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Nomenklatur

Skalare scharfe Gr�o�en�

aj � Element von �

bj � Element von �

cj � Element von �

c � Clusteranzahl

dik � Abstand zwischen i
tem Clusterzentrum �i und k
tem Datenelement xk
gem�a� einer vorzugebenden Abstandsnorm

D � Abstandsnorm �z� B� euklidische�

k � Z�ahlvariable

m � Anzahl der eindimensionalen Eingangsgr�o�en �Dimension des Eingangsdaten�

� raumes�

n � Anzahl der Fuzzy
Regeln

ni � Anzahl der Daten im i
ten harten Cluster

N � Anzahl der Datenelemente

pi � i
ter Polynomkoe�zient

pi � G�utekriterium �mittlerer quadratischer Fehler� bzgl� nicht
normierter Gr�o�en

r � Anzahl der Iterationen beim Gustafson und Kessel
Algorithmus

t � Zeit

ui � i
te Ausgangsgr�o�e

Vr � Clusterzentrum �r
dimensional� f�ur r � � ist Vr�i � vi�

wk � Gewicht des k
ten Datums

xi � i
te Eingangsgr�o�e

yi � scharfe Ausgangsgr�o�e der i
ten Regel

y � scharfe Ausgangsgr�o�e des gesamten Regelsatzes

�ji � j
te Partialpr�amisse der i
ten Regel

� � Parameter der Zugeh�origkeitsfunktion

� � Parameter der Zugeh�origkeitsfunktion

� � Parameter der Zugeh�origkeitsfunktion

� � Parameter der Zugeh�origkeitsfunktion

� � Terminierungsgrenze bei Clusterverfahren

� � Unsch�arfeparameter �� � ��

	ik � Zugeh�origkeit des Punktes � Datums xk zum Cluster �zur Partition i


 � Maximal auftretende Verschiedenheit �z� B� Abstand� zweier Punkte im

Datenraum 
 � maxt�k�kxt � xkk�
� � diskrete Totzeit

�i � Gesamtpr�amisse der i
ten Regel


 � zeitliche Erfassungstiefe
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Unscharfe Gr�o�en�

A � Fuzzy�Menge

Se � Fuzzy�Einermenge

X � fuzzi	zierte Gr�o�e x

X � fuzzi	zierte Gr�o�e x

Vektoren und Matrizen�

D � Bewertungsmatrix bei Darstellung einer Norm als quadratische Form

I � Einheitsmatrix

P � Kovarianzmatrix

x � Vektor der Eingangsgr�o�en� Datum

U � Zugeh�origkeitsmatrix

vi � Clusterschwerpunkt des i
ten Clusters

W � Gewichtsmatrix bei gewichtetem �rekursiven� Least
Squares
Verfahren

� � Parametervektor

� � Me�vektor

Mengen und R�aume�

D � De	nitionsbereich

DN � De	nitionsbereich normierter Gr�o�en �DN � ���� ���

I � Menge aller c Cluster� I� f�� 
� � � � � cg
Ik � Menge aller Cluster� bei denen xk den Abstand � vom Clusterschwerpunkt hat
�Ik � �Ik � In Ik
M c � �

�
Harter�� c�Partitionsraum

M x � Menge aller Daten xk
M i � Menge der Daten im harten Cluster i

M fc � Fuzzy c�Partitionsraum

N � Menge der nat�urlichen Zahlen

R � Menge der reellen Zahlen

R
m � reeler Vektorraum der Dimension m

VcN � Menge aller reellen c� n�Matrizen
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Funktionen�

det��� � Determinante

exp��� � Exponentialfunktion

f � allg� Funktion

g � allg� Funktion

sgn��� � Signumfunktion

J � Kosten� oder Stra�unktion

V � Verlustfunktion

	A�x� � Zugeh�origkeitsfunktion zur Fuzzy
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Operatoren�

����� � Inverse

���T � Transponiert

max��� � Maximum� �MAX�� Operator

���� � Kardinalzahl �Anzahl der Elemente�

Sonstige Symbole�

� � es existiert

� � f�ur alle

n � ohne �Mengenalgebra�
���� � Sch�atzwert f�ur �

Indizes�

���a�b�h�l�r�s � Lau	ndizes

���i � Regelnummer

���j � Nummer der Eingangsgr�o�e

���k � Nummer des Datums

���mes � Gemessene Gr�o�e

���mod � Pr�adizierte Gr�o�e

����l� � l�ter Iterationsschritt

������ � Initialisierung
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� Einleitende �Ubersicht

