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1 Einleitende Ubersicht

Mathematische Modelle dienen zur Analyse und Synthese von Regelungssystemen. Diese
Systemmodelle erlauben eine Erprobung und Optimierung von Regelungskonzepten in der
Simulation. Auflerdem kénnen reale Prozesse im allgemeinen nicht auf alle Betriebstélle
und Stérungen hin {iberpriift werden. Bei Systemen hoher Komplexitat, falls Nichtlinea-
ritaten vorliegen und / oder die Systemdynamik nicht genau bekannt ist oder nicht oder
nur unter zu grofem Aufwand analytisch beschreibbar ist, geraten konventionelle Mo-
dellbildungsverfahren an ihre Grenzen. Einen Ansatz zur Uberwindung dieser Probleme
bietet die Fuzzy—Logik (Xu und Lu 1987, Sugeno und Kang 1988, Pedrycz 1991, Shaw
und Kriiger 1992).

Dieser Bericht befafit sich mit der Identifikation von funktionalen Fuzzy—Modellen. Funk-
tionale Fuzzy—Modelle unterscheiden sich von den relationalen (Pedrycz 1984, Kiipper
1994) dadurch, daB der Folgerungsteil der Fuzzy—Regeln durch eine (scharfe) analytische
Funktion gegeben ist und nicht durch Fuzzy-Mengen beschrieben wird. Die Zielsetzung
beider Modellierungsarten ist allerdings dhnlich. Es wird im allgemeinen ein zeitdiskretes
parametrisches Ein—/Ausgangsgrofenmodell fiir einen Prozefl bestimmt. Das System wird
also als schwarzer Kasten (Schwarz 1991) betrachtet. Vor einer eigentlichen Modelliden-
tifikation sind Mefldaten zu gewinnen. Die Festlegung einer geeigneten Abtastzeit sowie
geeigneter Testsignale ist allerdings nicht Bestandteil dieses Berichtes. Hier sei z. B. auf
[sermann (1988a,b) und Reuter (1993) verwiesen.

Die Identifikation eines Fuzzy—Modells kann in zwei grofle Aufgaben zerlegt werden:
Die Struktur— und die Parameteridentifikation, wobei die Grenzen zwischen der Zuord-
nung der Teilaufgaben fliefend sind. Wahrend die Bestimmung der Eingangsvariablen
des Modells immer der Strukturidentifikation und die der Konklusionsparameter der
Parameteridentifikation zugeordnet wird, ist die Zuordnung der Identifikation der Ein—
/Ausgangsbeziehungen in der Literatur nicht einheitlich dargestellt. In diesem Bericht
soll die Gliederung nach Sugeno und Yasukawa (1993) angewendet werden, die sich wie
folgt darstellt: Die Strukturidentifikation gliedert sich in die Bestimmung der Fingangsva-
riablen des Modells (Tedl I') und die Festlegung der Ein—/Ausgangsbeziehungen ( Teil IT ).
Im Teil Ia werden durch Plausibilitatsiiberlegungen iiber physikalisches Hintergrundwis-
sen potentiell sinnvolle Kandidaten fiir die Fingangsgréfien bestimmt. Es gibt hierzu keine
generelle Losung, sondern nur heuristisches Vorgehen (vorausgesetzt wird natiirlich, dafl
die zu pradizierende Ausgangsgrofe bekannt ist). Im Teil Ib werden aus den Eingangs-
kandidaten die konkreten Modelleingangsgréfien bestimmt. Dazu sind nicht—signifikante
Kandidaten zu eliminieren und die Signalverzégerungen in allen Eingdngen zu bestim-
men. Fiir die Selektion der Eingangsgrofien gibt es systematische Ansétze, die natiirlich
ein Giitekriterium voraussetzen. Sugeno und Kang (1988) stellen hierzu ein Verfahren
iiber einen Suchbaum mit Elimination der Zweige schlechter Giite beim Ubergang von

Ebene zu Ebene des Baumes vor. Bei der Identifikation der Fin—/Ausgangsbeziehungen
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wird im Ted Ila die Anzahl der Fuzzy—Regeln festgelegt. Dieser Teil ist im Zusammenhang
mit Tei 11b, der Pramissenstrukturidentifikation, d. h. der Partitionierung des Eingangs-

groflenraumes, zu sehen.

Wiéhrend sich bei relationalen und funktionalen Fuzzy—Modellen das Problem der Struk-
turidentifikation in &hnlicher Weise stellt (die Pramissen, d. h. die WENN—Teile der Regeln,
sind gleich aufgebaut), unterscheiden sich die bei der Parameteridentifikation zu bestim-
menden Parameter wegen der unterschiedlichen Konklusionsformen. Bei den funktionalen
Fuzzy—Modellen besteht eine Konklusion aus einer analytischen Funktion. Im allgemeinen
wird hier in den in der Literatur (Takagi und Sugeno 1985, Sugeno und Kang 1988, Sugeno
und Tanaka 1991, Tan u. a. 1994) wie auch in dem in diesem Bericht vorgestellten neuen
Verfahren ein in den Eingangsgréfien lineares Polynom angesetzt. Damit beschrankt sich

die Identifikationsaufgabe auf die Bestimmung der Polynomkoeffizienten.

Im vorliegenden Bericht werden die Betrachtungen auf den Teil [T der Strukturidenti-
fikation und die Parameteridentifikation beschrénkt. Nach einer Erlauterung von Clu-
sterverfahren erfogt eine kurze Beschreibung funktionaler Fuzzy—Systeme. Dabei wird ei-
ne neue Pramissenstruktur mit mehrdimensionalen Referenz—Fuzzy—Mengen vorgestellt.
Anschlieflend wird das zur Parameteridentifikation verwendete Verfahren der gewichte-
ten kleinsten Fehlerquadrate beschrieben. Die Clusterverfahren werden im 5. Abschnitt
zur Strukturidentifikation Teil IT angewendet. Da viele Verdffentlichungen eindimensiona-
le orthogonale Referenz—Fuzzy—Mengen zur Partitionierung verwenden, werden auflerdem
einige Betrachtungen zur Wahl dieser Art der Referenz—Fuzzy—Mengen vorgenommen. Da-
nach wird ein neues Identifikationsverfahren vorgestellt, das funktionale Fuzzy—Modelle
mit echt—-mehrdimensionalen Referenz—Fuzzy—Mengen und linearen Polynomen als Kon-
klusionsfunktionen identifiziert. Eine Anwendung des Verfahrens auf zwei nichtlineare

Testsysteme, ein akademisches und ein praktisches Beispiel, erfolgt in Abschnitt 6.
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2 Verfahren zur Clusterung von Daten

Bei der Clusterung wird die Anzahl ¢ der Cluster (,Haufen“) und eine Abstandsnorm
(z. B. die Euklidische) vorgegeben. Dann werden ¢ Clusterschwerpunkte bestimmt und
allen N Datenpunkten eine Zugehorigkeit zu den ¢ Clustern zugeordnet, die im Sinne der
Abstandsnorm optimal ist. Es handelt sich dabei um ein Optimierungs- (Minimierungs-)
Problem beziiglich einer Straf- oder Kostenfunktion .J, die von der Datenmenge M, und
den den Daten zugeordneten Zugehorigkeitsfunktionswerten abhangt. Dazu sind mehrere
Cluster—Algorithmen verfiigbar, die meistens speziell auf die Detektion bestimmter geo-
metrischer Strukturen im untersuchten Datenraum zugeschnitten sind. Zu beachten ist,
daf tiber die Festlegung der Abstandsnorm || - || bei der Optimierung der Kostenfunktion
oft die von der Norm implizierte geometrische Clusterform erzwungen wird. Dies kann
auch dann der Fall sein, wenn diese in der Datenstruktur evtl. nicht vorhanden ist. Des-
halb bedeutet ein minimaler Wert der Kostenfunktion nicht gleichzeitig zwangslaufig eine

gute Clusterung, da ja nur auf eine geometrische Struktur hin untersucht wurde.

Der Fuzzy—c-Means—Algorithmus (FCM), auch als Fuzzy-ISODATA bekannt, ist beson-
ders auf hyperellipsoide geometrische Strukturen zugeschnitten. Nach Bezdek (1981) fiihrt
er bei Verwendung der euklidischen Abstandsnorm zu Zugehorigkeitsfunktionsoberflachen,
die eine Mischung aus ¢ Gaufi’schen Wahrscheinlichkeitsdichtefunktionen darstellen (Bez-
dek 1981:162). Dabei ist ¢ die Anzahl der Cluster. In der Literatur finden sich auch
Algorithmen, die auf andere als hyperellipsoide geometrische Strukturen zugeschnitten
sind oder sogar lokal unterschiedliche Clusterformen generieren kénnen: Bei den Backer—
Algorithmen (Backer 1978) kénnen die Zugehorigkeitsfunktionen auch Maxima nahe den
Grenzen des Datenraumes besitzen, was vorteilhaft bei nicht hyperellipsoiden Datenstruk-

turen ist.

Gustafson und Kessel (Bezdek 1981) stellen einen Algorithmus vor, der lokal unterschied-

liche geometrische Strukturen in den Datensatzen erkennen und clustern kann.

Die von Bezdek (1981) entwickelte Familie der Fuzzy—c—Varieties—Algorithmen (FCV)
stellt eine Erweiterung des FCM dar. Ein FCV erlaubt die Bestimmung punktférmiger
(r = 0), linienformiger (r = 1), ebener (r = 2) oder hyperplanarer (r > 2) Clusterzen-
tren. Im Sonderfall von r = 0 stimmt er mit dem FCM {iberein. Da er allerdings nur den
(orthogonalen) Abstand vom Clusterzentrum bestraft, sind z. B. bei r = 1 die Cluster-
zentren Linien unendlicher Lange. Zwei Datenhdufungen nahe der Linie, aber mit groflem
Abstand zueinander, werden deshalb wie zwei nahe benachbarte bestraft (vgl. Bild 2.1).
In diesem Punkt setzt die Familie der Fuzzy—C—Elliptotypen (FCE) an. Die grundlegende
Idee entspricht dem FCV fiir r = 1, allerdings werden hier auch die Abstidnde der Daten
entlang der Clusterzentrumlinie bestraft. Uber einen Parameter 9 kann eingestellt wer-

den, wie stark die elliptische in Abgrenzung zur linearen Bestrafung erfolgen soll.
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Bild 2.1: Der Fuzzy—c—Varieties—Algorithmus (r = 1) bestraft die beiden dargestellten
Datenhdufungen nahe der Linie, aber mit unterschiedlicher Streckung in Lini-

enrichtung, gleich.

Diese kurzen Ausfithrungen sollen illustrieren, dafl es den 1. allg. optimalen Algorithmus
nicht gibt, sondern dafl je nach der im Einzelfall vorliegenden Datenstruktur ein darauf
zugeschnittener Algorithmus angewendet werden sollte. Oft ist allerdings kein Vorwissen
iiber die geometrische Struktur vorhanden. Bei mehr als zweidimensionalen Datenrdumen
lassen sich wegen der schlechten Anschaulich— und Visualisierbarkeit oft mit vertretba-
rem Aufwand keine Aussagen iiber die Datenstruktur machen. In solchen Fillen kann ein

heuristisches Vorgehen zur Ermittlung des geeignetsten Algorithmus nétig werden.

Der genauen Beschreibung der Clusterverfahren sei die Definition von Fuzzy—c-Partitionen

und harten ¢—Partitionen vorangestellt:
Definition 2.1 : Fuzzy—c-Partition (Bezdek 1981:26)

Sei M, = {x1,...,2,...,xn} eine endliche (Daten-) Menge mit NV Elementen,
¢ € N die Anzahl der Partitionen mit 2 < ¢ < N und V_.y die Menge der

reellen ¢ x N-Matrizen, dann ist der Fuzzy—c-Partitionsraum fiir M,. als

Mfc = {U € VCN| Wik € [0,1] Y i,k;
Z,uikzl \V/k, 0<Z/Lik<n V1
=1 k=1
gegeben.
O

Dabei bezeichnet p;;, den Zugehorigkeitsgrad des Datums @y zur i—ten Partition. Das 1—te
Element der j—ten Spalte von U(: € {1,...,¢c},5 € {1,..., N}) enthilt die Zugehorigkeit
des j—ten Datums zur :—ten Partition. Diese Partitionen kénnen, wie in den folgenden

Unterabschnitten beschrieben, z. B. durch Clusterung bestimmt werden.

Beispiel: Gegeben seien die in Bild 2.2 gezeigten Zugehéorigkeitsfunktionen fiir klein,
mittel und grof$ sowie die zwei Datenpunkte 1 und x,.

Dann folgt U = [p;;] zu

(1) (22)
0 0,4 (groB)
U= 0,2 0,6 (mittel)
0,8 0 (klein)

(2.2)
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o

1 ]
0,8 1
0,6 1
0,4 1
0,2 1
0

\j

Bild 2.2: Zugehorigkeitsfunktionen fiir klein, mittel und grof$ sowie die Datenpunkte

71 und z,.

Ein Sonderfall der Fuzzy—c—Partition ist die harte c—Partition:
Definition 2.2 : Harte ¢—Partition (Bezdek 1981:24)

Sei M, = {x1,...,2,...,xn} eine endliche (Daten-) Menge mit NV Elementen,
¢ € N die Anzahl der Partitionen mit 2 < ¢ < N und V_.y die Menge der

reellen ¢ x N-Matrizen, dann ist der harte ¢—Partitionsraum fiir Ml, als

Mfc = {U € VCN| Wik € {0,1} Y i,k;
Z,uikzl \V/k, 0<Z/Lik<n V1
=1 k=1

gegeben.

