Modells 1

Bild 5.9: Trainingsdaten im Eingangsraum (*) und Hohenlinien des Ausgangs
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5.3 Modellierung als Pr,—System

Wird die untersuchte Strecke als Pri—System modelliert, erhédlt man die folgende System-
gleichung

pi(k) =01 pi(k—1)+ 0y pa(k—1) . (5.4)

Zur Bestimmung der Parameter wird ein einfaches Least—Squares—(LS)—Verfahren einge-
setzt (Isermann 1988). Besteht das Trainingssignal aus (n + 1) Werten, so errechnen sich

die im Sinne des Fehlerquadrates optimalen Parameter mit

O=[" ¢ 'Y | (5.5)

mit
k—n
plk =) 0,
Y = : , ©= (5.6)
0
pi(k)
und
pi(k—1—n) pa(k—1—n)
P = : : : (5.7)
Diese sind fiir das verwendete Trainingssignal
A 0,9085
e = ’ 5.8
[ 0, 0908 ] (5:8)
Das Pr;—System besitzt mit der Tastzeit T'= 15 ms also die Verstarkung
0
K= =0,9923 5.9
1-0, (5.9)
und die Zeitkonstante
-T
1y = 10,437 =157 ms . (5.10)

- 1H®1
Damit erweist sich auch die gewdhlte Abtastzeit T & 0,177 als giinstig. Weiterhin erreicht

der Speicherdruck wegen der Verstéarkung, die nahezu eins ist, fast exakt den Systemdruck

(Abweichung < 0,8 %).
Die Einschrittpradiktion (Bild 5.10) zeigt gute Ergebnisse. Jedoch ergeben sich bereits bei

der rekursiven Auswertung (Bild 5.11), wo echtes Pri—Verhalten zu erkennen ist, relativ
grofle Abweichungen, die klar auf das nichtlineare Verhalten des technischen Systems
zuriickzufiihren sind. Dafiir treten, wie bereits angesprochen, auch hier keine bleibenden
Abweichungen bei konstantem Eingang zwischen System und Modell auf. Noch deutlicher
wird der Fehler aus der Linearisierung bei rekursiver Auswertung fiir das Testsignal 2
(Bild 5.12). Der Grund ist wiederum in der dynamischen Nichtlinearitit zu suchen. Die
Ergebnisse fiir alle Signale sind in Tabelle 5.3 zusammengefafit. Das Fuzzy—Modell ist in
allen Féllen dem linearen Modell deutlich iiberlegen. Das wird weiterhin auch in den Plots

fiir andere Testsignale deutlich, die in Anhang C zu finden sind.



5 Loésungsansdtze 25

Tabelle 5.3: Mittlerer quadratischer Fehler fiir verschiedene Signale, Prq1—System

¢m(Einschritt) ¢, (rekursiv)

Trainingssignal 0,0465 1,9323
Testsignal 1 0,0454 2,0191
Testsignal 2 0,1167 4,4769
Testsignal 3 0,0523 3,0752
Testsignal 4 0,3485 7,9153
Testsignal 5 0,0247 0,9162
Testsignal 6 0,0298 1,1106

90
o] Y |
70 T 7
5 60 7
e)
=
=50 |
reales System
407 — Modell ]
30 ~
20 ~
0 D 10 15 20 2b 30 35

t/s
Bild 5.10: Speicherdruck p; und Einschrittpradiktion py, Pri—System

90 a Al
80 | ﬂ ;f
70 F |
5 60
a
~
=50
reales System
40 -— Modell
30 A
20
0 5 10 15 20 25 30 35

t/s
Bild 5.11: Speicherdruck p; und rekursive Auswertung p,, Pri—System
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90

— reales System
—— Modell

<0
0 1 2 3 4

t/s
Bild 5.12: Speicherdruck p; und Einschrittpradiktion py, Pri—System, Signal 2

5.4 Modell 2 mit Vorbelegung

Wie im vorhergehenden Abschnitt gezeigt wurde, reicht die Giite eines Pri—Modells zur
Approximation des Drossel-Speicher—Systems nicht aus. Jedoch erscheint es sinnvoll, die
Modellierung als Pri—System zur Vorinformation fiir die nachfolgende Identifikation der

Parameter zu nutzen. Dies kann auf zwei Arten geschehen.

5.4.1 Vorbelegung durch Lernen

Die erste Moglichkeit besteht darin, sich zundchst unter Verwendung des mit dem LS—
Verfahren identifizierten Pri—Modells ideale, d. h. iber dem Eingangsraum gleichverteilte,
Daten zu beschaffen und mit diesen das Fuzzy—Modell zu trainieren. Dadurch verhélt sich
dieses zunédchst wie das Pri—System, ist also bereits eine relativ gute Ndherung des realen

Systems. Die Trainingsdaten dienen dann der Feinabstimmung des Modells.