Mathematische Modelle dienen zur Analyse und Synthese von Regelungssystemen� Diese

Systemmodelle erlauben eine Erprobung und Optimierung von Regelungskonzepten in der

Simulation� Au�erdem k�onnen reale Prozesse im allgemeinen nicht auf alle Betriebsf�alle

und St�orungen hin �uberpr�uft werden� Bei Systemen hoher Komplexit�at� falls Nichtlinea�

rit�aten vorliegen und � oder die Systemdynamik nicht genau bekannt ist oder nicht oder

nur unter zu gro�em Aufwand analytisch beschreibbar ist� geraten konventionelle Mo�

dellbildungsverfahren an ihre Grenzen� Einen Ansatz zur �Uberwindung dieser Probleme

bietet die Fuzzy
Logik �Xu und Lu �� �� Sugeno und Kang ��  � Pedrycz ����� Shaw

und Kr�uger ���
��

Dieser Bericht befa�t sich mit der Identi	kation von funktionalen Fuzzy
Modellen� Funk�

tionale Fuzzy
Modelle unterscheiden sich von den relationalen �Pedrycz �� �� K�upper

����� dadurch� da� der Folgerungsteil der Fuzzy
Regeln durch eine �scharfe� analytische

Funktion gegeben ist und nicht durch Fuzzy
Mengen beschrieben wird� Die Zielsetzung

beider Modellierungsarten ist allerdings �ahnlich� Es wird im allgemeinen ein zeitdiskretes

parametrisches Ein
�Ausgangsgr�o�enmodell f�ur einen Proze� bestimmt� Das System wird

also als schwarzer Kasten �Schwarz ����� betrachtet� Vor einer eigentlichen Modelliden�

ti	kation sind Me�daten zu gewinnen� Die Festlegung einer geeigneten Abtastzeit sowie

geeigneter Testsignale ist allerdings nicht Bestandteil dieses Berichtes� Hier sei z� B� auf

Isermann ���  a�b� und Reuter ������ verwiesen�

Die Identi	kation eines Fuzzy
Modells kann in zwei gro�e Aufgaben zerlegt werden�

Die Struktur
 und die Parameteridenti	kation� wobei die Grenzen zwischen der Zuord�

nung der Teilaufgaben !ie�end sind� W�ahrend die Bestimmung der Eingangsvariablen

des Modells immer der Strukturidenti	kation und die der Konklusionsparameter der

Parameteridenti	kation zugeordnet wird� ist die Zuordnung der Identi	kation der Ein


�Ausgangsbeziehungen in der Literatur nicht einheitlich dargestellt� In diesem Bericht

soll die Gliederung nach Sugeno und Yasukawa ������ angewendet werden� die sich wie

folgt darstellt� Die Strukturidenti	kation gliedert sich in die Bestimmung der Eingangsva�

riablen des Modells �Teil I � und die Festlegung der Ein
�Ausgangsbeziehungen �Teil II ��

Im Teil Ia werden durch Plausibilit�ats�uberlegungen �uber physikalisches Hintergrundwis�

sen potentiell sinnvolle Kandidaten f�ur die Eingangsgr�o�en bestimmt� Es gibt hierzu keine

generelle L�osung� sondern nur heuristisches Vorgehen �vorausgesetzt wird nat�urlich� da�

die zu pr�adizierende Ausgangsgr�o�e bekannt ist�� Im Teil Ib werden aus den Eingangs�

kandidaten die konkreten Modelleingangsgr�o�en bestimmt� Dazu sind nicht
signi	kante

Kandidaten zu eliminieren und die Signalverz�ogerungen in allen Eing�angen zu bestim�

men� F�ur die Selektion der Eingangsgr�o�en gibt es systematische Ans�atze� die nat�urlich

ein G�utekriterium voraussetzen� Sugeno und Kang ���  � stellen hierzu ein Verfahren

�uber einen Suchbaum mit Elimination der Zweige schlechter G�ute beim �Ubergang von