2.1 Matrix- und Vektornormen

Die Clusteralgorithmen verwenden Matrix- bzw. Vektornormen fiir die Auswertung der
Terminierungsbedingung (||U ™ —UW||,. < ) baw. die Bestimmung des Abstandes eines
Datenpunktes vom Clusterschwerpunkt (||&s — v;||p). Bei den Matrixnormen erscheinen
1—, co— und Spektral- (Hilbert—) Norm fiir den Anwendungszweck als nicht sehr sinnvoll.
Geeigneter ist eine Erweiterung der Holder—Norm (Lancaster und Tismenetsky 1985) auf

r x s—Matrizen A = [a;;]:

S|

|All, = (ZZ W) , (2.4)

=1 7=1

die als Spezialfall fiir p = 2 die euklidische (Frobenius—) Norm beinhaltet, oder eine
Erweiterung der Gesamtnorm (Zurmiihl und Falk 1986) auf r x s—Matrizen

lAllo = Vs max{lol} (25)

1253
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Bild 2.3: Grenzkurve ||x||3, =1 fir Dy, = , Dy = , D3 = ,
' 0 4 V5 3 0 2
4 0 ) .
D, = mit det(D;) =4 V.
0 1

Wihrend die Gesamtnorm nur die maximale Abweichung von [|[U™Y) — UO|| bewertet,

werden bei der p—-Norm alle Abweichungen bestraft.

Bei Vektornormen sind z. B. 1-, oo— und p—Norm iiblich. Letztere enthélt als Sonderfall
(p = 2) auch die euklidische (sphéarische) Norm (Zurmiihl und Falk 1986). Betrachtet

werden soll die Darstellung der Norm als quadratische Form
2|3 =< 2,2 >p=a’ Da . (2.6)

Je nach Wahl der Matrix D kann die Grenzkurve gleicher Norm (Equinormalkurve) be-
einflufft werden: Fiir D = I folgt die euklidische Norm, die Abweichungen in jede Rich-
tung vom Ursprung gleich bestraft. Damit folgen sphérische Equinormalkurven um den
Ursprung, d. h. konzentrische Kreise im zwei— und konzentrische Kugelschalen im dreidi-
mensionalen Fall. Fiir allgemeine Diagonalmatrizen folgen als Equinormalkurven (Hyper-)
Ellipsoide in Richtung einer der Koordinatenachsen, deren Exzentrizitat gewédhlt werden
kann. Fiir vollbesetzte Matrizen kann zusatzlich eine beliebige Lage der Ellipsoide ein-
gestellt werden. Bild 2.3 zeigt exemplarisch die Equinormalkurven |||}, = & = 1 fiir

einige I); im zweidimensionalen Fall. Hier gilt

& = ||z} = " Da = [rza)[ T ][] (2.7)

a3 ayg T2
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Die Equinormalkurven werden durch

as + as \l d? léh (Gz + G3)2
Ty = — = e e

2 a4 a4

x? (2.8)

mit @y € [—x,; x,] beschrieben. Gilt 4ajas — (az + as) > 0, so folgt

2 271
2, = J_ l“_l _ (“2 + “3) ] . (2.9)
a4 a4 2 a4

Bei Anderung der absoluten Werte der Elemente von D unter gleichzeitiger Beibehaltung

der relativen Beziehungen, d. h. sei D, = ¢ D, kann {iber den Wert der Determinante
p = det(D,) = o det(D) das von der Grenzkurve eingeschlossene Volumen (b. z. w. die
Flache im zweidimensionalen Fall) bei gleicher Kurvenform eingestellt werden (Bild 2.4).
Eine Konstantsetzung der Determinante bei gleichzeitiger Variation der Elemente von D
beeinfluBit dagegen primér (oder unter gewissen Voraussetzungen sogar ausschliefllich) die
Lage der Grenzkurve (vgl. Bild 2.3). Im zweidimensionalen Fall berechnet sich die von

einer Equinormalkurve ||2||p = d umschlossene Flache zu

27 d?

=
/4 det(D) — (ay — as)?

(2.10)

Fiir symmetrische Matrizen D (as = a3) ist F' nicht von den einzelnen Werten der a;,
sondern nur von det(D) abhéangig. Eine Beschrankung auf symmetrische Matrizen ist
keine wesentliche Einschrénkung, da im zweidimensionalne Fall a; und a3 nur als Summe
in (2.8) eingehen. Deshalb 148t sich auch fiir ay = a3 eine beliebige Lage und Exzentrizitét
der Ellipsoide einstellen.

2.2 Fuzzy—c—Means (FCM)
Im folgenden wird der Fuzzy—c-Means Algorithmus beschrieben (Bezdek 1981):

FCM-Algorithmus

|| fir die

1. Clusteranzahl ¢ (2 < ¢ < N), Abstandsnorm D, geeignete Matrixnorm || -
Terminierungsbedingung, Unscharfeparameter v € (1, 00) und Anfangswert U e

M. vorgeben. Es sei [ = 0.

2. Clusterschwerpunkte v; berechnen:
N I v
2. (ﬂgk)) Lk

() _ k=1
N v
2 (MEQ)

vy =
k=1

. (2.11)

K3
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1,5
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Bild 2.4: Grenzkurven gleicher Norm |||}, = "o Da = 1 mit D = D, aus Bild 2.3.

3. UY zu UMY aktualisieren :

(a) Priifung, ob Singularitdten (d;, = 0) vorliegen. Sei I = {1,...,¢} die Menge
aller Cluster und ]Ig) = {1 €] dg,? = ||&y —’UEI)HD = 0} die Menge aller Cluster,
bzgl. derer x; den Abstand 0 vom Clusterschwerpunkt hat. N]Ig) =1\ ]Ig) ist die
Menge aller Cluster, bzgl. derer @, keine Singularitidt darstellt.

(b) Berechne die Zugehorigkeit zu den neuen Clustern

11 fir ]Ig) =0
- (ﬂ) ! (keine
—\ gV Singularitaten)
J=1 k
pitt = S l (2.12)
0 v iell fiir I £ ¢
(Singularitéten
ag,? Vo€ ]Iﬁf) liegen vor)
mit
ad: S adll =S W =1 v ictV#£p . (2.13)
iert) iert!

Wihle z. B. aEQ = 1(1) YV i. Damit ist U+ = [,u(»l—l_l)]
#(I,.")

ik
4. Terminierungsbedingung priifen:

Weny | UHEY — U0, <«

DANN  Stop (2.14)
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SONST [ =141, zurick zu 2.

Diesem Algorithmus liegt als Kostenfunktion

J,(U,v, D) ZZ fir) Hwk—vzHD = ZZ tir)” (dix) 2 (2.15)

k=1 :=1 k=1 :=1
mit einer Fuzzy—c—Partition U € My, von M, und (d;1)* = ||&r — v;||} einer inneren
Produktnorm || - ||p auf R? zugrunde. v = [vyq,...,v.],v; € R™ ist der Vektor der Clus-

terschwerpunkte und v € (1,00) ein Unscharfeparameter. Die Norm ist zu minimieren.
Da d;;. quadratisch in J, eingeht, handelt es sich beim Cluster—Kriterium um ein qua-
dratisches Fehlerkriterium. Fiir v — 1 und die euklidische Abstandsnorm geht der FCM
in den harten ¢~Means (HCM, Basis-ISODATA) nach Duda und Hart (Bezdek 1981:55)
iiber. Anderseits wird die Partitionierung immer unschéarfer, je grofler v gewdhlt wird.
Bezdek (1981:73) zeigt, daff .J, mit zunehmendem v monoton fallt. Der Algorithmus fiihrt
zu einem lokalen Minimum von J,. Zu beachten ist, dafl je nach Datenstruktur ein lokales
oder globales Minimum von .J, keineswegs eine gute Clusterung darstellen muf, da ja nur

im Hinblick auf die gewdhlte Norm optimiert wird.

Bei der Verwendung der euklidischen Norm fiir || - ||p fiihrt der FCM zu sphéarischen
Clustern. Bezdek (1981:85f) zeigt, dafl die Bedingung (2.12) zum Aktualisieren auf ,uglljl)
notwendig, aber nicht hinreichend fiir strikte lokale Minima von .J, ist (fiir » > 1). Theo-
retisch konvergiert der FCM fiir unendlich héufiges Iterieren. Fiir eine endliche Anzahl
von lterationen ist keine Aussage moglich. Erfahrungen zeigen, dafl bei Konvergenz nach

endlicher [terationsanzahl im allgemeinen das Ergebnis nahe einem lokalen Minimum liegt

(Bezdek 1981).

2.3 Backer—Algorithmen

Die Backer—Algorithmen (Backer 1978) gehen von einer harten Partitionierung des Da-
tenraumes aus. Uber eine Priifung der , Verwandtheit* (Affinitat) jedes Datenpunktes zu
jedem harten Cluster werden Zugehorigkeiten der Datenpunkte zu den Clustern abge-

leitet. Ein Verwandtheitskriterium, wie z. B. die ,mittlere Partitions—Trennbarkeit* B
(average partitions Sepambility, Bezdek 1981:157) mit (Backer 1978:106)

l Z (s — /%)2] (2.16)

k=1

B(Uc:

=1 j=14+1
ist vorzugeben. Jeder harten Partitionierung (durch (-)* bezeichnet) wird genau eine
weiche Partitionierung (wie zuvor aber ohne Stern) zugeordnet. Bezdek (1981) gibt ei-
ne Variante der Algorithmen an, die als Verwandheitskriterium die mittlere Partitions—

Trennbarkeit B und die euklidische Abstandsnorm dy, = ||&; — @ |2 verwendet:
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Backer—Algorithmus

1. Clusteranzahl ¢ (2 < ¢ < N) und eine harte Partitionierung U© = [,uj,go)] € M.

vorgeben. Berechne ¢ = Htl%X(dtk). Es sei [ = 0.

. Berechne weiche aus harten Clustern:

N
) — ¢ % pild]
(l) _ t=1
Hig =

S (2.17)
N o3 df

#(M;).

. Berechne die Reklassifizierungsmatrix R = [ry;] zur Neuzuweisung der Daten zu

mit M; der Menge aller Daten des :—ten harten Clusters und n;

den Partitionen mit

l 1 1 2 1 I 2
rz(k) = 0 (ﬂgk)) - Z (Ngt)) (2'18)
L ze t,—k .
o _ ()2 1 V| fir 1< ice i%i (219
Tie = 0 (Njk) - Z (Nﬁ) irl1 <j<e j#: ( )
L [ i

mit M; der Menge aller Daten des i—ten harten Clusters, M; der Menge aller Daten
des j—ten harten Clusters, n; = #(M,;), n; = #(M;), M, -y = M, \ {&;} und
M, = M; U {a, ]

. Aktualisiere die harte Partitionierung U™ (diese Vorschrift fithrt zum iterativen
Optimieren von B):

Fir k=1,..., N berechne: 7“1(51? = max (r;lk)) mit
1<g<c

(0

r,, ¥V ¢ =1 nach (2.18)
rz(glk) _ (2.20)
P W ge{1,...,¢}\ {i} nach (2.19).
Fiir ¢ = ¢ bleibt die Partitionierung erhalten:
i = Y ge {1, e (2.21)
Fiir ¢ # ¢ wird repartitioniert:
() 1V g=t
i = (2.22)
0V g#t
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5. Priife Terminierungsbedingung:

Wesn U =0
DANN  Stop (keine Anderung der harten Clusterung) (2.23)
SONST [ =141, zuriick nach 2.

Dieser Algorithmus kann im Gegensatz zum Fuzzy—c—Means auch Zugehorigkeitsfunk-
tionen mit Maxima nahe den Grenzen des Datenraumes liefern. Somit kann er bei nicht
hyperellipsoiden Datenstrukturen zu besseren Ergebnissen fiihren als der FCM. Der Algo-
rithmus konvergiert und fithrt zu einem globalen Maximum von B beziiglich der durch die
Zuordnung zu den harten Partitionen moglichen weichen Partitionen (Bezdek 1981:159).
Die Konvergenz tritt nach einer endlichen Anzahl von Iterationen ein, wodurch als Ter-
minierungsbedingung ein Vergleich auf Identitét aufeinanderfolgender harter Partitionie-
rungen moglich ist. Als Parameter des Algorithmus treten die Anzahl der Cluster ¢, die
Wahl der Abstandsnorm d = || - || und des Verwandtheitskriteriums sowie die Festlegung
von ¢ auf. So kann die Unschérfe der Partitionierung durch Einfithrung eines Faktors m/
in

¢ = m' max(dy;), (2.24)

)

der bisher zu 1 gesetzt wurde, beeinflufit werden.

Der Reklassifizierung liegt die Idee zu Grunde, durch elementweise Austauschvorginge
zwischen den harten Partitionen die im Sinne eines Giitekriteriums (implizit in (2.18)
bzw. (2.19) enthalten) optimale harte Zuordnung der Daten zu den Clustern zu erreichen.
Fiir den Reklassifizierungsvorgang sind pro Datum ¢ — 1 und somit insgesamt N(c¢ — 1)
Austauschvorgdnge wihrend eines Iterationsschrittes zu betrachten. Wie bereits zuvor

erwahnt, werden aus der harten Clusterung die unscharfen Zugehérigkeiten abgeleitet.