Bild 5.13 zeigt den Verlauf des quadratischen Fehlers wahrend des Lernens fiir ein der-
artig vorbelegtes Fuzzy—Modell und den des Fuzzy—Modells 1. Das vorbelegte Modell
erreicht bereits nach weniger als 50 Schritten einen Fehler, der geringer ist als der des
anderen Modells nach 1100 Lernschritten. Dies dokumentiert den groflen Vorteil der sinn-
vollen Vorbelegung. Fine Bewertung der Ergebnisse ist aber wiederum erst anhand der
Testsignale moglich. Die Tabelle 5.4 zeigt die Fehler fiir die verschiedenen Signale bei Fin-
schrittpradiktion und rekursiver Auswertung. Die Werte wurden nach 38 Lernschritten,
also dem ersten Minimum der Fehlers, nach 150 Lernschritten und nach 1100 Lernschrit-
ten bestimmt. Dabei fallen zwei unterschiedliche Trends auf: Die Fehler der Testsignale 1,
5 und 6 folgen in etwa dem des Trainingssignals: Nach dem Minimum bei 38 Lernschritten
steigen sie etwas an (150 Lernschritte), um langfristig wiederum einen kleinen Wert an-

zunehmen. Diese Ahnlichkeit erscheint plausibel, da es sich in allen Féllen um prinzipiell
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0,10
0,09 H :
——— it Vorbelegung
0,08 \\\ —-— ohne Vorbelegung i
0,07 1
0,06 | |
0,05 F 1
0,04 F .
0,02 e SRR -
0 200 400 600 800 1000
Lernschritte

Bild 5.13: Fehlerverlaufe fiir vorbelegtes und nicht vorbelegtes Fuzzy-Modell

Tabelle 5.4: Mittlerer quadratischer Fehler fiir verschiedene Signale, Fuzzy—Modell mit
Prq—System vorbelegt

¢m(Einschritt) ¢m (rekursiv)
Lernschritte 38 150 1100 38 150 1100

Trainingssignal ~ 0,0194 0,0200 0,0193 04511 0,5010 0,4558
Testsignal 1 0,0212  0,0219 0,0212  0,5590 0,6147 0,5673
Testsignal 2 0,0519 0,0425 00375  1,7331 1,2261 1,0371
Testsignal 3 0,0487 0,0405 0,0365  2,1200 1,5029 1,2995
Testsignal 4 0,0659 0,0587 0,0540  0.8435 0,6177 0,5818
Testsignal 5 0,0262 0,0254 0,0237  0,6233 0,8459 0,7678
Testsignal 6 0,0337 0,0316 0,0287  0,8354 1,0463 0,9206

dhnliche Signale handelt, ndmlich eine Folge von Spriingen. Dagegen nimmt der Fehler
bei den Signalen 2, 3 und 4 kontinuierlich ab. Zur Erinnerung: Hierbei handelt es sich um

sinusférmige Signale.

Neben dem Verlauf des mittleren quadratischen Fehlers wahrend des Lernens und der
Betrachtung der Testsignale ist die Entwicklung der identifizierten Parameter ein dritter
Aspekt bei der Beurteilung des vorbelegten Fuzzy—Modells. Das Bild 5.14 zeigt den Verlauf
der Regelgewichte des vorbelegten Modells fiir die ersten 200 Lernschritte. Es ist aufféllig,
dafl die Parameter sich langsam und stetig d&ndern. Dieser Verlauf 18t darauf schlieflen,

dafB die gefundenen Startparameter bereits nahe bei einem lokalen Minimum liegen.

Es bleibt festzuhalten, dafl die Ergebnisse insgesamt sehr gut sind. Sie erreichen zwar

nicht ganz die Qualitdt des Modells 1, sind aber fiir ein Simulationsmodell ausreichend.
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Bild 5.14: Verlauf der Regelgewichte wahrend der Identifikation mit Vorbelegung

Einige Signalverlaufe von Modell und System nach 150 Lernschritten sind im Anhang D
dargestellt.

5.4.2 Analytische Vorbelegung

Die zweite Moglichkeit zur Vorbelegung eines Fuzzy—Modells besteht darin, die exakte
Relationalmatrix fiir ein bestimmtes Ein-/Ausgangsverhalten zu berechnen. Vorausset-
zung ist dabei, dal zu diesem Problem eine Lésung existiert und auch gefunden werden
kann. Fiir den Fall eines Fuzzy—Systems mit zwei Eingdngen und einem Ausgang wird
im folgenden gezeigt, wie ein beliebiger linearer Zusammenhang mit diesem dargestellt

werden kann.