Ebene zu Ebene des Baumes vor� Bei der Identi	kation der Ein
�Ausgangsbeziehungen
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wird im Teil IIa die Anzahl der Fuzzy
Regeln festgelegt� Dieser Teil ist im Zusammenhang

mit Teil IIb� der Pr�amissenstrukturidenti	kation� d� h� der Partitionierung des Eingangs�

gr�o�enraumes� zu sehen�

W�ahrend sich bei relationalen und funktionalen Fuzzy
Modellen das Problem der Struk�

turidenti	kation in �ahnlicherWeise stellt �die Pr�amissen� d� h� dieWenn
Teile der Regeln�

sind gleich aufgebaut�� unterscheiden sich die bei der Parameteridenti	kation zu bestim�

menden Parameter wegen der unterschiedlichen Konklusionsformen� Bei den funktionalen

Fuzzy
Modellen besteht eine Konklusion aus einer analytischen Funktion� Im allgemeinen

wird hier in den in der Literatur �Takagi und Sugeno �� �� Sugeno und Kang ��  � Sugeno

und Tanaka ����� Tan u� a� ����� wie auch in dem in diesem Bericht vorgestellten neuen

Verfahren ein in den Eingangsgr�o�en lineares Polynom angesetzt� Damit beschr�ankt sich

die Identi	kationsaufgabe auf die Bestimmung der Polynomkoe�zienten�

Im vorliegenden Bericht werden die Betrachtungen auf den Teil II der Strukturidenti�

	kation und die Parameteridenti	kation beschr�ankt� Nach einer Erl�auterung von Clu�

sterverfahren erfogt eine kurze Beschreibung funktionaler Fuzzy
Systeme� Dabei wird ei�

ne neue Pr�amissenstruktur mit mehrdimensionalen Referenz
Fuzzy
Mengen vorgestellt�

Anschlie�end wird das zur Parameteridenti	kation verwendete Verfahren der gewichte�

ten kleinsten Fehlerquadrate beschrieben� Die Clusterverfahren werden im �� Abschnitt

zur Strukturidenti	kation Teil II angewendet� Da viele Ver�o�entlichungen eindimensiona�

le orthogonale Referenz
Fuzzy
Mengen zur Partitionierung verwenden� werden au�erdem

einige Betrachtungen zur Wahl dieser Art der Referenz
Fuzzy
Mengen vorgenommen�Da�

nach wird ein neues Identi	kationsverfahren vorgestellt� das funktionale Fuzzy
Modelle

mit echt
mehrdimensionalen Referenz
Fuzzy
Mengen und linearen Polynomen als Kon�

klusionsfunktionen identi	ziert� Eine Anwendung des Verfahrens auf zwei nichtlineare

Testsysteme� ein akademisches und ein praktisches Beispiel� erfolgt in Abschnitt ��
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� Verfahren zur Clusterung von Daten

Bei der Clusterung wird die Anzahl c der Cluster �
�
Haufen�� und eine Abstandsnorm

�z� B� die Euklidische� vorgegeben� Dann werden c Clusterschwerpunkte bestimmt und

allen N Datenpunkten eine Zugeh�origkeit zu den c Clustern zugeordnet� die im Sinne der

Abstandsnorm optimal ist� Es handelt sich dabei um ein Optimierungs� �Minimierungs��

Problem bez�uglich einer Straf� oder Kostenfunktion J � die von der Datenmenge M x und

den den Daten zugeordneten Zugeh�origkeitsfunktionswerten abh�angt� Dazu sind mehrere

Cluster
Algorithmen verf�ugbar� die meistens speziell auf die Detektion bestimmter geo�

metrischer Strukturen im untersuchten Datenraum zugeschnitten sind� Zu beachten ist�

da� �uber die Festlegung der Abstandsnorm k � k bei der Optimierung der Kostenfunktion

oft die von der Norm implizierte geometrische Clusterform erzwungen wird� Dies kann

auch dann der Fall sein� wenn diese in der Datenstruktur evtl� nicht vorhanden ist� Des�

halb bedeutet ein minimaler Wert der Kostenfunktion nicht gleichzeitig zwangsl�au	g eine

gute Clusterung� da ja nur auf eine geometrische Struktur hin untersucht wurde�

Der Fuzzy
c
Means
Algorithmus �FCM�� auch als Fuzzy
ISODATA bekannt� ist beson�

ders auf hyperellipsoide geometrische Strukturen zugeschnitten� Nach Bezdek ��� �� f�uhrt

er bei Verwendung der euklidischenAbstandsnorm zu Zugeh�origkeitsfunktionsober!�achen�

die eine Mischung aus c Gau�"schen Wahrscheinlichkeitsdichtefunktionen darstellen �Bez�

dek �� ����
�� Dabei ist c die Anzahl der Cluster� In der Literatur 	nden sich auch