2.4 Algorithmus von Gustafson und Kessel (Fuzzy Kovarianz—
Matrizen)

Der FCM ist wegen der zugrundeliegenden einheitlichen Norm gut fiir hyperellipsoide
geometrische Datenstrukturen geeignet. Zur Clusterung von lokal unterschiedlichen geo-
metrischen Strukturen, z. B. lokal teilweise sphéarische und teilweise ellipsoide Struktu-
ren, stellen Gustafson und Kessel (Bezdeck 1981) einen Algorithmus vor, der eine lo-
kale Variation der Abstandsnorm erlaubt. Statt einer global wirkenden Matrix—Norm
D mit dy, = ||&r — vi]|p gilt also fiir jedes der ¢ Cluster jeweils eine Norm D; mit
dix = ||l&r — vi||p;. Bel dem Algorithmus ist beziiglich |||}, = &’ D; @ fiir jedes D;
der Wert seiner Determinante det(D;) = p; > 0 festzulegen. Die Wahl von p; legt dabei

das Volumen des i—ten Clusters fest, die Variation von I; bei konstantem p; entspricht
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der Suche nach der optimalen Clusterform (siehe auch Abschnitt 2.1). Als Straffunktion
findet

J(U,v,Dy, ... D ZZ (ar)” || — vi|| 5, (2.25)
k=11=1
mit den lokalen Matrixnormen D1, ..., D. Verwendung. Gustafson und Kessel formulie-

ren ihren Algorithmus, der teilweise auf den FCM-Algorithmus zuriickgreift, wie folgt:

Fuzzy Kovarianz—Matrizen—Algorithmus

|| fir die Terminierungsbe-

1. Clusteranzahl ¢ (2 < ¢ < N), geeignete Matrixnorm || -
dingung, Unschéarfeparameter v € (1,00), p; € [0,00) (1 <7 < ¢) und Anfangswert
U e M. vorgeben. Es sei [ = 0.

2. Clusterschwerpunkte v; berechnen (wie beim FCM):

N v
/ Z (quk) Lk
O i=1,....c (2.26)

; N y
kZ::1 ('ulk)
3. Die ¢ Matrizen
SO0 =3 ()" (= o) (or— o) )
k=1

det(Sy;) und SJTZ»I fiir alle 1 < ¢ < ¢ berechnen.

4. Lokale Matrizen D;

3=

D; = (p: det(Sy))= S3'  ,1<i<c (2.28)
(mit der Dimension m des Fingangsdatenraums) berechnen.

5. Aktualisiere UY zu U+ (Vorgehen wie beim FCM, aber mit lokal unterschiedli-
chen Abstandsmaflen):

dy) =z, — o, 1<i<e, 1<k<N (2.29)
ﬁ fir ]Ig) =
- (dgk)) " (keine
— \ 40 Singularitaten)
J=1 k
it = : (2.30)
0 Vv iell fiir T £ ¢
(Smgulamtaten
aEQ vV 1€ ]Ig) liegen vor)
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mit
af s Y=Y pil=1V iel)#0 . (231)
ierl) iert!
Wahle 7. B. af) = —L— ¥ i. Damit ist U = [
#(I,)

6. Terminierungsbedingung priifen:

WeNN U U0 <«

DANN  Stop (2.32)
SONST [ =141, zurick zu 2.
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3 Funktionale Fuzzy-Systeme

Ein Funktional-Fuzzy—System mit m Eingangsgrofien und einer Ausgangsgrofie beruht

auf n Regeln der Form

Ri: WENN (X, IsT A ;) UND ... UND (X, IsT A} )

3.1
DANN y; = fi(x1, ..., @n) (3-1)
mit
T : scharfe Fingangsgrofle, y =1,...,m , z; € Dy;
X; : unscharfe Fingangsgrofle, j =1,...,m ,
A;T(i) : r—te Referenz—Fuzzy—Menge der j—ten Fingangsgrofle der :—ten Regel,
i : scharfe Ausgangsgréfle der i—ten Regel und
filz1,...,2m) : Funktion der m scharfen Eingangsgrofien.

Ein solches System kann sowohl einen Regler als auch ein Modell beschreiben. Die Aus-
wertung der Pramissen der Fuzzy—Regeln erfolgt wie beim Relational-Fuzzy—Regler: Fiir

einen EingangsgréBenvektor X = [Xi,..., X,,]T bezeichnet

den Erfilltheitsgrad der j—ten Partialpramisse der i—ten Regel bzgl. der r—ten Referenz—
Fuzzy—Menge. Bei Fuzzifizierung {iber Fuzzy—Finermengen S, deren Zugehéorigkeitsfunk-

tionen als

1 V z=e
st ={ g v 1 (33)
definiert sind, vereinfacht sich (3.2) zu

(z;) - (3.4)

Diese Fuzzifizierungsmethodik soll im folgenden vorausgesetzt werden. Bei multiplikativer

Qji = Hai
7,r(2)

Verkniipfung der Partialprdmissen berechnet sich der Erfiilltheitsgrad w; der Pramisse der

1—ten Regel zu
w; = H ;g . (35)
7=1

Fiir die Konklusionspolynome f; gibt Buckley (1993) fiir einen Regler mit zwei Eingangs-

groflen (m = 2) einen allgemeinen Ansatz als

ha (1) Ry (0) .
yi = fil@1, 72) = Z Z pila,b) x7 y r=1,....n (3.6)

a=0 6=0

an, wobei p; reelle Polynomkoeffizienten bezeichnen. Takagi und Sugeno (1985), Suge-
no und Kang (1986, 1988) wie auch Sugeno und Tanaka (1991) berechnen dagegen die

(Partial-) Modellausgangsgrofien als in den m Eingangsgrofien lineare Polynome zu

Ji(@1, - 2m) = pi(0) +§f:1 pila) 7 | (3.7)
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In die Berechnung der n Gréflen y; gehen die Erfiilltheitsgrade der Pramissen w; nicht ein.
Sie werden bei der Aggregation beriicksichtigt. Bei der Aggregation iiber eine gewichtete
Mittelwertbildung (Takagi und Sugeno 1985) gilt

'n Yi wi
y =5 : (3.8)
2w
=1
wobei mindestens ein w; (¢ € {1,2,...,n}) grofer als Null vorausgesetzt wird. Buckley

(1993) fiihrt bei der Aggregation keine Normierung der Gewichte w; der GroBen y; im

Sinne einer Summation zu eins — wie in (3.8) — durch und erhélt deshalb
=1

Die Gleichungen (3.1), (3.2) und (3.5) beschreiben eine Pramissenstruktur, bei der die
Mehrdimensionalitdat des Eingangsgroflenraumes durch die Verkniipfung explizit eindi-
mensionaler Zugehérigkeitsfunktionen vorgenommen wird. In dem in diesem Bericht in
Abschnitt 5.2 vorgestellten neuen Verfahren werden bei der Strukturidentifikation iiber
Clusterverfahren explizit mehrdimensionale Zugehorigkeitsfunktionen betrachtet. Dabei
wird in der Pramisse der i—ten Regel abgefragt, wie grof die Affinitat (Wesensverwand-

schaft) des Datums @, zum Partitions— oder Clusterschwerpunkt v, unter der Randbedin-

gung ist, dafl weitere ¢—1 Partitions— oder Clusterschwerpunkte vy,...,v;_1,v;41,..., 0,
gegeben sind. Es werden also Punktaffinititen betrachtet. Eine solche Regelstruktur 148t
sich als
R;: WENN IsT v;
(513 v )|’Ul...’Uc (310)
DANN y; = fi(@)
mit
T : scharfe Eingangsgréfle, j = 1,...,m , z; €Dy,
T : Vektor der scharfen Eingangsgrofien mit =[xy, ... ,:L'm]T EDy X ... XDy,
v; : den Partitions— oder Clusterschwerpunkten der :—ten Partition bzw. des
1—ten Clusters,
i : scharfe Ausgangsgréfle der :—ten Regel und
file) : Funktion der m scharfen Eingangsgrofien

schreiben. Wahrend die Clusterschwerpunkte explizit durch die Clusteralgorithmen be-
rechnet werden kénnen, bleibt noch der Begrift Partitionsschwerpunkt zu erlautern. Aus-
gehend von einer orthogonalen Partitionierung kann statt der explizit eindimensional de-
finierten orthogonalen Referenz—Fuzzy—Mengen auf explizit mehrdimensional definierte
Zugehorigkeitsfunktionen iibergegangen werden. Dazu sind die Mittelpunkte (z. B. die
geometrischen) v einer jeden (orthogonalen) Partition, die sogenannten Partitionsschwer-
punkte, zu ermitteln und mit diesen genau wie mit den Clusterschwerpunkten zu vertah-

ren. Es gilt also v; = v;.



3 runktionale ruzzy-Systeme

Fir die Auswertung der Pramisse in (3.10) wird die folgende, vom Fuzzy—c—Means—

Algorithmus tibertragene, Vorschrift verwendet:

% fir I, =0
- (dzk) v (keine
o \djk Singularitaten)
[, = N (3.11)
0 V el fir T, £ 0
(Singularitéten
aip ¥V 1€l liegen vor)
Dabei ist
x : das k-te Datum,
d;; ¢ der Abstand zwischen dem Datum @, und dem Partitions— oder Cluster—
schwerpunkt v; nach der Abstandsnorm D, d;; = ||&r — v;]|p,

die Anzahl der Partitions— oder Clusterschwerpunkte,

der Unscharfeparameter mit v € (1, 00),

I : der Menge aller Cluster 1= {1,...,¢},

I, : die Menge aller Cluster, bei denen @ den Abstand 0 vom Clusterzentrum
besitzt (d,), = ||&r — v,|[p = 0) und

ﬁk . die Menge aller Cluster, beziiglich derer @, keine Singularitét darstellt
(]Ik =T\ ]Ik)'

Die Fallunterscheidung

pir = aip, Vi€l #0 (3.12)

doan =D g =1 (3.13)

i€l i€l

besagt, daf}, falls ein ®; in einen mehrfachen Clusterschwerpunkt fallt, die Zugehorig-
keiten zu diesen Clustern jeweils kleiner Fins sein miissen. Datfiir ist die Randbedingung
verantwortlich, daf§ die Summe der Zugehérigkeiten zu allen Partitionen fiir alle Punkte

des Definitionsraumes gleich Eins sein muf. Sinnvoll ist hierbei z. B. eine Wahl

R
YT R

Da der Fall mehrtacher Clusterschwerpunkte in einem Punkt praxisfern ist, kann verein-

Vi . (3.14)

fachend angenommen werden, dafl maximal ein Clusterschwerpunkt in einem Punkt des
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EingangsgroBenraumes liegen kann. Ist Iy # (), dann enthélt es genau ein Cluster h, fiir
das dpr = 0 gilt. Damit vereinfacht sich (3.11) zu

% fir I, =0
Zc: (dzk) v (keine
o \dj, Singularitaten)
Hik = . (3.15)
0V el fir I, # 0
(Singularitéten
L Vi=h liegen vor)

Die Gln. (3.11) und (3.15) gewahrleisten, dafl die Summe der Zugehorigkeiten eines Da-
tums @ zu allen ¢ Partitionen exakt gleich Eins ist. Im Fall von Singularitéten ist dies

offensichtlich. Fiir T = () gilt:

c
=1 = c v—1

= Z 2 (3.16)

j
= 1

Das heifit, das mit (3.11) und (3.15) vorgestellte Verfahren zur Festlegung der Referenz—
Fuzzy-Mengen fithrt per se zu einem Fuzzy—Informationssystem (Meyer—Gramann und
Jingst 1993). Anstelle der in (3.11) und (3.15) verwendeten global einheitlichen Ab-

standsnorm kann auch eine lokal variierende Abstandsnorm wie beim Algorithmus von

Gustafson und Kessel (Bezdek 1981) eingesetzt werden. Auch hier gilt ZC: wir = 1, wie an
=1
(3.16) abzulesen ist.

Fiir den Fall eines zweidimensionalen normierten Eingangsgroflenraumes, einer fiir alle
Partitionen einheitlichen Euklidischen Norm als Abstandsnorm und drei Clustern mit

den Schwerpunkten
vy = [—0,5:0,5]7, vy =[-0,5:—-0,5]" und ws=10,5;0]" (3.17)

sieht die zur Referenz—Fuzzy—Menge des ersten Clusters korrespondierende echt—mehrdi-
mensionale Zugehorigkeitsfunktion nach (3.15) mit v = 1,13 wie in Bild 3.1 gezeigt aus. Je

kleiner v gewéhlt wird, desto schirfer werden die Partitionen. Fiir v — 1 folgen letztlich



3 runktionale ruzzy-Systeme

0,8
0,6
0,4
0,2

0,5

1 -1 —1 T9

Bild 3.1: Zugehorigkeiten pqy von @y = [21; :1;2]T zum ersten Cluster fir v = 1,13

harte Partitionen (5 € {0;1}). Fiir grofere Werte von v werden die Zugehorigkeitsfunk-
tionen unschérfer. Bild 3.2 zeigt pqx(@y) fir eine Auswertung von (3.17) mit v = 2 geméaf
(3.15). Die beiden Mulden liegen genau in den beiden Schwerpunkten vy und vy des 2.
und 3. Clusters. Hier gilt p1x(v2) = pax(vs) = 0.

Mit steigendem Wert von v wird allerdings der Abstand eines Datenpunktes vom Clu-
sterschwerpunkt stérker bestraft. Dadurch folgen fiir grofle Werte von v Zugehorigkeits-
funktionen, die im Schwerpunkt des korrespondierenden Clusters 1 liefern, in den Schwer-
punkten der anderen Cluster 0 und im tibrigen Bereich nahezu pp = 1/¢. Bild 3.3 illustriert
dies fiir einen bereits relativ groflen Wert v = 5.

Mit der bei mehrdimensionalen Zugehéorigkeitsfunktionen sinnvollen Vorgabe, dafl der Fin-
gangsgroflenraum und das Argument der Zugehérigkeitsfunktionen die gleiche Dimension
besitzen (wie dies bei einer Clusterung auch automatisch der Fall ist), stellt der Zugehorig-
keitsgrad p;; des Datums @) zur Partition ¢ direkt auch den (Gesamt—) Erfiilltheitsgrad
der Regelpramisse dar, also gilt

Dadurch entfillt die explizite Verkniipfung der eindimensionalen Partialprdmissen wie bei
der oben beschrieben Regelstruktur nach (3.1).
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19

0,8
0,6
0,4
0,2

0,5 1
0,5 05

1 -1-1 X9

Bild 3.2: Zugehorigkeiten pqy von @) = [21; :1;2]T zum ersten Cluster fir v = 2

0,8
0,6
0,4
0,2

0,5 05 |

-0,5 -0,5

1 -1 -1 T9

Bild 3.3: Zugehorigkeiten pqx von @) = [21; :1;2]T zum ersten Cluster fiir v = 5
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4 Parameteridentifikation des Konklusionspolynoms

Eine der Aufgaben bei der Identifikation eines funktionalen Fuzzy—Modells besteht darin,
die Parameter der n Schlufifolgerungsfunktionen zu bestimmen. Setzt man (wie allgemein
tiblich: Sugeno und Kang 1988, Sugeno und Tanaka 1991, Takagi und Sugeno 1985, Tan u.
a. 1994) als Funktionen in den Eingangsgrofien lineare Polynome an, so sind diese linear in
ihren Parametern, so daff Least—Squares—Verfahren (LS—Verfahren) angewendet werden
konnen (Reuter 1992).