Es werde ein lineares statisches System mit den zwei Eingéngen u; und uy und demm
Ausgang y betrachtet. Die Eingénge sind auf das Intervall [—1; 1] normiert. Der Ausgang
y ist so normiert, daf} er fiir diese Eingange immer innerhalb des Intervalls [—1; 1] liegt.

Das System wird durch die Gleichung
Yy = ao -+ apur + axus (5.11)

beschrieben. Die Werte von ag, a; und as sind durch die erwihnte Begrenzung von y
ebenfalls beschrankt. Eine graphische Darstellung von Gl. (5.11) ist in Bild 5.15 gegeben.
Durch die genannte Normierung kann jedes Fuzzy—Modell auf dem gleichen Grundbereich
u1 X uy — [0;1] definiert werden. Fiir die Fingange werden gleichverteilte, symmetrische,
dreiecksférmige Fuzzy—Mengen gewiahlt, die ein sogenanntes Fuzzy—Informationssystem
bilden. Thre Anzahl ¢;, © = 1,2, ist beliebig > 1. Zur Veranschaulichung wird im Folgenden
¢1 = ¢ = 3 gewdhlt. Fiir den Ausgang wird der gleiche Typ von Fuzzy—Mengen verwendet,
jedoch nur ¢3 = 2. Damit hat das Modell ¢ycoc5 = 2d Regeln. Es ergibt sich bei der
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14

Bild 5.15: Graphische Darstellung des linearen Systems

Verwendung des Summen- und des Produktoperators als Ausgang des Fuzzy—Modells

analog zu Gl. (2.29)

d
E al(—gu + g2)

y = (5.12)

1
d
121 (g1 + 921)

In Bild 5.16 ist der Eingangsraum und seine Unterteilung durch die Fuzzy-Mengen des

Eingangs dargestellt. Den Knotenpunkten der Maxima der Fuzzy—Mengen sind jeweils

Bild 5.16: Unterteilung des Fingangsraumes

die zugehorigen Gewichte r(¢,7, k), also die Elemente der Relationalmatrix, zugeord-
net. Zunichst werden nur die Elemente r(z, j,2) betrachtet. Sie werden so gewahlt, dafl
r(1,1,2) = hg ist und die anderen eine Ebene mit den Steigungen s; und sy aufspan-
nen. Zur Verdeulichung ist dies im Bild 5.17 dargestellt: Die Elemente r(z, 5, 1) werden so
gewahlt, dal 7(3,3,2) = ho ist und die aufgespannte Ebene die Steigung —s; und —s3
hat. Das Ergebnis ist im Bild 5.18 dargestellt. Die Steigungen s; und s, sind mit
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r(i,},2)

r(3,3,2)

Bild 5.17: Graphische Darstellung der Regelgewichte r(z, j, 2)

A
r(i,j,1)

Bild 5.18: Graphische Darstellung der Regelgewichte r(z, j, 1)

4P)

= ——* 0}
. at+a—1" "
ay
= ———h . 5.13
52 Cl1‘|'6l2—1 0 ( )

gegeben. hg ist so zu wiahlen, dafl die Gewichte eine geeignete Grofle haben, also z. B.
r(i,7,k) < 1. Die Werte in der Mitte der von r(z,7,1) und r(z, j,2) aufgespannen Ebene

sind gleich. Sie ergeben sich zu
'm = ho + S1 + S92 . (514)
Nun werden die Werte r(¢,7,1) um einen Wert ¢ erniedrigt, die r(¢,7,2) und é erhoht:

r(i,5,1) = r(i,g,1)—9¢
r(i,j,2) = r(1,j,1)+6 (5.15)
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Der Wert ¢ ergibt sich zu
= agry, (5.16)
Der Beweis der obigen Formel kann durch Nachrechnen gefiihrt werden:

Beweis:

Der Grundbereich Uy x Uy : [—1,1] x [—1, 1] wird gemafB Bild 5.19 durch ¢ = 1...(ny+1)
Fuzzy-Mengen fiir u; und j = 1...(ny + 1) Fuzzy—Mengen fir uy in (ny + 1)(n2 + 1)
Bereiche unterteilt. Nun wird ein beliebiger Teilbereich (Bild 5.20) herausgegriffen und

W, Knoten (i,) Knoten (n#1,n41)
A /

By, b —— ¢ —— S~ e ——

\ \ \ \

\ \ \ \
B P S S SR
01 | | | |
: ~_ | | | |
; T
3 e

\ \ \ \

\ \ \ \
B -~ ————— s
2 \ \ \ \

\ \ \ \
B1 4 4 S

u,

Ap A Ay Ap Ay

Iy

Bild 5.19: Unterteilung des Eingangsraums

néaher betrachtet. Die Hilfskoordinaten v; und vs sind so festgelegt, daf sie im betrachteten