Algorithmen� die auf andere als hyperellipsoide geometrische Strukturen zugeschnitten

sind oder sogar lokal unterschiedliche Clusterformen generieren k�onnen� Bei den Backer


Algorithmen �Backer ��� � k�onnen die Zugeh�origkeitsfunktionen auch Maxima nahe den

Grenzen des Datenraumes besitzen� was vorteilhaft bei nicht hyperellipsoiden Datenstruk�

turen ist�

Gustafson und Kessel �Bezdek �� �� stellen einen Algorithmus vor� der lokal unterschied�

liche geometrische Strukturen in den Datens�atzen erkennen und clustern kann�

Die von Bezdek ��� �� entwickelte Familie der Fuzzy
c
Varieties
Algorithmen �FCV�

stellt eine Erweiterung des FCM dar� Ein FCV erlaubt die Bestimmung punktf�ormiger

�r � ��� linienf�ormiger �r � ��� ebener �r � 
� oder hyperplanarer �r � 
� Clusterzen�

tren� Im Sonderfall von r � � stimmt er mit dem FCM �uberein� Da er allerdings nur den

�orthogonalen� Abstand vom Clusterzentrum bestraft� sind z� B� bei r � � die Cluster�

zentren Linien unendlicher L�ange� Zwei Datenh�aufungen nahe der Linie� aber mit gro�em

Abstand zueinander� werden deshalb wie zwei nahe benachbarte bestraft �vgl� Bild 
����

In diesem Punkt setzt die Familie der Fuzzy
C
Elliptotypen �FCE� an� Die grundlegende

Idee entspricht dem FCV f�ur r � �� allerdings werden hier auch die Abst�ande der Daten

entlang der Clusterzentrumlinie bestraft� �Uber einen Parameter � kann eingestellt wer�

den� wie stark die elliptische in Abgrenzung zur linearen Bestrafung erfolgen soll�
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Bild ���� Der Fuzzy
c
Varieties
Algorithmus �r � �� bestraft die beiden dargestellten

Datenh�aufungen nahe der Linie� aber mit unterschiedlicher Streckung in Lini�

enrichtung� gleich�

Diese kurzen Ausf�uhrungen sollen illustrieren� da� es den i� allg� optimalen Algorithmus

nicht gibt� sondern da� je nach der im Einzelfall vorliegenden Datenstruktur ein darauf

zugeschnittener Algorithmus angewendet werden sollte� Oft ist allerdings kein Vorwissen

�uber die geometrische Struktur vorhanden� Bei mehr als zweidimensionalen Datenr�aumen

lassen sich wegen der schlechten Anschaulich
 und Visualisierbarkeit oft mit vertretba�

rem Aufwand keine Aussagen �uber die Datenstruktur machen� In solchen F�allen kann ein

heuristisches Vorgehen zur Ermittlung des geeignetsten Algorithmus n�otig werden�

Der genauen Beschreibung der Clusterverfahren sei die De	nition von Fuzzy
c
Partitionen

und harten c
Partitionen vorangestellt�

De�nition ��� � Fuzzy�c�Partition �Bezdek �� ��
��

Sei M x � fx�� � � � � xk� � � � � xNg eine endliche �Daten�� Menge mitN Elementen�

c � N die Anzahl der Partitionen mit 
 � c � N und VcN die Menge der

reellen c�N
Matrizen� dann ist der Fuzzy
c
Partitionsraum f�ur M x als

M fc �
�
U � VcNj 	ik � ��� �� � i� k�

cP
i��

	ik � � � k� � �
NP
k��

	ik � n � i

� �
���

gegeben�

�

Dabei bezeichnet 	ik den Zugeh�origkeitsgrad des Datums xk zur i
ten Partition� Das i
te

Element der j
ten Spalte von U �i � f�� � � � � cg� j � f�� � � � � Ng� enth�alt die Zugeh�origkeit
des j
ten Datums zur i
ten Partition� Diese Partitionen k�onnen� wie in den folgenden