Da jede Fuzzy—Regel eine der ¢ Partitionen des Eingangsgroflenraumes beschreibt, sind
die zur Identifikation zur Verfiigung stehenden Daten den einzelnen Partitionen zuzuord-
nen. Dadurch entstehen bei Verwendung eindimensionaler orthogonaler Referenz—Fuzzy—
Mengen im unscharfen Uberlappungsbereich der benachbarten Partitionen Konflikte: Nutzt
man ein Datum nur zur Identifikation der Partition, zu der es die grofite Zugehorigkeit be-
sitzt, so werden i. allg. nicht alle Daten beriicksichtigt, die in den Einzugsbereich (w > 0)
der Partition fallen (d. h. es werden nicht alle relevanten Daten ausgewertet). Verwen-
det man dagegen alle Daten im Einzugsbereich, so fithrt ein Standard-LS—Verfahren zur
Uberbetonung der Daten in den Ubergangsbereichen zwischen den Partitionen. Bei den
im vorherigen Abschnitt vorgestellten echt—mehrdimensionalen Referenz—Fuzzy—Mengen
ist ein Standard-LS—Verfahren nicht sinnvoll anwendbar. Abhilfe bietet die Nutzung eines
gewichteten LS—Verfahrens (Isermann 1988a), das bereits von Sugeno und Tanaka (1991)
eingesetzt wurde. Dabei wird jedes Datum, gewichtet entsprechend seiner Zugehérigkeit
zu der zu identifizierenden Partition, bei der Identifikation jeder Partition beriicksichtigt.

Dem LS5—Verfahren liegt dann nicht mehr eine Verlustfunktion

V=cele (4.1)

mit
(k) = a(k),, - o(k),,, und (12)
e = [e(1),....e(N)]" (4.3)

zugrunde, sondern
V=elWe (4.4)

mit einer Diagonalmatrix W. Die Diagonalelemente wy, von W sind dabei die Gewich-
tungen des k-ten Datums x;. Fiir diese Form der Gewichtung gibt Isermann (1988a) das
rekursive Verfahren der kleinsten Fehlerquadrate (Weigthed Recursive Least Squares Ver-
fahren, WRLS) wie folgt an:

Gesucht seien die Parameter einer linearen Differenzengleichung

y(k) = —aqy(k—1)— ... —apy(k—p)) + bya(k—7—1)+...+by a(k—71—,)(4.5)
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mit bekannter diskreter Totzeit 7 des Fingangsignals x(k). Die Parameter werden zum

Vektor

A

© = [a1, ... g, b,y by, )" (4.6)

zusammengefafit. Dann bestimmt sich der (k£ 4 1)-te Schatzwert é(k +1) zu

Ok +1) = (k) + +(By(k + 1) — W7 (k + 1Ok (4.7)
mit

(k) = — Pu(F)F(k+1) : (4.8)

'/4 (k + 1)Pw(k)W(k + 1) + m

und

P, k+1)=[I- ’y(k)J/T(k + D]P,(k) . (4.9)
Dabei ist

U(k) = [~y(k—=1), —y(k=2),....,—y(k — py),

ek—7—1),...,2(k—71— )" (4.10)

der k—te Datenvektor.

Zu einer i. allg. gewiinschten Modellbildung fiir Systeme mit m Fingangsgréfien gelangt
man durch eine Erganzung von Gleichung (4.5), (4.6) und (4.10) wie folgt:

y(k) = —aw(k—1)— ... —apy(k —p,) +
+bra (k=7 — 1) 4.+ by 21 (k— To1 — ©a1)
+...+ (4.11)
+érxm(k — Tom — 1)+ oo F Con@m(k — Tom — Qam) (4.12)
O = [a1,. sy, by by o e, T (4.13)
und
U(k) = [~ylk—=1), —y(k=2),...,—y(k —p,),
l’l(k—Tlsl—1),...,1’1(]6—7'951—@951), (414)

l’m(k — Tem — 1)7 . ,$m(k = Tom — p$m)]T

Wie beim ungewichteten Verfahren sind hier die Startwerte fiir (':)(O) und P, (0) vorzu-
geben. Reuter (1992) und Ben Farhat (1994) geben Hinweise zur Wahl der Startwerte.
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Das WRLS-Verfahren wird wegen der ¢ Partitionen auch c¢—mal durchgefiihrt. Das Ge-
wicht w¢ € [0;1] des k—~ten Datums bei der Identifikation der i—ten Partition wird dabei
gleich der Zugehorigkeit zu dieser Partition gesetzt. Daten mit der Zugehérigkeit Null
sollten zur Erhéhung der Rechengeschwindigkeit und zur Vermeidung numerischer Pro-
bleme beim WRLS—Verfahren nicht beriicksichtigt werden. Dies ist numerisch exakt, da
fiir w(k + 1) = 0 aus den obigen Gleichungen é(k +1)= é(k) folgt.

Wihrend die im folgenden Abschnitt beschriebenen Clusterverfahren bewirken, dafl die
Summe der Zugehorigkeiten eines Datums zu allen Clustern exakt gleich 1 ist, héngt
dies bei Partitionierung iiber orthogonale Referenz—Fuzzy—Mengen von der Festlegung
der (eindimensionalen) Referenz—Fuzzy—Mengen und des Verkniipfungsoperators bzgl. der
Partialpramissen ab. Im folgenden seien Referenz—Fuzzy—Mengen angenommen, deren Zu-
gehorigkeitsfunktionen sich im gesamten Definitionsbereich fiir jede Stelle zu Eins addieren
(verbreitetes Vorgehen). Bei einer multiplikativen Verkniipfung der Partialpramissen wie
in (3.5) ergibt die Summe der (Gesamt—) Zugehorigkeiten eines Datums zu allen Partitio-
nen exakt 1 (siche Anhang B). Bei Wahl der Gewichte w, gleich der Gesamtzugehérigkeit
w; (&) zur Partition ¢ haben alle Daten bzgl. der gesamten Identifikation das gleiche Ge-

wicht. Kein Datum wird im (kritischen) Ubergangsbereich iiber— oder unterbewertet.

Werden die Partialprémissen dagegen tiber den Minimum—Operator

wiley) = min (aji) (4.15)
verkniipft, so erfolgt eine Uberbewertung der Daten im Ubergangsbereich (siehe Anhang

B), wenn w} = w;(x,) gewihlt wird.

In diesem Bericht wird von multiplikativer Verkniipfung nach (3.5) und w}, = w;(®y)
ausgegangen. Fs besteht aber auch die Méglichkeit, die Datengewichtung gezielt zu be-
einflulen. So kénnen die w; (@) z. B. iiber eine konzentrierende oder kontrastverstirkende
Funktion auf die w? abgebildet werden. Die Beschreibung von Konzentration, Kontrast-

verstarkung u. a. m. entnehme man z. B. Zadeh (1973).



o Strukturidentifikation

5 Strukturidentifikation

Bei der Strukturidentifikation von Fuzzy-Modellen (sowohl relationaler als auch funktio-
naler) stellt sich die Aufgabe einer geeigneten Partitionierung des Eingangsgrofenraumes.
Ein einfaches Vorgehen besteht in einer gleichtérmigen Partitionierung der Definitionsbe-
reiche der Eingangsgréfien. Eine solche regelméafiige Modellstruktur stimmt im allgemeinen
aber nicht mit der Struktur des nichtlinearen Systems iiberein. Bessere Ergebnisse bei der
Modellierung sind durch Anpassung der Zugehorigkeitsfunktionsform und -lage an das
System zu erwarten. Hier existieren Ansétze, die eine Anpassung der jeweils bzgl. einer
Eingangsgrofie definierten Referenz—Fuzzy—Mengen vornehmen und solche, die sich von
der strikten Zuordnung der Zugehorigkeitsfunktionen zu einer Dimension (d. h. einer Ein-
gangsgrofe) 1osen. Zu letzteren gehoren z. B. die Clusteranalyse der Testdaten und eine
daraus abgeleitete Partitionierung des Eingangsgrofenraums. Der folgende Unterabschnitt
geht auf die hdufig benutzten orthogonalen eindimensionalen Referenz—Fuzzy—Mengen ein.
Anschlieflend wird ein neues Verfahren mit mehrdimensionalen Zugehorigkeitsfunktionen

vorgestellt.

5.1 Orthogonale Partitionierung

Beim modellbasierten Entwurf funktionaler Fuzzy-Regler finden Modelle mit orthogonaler
Partitionierung des Eingangsgrofilenraumes haufig Verwendung (Sugeno und Kang 1986,
Tanaka und Sugeno 1992). Deshalb sollen in diesem Abschnitt einige Betrachtungen zu
dieser Form der Pramisse gemacht werden. Wegen der Bedeutung der Wahl der Referenz-
Fuzzy-Mengen fiir eine gute Modellierung werden im folgenden Abschnitt einige typische
Fuzzy-Mengentypen vorgestellt und daran anschlieend der Zusammenhang zwischen der
Wahl der Referenz-Fuzzy-Mengen und der Parameter der Konklusionspolynome betrach-
tet.

5.1.1 Wahl des Zugehoérigkeitsfunktionstyps

Im folgenden soll von auf Dy = [-1,1] normierten EingangsgroBen des Modells ausgegan-
gen werden. Durch die Gewichtung der Partialausgangsgrofien y; der n einzelnen Regeln
mit den Erfiilltheitsgraden w; der entsprechenden Pramissen nach (3.8) oder (3.9) erreicht

man eine Partitionierung des Raums der Fingangsgrofien
Dy, x...xD,,, =Dy x...xDy =D} (5.1)

in unscharfe Subrdume. Diese Partitionierung hdngt von Anzahl, Form und Lage der mit
den Referenz—Fuzzy—Mengen korrespondierenden Zugehorigkeitsfunktionen ab. Beispiels-
weise fithren Einer—Fuzzy—-Mengen—Zugehorigkeitsfunktionen nach (3.3) dazu, da die in
den Konklusionen definierten Regelgesetze nach (3.6) oder (3.7) nur punktuell gelten. Bei
treppenférmigen Zugehorigkeitsfunktionen, d. h.

1 Vol <z <al
pai(a;) = { 0 tuag =T = Yoy (5.2)

sonst
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und lickenlosem Angrenzen benachbarter Referenz—Fuzzy—Mengen, d. h. es sei & =
[1,. .., 25y 2,]T € DR und es gelte 3 /LA;‘T(J}]‘) =1, 7€ {l,...,n}firallez; € Dy mit
J €{l,...,m}, dann erhélt man Partitionen, in denen jeweils nur genau ein fi(x1,...,2m)
einen Beitrag zu y liefert, da die w; nur Werte w; € {0,1} annehmen koénnen. Dagegen
fiihren Zugehorigkeitsfunktionen mit ,,weichen® Flanken, d. h. Flankenbreiten > 0, zu
unscharfen Riandern der Partitionen. Damit entstehen Ubergangsbereiche zwischen be-
nachbarten Referenz-Fuzzy-Mengen, wenn der Fingangsgrofenraum D liickenlos durch
die Regelbasis abgedeckt wird, d. h. es ist @ = [21,...,2;,...,2,]7, dann gilt fiir jedes
z; € Dy mit j € {l,...,m}: 3 /LA;'(:L'j) > o, ¢ € {l,...,n}. Fiir die Bedingung der
Liickenlosigkeit reicht ¢ = 0. Um ,kriftige® Regeln zu erhalten, sollte z. B. ¢ = 0,5
gewdhlt werden (Lee 1990). Zu den Zugehorigkeitsfunktionen mit ,weichen* Flanken
zahlen z. B. trapezoide nach

0 r<a
%ig a<r<f
pr(x) = 1 f<ax<~ , (5.3)
g:ﬁ vy<ax <o
0 x>0

die fiir # = 7 in triangulare tibergehen, sowie gemischt trigonometrisch—lineare nach

0 r<a

r—a
0,5+ 0,5cos | 7 +1 a<ax<p
g —a

prr(r) = 1 <<~ (5.4)
0,5—|—0,5cos<ﬂ'H) y<ax <o
0 x>0

oder Zugehorigkeitsfunktionen mit S—Flanken (Driankov u. a. 1993) nach

prs(r) = 1 B<a<y (5.5)
2
T +6
1_2(5—7) oS
2
(5=5) e
-7
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(siehe Bild 5.1). Die Auswahl der passenden Zugehorigkeitsfunktionen erfolgt in Abhéngig-
keit von der Anwendung. Wihrend ppp () und prs(x) stetig differenzierbar sind, gilt dies
nicht fiir pr(x). Falls eine Optimierung der Zugehorigkeitsfunktionen iiber Gradienten-
verfahren erfolgen soll, ist deren stetige Differenzierbarkeit erforderlich, und damit sind
trapezoide Funktionen fiir diese Anwendung nicht einsetzbar. In diesen Féllen finden auch

gauBiféormige Zugehorigkeitsfunktionen nach

pote) <o (- (557)) (56)

Anwendung (z.B. Tan u. a. 1994)

wl(x)

0,8

06

04 -

0,2 |

0

0 02 04 06 x 08 10

Bild 5.1: Trapezoide (=) und gemischt trigonometrisch—lineare (- —) Zugehorigkeits-
funktionen, Zugehorigkeitsfunktion mit S—Flanken (---) fiir & = 0,05; 3 =0, 4;
~v=0,6und 6 = 0,95

In den Ubergangsbereichen liefern mehrere Regeln Beitrage zur resultierenden Ausgangs-
groBe y. Dadurch erhilt man einen stetigen Verlauf von y beim Ubergang zwischen be-

nachbarten Partitionen.