Bild 5.20: Teilbereich des Eingangsraums

Bereich von 0 bis 1 liegen:

n .
T— (u1+1)?1—z+1,
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n .
vy = (u2+1)§—]+1. (5.17)
Nun kann man die Zugehérigkeitsgrade von vy und vy zu den gezeigten Fuzzy—Mengen
angeben:
Ai(vl) = 1- (%] 5 Ai—l—l(vl) = V1,
B]‘(UQ) = 1- V2 5 B]‘_|_1(1)2) = Ug. (518)

Die Regelgewichte ergeben sich aus den vorher angegebenen Uberlegungen zu

.. 25 . 25 .
T(l,],l) = —5—|—h0—|——2(n1—Z—|—1)—|——1(n2—]—|—1),
1 nq
.. 289 . 281 .
r(i,5,2) = +84ho+—(i—1)+—=(—1). (5.19)
nq nq

Nach der Anpassung der Notation von Gl. (5.12) erhalt man

X AB-r(ig, 1)+ r5:2)
2
5
1=1

1
2
=1

y = (5.20)

AiB;[r(i,7,1) + (4, 7,2)]

J

Durch Einsetzen der Gln. (5.19), (5.18), (5.17), (5.15), (5.14) und (5.13) in GIl. (5.20)

erhdlt man nach Auflésung und Vereinfachungen den Ausdruck
Y = ag + ajuy + aguy . (5.21)

Dies ist genau Gl. (5.11), womit der Beweis abgeschlossen ist. O

Eine Erweiterung auf Fuzzy—Systeme hoherer Ordnung erscheint méglich, wurde aber
noch nicht duchgefiihrt.

Im Gegensatz zu der im vorhergehenden Abschnitt dargestellten Vorbelegung durch Ler-
nen liegt hier eine schnelle und exakte Lésung vor. Mit der so gefundenen Relationalma-
trix werden dann auch die gleichen guten Konvergenzeigenschaften erzielt, so daf auf eine
Wiedergabe der Ergebnisse hier verzichtet wird. Dies gilt jedoch nur dann, wenn beide
Relationalmatrizen gleich grofl sind. Das kann durch den Normierungsfaktor hg erreicht
werden, mit dem sich die Ergebnisse aus Gl. (5.19) beliebig skalieren lassen. Wird aber
ho falsch gewéhlt, ergibt sich eine deutlich schlechtere oder tiberhaupt keine Konvergenz
der Ergebnisse. Als Beispiel wurde die Relationalmatrix, die aus den Gln. (5.19) fiir das
untersuchte System gewonnen wurde, so skaliert, daf} ihre Elemente etwa halb so grof}
wie die der gelernten Matrix waren. Die Fehlerentwicklung fiir die beiden Matrizen als
Anfangswerte bei anschlieBendem Lernen mit den Trainingsdaten zeigt Bild 5.21. Die Er-
klarung fiir die unterschiedliche Fehlerentwicklung ergibt sich bei ndherer Betrachtung der

Ausgangsgleichung fiir das Fuzzy—Modell (Gl. 2.29) und des Lernalgorithmus (GI. 3.9).
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Bild 5.21: Fehlerentwicklung bei unterschiedlicher Vorbelegung der Relationalmatrix

Zunidchst ist anhand von Gl. (2.29) noch einmal zu sehen, daf} eine Skalierung 3 aller

Elemente ¢;; der Relationalmatrix sich nicht auf das Ergebnis auswirkt:

Zd: a; (—gupB + gup) Zd: ar (—gu + g21)
== = =L (5.22)
> o (gupB + gup) > o (gu+ gu)

=1 {

Il
—

Dagegen ist die Grofie der Ableitungen (3.10) und (3.11) umgekehrt proportional zu der
Skalierung j3:

Yy 1

~ = . 5.23

90, B (5.23)

Damit ist die Anderung von @, die sich aus Gl. (3.9) ablesen 148t, ebenfalls proportional
zu 1/8. Wird also @ z. B. mit dem Faktor 2 multipliziert, ist seine Anderung bei anson-
sten unverdnderten Bedingungen nur noch halb so grof. Dieser Effekt kann ausgeglichen

werden, indem neben R auch der Lernfaktor 4 entsprechend skaliert wird:
R =R3 — ~ =p3% : (5.24)