Unterabschnitten beschrieben� z� B� durch Clusterung bestimmt werden�

Beispiel� Gegeben seien die in Bild 
�
 gezeigten Zugeh�origkeitsfunktionen f�ur klein�

mittel und gro� sowie die zwei Datenpunkte x� und x��

Dann folgt U � �	ij� zu

�x�� �x��

U �

����
� �� �

�� 
 �� �

��  �

����
�gro��

�mittel�

�klein�

�
�
�
�
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Bild ���� Zugeh�origkeitsfunktionen f�ur klein� mittel und gro� sowie die Datenpunkte

x� und x��

�

Ein Sonderfall der Fuzzy
c
Partition ist die harte c
Partition�

De�nition ��� � Harte c�Partition �Bezdek �� ��
��

Sei M x � fx�� � � � � xk� � � � � xNg eine endliche �Daten�� Menge mitN Elementen�

c � N die Anzahl der Partitionen mit 
 � c � N und VcN die Menge der

reellen c�N
Matrizen� dann ist der harte c
Partitionsraum f�ur M x als

M fc �
�
U � VcNj 	ik � f�� �g � i� k�

cP
i��

	ik � � � k� � �
NP
k��

	ik � n � i

� �
���

gegeben�

�

��� Matrix� und Vektornormen

Die Clusteralgorithmen verwenden Matrix� bzw� Vektornormen f�ur die Auswertung der

Terminierungsbedingung �kU �l����U �l�k
T
� �� bzw� die Bestimmung des Abstandes eines

Datenpunktes vom Clusterschwerpunkt �kxk � vikD�� Bei den Matrixnormen erscheinen

����� und Spektral
 �Hilbert
� Norm f�ur den Anwendungszweck als nicht sehr sinnvoll�

Geeigneter ist eine Erweiterung der H�older
Norm �Lancaster und Tismenetsky �� �� auf

r � s
Matrizen A � �aij��

kAkp �
	
 rX
i��

sX
j��

jaijjp
�A �

p

� �
���

die als Spezialfall f�ur p � 
 die euklidische �Frobenius
� Norm beinhaltet� oder eine

Erweiterung der Gesamtnorm �Zurm�uhl und Falk �� �� auf r � s
Matrizen

kAkG �
p
r � s max

��i�r
��j�s

fjaijjg � �
���
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Bild ���� Grenzkurve kxk�
Di

� � f�ur D� �

�
� �

� �



� D� �

�
	

p



p

 	



� D	 �

�
� �

� �



�

D� �

�
� �

� �



mit det�Di� � � � i�

W�ahrend die Gesamtnorm nur die maximale Abweichung von kU �l��� �U �l�k bewertet�

werden bei der p
Norm alle Abweichungen bestraft�

Bei Vektornormen sind z� B� �
� �
 und p
Norm �ublich� Letztere enth�alt als Sonderfall

�p � 
� auch die euklidische �sph�arische� Norm �Zurm�uhl und Falk �� ��� Betrachtet

werden soll die Darstellung der Norm als quadratische Form

kxk�D �� x� x �D� x
T
D x � �
���

Je nach Wahl der Matrix D kann die Grenzkurve gleicher Norm �Equinormalkurve� be�

ein!u�t werden� F�ur D � I folgt die euklidische Norm� die Abweichungen in jede Rich�

tung vom Ursprung gleich bestraft� Damit folgen sph�arische Equinormalkurven um den

Ursprung� d� h� konzentrische Kreise im zwei
 und konzentrische Kugelschalen im dreidi�

mensionalen Fall� F�ur allgemeine Diagonalmatrizen folgen als Equinormalkurven �Hyper��

Ellipsoide in Richtung einer der Koordinatenachsen� deren Exzentrizit�at gew�ahlt werden

kann� F�ur vollbesetzte Matrizen kann zus�atzlich eine beliebige Lage der Ellipsoide ein�

gestellt werden� Bild 
�� zeigt exemplarisch die Equinormalkurven kxk�Di
� d� � � f�ur

einige Di im zweidimensionalen Fall� Hier gilt

d� � kxk�D � xTDx � �x�x��
h a� a�
a	 a�

ih x�
x�

i
� �
���
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Die Equinormalkurven werden durch

x� � � a� # a	

 a�

x� 	
vuutd�

a�
�
�
a�
a�
�
�
a� # a	

 a�

��

x�� �
� �

mit x� � ��xg�xg� beschrieben� Gilt �a�a� � �a� # a	� � �� so folgt

xg �

vuutd�

a�

�
a�
a�
�
�
a� # a	

 a�

��
��
� �
���

Bei �Anderung der absoluten Werte der Elemente vonD unter gleichzeitiger Beibehaltung

der relativen Beziehungen� d� h� sei D� � � D� kann �uber den Wert der Determinante