5.1.2 Referenz—Fuzzy—Mengen und die Koeffizienten der Konklusionsfunkti-
onen

Fiir den Fall von Konklusionspolynomen nach (3.7), die linear in den einzelnen Eingangs-
grofen sind, soll der Zusammenhang zwischen der Wahl der Referenz—Fuzzy—Mengen und
der Polynomkoeffizienten p;(j), 7 € {1,...,m} bei eindimensionaler orthogonaler Par-
titionierung untersucht werden. Im Falle treppenférmiger Zugehorigkeitsfunktionen nach
(5.2) zeigt sich, daff die Verschiebung einer Referenz—Fuzzy—Mengenflanke unter Beibehal-
tung des Konklusionspolynoms sich auch durch Beibehaltung der Referenz—Fuzzy—Menge

und Anderung des Konklusionspolynoms ausdriicken 148t. Betrachtet wird zuerst der Fall
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einer gleichméBigen Verschiebung zweier benachbarter Referenz—Fuzzy—Mengen (liickenlos
aneinandergrenzende Treppenfunktionen). Da tiberlappungsfreie Referenz—Fuzzy—Mengen

vorausgesetzt werden sollen, gilt vor der Verschiebung

u(e € M) = -2 = (5.7)
Wi lzeM; M
mit
M;, = {2cD?| x=[v1,...,2;,....2.]7,
Tugj ST S gy VjE{L...,m}}
und dem zugehoérigen Konklusionspolynom
u; = pé + pixl +...+ p;xm . (5.9)

Eine lineare Verschiebung zweier benachbarter Referenz—Fuzzy—-Mengen um z. in der

Eingangsgrofie x; fithrt zu einer resultierenden Ausgangsgréfie von

Uw;

(e € M) = — = | (5.10)
Wi leem; T el
mit
M, = {2eD"| ®=[r1,....2j,..., 2%,
{ | o2 ’ ] (5.11)
x“ij—I_xCijSxog,j—l_xc VjE{l,,m}}
Dabei ist
U o= phApimt i ) P,
= u; + péxc ) (5.12)

Dieses Ergebnis 1483t sich aber auch durch ein gedndertes Konklusionspolynom unter Bei-

behaltung der urspriinglichen Zugehérigkeitsfunktionen erreichen. Fiir eine Wahl

7=1
mit
Po = ph + pie (5.14)
gilt
i = = Wl o=a . (5.15)
“i e, TeQ;

Also unterscheiden sich u; und w; nur im statischen Anteil. Damit wurde gezeigt, daf
eine Verschiebung zweier benachbarter Referenz—Fuzzy—Mengen einer Eingangsgrofie des

Fuzzy-Systems durch die Anderung des konstanten Anteils der Konklusion substituiert
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werden kann. Das gilt auch fiir nichtlineare Funktionen f;, die aber in der betrach-
teten Koordinate linear sind. Durch wiederholtes Anwenden dieses Verfahrens kénnen
auch die Verschiebungen mehrerer Referenz—Fuzzy—Mengen durch die geeignete Wahl des
konstanten Anteils im Konklusionspolynom substituiert werden. Bei den an den Gren-
zen eines Definitions—Intervalls liegenden Referenz—Fuzzy—Mengen ist dabei zu beachten,
dafl diese nicht verschoben, sondern in Abzissenrichtung gestaucht oder gestreckt wer-
den miissen, damit der Definitionsbereich Dy am betreffenden Rand weiterhin von der

Referenz—Fuzzy—Menge voll abgedeckt wird.

Bei Zugehorigkeitsfunktionen mit ,, weichen® Flanken (z. B. trapezoide) fithrt die Ande-
rung einer oder zweier benachbarter Referenz-Fuzzy-Mengen zu Anderungen der Erfiillt-
heitsgrade w der betroffenen Regeln, die nicht durch geeignete Anderung der Konklu-
sionsfunktionen, die eine beliebige Form besitzen diirfen, kompensiert werden kénnen.
Dies ist bei nichtlinearen Flanken der Zugehérigkeitsfunktion und in den Eingangsgréfien
linearen Konklusionspolynomen offensichtlich. Falls nur die Form aber nicht die Lage ei-
ner Flanke modifiziert wird, kann bei Zulassung eines Polynoms héherer Ordnung kei-
ne generelle Aussage gemacht werden. Hat man z. B. trapezoide Zugehorigkeitstunk-
tionen, so kann weder mit einem in den Fingangsgréflen linearen Konklusionspolynom
noch bei Polynomen héherer Ordnung die nichtlineare Anderung der Zugehdrigkeits-
funktion bei Anderung des/der Knickpunkte(s) durch eine Anderung des Konklusions-
polynomes substituiert werden. Selbst bei Beschrankung auf den reinen Flankenbereich
(Fl=Az;| 0<p(z;) <1 AO<paz;) <1l AO<g(x;) <1l A O0<yz;) <l}in
Bild 5.2) kann gezeigt werden, daf} die Substituierbarkeit nicht immer gilt (Anhang A).

Bild 5.2: Reiner Flankenbereich F'l bei linearer Zugeh@rigkeitsfunktion.

5.1.3 Anpassung der Zugehoérigkeitsfunktionen

Die wahrscheinlich einfachste Form der Partitionierung des Eingangsgroflenraumes be-

steht in einer gleichférmigen orthogonalen Teilung tiber Referenz-Fuzzy-Mengen gleicher

Form, die nur innerhalb ihres Definitionsbereiches verschob@n sifid. Thabei wird die Sy-
stemanpassung einzig iiber die Anzahl der Referenz-Fuzzy-Mengen sowie eventuell iiber
deren Form (z. B. Flankenform) vorgenommen. Nachteilig ist hierbei, daff die System—

bzw. Datenstruktur nicht direkt beriicksichtigt wird. Dadurch werden i. allg. unnétig viele

Xj
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Regeln, vergleichbar einer unnétig hohen Systemordnung bei konventionellen Modellen,
verursacht. Auflerdem kann es Probleme geben, wenn zu wenig Daten pro Partition zu

deren Identifikation zur Verfiigung stehen.

Bei einer heuristischen Partionierung kann i. allg. die Regelanzahl gesenkt werden. We-
gen fehlender Systematik empfielt sich diese Vorgehensweise nicht generell. Es existieren
aber auch Verfahren, die Referenz—Fuzzy—Mengen systematisch zu modifizieren. Im fol-
genden sollen fiir einige dieser Algorithmen kurz die zugrundeliegenden Ideen beschrieben
werden: Sugeno und Kang (1988) stellen einen Algorithmus vor, der die Anzahl, Lage
und Form trapezoider Zugehorigkeitsfunktionen dndert (Identifikation Teil Ib, IT). Opti-
mierungskriterium ist das Unbiasedness—Kriterium (Sugeno und Kang 1986). Startpunkt
ist ein Modell mit einer Regel, also ein lineares Modell. Bei diesem wird der Definiti-
onsbereich der 1. Eingangsgrofie in 2 Teilbereiche aufgeteilt. Dann werden die Pramis-
senparameter, d.h. die Parameter der trapezoiden Zugehorigkeitstunktionen identifiziert.
Dabei werden die Stiitzpunkte der Zugehorigkeitsfunktionen so variiert, dafi die Diffe-
renz zwischen Modellausgang und MeBwerten minimal wird. Anschlieend werden die
Konklusionsparameter bestimmt. Sugeno und Kang (1988) geben hierzu kein Verfahren
an. Hebisch (1992) setzte hierzu das ungewichtete rekursive Verfahren der kleinsten Feh-
lerquadrate ein. Letztlich wird mit dem Unbiasedness-Kriterium die Giite des Modells
bestimmt. Im folgenden Schritt wird statt der 1. die 2. Fingangsgréfie und dann alle
weiteren entsprechend der oben beschriebenen Form untersucht. Das Modell mit dem ge-
ringsten Wert des Unbiasedness-Kriteriums wird weiterverwendet. Ausgehend von diesem
Modell werden wieder sukzessive alle Eingangsgroflendefinitionsbereiche einmal mehr un-
terteilt. Das Modell mit dem geringsten Wert des Giitekriteriums wird ausgewéhlt. Das
Verfahren terminiert, wenn der Wert des Giitekriteriums wieder ansteigt. Die von Hebisch
(1992) vorgenommene Anwendung des Algorithmus auf ein technisches hydraulisches Sy-
stem wies allerdings Probleme bei der Konvergenz der Strukturidentifikation auf, deshalb

wurde die Pramissenidentifikation heuristisch durchgefiihrt.

Um die Anzahl der zu identifizierenden Parameter zu reduzieren, beschranken Sugeno und
Tanaka (1991) die Anzahl der Freiheitsgrade bei der Festlegung der Zugehorigkeitsfunkti-
on: Die Summe der Zugehérigkeitsgrade zweier benachbarter Zugehorigkeitsfunktionen ist
gleich eins. Dadurch reichen zur Festlegung zweier benachbarter Flanken zwei statt vier
Parameter aus. Fin dhnliches Verfahren, das orthogonal partitioniert und die beste Parti-

tionierung auswahlt (triangulare Zugehorigkeitsfunktionen), stellen Araki u. a. (1991) vor.

Sugeno und Yasukawa (1993) fiihren die Strukturidentifikation Teil Ib wie Sugeno und
Kang (1988) durch, nutzen aber den Fuzzy—c—Means—Clusteralgorithmus fiir Teil I (die
Bezeichnungsweise wurde in Abschnitt 1 eingefiihrt). Die Cluster werden anschlieend mit
Hilfe eines Algorithmus (iterativ) auf trapezoide Zugehorigkeitsfunktionen abgebildet. So-

mit werden Teil ITa und IIb in einem Schritt abgearbeitet.
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Tan u. a. (1994) benutzen eine Modellstruktur mit gauBférmigen Referenz—Fuzzy—Mengen
und linearen Konklusionspolynomen. Thr zweistufiger Algorithmus geht von einer Initiali-
sierung der Zugehorigkeitsfunktionen und des Konklusionspolynoms aus. Im ersten Schritt
werden mit Hilfe des Verfahrens der kleinsten Fehlerquatrate die Konklusionsparameter
bestimmt, wobei die Zugehoérigkeitsfunktionen unverdndert bleiben. Im 2. Schritt wer-
den die Konklusionspolynomparameter festgehalten und mit Hilfe eines Gradientenver-
fahrens (Newton-Verfahren) die Zugehorigkeitsfunktionsparameter optimiert. Dabei wird
ein quadratisches Fehlerkriterium zu Grunde gelegt. Die beiden Schritte werden wieder-
holt, bis die gewiinschte Modellgenauigkeit erreicht ist oder das Verfahren konvergiert. Zur
Anwendbarkeit des Gradientenvertahrens miissen die Partialpramissen multiplikativ mit-
einander verkniipft werden und die Zugehérigkeitstunktionen in ihren Parametern stetig
differenzierbar sein. Deshalb verwenden Tan u. a. (1994) gauBiférmige Zugehorigkeitsfunk-

tionen.

5.2 Partitionierung mit mehrdimensionalen Zugehorigkeitsfunk-
tionen

Das hier vorgestellte neue Verfahren identifiziert Regeln mit einer Struktur nach (3.10).
Bei vorgegebener Abstandsnorm sind nur die Partitions- bzw. Clusterschwerpunkte zu
bestimmen. Dabei besteht hier die Moglichkeit, von orthogonalen Partitionen auszugehen
und deren Mittelpunkte als Partitionsschwerpunkte zu nutzen. Ein sehr systematisches
und automatisiertes Vorgehen ergibt sich bei Anwendung der Clusteranalyse zur Bestim-
mung der Clusterschwerpunkte (als Partitionsschwerpunkte nicht orthogonaler Partitio-
nen). Im 4. Abschnitt wurden dazu bereits mehrere Verfahren vorgestellt. Das Ergebnis
einer im Eingangsdatenraum durchgefithrten Clusterung sind bei vorgegebener Anzahl
der Cluster und einer Abstandsnorm D die Clusterschwerpunkte vy,...,v.. Somit sind
die Pramissen der Fuzzy—Regeln gemaf (3.10) identifiziert. Anschlieflend erfolgt die in
Abschnitt 3 beschriebene Konklusionsparameteridentifikation {iber das gewichtete rekur-
sive Verfahren der kleinsten Fehlerquadrate. Wie bereits im Abschnitt 4 erlautert wurde,
liefern die Clusterverfahren eine im Sinne der jeweils zu Grunde liegenden Abstands-
norm optimierte Partitionierung des Datenraumes. Das bedeutet allerdings nicht, daf}
die tatsdchlich vorliegenden Strukturen oder eine im Sinn der Modellbildung optimale
Partitionierung identifiziert wird. Das letztere, aus der Wahl der Gilitekriterien resultie-
rende, Problem kann dadurch abgeschwicht werden, dafl nach der Clusterung eine Nach-
justierung der Clusterschwerpunkte durchgefiihrt wird. Das Giitekriterium hierbei ist das
gleiche wie bei der Modellbeurteilung, so dafl eine Modellmodifikation in die gewiinschte
Richtung erfolgt. Im folgenden Abschnitt wurde dazu eine einfache iterative Varitati-
on der Clusterschwerpunkte um die von der Clusterung gelieferten guten Anfangswerte
durchgefiihrt. Bei diesem Iterationsverfahren werden die Clusterschwerpunkte in alle Ko-

ordinatenrichtungen mit von Iteration zu Iteration abnehmender Schrittweite verschoben.
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Verfeinerte Verfahren kénnten hier sicher noch Verbesserungen der Giite und eine Stei-
gerung der Rechengeschwindigkeit erzielen. Allerdings sollte das Modell nicht zu fein auf
einen speziellen Datensatz optimiert werden, da sonst die Robustheit des Modells abneh-
men kann. Dieser Algorithmus geht von einer Situation aus, in der die Eingangsgrofien
(z. B. durch physikalische Uberlegungen, Expertenwissen, Beschrankung der Anzahl der
Modellparameter) und die Signalverzogerungen (z. B. durch Korrelationsanalyse) festge-
legt wurden (siehe auch Abschnitt 1). Der folgende Abschnitt beschreibt die Anwendung

dieses Verfahrens auf zwei nichtlineare Testsysteme.
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6 Beispiele zur Identifikation