Es besteht jedoch weiterhin das Problem, die Initialrelationalmatrix bzw. den Lernfaktor
zu wahlen. Darauf wird in diesem Bericht nicht weiter eingegangen. Im Ausblick finden

sich hierzu aber einige Hinweise.
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5.5 Modell 3: Inkrementales Modell

Bei den bisher vorgestellten Modellen wurde immer der Speicherdruck zum nachsten Ab-
tastzeitpunkt vorhergesagt. Ein anderer Ansatz besteht darin, nur die Anderung des Spei-
cherdrucks vorherzusagen. Fiir dieses Modell bestehen zwei Moglichkeiten der Einschritt-
pradiktion und analog zwei zur rekursiven Auswertung. Diese sind jeweils in Bild 5.22

und 5.23 dargestellt; in diesem Bericht wird nur die Integration der Druckénderung

pa(k—1) ol .
_ Fuzzy—Modell pi(k) > pi(k)
pi(k—1) —

—>
Einschrittpradiktion
pa(k—1)

—> o~ ~
Pi(k=1) Fuzzy—Modell Api (k) > Y P1(%) >

1 —

A

—>

r

rekursive Auswertung

Bild 5.22: Integration der Druckénderung

palk—1) palk-1)
B e A~ o~ B A ~
B Apy(k) - pi(k) B Apy(k) - pilk)
p1(k71)‘ Fuzzy—Modell pl(kfl)‘ Fuzzy—Modell >
1 _ Ll
L
T
Einschrittpradiktion rekursive Auswertung

Bild 5.23: Addition von Ausgangsdruck und Druckadnderung

untersucht (Bild 5.22). Besonders problematisch bei der Schatzung der Druckéanderung
zwischen zwei Abtastzeitpunkten sind die starken Stérungen der Messung. Dies wird bei
der Betrachtung von Ap;(k) aus dem Trainingssignal deutlich (Bild 5.24). In diesem Fall
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) prassis e
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t/s
Bild 5.24: Ap;(k) des Trainingssignals

wird auch die Normierung der Ausgangsgréfie mit

Ap

Apy, = 5

(5.25)

anders gewahlt. Der Verlauf des mittleren quadratischen Fehlers von Ap; (k) wéhrend des
Identifikationsvorganges ist in Bild 5.25 dargestellt. Nach anfanglich guter Konvergenz
gibt es keine weitere Verbesserung, was hochstwahrscheinlich auf die besagten Stérungen

zurickzufiihren ist. Aus diesem Grund wurde die Relationalmatrix nach 100 Lernschritten

0,20
0,18 1 ]
0,16 ]
0,14 ]
0,12 ]
0,10 ]
0,08 ]
0,06 - 1
0,04 r 1
0,02 1 B
O,OOO

20 40 60 80 100
Lernschritte
Bild 5.25: Verlauf des mittleren quadratischen Fehlers fiir Ap; (100 Schritte)

bestimmt und damit die Testsignale ausgewertet. Zunéchst sei jedoch das Identifikationssi-
gnal bei Einschrittpradiktion und rekursiver Auswertung betrachtet (Bild 5.26 und 5.27).
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Bild 5.26: Einschrittpradiktion von Ap;(k), Darstellung von Y- Ap;(k)

Tabelle 5.5: Mittlerer quadratischer Fehler fiir verschiedene Signale, Modell 3

¢m (rekursiv)
Trainingssignal 0,3631
Testsignal 1 0,4280
Testsignal 2 1,4072
Testsignal 3 1,5094
Testsignal 4 0,8712
Testsignal 5 0,4097
Testsignal 6 0,5481

Bei der Einschrittpradiktion tritt der grofle Fehler des Modells deutlich zu Tage: Durch
die Summation wird er weiter addiert und die eigentlich interessierende Grofie py (k) drif-
tet weg. So ist wahrscheinlich eine Einschrittpradiktion mit Addition von Ausgangsdruck
und Druckédnderung (Bild 5.23) hier deutlich vorteilhafter. Sehr interessant ist aber das
Ergebnis bei Riickfiihrung der summierten Druckdifferenzen: Das Modell stabilisiert sich
selbst und erreicht so eine hervorragende Genauigkeit. Dabei ist zu betonen, dafl hier zum
erstenmal das rekursive Modell besser ist als die Einschrittpradiktion. Die Betrachtung
des quadratischen Fehlers fiir py(k) (die Einschrittpradiktion wurde wegen der grofien
Abweichungen nicht beriicksichtigt) zeigt die gute Leistung des Modells auch im Ver-
gleich zum Modell 1 (Tabelle 5.5). Diese Ergebnisse bieten sicherlich Ansatzpunkte fiir
Untersuchungen der Stabilitat bei dynamischen Fuzzy—Systemen und der Wirkung von
Rickfithrungen. Auffillig ist in jedem Fall die Analogie zwischen der Einschrittpradiktion

und einem riickgekoppelten Integrator.
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Bild 5.27: Rekursive Auswertung von Ap;(k), Darstellung von Y- Apy (k)