� � det�D�� � � det�D� das von der Grenzkurve eingeschlossene Volumen �b� z� w� die

Fl�ache im zweidimensionalen Fall� bei gleicher Kurvenform eingestellt werden �Bild 
����

Eine Konstantsetzung der Determinante bei gleichzeitiger Variation der Elemente von D

beein!u�t dagegen prim�ar �oder unter gewissen Voraussetzungen sogar ausschlie�lich� die

Lage der Grenzkurve �vgl� Bild 
���� Im zweidimensionalen Fall berechnet sich die von

einer Equinormalkurve kxkD � d umschlossene Fl�ache zu

F �

 � d�q

� det�D�� �a� � a	��
� �
����

F�ur symmetrische Matrizen D �a� � a	� ist F nicht von den einzelnen Werten der ai�

sondern nur von det�D� abh�angig� Eine Beschr�ankung auf symmetrische Matrizen ist

keine wesentliche Einschr�ankung� da im zweidimensionalne Fall a� und a	 nur als Summe

in �
� � eingehen� Deshalb l�a�t sich auch f�ur a� � a	 eine beliebige Lage und Exzentrizit�at

der Ellipsoide einstellen�

��� Fuzzy�c�Means �FCM�

Im folgenden wird der Fuzzy
c
Means Algorithmus beschrieben �Bezdek �� ���

FCM�Algorithmus

�� Clusteranzahl c �
 � c � N�� Abstandsnorm D� geeignete Matrixnorm k � k
T
f�ur die

Terminierungsbedingung� Unsch�arfeparameter � � ����� und Anfangswert U ��� �
M fc vorgeben� Es sei l � ��


� Clusterschwerpunkte vi berechnen�

v
�l�
i �

NP
k��

�
	
�l�
ik

��
xk

NP
k��

�
	
�l�
ik

�� i � �� � � � � c �
����
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Bild ���� Grenzkurven gleicher Norm kxk�Di
� xT�Dx � � mitD �D� aus Bild 
���

�� U �l� zu U �l��� aktualisieren �

�a� Pr�ufung� ob Singularit�aten �dik � �� vorliegen� Sei I� f�� � � � � cg die Menge

aller Cluster und I
�l�
k � fi � Ij d�l�ik � kxk�v�l�i kD � �g die Menge aller Cluster�

bzgl� derer xk den Abstand � vom Clusterschwerpunkt hat� �I
�l�
k � InI�l�k ist die

Menge aller Cluster� bzgl� derer xk keine Singularit�at darstellt�

�b� Berechne die Zugeh�origkeit zu den neuen Clustern

	
�l���
ik �

���������������������������

�
cX

j��

	
d�l�ik
d
�l�
jk

�A
�

���

�������
f�ur I

�l�
k � 


�keine

Singularit�aten�

� � i � �I
�l�
k

a
�l�
ik � i � I�l�k

�������
f�ur I

�l�
k �� 


�Singularit�aten

liegen vor�

�
��
�

mit

a
�l�
ik �

X
i�I�l�

k

a
�l�
ik �

X
i�I�l�

k

	
�l�
ik � � � i � I�l�k �� 
 � �
����

W�ahle z� B� a�l�ik � �
��I

�l�
k �

� i� Damit ist U �l��� �
h
	
�l���
ik

i
�

�� Terminierungsbedingung pr�ufen�

Wenn kU �l��� �U �l�k
T
� �

Dann Stop �
����
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Sonst l � l # �� zur�uck zu 
�

�

Diesem Algorithmus liegt als Kostenfunktion

J��U �v�D� �
NX
k��

cX
i��

�	ik�
� kxk � vik�D �

NX
k��

cX
i��

�	ik�
� �dik�

� �
����

mit einer Fuzzy
c
Partition U � M fc von M x und �dik�� � kxk � vik�D einer inneren