In diesem Abschnitt wird die Identifikation von funktionalen Fuzzy-Modellen nach dem
zuvor beschriebenen Algorithmus mit mehrdimensionalen Zugehérigkeitsfunktion fiir zwei
nichtlineare Testsysteme beschrieben. Das erste ist ein Testsystem, fiir das bereits einige
Vergleichsergebnisse fiir relationale Fuzzy—Modelle vorliegen (Kiipper 1994a, Suprijadi
1994). Das zweite Beispiel, die von Box und Jenkins (1970) veroffentlichten Mefidaten
fiir einen Gasofen, stellt ein Benchmark—Problem dar. Beim WRLS wurde P, (0) = ¢I
mit ¢ = 10* und é(()) = 0 gewdhlt. Als Abstandskriterium fand bei den Clusterungen
die euklidische Norm und als Terminierungsnorm beim FCM die gemaf (2.4) erweiterte

Holder-Norm mit p =1

C

N
JUED = U0 = 3257 ™ = will < e (6.1)

i=1 k=1
Verwendung. Beim Gustafson und Kessel-Algorithmus wurde eine feste Anzahl von 10 Ite-
rationen vorgegeben. Als Giitekriterium wird der mittlere quadratische Fehler verwendet.
Ein Vergleich funktionaler Fuzzy—Modelle untereinander oder mit relationalen Fuzzy—
Modellen ist schwierig. Fiir eine ndherungsweise Abschédtzung soll die Anzahl der Mo-
dellparameter als Mafistab angesetzt werden. Die in diesem Bericht beschriebenen echt—
mehrdimensionalen Zugehorigkeitsfunktionen sind eindeutig durch ihre Clusterschwer-
punkte festgelegt. Dabei ist ein Clusterschwerpunkt ein Vektor, wobei die Komponen-
tenzahl der Dimension des Eingangsdatenraumes entspricht. Deshalb sollte bei jedem

Clusterschwerpunkt pro Dimension ein Parameter angesetzt werden.

6.1 Modellierung eines nichtlinearen Testsystems

In diesem Abschnitt wird die Ein—/Ausgangsmodellierung fiir Testdaten beschrieben, die
mit dem nichtlinearen zeitdiskreten System (Kiipper 1994a)

y(k) = 0,1y(k—1)u(k—2)—0,2y(k—2)+0, 4u(k—1) cos(0, 8y (k—1))+0,3u*(k—1) (6.2)

gewonnen wurden (Anfangswerte y(0) = y(1) = 0). Fiir das Testsignal wurde ein im
Intervall [—1; 1] gleichverteiltes Zufallssignal generiert. Dann wird u(k) dadurch generiert,
dafB jede Zufallszahl fiir 6 Abtastzeitpunkte in Folge konstant gehalten wird. Bild 6.1 zeigt
den Verlauf der Eingangsgrofie u(k) und der Ausgangsgrofie g(k 4 1), die nach

y(k) —0,2452

y(k) = 0.2750 (6.3)

aus y(k) berechnet wurde. Diese Transformationsvorschrift dient dazu, den normierten
Eingangsgrofenraum besser auszunutzen. Wahrend die Zufallszahlen von u(k) dies bereits
gewahrleisten, ist das fiir y(k) nicht der Fall. Die Transformation ist gerade bezliglich der

Clustervertahren sinnvoll. Da absolute Abstandsdifferenzen bewertet werden, kénnte es
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Bild 6.1: Fingangsgrofe u(k) und Ausgangsgrofle ¢(k 4 1) des nichtlinearen Systems

sonst unter Umstinden zu einer ungiinstigen Uber- oder Unterbewertung einzelner Ein-

gangsgréfien kommen.

Im folgenden werden Fuzzy—Modelle vorgestellt, die zur Pradiktion von y(k) die Eingangs-
groflen u(k — 1), y(k — 1) und g(k — 2) verwenden.

Vergleichsergebnisse

Suprijadi (1994) identifiziert fir das oben beschriebene System selbstlernende Fuzzy—
Relational-Modelle. Das beste Modell mit gleichverteilten Referenz—Fuzzy—Mengen (gleich-
schenklige Dreiecke gleichen Flacheninhalts, benachbarte schneiden sich bei p = 0,5, drei
Referenz—Mengen pro Eingang, zwei fiir die Konklusion) und 54 Parametern (die Regel-
gewichte) erreichte eine Giite (mittlerer quadratischer Fehler) von pi = 7,56 - 107° (600
[terationen). Bei gleichzeitiger Optimierung der Referenz—Fuzzy—Mengen—Stiitzpunkte er-
zielte das beste Modell (92 Parameter) eine Giite von pi = 1,16 - 107° (600 Iterationen).
Dabei wurden bei den Referenz—Fuzzy—Mengen Flankenbreiten (separat) sowie Lage und
Hohe der Dreiecksspitze variiert (4 Parameter pro Referenz—Fuzzy—Menge). Kiipper (1994)
verwendet einen anderen Algorithmus zur Identifikation der gleichen Modellstrukturen als
Suprijadi und erreicht dabei fiir das Modell mit 54 Parametern pi = 7,89-107% (500 Itera-
tionen). Bei gezielter (heuristischer) Anderung der Partitionierung bzgl. u(k —1) (dann 4
Referenz—Fuzzy—Mengen) wird eine Giite von pi = 1,45-107° fiir ein Modell mit nunmehr

72 Parametern (500 Iterationen) bestimmt.
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Eigene Ergebnisse

Bei Anwendung des FCM (¢ = 100 in (6.1)) zeigen sich eindeutige Tendenzen bzgl. der
Wahl des Unschéarfeparameters v und der Clusteranzahl c¢. Wie Bild 6.2 zeigt, steigt die
Modellgiite mit steigendem ¢ und fallenden v. Bei diesen Ergebnissen fiir Einschrittpradik-
tion wurde

1 N=600

P= 2 (Ymes (k) — Ymoa(k))? (6.4)

betrachtet. Bei den Ergebnissen der rekursiven Modellauswertung in Tabelle 6.1 wurden

nur die vollstindig rekursiv pradizierten Ausgangsgréfien beriicksichtigt:

1 N=600 )
= (Ymes(k) = Ymoa(k))” (6.5)
N-3 =
-1,5
2
é _275
&0 -3
2
-3.5
0 5 1
10 0.6 0,8
15 0,2 0,4
¢ 20 logio(v)

Bild 6.2: Logarithmisch aufgetragene Modellgiite in Abhéngigkeit von der Clusteranzahl
¢ und dem Logarithmus des Unscharfeparameters logio(v) bei Anwendung des

FCM (Einschrittpradiktion)

Bei Werten von v nahe bei 1 ergeben sich allerdings numerische Probleme wegen der be-
grenzten Genauigkeit des verwendeten Computers (80486 CPU). Eine Wahl von v = 1,13
fiihrt beim FCM zu ausreichenden numerischen Reserven. Fiir dieses v erhélt man z. B.
die in Tabelle 6.1 exemplarisch aufgefithrten Ergebnisse (Spalte ,,FCM*).
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Anzahl der Parameter FCM FCM + Optimierung Modell-
c P P [terationen | auswertung
7 49 1,649 -107* | 6,626 - 10~° 273
8 56 1,373-107* | 5,122-107° 5881
9 63 9,283 -107° | 5,652 -107° 341
10 70 8,287-107° | 2,815-107° 314 Einschritt
11 77 8,743 -107° | 1,899 - 107° 207
12 84 8,065 -107° | 2,266 -10~° 353
13 91 5,075-107° | 1,559 - 10~° 294
7 49 1,685-107* | 6,613 -107° 141
8 56 1,422 -107* | 3,535-107° 133
9 63 9,479 -107° | 3,827-107° 336
10 70 8,855-107° | 1,914 -10~° 260 Rekursiv
11 77 9,440 - 1075 | 2,422 -107° 224
12 84 8,810-107° | 2,434 -107° 328
13 91 6,961 -107° | 2,409 - 10~° 353

Tabelle 6.1: Einige Frgebnisse fiir Identifikation mit FCM fiir v = 1,13 und fiir Modelle

mit nachoptimierten Clusterschwerpunkten

Bild 6.3 zeigt exemplarisch einen Ausschnitt aus Bild 6.1. Dargestellt sind zusétzlich die
einschrittpradizierten Werte fiir g(k + 1) bei Clusterung tiber den FCM mit v = 1,13
fiir ¢ = 8 (fithrt zu 10 Iterationen des FCM) und ¢ = 13 (fithrt zu 25 Iterationen des
FCM). Die zugehorigen Glitewerte enthalt Tabelle 6.1. Die rekursive Pradiktion wird
hier graphisch nicht dargestellt, da die Ergebnisse bei Finschrittpradiktion und rekursiver
Pradiktion nur wenig voneinander abweichen (vergleiche numerische Werte in Tabelle 6.1).
Dies liegt daran, dafl u(k) die dominante Eingangsgroie des Modells ist. Somit nimmt eine
Riickfithrung des Modellausgangs nur Einfluf} auf die rezessiven Eingangsgrofen g(k — 1)
und g(k — 2).

Bei 3 Eingangsgrofien ergeben sich 3 Koordinaten der Clusterschwerpunkte und 4 Konklu-
sionspolynomparameter pro Regel. Damit folgt die Gesamtanzahl der Modellparameter
zu Tc. Die oben angegebenen relationalen Fuzzy—Modelle mit 54 Parametern sind etwa
um einem Faktor 2 besser als das nicht nachverfeinerte Funktionalmodell mit 56 Para-
metern. Das Modell von Suprijadi mit 92 Parametern ist etwa um einen Faktor 7 besser
als das nicht nachverfeinerte Funktionalmodell mit 91 Parametern. Dies {iberrascht nicht,
da die Referenz—Fuzzy—Modelle auf das Giitemafl hin optimiert werden, nach dem auch
die Modellgiite bewertet wird. Bei der Identifikation der Zugehérigkeitsfunktionen {iber
den FCM ist das, wie bereits oben erlautert, nicht der Fall. Diesen Aspekt illustriert die

Anwendung des in Abschnitt 5.2 beschriebenen iterativen Optimierungsverfahrens fiir die
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Bild 6.3: Mefiwerte und Einschrittpradiktion fiir iiber den FCM mit v = 1,13 und ¢ = 8
bzw. ¢ = 13 generierte Modelle

Lage der Clusterschwerpunkte. Durch die Anwendung des Optimierungsverfahrens kann
die Giite der Funktional-Modelle deutlich verbessert werden (siehe Tabelle 6.1). Dann ist
das funktionale Modell mit 56 Parametern etwa vergleichbar mit den relationalen Model-
len mit 54 Parametern und das relationale Modell mit 92 Parametern ist nur noch etwa

um einen Faktor 1,5 besser als das funktionale Modell mit 91 Parametern.

Bei der Clusterung werden bei der Initialisierung alle Clusterschwerpunkte nur in der
Richtung der ersten Eingangsgrofie u(k — 1) verteilt. Damit folgt

. T
14+2(i—1
ol® = —H%ﬂ);o Vi=1,...,¢c . (6.6)
C

Aus den Clusterschwerpunkten lassen sich alle ,ug,g) nach (3.15) berechnen. Dieser Ansatz
wurde auf Grundlage von Wissen iiber die Struktur des Datensatzes vorgenommen. Ver-
gleiche mit anderen Vorinitialisierungen der Clusterschwerpunkte, bei denen diese nicht
auf einer Geraden lagen, zeigten nur geringfiigige Abweichungen der Ergebnisse nach den
Clusterungen. Dieses Resultat kann so allerdings nicht verallgemeinert werden. Da viele
Clusterverfahren in einem lokalen Minimum der Zielfunktion konvergieren, kann die Vori-
nitialisierung sehr wohl einen Einflufl auf das Ergebnis der Clusterung nehmen. Auch eine
Beeinflussung der Konvergenzgeschwindigkeit ist moglich. Fiir eine Wahl von ¢ = 100
finden aber beim FCM bei diesem System nur einige wenige (< 10) Iterationen statt, so

dafl die Konvergenz sehr schnell eintritt.
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Bild 6.4: Modellgiite in Abhéngigkeit vom Logarithmus des Unschirfeparameters logov
und Terminierungsgrenzwert ¢ fiir ¢ = 10 beim FCM (Einschrittpradiktion)
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Bild 6.5: Modellgiite in Abhéangigkeit von Regelanzahl ¢ und Terminierungsgrenzwert ¢
fir v = 2,0 beim FCM (Einschrittpradiktion)
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Die Wahl von ¢ in (6.1) hat keinen wesentlichen Einflufl auf die Modellgiite. Zur Illu-
stration zeigt Bild 6.4 die Giite von Modellen mit ¢ = 10 Regeln in Abhéngigkeit von
e € {10,20,...,100} und 1,13 < v < 10. Bild 6.5 zeigt exemplarisch die Abhingig-
keit der Modellgiite von der Regelanzahl ¢ und dem Terminierungsgrenzwert ¢ fiir festes
v = 2,0. Es bestdtigt sich wieder der vernachlédssigbare Einflul der Wahl der Terminie-

rungsgrenze auf die Modellgiite.