5.6 Modell 4

Die hier untersuchte Modellstruktur schatzt ebenfalls eine Druckdifferenz; in diesem Fall
jedoch die zukiinftige Differenz zwischen Speicher- und Systemdruck. Die Modellstruk-
tur ist in Bild 5.28 dargestellt. Als Eingange werden wiederum py(k — 1) und py(k — 1)

palk—1) . R
kY —mol k—1 k
o Py Modell P1(k)—polk—1) _ pr(k)

Y

Einschrittpradiktion

palk—1) ) ) A
g k) —pol k—1 k
pi(k—1) Fuzzy-Modell piik) —pelk—1) . p1k)
1 — il
—
T

rekursive Auswertung

Bild 5.28: Struktur von Modell 4

verwendet. Durch den groferen Wertebereich der Differenz p; (k) — p2(k — 1) verbessert
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Tabelle 5.6: Mittlerer quadratischer Fehler fiir verschiedene Signale, Modell 4

¢m(Einschritt) ¢, (rekursiv)

Trainingssignal 0,0211 0,6229
Testsignal 1 0,0233 0,7521
Testsignal 2 0,0261 0,4923
Testsignal 3 0,0343 1,0257
Testsignal 4 0,0479 0,4017
Testsignal 5 0,0252 3,8855
Testsignal 6 0,0285 0,9586

sich im Vergleich zum Modell 3 das Verhéltnis von Nutz- zu Storsignal. Gleichzeitig ist

zu erwarten, dafl der positive Effekt der Riickkopplung immer noch auftritt.

Die quadratischen Fehler fiir die verschiedenen Signale und Auswertungsmethoden nach
wiederum 1100 Lernschritten sind in Tabelle 5.6 zusammengefafit. Einige Signalverldufe
finden sich im Anhang E. Es ist festzuhalten, dafl die Ergebnisse sich kaum von denen des
Modells 1 unterscheiden. Sie sind sogar teilweise schlechter. Das gilt auch fiir die rekursive
Auswertung. Der erwartete positive Effekt durch die Riickfithrung des Modellausgangs —
und damit implizit des Modellfehlers — trat nicht auf.

5.7 Modell 5

Auf der Basis von Modell 1 wurde schliellich noch eine weitere Modellstruktur untersucht:
Bereits bei der Betrachtung der Eingangswerte fiir das Fuzzy—Modell aus dem Trainings-
signal (Bild 5.9) wurde deutlich, dafl die meisten Werte auf der Diagonalen liegen, py
und p, also nur um einen relativ kleinen Wert differieren. Um eine bessere Abdeckung
des Eingangsraumes und damit eine bessere Nutzung der verwendeten Referenzfuzzy—
Mengen zu erzielen, wird nun neben dem Systemdruck ps(k —1) die Druckdifferenz py(k —
1) — p1(k — 1) als Eingang verwendet. Wichtig ist dabei, dafl dem Fuzzy—Modell so iiber
p2(k) weiterhin Informationen {iber den aktuellen Arbeitspunkt zur Verfiigung stehen und

damit Nichtlinearitdten weiterhin beriicksichtigt werden kénnen. Die sich so ergebenden

Blockschaltbilder sind in Bild 5.29 dargestellt.

Die Konvergenz des mittleren quadratischen Fehlers bei diesem Modell verlauft deutlich
langsamer als bei dem Modell 1. Auch scheint der zu erzielende minimale Fehler kleiner.
Deshalb wurde der Lernvorgang nach 800 Schritten abgebrochen. Der Fehlerverlauf ist
in Bild 5.30 zu sehen. In Tabelle 5.7 werden die Fehler fiir das Trainingssignal und die
Testsignale angegeben. Die Ergebnisse sind deutlich schlechter als bei Modell 1. Auch fin-
det sich keine Verbesserung bei rekursiver Auswertung. Dieses Ergebnis ist tiberraschend,

da das Modell wegen der anders gewahlten Eingangs eine bessere Leistung erwarten lief3.
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Eine Erklarung fiir diese Resultate konnte nicht gefunden werden.

palk—1) _ R
}\ g Y G
prlk—1) Y pik=1)—polk—1) Hrzy—Hode
> >
Einschrittpradiktion
palk-1) _ R
}\ g Y EIGN
prlk—1) Y pilk=1)—palk—1) Hrzy—Hode g
> >
1 _ il
e
T

rekursive Auswertung

Bild 5.29: Struktur von Modell 5

200 400 600 800
Lernschritte

Bild 5.30: Verlauf des mittleren quadratischen Fehlers, Modell 5



5 Loésungsansdtze

Tabelle 5.7: Mittlerer quadratischer Fehler fiir verschiedene Signale, Modell 5

¢m(Einschritt) ¢, (rekursiv)