Produktnorm k � kD auf Rp zugrunde� v � �v�� � � � �vc��vi � Rm ist der Vektor der Clus�

terschwerpunkte und � � ����� ein Unsch�arfeparameter� Die Norm ist zu minimieren�

Da dik quadratisch in J� eingeht� handelt es sich beim Cluster
Kriterium um ein qua�

dratisches Fehlerkriterium� F�ur � � � und die euklidische Abstandsnorm geht der FCM

in den harten c
Means �HCM� Basis
ISODATA� nach Duda und Hart �Bezdek �� �����

�uber� Anderseits wird die Partitionierung immer unsch�arfer� je gr�o�er � gew�ahlt wird�

Bezdek ��� ����� zeigt� da� J� mit zunehmendem � monoton f�allt� Der Algorithmus f�uhrt

zu einem lokalen Minimum von J� � Zu beachten ist� da� je nach Datenstruktur ein lokales

oder globales Minimum von J� keineswegs eine gute Clusterung darstellen mu�� da ja nur

im Hinblick auf die gew�ahlte Norm optimiert wird�

Bei der Verwendung der euklidischen Norm f�ur k � kD f�uhrt der FCM zu sph�arischen

Clustern� Bezdek ��� �� �f� zeigt� da� die Bedingung �
��
� zum Aktualisieren auf 	
�l���
ik

notwendig� aber nicht hinreichend f�ur strikte lokale Minima von J� ist �f�ur � � ��� Theo�

retisch konvergiert der FCM f�ur unendlich h�au	ges Iterieren� F�ur eine endliche Anzahl

von Iterationen ist keine Aussage m�oglich� Erfahrungen zeigen� da� bei Konvergenz nach

endlicher Iterationsanzahl im allgemeinen das Ergebnis nahe einem lokalen Minimum liegt

�Bezdek �� ���

��� Backer�Algorithmen

Die Backer
Algorithmen �Backer ��� � gehen von einer harten Partitionierung des Da�

tenraumes aus� �Uber eine Pr�ufung der
�
Verwandtheit� �A�nit�at� jedes Datenpunktes zu

jedem harten Cluster werden Zugeh�origkeiten der Datenpunkte zu den Clustern abge�

leitet� Ein Verwandtheitskriterium� wie z� B� die
�
mittlere Partitions
Trennbarkeit� B

�average partitions separability� Bezdek �� ������ mit �Backer ��� �����

B�U � c� �
�

c� �

c��X
i��

cX
j�i��

�
�

N

NX
k��

�
	ik � 	jk

��

�
����

ist vorzugeben� Jeder harten Partitionierung �durch ���� bezeichnet� wird genau eine

weiche Partitionierung �wie zuvor aber ohne Stern� zugeordnet� Bezdek ��� �� gibt ei�

ne Variante der Algorithmen an� die als Verwandheitskriterium die mittlere Partitions


Trennbarkeit B und die euklidische Abstandsnorm dtk � kxt � xkk� verwendet�
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Backer�Algorithmus

�� Clusteranzahl c �
 � c � N� und eine harte Partitionierung U���� � �	����ik � � M c

vorgeben� Berechne 
 � max
t�k

�dtk�� Es sei l � ��


� Berechne weiche aus harten Clustern�

	
�l�
ik �

n
�l�
i � 


NP
t��

	
��l�
it d

�l�
tk

N � 

NP
t��

d
�l�
tk

�
����

mit M i der Menge aller Daten des i
ten harten Clusters und ni � ��M i��

�� Berechne die Reklassi	zierungsmatrix R � �rhk� zur Neuzuweisung der Daten zu

den Partitionen mit

r
�l�
ik �

�

n
�l�
i

�����	�l�ik �� � �

n
�l�
i � �

X
xt�M�l�

i��k

�
	
�l�
it

������ �
�� �

r
�l�
jk �

�

n
�l�
j

�����	�l�jk�� � �

n
�l�
j # �

X
xt�M�l�

j��k

�
	
�l�
jt

������ f�ur � � j � c� j �� i �
����

mit M i der Menge aller Daten des i
ten harten Clusters� M j der Menge aller Daten

des j
ten harten Clusters� ni � ��M i�� nj � ��M j �� M i��k � M i n fxkg und

M j��k � M j 
 fxkg�
�� Aktualisiere die harte Partitionierung U � �diese Vorschrift f�uhrt zum iterativen