Die Anwendung des Algorithmus von Gustafson und Kessel fithrt zu den gleichen Ten-

denzen bei der Wirkung der Parameter v und ¢, wie Bild 6.6 zeigt. Beim Gustafson und

0,03
0,025
0,02
‘% 0,015
0,01
0,005

1
10 076 078

Bild 6.6: Modellgiite in Abhangigkeit von der Clusteranzahl ¢ und dem Logarithmus
des Unschérfeparameters log;ov bei Anwendung des Gustafson und Kessel-
Algorithmus (Einschrittpradiktion)

Kessel-Algorithmus wurde als Terminierungsgrenze ein feste Iterationszahl vorgegeben.
Diese hat allerdings genauso wie die Terminierungsgrenze iiber Vorgabe des ¢ in (6.1)

keinen wesentlichen Finfluf auf die Modellgiite, wie die Bilder 6.7 und 6.8 illustrieren.

Mit dem FCM konnten héhere Giiten erreicht werden. Wahrend der FCM bei steigender
Clusteranzahl ¢ schnell, beim Unscharfeparameter v dagegen erst bei sehr kleinen Werten
zu hoheren Giiten fiithrte, ist die Tendenz beim Gustafson und Kessel-Algorithmus ver-
tauscht: Eine Verringerung von v fiihrt schnell, eine Erh6hung von ¢ dagegen nur langsam
zu hoheren Giiten. Dies kann auf die ,bogenférmigen® Strukturen im ausgewerteten Da-
tensatz zuriickgefithrt werden. Da sich die lokalen Abstandsnormen hierauf einstellen, ist
der Einflul der Clusteranzahl nicht so dominant. Wichtiger hierbei erscheint, daff die
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Bild 6.7: Modellgiite in Abhangigkeit von logior und Anzahl r der Iterationen fiir ¢ = 10
beim Gustafson und Kessel-Algorithmus (Einschrittpradiktion)
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Bild 6.8: Modellgiite in Abhéngigkeit von Regelanzahl ¢ und Anzahl r der Iterationen
fiir v = 2,0 beim Gustafson und Kessel-Algorithmus (Einschrittpradiktion)
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Unschérfe der bereits formangepafiten Cluster richtig gewédhlt wird.

Anzumerken ist, dafl die Clusterung mit global einheitlicher Wahl von p; = 1 durch-
gefithrt wurde. Bei lokal angepafiter Wahl der p; sind wahrscheinlich noch Giitesteige-
rungen moglich. Allerdings existieren hierzu keine systematischen Vorgehensweisen. Fiir
eine sinnvolle lokale Anpassung der p; miifiten A—priori-Informationen tiber die Cluster

vorhanden sein, die im allgemeinen nicht vorliegen.

6.2 Modellierung eines Gasofens

In diesem Abschnitt soll die Fuzzy—Modellbildung fiir einen Gasofen beschrieben wer-
den. Die Ein—/Ausgangsmodellbildung fiir die von Box und Jenkins (1970) angegebe-
nen 296 Testdatenpaare ist ein Benchmark Problem. Bild 6.9 zeigt den Mefldatenverlauf.
Modelliert wird die C'O,-Emission eines Ofens (y(¢) [%]). Das physikalische Stellsignal

70
~-y(k)

60 A s N
7u<k) N /\”// \ // AN FARAN // \\\//\\/«\L// \v\ /

’
50 + S SN \/ \ s ~ \\// - o =
40 + 4

30 - 7

20 L _

10 7

0 WV\/\/\WMw—

-10

0 50 100 150 k 200 250 300
Bild 6.9: Testdaten fiir den Gasofen nach Box und Jenkins (1970): Eingangssignal u(k)
und Ausgangssignal y(k)

u(t) steuert einen Methangasvolumenstrom

m3

q(t) = (0,6 — 0,04 u(t)) 4,719 - 107* — . (6.7)

S

Das im Bereich [-2,716; 2,834] liegende Stellsignal fithrt zu einem Volumenstrom ¢(t) €
(2,296 - 107*; 3,344 -10~*] m/s. Als Testsignal u(¢) wurde ein gefiltertes weiles Rauschen
verwendet und die Daten mit 7' = 9 s abgetastet (Kiipper 1993). Fiir die Identifikation

wurden Ein— und Ausgangsgrofie geméaf

t)— 53,05 t)— 0,059
oy -0 ult) =0,

i) = " i(t) = " (63)
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normiert.
Vergleichsergebnisse

Bei Kiipper (1993) sowie Sugeno und Yasukawa (1993) finden sich Vergleiche von linearen
Modellen mit verschiedenen relationalen und funktionalen Fuzzy—-Modellen. Besonders in-
teressant fiir diesen Bericht ist ein Vergleich mit den beiden funktionalen Fuzzy—Modellen
von Sugeno und Tanaka (1991). Deren erstes Modell (M1) pradiziert y(k) mit 2 Regeln
aus g(k—1),9(k—2),9(k—3),u(k),a(k—1) und a(k — 2) mit einem mittleren quadrati-
schen Fehler von pi = 0,068. Hierbei ist zu beachten, daf} @(k) zur Berechnung von y(k)
benutzt wird, also nicht wirklich ein Schritt in die Zukunft geschaut wird. Das zweite
Fuzzy-Modell (M2) pradiziert y(k) mit zwei Regeln aus g(k — 1) und a(k — 1) mit einer
Giite von pi = 0,359. Bemerkenswert ist dabei, dafi die Pramissen nur g(k — 1) bewerten.
Die beiden verwendeten halbtrapezoiden Referenz—Fuzzy—Mengen addieren sich an jeder
Stelle zu Eins und lassen sich deshalb (zusammen) {iber zwei Parameter festlegen. Fiir
das erste Modell kommt man damit auf 2 Pramissen und 13 Konklusionsparameter, fiir
M2 entsprechend auf 2 + 4 Parameter. Sugeno und Tanaka (1991) geben nicht an, ob
die Modelle zur Einschrittpradiktion oder rekursiv ausgewertet werden. Wahrend Sugeno
und Tanaka die ersten 50 Mefidaten bei der Giitebewertung nicht betrachten,

1 N=296
Pi= 2531 Ymes (k) = Ymoa(k))* (6.9)
werden bei den im folgenden beschriebenen eigenen Ergebnissen immer alle Daten beriick-
sichtigt:
1 N=296
pt = N1~ k;q—(ym%(k) — Ymoa(k))® . (6.10)

Dabei ist 7 = max(7;72) in Ymea(k) = fy(k —1 —7m1),u(k — 1 —12)).
Eigene Ergebnisse

Eine Auswertung des Modells M2 von Sugeno und Tanaka (1991) liefert die etwas bessere
Giite von pi = 0,335 (6 Parameter). Die leichte Abweichung ist darauf zuriickzufiihren,
daB, wie oben angemerkt, Sugeno und Tanaka (1991) nicht alle MeBdaten zur Gliteberech-
nung verwenden. Bei Verwendung von @(k — 3) statt a(k — 1) und Zulassung konstanter
Anteile in den Konklusionspolynomen, 1t sich die Giite etwa um einen Faktor 2 auf
pt = 0,1475 steigern (Modell mit 2 Regeln und 8 Parametern). Bei Auswertung des letzt-
genannten Modells iiber echt-mehrdimensionale Referenz—Fuzzy—Mengen 1at sich hier
die Modellgiite nicht verbessern: Legt man die Partitionsschwerpunkte in die Schwer-

punkte der beiden von Sugeno und Tanaka (1991) angegebenen, auf normierte Grofien
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umgerechneten, (eindimensionalen) Referenz—Fuzzy-Mengen bzgl. j(k — 1) (die andere

Koordinate wird zu Null gesetzt)
vy = [47,80;0]7 und v, = [56,13;0]7, (6.11)

so folgt eine Giite von pi = 0,1490. Legt man die Partitionsschwerpunkte in die Mittel-
punkte der konstanten Bereiche der beiden von Sugeno und Tanaka (1991) angegebenen,
auf normierte Groflen umgerechneten, (eindimensionalen) Referenz—Fuzzy—Mengen bzgl.
y(k — 1) (die andere Koordinate wird zu Null gesetzt)

vy = [46,70;0]7 und v, = [59,20;0]7, (6.12)

so folgt eine Giite von pi = 0,1472.

Benutzt man die Clusterung (FCM, v = 1,13) fiir den gesamten von g(k—1) und a(k—3)

aufgespannten Eingangsgroflenraum, so folgen als Clusterschwerpunkte
vy = [0,7840;50,77)7 und w, = [—0.7863;55,87]7 (6.13)

bei einer Modellgilite von pi = 0,1495 (2 Regeln, 10 Parameter). Als Initialisierung wurde
vV = [—2/3;0]7 und vV = [2/3;0]7 verwendet. Das letztere Modell wurde allerdings
vollig automatisch generiert, ohne jegliche Heuristik bei der Festlegung von Referenz—
Fuzzy—Mengen oder Konklusionsfunktionsparametern. Durch eine Erhéhung der Clu-
steranzahl 148t sich wieder die Modellgiite steigern. Abbildung 6.10 zeigt dies fiir das
Modell mit g(k — 1) und a(k — 3) als Eingangsgrofien bei Clusterung iiber den FCM mit
v=1,13.
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0,140 + .
0,135 L 7

0,130 L -

0,125 - .

0,120 -

0,115 -

0,110

0 E; 1‘0 c 1‘5 20
Bild 6.10: Modellgiite in Abhéngigkeit von der Clusterzahl ¢ bei Clusterung mit dem
FCM mit v =1,13
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Bei den eigenen Untersuchungen zum Modell M1 wurden, abweichend von Sugeno und
Tanaka (1991) bzgl. der StellgroBe w(k—1), a(k—2) und a(k—3) anstelle von a(k), a(k—1)
und @(k—2) verwendet. Dies geschah aus der Uberlegung, daff das Modell eine (zukiinftige)
AusgangsgroBe y(k) pradizieren soll. Dann steht aber (k) nicht als Modelleingangsgrofie
zur Verfiigung. Eine Nachrechnung des Ansatzes von Sugeno und Tanaka mit dieser Ande-
rung brachte eine Giite von p: = 0,0612. Werden zwei echt—mehrdimensionale Referenz—
Fuzzy-Mengen mit den Partitionsschwerpunkten wie bereits zuvor beschrieben jeweils in
der Mitte der konstanten Bereiche der Referenz—Fuzzy—Mengen von Sugeno und Tanaka
(1991) (bzgl. normierter Groflen) verwendet und anschliefend (automatisch) iterativ bzgl.

y(k — 1) nachverfeinert, so 1afit sich eine Giite von pi = 0,0556 erreichen.

Bild 6.11 vergleicht Medaten und préadizierte Daten tiir Finschrittpradiktion und rekursi-
ve Pradiktion fiir das Fuzzy—Modell mit 2 Regeln fiir komplette Eingangsraumclusterung
tiber den FCM (v = 1, 13). Der mittlere quadratische Fehler betragt dabei fiir Einschritt-
pradiktion pz = 0,150 und pr = 2,033 fiir rekursive Auswertung des Modells. Wie bereits
Bild 6.10 illustriert, fithrt eine Erh6hung der Anzahl der Partitionen bei ansonsten gleicher
Modellstruktur zu keiner wesentlichen Verbesserung. So folgt fiir ¢ = 6 Cluster pr = 0,131
fiir Einschrittpradiktion und pe = 1, 717 fiir rekursive Pradiktion.
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Bild 6.11: Mefidaten y(k), einschrittpradizierte y.;,(k) und rekursiv pradizierte Daten
Yrek nach dem hier vorgestellten Algorithmus fiir ¢ =2 (K =4,...,296)

Festlegung der Signalverzégerungen

Angesprochen werden soll hier die Problematik bei der Festlegung der Signalverzogerun-

gen. Bei der Festlegung von Totzeiten beziiglich der Stellgrofien eines Systems sollten
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immer primér physikalische Uberlegungen vorgenommen werden. Sonst besteht die Ge-
fahr, dafl bei der Anpassung von Pradiktions— und Meflkurvenverlauf iiber die numerische
Optimierung eines Giitekriteriums durch die Dominanz anderer Effekte (wie z. B. eine
i. allg. nicht exakt richtige Modellstruktur) eine Totzeit identifiziert wird, die real nicht
vorliegt. Dies kann insbesondere bei einem geschlossenen Regelkreis zu falschen Aussagen
fithren. Die in Bild 6.12 gezeigte Kreuzkorrelation zwischen y(k) und u(k) favorisiert ein

Modell mit —u(k —5) zur Pradiktion von y(k). Da das negative Vorzeichen bzgl. u(k —5)

-0,2

-0,3

Ry (7)

04 _
05 _
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09 |- \/ ]
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Bild 6.12: Kreuzkorrelation Ry, (7) der Signale y(k) und u(k) (7 ist die diskrete Zeitver-
schiebung, t = 77" mit T' = 9s)

automatisch bei der Identifikation der Konklusionsparameter identifiziert wird, kénnen als
ModelleingangsgroBen y(k — 1) und u(k — 5) angesetzt werden. Das gleiche Ergebnis folgt
bei der Identifikation eines linearen Modells fiir y (k) nur mit a(k—1—7) als Eingangsgrofe
und quadratischem Giitekriterium. Dagegen ist fiir ein Modell mit g(k—1) und a(k—1—7)
als Eingangsgroflen beziiglich eines quadratischen Giitekriteriums 7 = 2 optimal. Diese
Anderung der im Sinne der Modellgiite optimalen Signalverzdgerung Topt 1lustriert, dafl
Topt Nicht mit der physikalischen Totzeit im realen Prozef zu verwechseln ist. Diese ist nicht
von der Modellstruktur, sondern von physikalischen Zusammenhingen abhéangig. Dagegen
kénnen die Zeitverzégerungen beziiglich riickgefiihrter Modellausgangsgréfien im Sinne ei-

ner optimalen Modellgiite gew&hlt werden.
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7 Zusammenfassung und Ausblick

Dieser Bericht befafit sich mit funktionalen Fuzzy—Systemen. Der erste hier vorgestell-
te neue Aspekt besteht in der Einfithrung mehrdimensionaler Referenz—Fuzzy—Mengen,
die durch ihren Partitionsschwerpunkt und eine Abstandsnorm definiert sind. Dabei wird
in der Pramisse abgefragt, wie grofl die Affinitdt eines Datums zum Partitions— oder
Clusterschwerpunkt ist, es werden also Punktaffinititen betrachtet. Dadurch ist fiir je-
den Punkt des Eingangsgréflenraumes eine Zugehorigkeit in diese Partition bzw. Fuzzy—
Menge und damit zur korrespondierenden Regel definiert. Der zweite in diesem Be-
richt behandelte Punkt ist die Identifikation von funktionalen Fuzzy-Modellen mit echt—
mehrdimensionalen Referenz—Fuzzy—Mengen. Fiir die Strukturidentifikation wurden Clu-
sterverfahren eingesetzt, fiir die Konklusionsparameteridentifikation das gewichtete rekur-
sive Verfahren der kleinsten Fehlerquadrate. Hierzu wurden drei Clusterverfahren (FCM,

Algorithmen nach Backer sowie Gustafson und Kessel) vorgestellt.