Trainingssignal 0,0394 3,1085
Testsignal 1 0,0418 3,2386
Testsignal 2 0,0496 0,8526
Testsignal 3 0,0411 1,4896
Testsignal 4 0,0903 0,5221
Testsignal 5 0,0419 12,7961

Testsignal 6 0,0477 8,1002
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6 Zusammenfassung und Ausblick

In diesem Bericht wird die Fuzzy—Modellbildung eines technischen Systems, bestehend
aus einem Hydrospeicher und einer Drossel, beschrieben. Die fiinf betrachteten Modell-
strukturen unterscheiden sich durch die Wahl ihrer Ein- und Ausgangsgrofen. Die zu
identifizierenden Parameter der verwendeten Fuzzy—Relationalmodelle sind die Gewich-
te der einzelnen Regeln (Pedrycz 1984). Zu ihrer Bestimmung wurde das Verfahren der
stochastischen Approximation (Tsypkin 1969), auch stochastisches Gradientenverfahren
genannt (Ljung und Soéderstrom 1983), verwendet. Dieses Verfahren arbeitet rekursiv,
andert also die Modellparameter nach jedem Mefiwert und ist damit on—line fdhig. Das
Trainingssignal war eine Folge verschiedener Spriinge, die einen weiten Bereich des Fin-
gangsraumes abdecken. Nach der Identifikation wurden die Ergebnisse mittels mehrerer

Testsignale verifiziert.

Es konnte gezeigt werden, dafl die verwendeten Modellstrukturen grundséatzlich das Sy-
stemverhalten gut beschreiben und die Parameter geeignet identifiziert werden. Die Mo-
dellstruktur zeichnet sich mit nur zwei Eingdngen durch ihre Einfachheit aus. Die Mo-
dellgiite ist sogar gut genug, um von einer Einschrittpradiktion, wie sie bei Bertram
und Schwarz (1993) verwendet wird, auf die rekursive Auswertung der Modellgleichungen
iiberzugehen. Damit ist es moglich, das Modell ohne das parallel laufende reale System
auszuwerten. Dies ist der erste Schritt zum Einsatz von Fuzzy—Modellen in der Simu-
lation. Insbesondere Fchtzeitsimulationen fiir Anwendungen von Hardware—in—the—loop
erscheinen moglich. Dazu ist allerdings eine weitere Beschleunigung der Fuzzy—Simulation

notwendig. Diese soll in weiteren Arbeiten untersucht werden.

Als lineares Vergleichssystem wurde ein Ppi—System mit dem LS—Verfahren identifiziert.
Wie erwartet, zeigte jedoch das Fuzzy-Modell eine deutlich bessere Ubereinstimmung
mit dem realen System. Dennoch konnte das Pri—System dazu verwendet werden, das
Fuzzy—-Modell vorzubelegen, um die Konvergenzgeschwindigkeit zu erhéhen. Dazu wurde
ein Verfahren vorgestellt, mit dem die Gewichte fiir ein lineares Fuzzy—Modell mit zwei

Eingidngen bestimmt werden kénnen.

Eine weitere Moglichkeit zur Nutzung linearer Systeme ist in Bild 6.1 dargestellt. Bei
diesem Hybrid-System wird zunéchst ein lineares Modell der Strecke als eine erste Nahe-

rung bestimmt. Die dann noch verbleibenden relativ kleinen Abweichungen beschreibt

O——»

Fuzzy—Modell J

Bild 6.1: Hybrides Modell

Lineares Modell
k-1 Sl1—
Y< ) J—> Y(k 1)

ein Fuzzy—Modell. Zu dessen Bestimmung eignet sich das in diesem Bericht beschriebene
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Verfahren. Eine weitere Verbesserung der Modelle 148t sich durch die Verwendung von
zusdtzlichen Regeln erreichen. Sie kénnten etwa physikalische Gesetzméfigkeiten oder
auch Expertenwissen enthalten, z. B. Der Systemdruck kann nicht iiber dem Versor-

gungsdruck liegen® oder ,,Der Druck kann nicht negativ werden®.

Auch das Konvergenzverhalten des benutzten stochastischen Gradientenverfahrens mufl
noch verbessert werden. Dabei ist die optimale Wahl des Lernfaktors v entscheidend. Ob-
wohl in diesem Bericht v fiir alle Félle konstant war, ist eine Optimierung fiir jedes einzelne
Modell sicherlich ratsam. Dies wurde bereits in Abschnitt 5.4.2 deutlich, wo die Abhéngig-
keit des Konvergenzverhaltens von der Startparametern bzw. dem Lernfaktor aufgezeigt
werden konnte. Denkbar ist sowohl eine a—priori Wahl des optimalen Lernfaktors, etwa
anhand einiger Testlaufe, als auch eine Adaption, d. h. einer kontinuierlichen Anpassung
des Lernfaktors. Letzteres kann entweder nach jedem einzelnen Meflwert oder nach einer
gewissen Zahl von Meflwerten, also etwa nach jedem Abarbeiten der Trainingsdaten erfol-
gen. Ein moglicher Algorithmus zur Anpassung des Lernfaktors ist in Bild 6.2 dargestellt:
Es werden die Konvergenzraten der letzten drei Lernfaktoren ermittelt. Daraus kann dann
etwa mittels einer quadratischen Funktion ein optimaler Lernfaktor ermittelt werden. Die-
se einfachen Rechnungen sind auch on-line moglich. Ein Test dieses Verfahrens steht noch
aus. Es muf} auch untersucht werden, ob die bisher ausschliellich betrachtete Konvergenz
des mittleren quadratischen Fehlers ein geeignetes Maf ist. Es sollte auch die Anderung
der einzelnen Gewichte der Relationalmatrix betrachtet werden, was wegen ihrer grofien

Zahl allerdings Schwierigkeiten bereitet. In diesem Zusammenhang ist auch interessant,

A

Konvergenzgute

7(k) 7(k-2) 7 opl y(k-1) ¥
Bild 6.2: Optimale Bestimmung des Lernfaktors

daB der verwendete Lernalgorithmus Ahnlichkeiten zu den im Bereich der kiinstlichen
Neuronalen Netze verwendeten Algorithmen hat. Diese zeigt z.B. Suprijadi (1994) auf. So
lassen sich in diesem Forschungsgebiet sicherlich viele Arbeiten zu Konvergenzverhalten
und -verbesserung finden. Dies ist eine der Motivation, die zur Zusammentithrung beider

Gebiete zur Neuro—Fuzzy—Logik fiithrten.
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Ein weiterer Vorteil der Neuronalen Netze liegt in deren massiv parallelen Struktur mit re-
lativ einfachen Rechenoperationen. Dadurch sind insbesondere auf dezidierten Hardware-
strukturen extrem hohe Verarbeitungsgeschwindigkeiten méglich, die unter dem Aspekt
der Echtzeitanwendung von Fuzzy-Logik wichtig sind. Ein weiteres wichtiges Gebiet ist
die Frage nach der Stabilitdt der gefundenen Modelle. Wie bereits angesprochen, wurden
die Fuzzy—Modelle durch die Riickkopplung der Ausgangsgréflen zu dynamischen Syste-
men, genauer zu zeitdiskreten, nichtlinearen dynamischen Systemen. Es muf} in Zukunft
geklart werden, ob und unter welchen Umstédnden ihre Stabilitdt gesichert ist. Gerade bei

Anwendungen von Hardware—in—the—loop kann diese Frage extrem kritisch sein.

Die Ergebnisse dieses Berichtes entstanden im Rahmen des Projektes ,, Echtzeitsimulation
mittels Fuzzy—Systemmodellen®, das vom Ministerium fiir Wissenschaft und Forschung
des Landes Nordrhein—Westfalen geférdert wurde.
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A destsignale

A Testsignale

In diesem Anhang sind die Testsignale abgebildet, die zur Verifizierung der Fuzzy—Modelle
benutzt wurden.
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B Ergebnisse fiir Modell 1

In diesem Anhang werden die Ergebnisse des Modells 1 fiir die verschiedenen Testsignale

und Auswertungsarten gezeigt.
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C Ergebnisse fiir die Modellierung mit einem Ppq—
System

In diesem Anhang werden die Ergebnisse gezeigt, die fiir die verschiedenen Testsignale

und Auswertungsarten bei der Modellierung der Strecke als Ppy—~System erzielt wurden.
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D Ergebnisse fiir Modell 2

In diesem Anhang werden die Ergebnisse des Modells 2 fiir die verschiedenen Signale und

Auswertungsarten gezeigt.
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E Ergebnisse fiir das inkrementale Modell

In diesem Anhang werden die Ergebnisse des inkrementalen Modells fiir die verschiedenen

Testsignale bei rekursiver Auswertung gezeigt.
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F Ergebnisse fiir Modell 4

In diesem Anhang werden die Ergebnisse des Modells 4 fiir die verschiedenen Signale und

Auswertungsarten gezeigt.
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