Das vorgestellte Verfahren wurde mit sehr gutem Erfolg auf zwei nichtlineare Testsyste-
me angewendet. Dabei brachte der FCM die besten Ergebnisse. Der Algorithmus nach
Gustafson und Kessel birgt den Nachteil, dal man ohne A—priori—Vorwissen iiber die
Datenstruktur das Potential der lokalen Abstandsnormen nicht richtig nutzen kann. Es
konnten eindeutige Vorschriften zur Wahl der Identifikationsalgorithmusparameter ge-
macht werden, um die Modellgiite zu beeinflussen. Damit ist, im Gegensatz zu noch
vielfach verwendeten Trial-and—error—Verfahren bei der Strukturidentifikation, ein sehr
systematisches, weitgehend automatisiertes Vorgehen moglich. Dies zeichnet den Algo-
rithmus gegeniiber solchen aus, die fiir eine Partition nur einen lokalen Trigerbereich
verwenden. Hierzu zéhlen die meisten Verfahren mit orthogonalen Partitionen. Dort kann
z. B. eine Variation der Referenz—Fuzzy—Mengen zu sprunghaften Giiteinderungen fithren,
die durch Wechsel von Daten zwischen verschiedenen Tragerbereichen hervorgerufen wird.
Somit ist es oft nicht méglich, eine Richtlinie fiir die Wahl der Modellparameter anzuge-
ben. Auflerdem kann dort bei ungeeigneter Partitionierung der Fall eintreten, dafl einige
Partitionen zu wenig Datenpunkte fiir eine Identifikation oder eventuell gar keine ent-
halten. Solche Effekte kénnen bei dem hier vorgestellten Verfahren nicht auftreten, da
alle Zugehorigkeitsfunktionen Werte grofer Null im gesamten Definitionsbereich (ausge-
nommen die Clusterschwerpunkte) liefern. In den Clusterschwerpunkten liefert nur eine
Zugehorigkeitsfunktion p = 1, alle anderen Null. So werden beim hier vorgestellten Iden-
tifikationsverfahren sprunghafte Giiteinderungen bei Anderung einzelner Modellparam-
ter vermieden. Da auch die Lage der Daten untereinander vom Identifikationsvertahren
beriicksichtigt wird, folgt eine (wiinschenswerte) globale Anpassung des Modells. Dadurch
werden bei Erhéhung der Partitionsanzahl automatisch alle Partitionsschwerpunkte im
Sinne des zu Grunde gelegten Giitekriteriums durch die Clusterung optimal gelegt. s
bestehen keine Dimensionsgrenzen fiir die Verschiebung der Clusterschwerpunkte. Bei an-
deren Identifikationsverfahren kann i. allg. immer nur eine Dimension feiner unterteilt

werden, was im globalen Sinne meistens nicht optimal ist.



(  Zusammentassung und Ausblick

Die hier vorgestellten Untersuchungen kénnen in mehrerer Hinsicht fortgefithrt werden:
Wegen der gleichen Pramissenstruktur von funktionalen und relationalen Fuzzy—Systemen
kénnen die vorgestellten mehrdimensionalen Referenz—Fuzzy—Mengen, die damit verbun-
denen Zugehérigkeitsbestimmung tiber Ahnlichkeitsvergleich sowie der Algorithmus zur
Strukturidentifikation ohne Anderungen direkt auch auf relationale Fuzzy—Systeme ange-
wendet werden. Die Effektivitat des bei nicht hyperellipsoiden Datenstrukturen giinstigen
Backer-Algorithmus sollte gepriift werden. Desweiteren ist zu untersuchen, nach welchen
Kriterien der Clusteralgorithmus systematisch bei wenig Vorwissen iiber die betrachtete
Datenstruktur ausgewahlt werden kann. Der vorgestellte einfache Algorithmus zur Fein-
einstellung der mit Clusteranalyse bestimmten Partitionsschwerpunkte sollte z. B. durch
Anwendung eines Gradientenverfahrens im Hinblick auf eine Steigerung von Modellgiite
und Rechengeschwindigkeit verbessert werden. Auch wére eine Priifung der Robustheit

des hier vorgestellten Identifikationsverfahrens bei verrauschten Mefiwerten sinnvoll.
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A Verschiebung von Zugehorigkeitsiunktionstlanken

A Verschiebung von Zugehorigkeitsfunktionsflanken

In diesem Abschnitt wird gezeigt, daB die Verschiebung einer oder zweier benachbarter
linearer Referenz—Fuzzy—Mengenflanken selbst im Flankenbereich i. allg. nicht durch eine
Modifikation des Konklusionspolynoms der beiden an der Flanke in Verschiebungsrich-
tung aneinander grenzenden Regeln substituiert werden kann. Betrachtet wird dazu der
Flankenbereich F[ zweier Regeln, in den die Anderung der Flanken fillt. Desweiteren be-
schrankt wird der Bereich auf das Gebiet, in dem nur diese beiden Regeln feuern (in den
Randbereichen von Fl feuern im allgemeinen vier Regeln gleichzeitig). Verschoben werden
sollen eine oder zwei benachbarte Flanken in z;-Richtung. Deshalb kann die Betrachtung
auf die Abhéngigkeit des Erfiilltheitsgrades der Pramisse w alleine auf z; beschrankt wer-

den. Es gilt
wi = wry*a(z;) und (A.1)
wy = wrgx ag(x;)

mit wry # f(x;) und wry # f(x;) sowie
0 < wr; <1 und (A.2)

0 < CUT72§1 5

da die betrachteten Regeln in FI feuern. wry (wrz) stellt dabei das Produkt der Erfiillt-
heitsgrade aller m Teilpramissen a; bis auf oy (a) dar. Eine Anderung der beiden Flanken
fihrt zu

ai(z;) = aa(z;) + Aay () (A.3)
anstelle von a;(z;) und

az(z;) = aafx;) + Aas(z;) (A.4)
anstelle von as(z;). Damit folgt als resultierende StellgroBe

. wri(og + Aay)uy + wra(az + Aag)uy
wralor + Aay) + wra(az + Aay)

Zu priifen ist nun, ob man % auch durch Beibehaltung der Referenz—Fuzzy—Mengen
(Aay; = Aay =0) aber Anderung der Konklusionen erhalten kann:

L - wrniaith + Wr oty 7

wria + wroas

u . (A.6)
Wegen (A.2) kann man

P (A7)

wr 2

abkiirzen und erhélt durch Gleichsetzen von (A.5) und (A.6)
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GPar(ar + Aay)(ug — i) + gag(ay + Ay )(uyg — tdy) (A.8)
+gar(az + Aas)(ug — ) + ag(az + Aag)(uz — ) =0

Beschreibt man die Flanken vor der Verschiebung durch
o = mix+ und ay = mex + ng , (A.9)
so erhdlt man durch die Verschiebung

Aoy = oy —ap = Ny —ny =: ¢ und

AO{Q = OZQ—OéQ == ﬁz—ng = C2 . (AlO)

Bei den Konklusionspolynomen kénnen alle nicht von z; abh@ngigen Terme mit dem

konstanten Anteil zusammengefafit werden:

Uy = p1+psx U = patpsx . (A.11)

Die modifizierten Polynome werden durch ., * “ beschrieben:
Uy = pr+pse Uy = pPa+psx . (A.12)

Die Ersetzbarkeit der Referenz—Fuzzy—Mengen—Anderung durch andere Konklusionen muf
fir alle x; € FI gelten. Durch Einsetzen von (A.9) — (A.12) in (A.8) erhalt man mit
der Bedingung, daf} die jeweiligen Koeffizienten der Potenzen von z identisch Null sein
miissen, ein Gleichungs—System 4. Ordnung. Hat das System den vollen Rang, so gibt
es eine eindeutige Losung und die Substituierbarkeit von Referenz—Fuzzy—Mengen durch
Konklusionspolynoméanderung ist gegeben. Nach Anwendung des gauflschen Eliminations-

algorithmus enthélt die Dreieckdiagonalmatrix die folgenden 4 Elemente:

dy = —ngf —gnmimsg o, (A.13)
Inimomy — namg — managm m2n
dzzg 1My amiqg 2aMag My + m5ny 7 (A.14)
gmi
d3 = dl und (A15)
de = —(gmlcgnlngmg — 3g?’m%cln1n§ + 3g3m1n301m2n2 + g?’mlmgcfnlng

3 3 3,2 2 2 2 2 2 2 2 3
+2g°minimaeng — 2g"minin, — 2g"mininicy — 2g°minyng

2 2 2 2 2 22
+3g " myicininsme + 39" manjcanams + 4g"mininyms

2 2

—|—292m101n102n2m2 g n czm2 2g cny n2m2 — 2g n Tnem;

2.2 2 22 2
—g*cinicomi — geanimi — 2gnanim; — 3gnanicomi — mycaningmyg
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3 2 2
—2myninimy — 3mynanicyma + 3ngnicoms + canims + 2ninim;

—q m%c%n% g m%clng’ —q m1n§c201 + ng1n§n1m2
—|—3gm1n2n102m2 — nzc%nglnlmg — 3n2m1n1m2gcl
—2ngcomnimeagcy + 2n2 %ngl + annggm2 + gnICng
—anng nomq + anclngnl + gclczmgnl — 3n1mgg c1naMmy
—4n2 2mgmlg — 3n202m2n2m1g + 3n1n201g2m% + anngcszg
+2ninymig + g*micing + gmicin; + gminjeser)

/Ima(g*nimamy — ngmig — manag my + mang)] =: Z4/Ny (A.16)

Bei den betrachteten benachbarten Referenz—Fuzzy—Mengen ist ¢ = 1 und (A.13) fiir
alle my # my erfilllt. (Dies entspricht bereits einer starken Einschrankung, da haufig
benachbarte Referenz-Zugehorigkeitsfunktionen so definiert werden, daB sich im Uber-
lappungsbereich die Zugehorigkeitsgrade zu 1 addieren.) Aulerdem gilt: mq # 0, mq # 0,
(ny # 0V ny # 0). Damit ist

2 2
mqma(ny —ng) + nyms — ngm;

dy = . (A.17)

my

Weil fiir die benachbarten Flanken — sgn(my) = — sgn(mz) und sgn(nq) = — sgn(nsy)
oder [(ny =0Any =0)V(nl #0)A(ny # 0)] gilt, sowie mqy # 0 und my # 0 ist,
gilt dy # 0. Der Zahler von dy tritt zusammen mit einem Faktor my als Nenner von d4
auf, welcher somit auch # 0 ist. Beim Zahler zu (A.16) dagegen gibt es Parameterkombi-
nationen, fiir die das Zahlerpolynom den Wert 0 annimmt: Aus ¢ = 1 und ny = 0 folgt
beispielsweise Z;, = 0 oder aus ¢ = 1 und ny = 0 folgt 7y = —micini(er + ez + na),

wobei Kombinationen ¢; + ¢3 4+ ny = 0 moglich sind.



B Zur Wah! der Operatoren

B Zur Wahl der Operatoren

Im folgenden wird der Einflul des Partialpramissen—Verkniipfungsoperators aut das Ge-
wicht eines Datums bei der Regelauswertung oder bei der Identifikation erlautert. Exem-
plarisch wird von einer 2 x 2-Partitionierung eines zweidimensionalen FEingangsgréfien-

raumes ausgegangen (Bild B.1).

X2

Be

[ |
N N
B |
Al N
! ]
[ |
N |
== 5
Qf | At | } Ae
1,2:0::::::::%
Bild B.1: 2 x 2-Partitionierung
Vorausgesetzt sei
Z/LAi(l'l) =1 Vi, €D,, und (B.1)
Z/LB](IEQ) =1 Vi, €Dy, . (B.2)
J
Zur Abkiirzung sei
a=ypa (1) €[0,1]  und  b=pp (r2) €][0,1] (B.3)

eingefithrt. Fiir den Produkt—Operator folgt die Summe der (Gesamt—) Zugehorigkeiten

eines Datums zu

iwi:ab—l—(l—a)b—l—(l—a)(l—b)—l—a(l—b):1 ) (B.4)

=1

Fir den Minimum—Operator folgt:

4
> w; = min(a, b) + min(l — a,b) + min(1 — a,1 — b) + min(a, 1 — b) . (B.5)

=1



B Zur Wah! der Operatoren

Bei der nétigen Fallunterscheidung werde der Fall @ > b und 1 — @ < b betrachtet. Dafiir
ergibt sich

4

dwi=3-2a>1 (B.6)

=1

im Ubergangsbereich. Ahnliche Ergebnisse folgen fiir die anderen Falle.