Optimieren von B��

F�ur k � �� � � � � N berechne� r
�l�
tk � max

��q�c
�r

�l�
qk � mit

r
�l�
qk �

�����
r
�l�
ik � q � i nach �
�� �

r
�l�
jk � q � f�� � � � � cg n fig nach �
�����

�
�
��

F�ur t � i bleibt die Partitionierung erhalten�

	
��l���
qk � 	

��l�
qk � q � f�� � � � � cg � �
�
��

F�ur t �� i wird repartitioniert�

	
��l���
qk �

�����
� � q � t

� � q �� t
� �
�

�



� Verfahren zur Clusterung von Daten ��

�� Pr�ufe Terminierungsbedingung�

Wenn U
��l��� � U ��l�

Dann Stop �keine �Anderung der harten Clusterung� �
�
��

Sonst l � l # �� zur�uck nach 
�

Dieser Algorithmus kann im Gegensatz zum Fuzzy
c
Means auch Zugeh�origkeitsfunk�

tionen mit Maxima nahe den Grenzen des Datenraumes liefern� Somit kann er bei nicht

hyperellipsoiden Datenstrukturen zu besseren Ergebnissen f�uhren als der FCM� Der Algo�

rithmus konvergiert und f�uhrt zu einem globalen Maximumvon B bez�uglich der durch die

Zuordnung zu den harten Partitionen m�oglichen weichen Partitionen �Bezdek �� �������

Die Konvergenz tritt nach einer endlichen Anzahl von Iterationen ein� wodurch als Ter�

minierungsbedingung ein Vergleich auf Identit�at aufeinanderfolgender harter Partitionie�

rungen m�oglich ist� Als Parameter des Algorithmus treten die Anzahl der Cluster c� die

Wahl der Abstandsnorm d � k � k und des Verwandtheitskriteriums sowie die Festlegung

von 
 auf� So kann die Unsch�arfe der Partitionierung durch Einf�uhrung eines Faktors m�

in


 � m� max
k�j

�dkj�� �
�
��

der bisher zu � gesetzt wurde� beein!u�t werden�

Der Reklassi	zierung liegt die Idee zu Grunde� durch elementweise Austauschvorg�ange

zwischen den harten Partitionen die im Sinne eines G�utekriteriums �implizit in �
�� �

bzw� �
���� enthalten� optimale harte Zuordnung der Daten zu den Clustern zu erreichen�

F�ur den Reklassi	zierungsvorgang sind pro Datum c � � und somit insgesamt N�c � ��

Austauschvorg�ange w�ahrend eines Iterationsschrittes zu betrachten� Wie bereits zuvor

erw�ahnt� werden aus der harten Clusterung die unscharfen Zugeh�origkeiten abgeleitet�

��	 Algorithmus von Gustafson und Kessel �Fuzzy Kovarianz�

Matrizen�

Der FCM ist wegen der zugrundeliegenden einheitlichen Norm gut f�ur hyperellipsoide

geometrische Datenstrukturen geeignet� Zur Clusterung von lokal unterschiedlichen geo�

metrischen Strukturen� z� B� lokal teilweise sph�arische und teilweise ellipsoide Struktu�

ren� stellen Gustafson und Kessel �Bezdeck �� �� einen Algorithmus vor� der eine lo�

kale Variation der Abstandsnorm erlaubt� Statt einer global wirkenden Matrix
Norm

D mit dik � kxk � vikD gilt also f�ur jedes der c Cluster jeweils eine Norm Di mit

dik � kxk � vikDi
� Bei dem Algorithmus ist bez�uglich kxk�Di

� x
T
Di x f�ur jedes Di

der Wert seiner Determinante det�Di� � �i � � festzulegen� Die Wahl von �i legt dabei

das Volumen des i
ten Clusters fest� die Variation von Di bei konstantem �i entspricht
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der Suche nach der optimalen Clusterform �siehe auch Abschnitt 
���� Als Stra�unktion

	ndet

�J��U �v�D�� � � � �Dc� �
NX
k��

cX
i��

�	ik�
� kxu � vik�Di

�
�
��

mit den lokalen Matrixnormen D�� � � � �Dc Verwendung� Gustafson und Kessel formulie�

ren ihren Algorithmus� der teilweise auf den FCM
Algorithmus zur�uckgreift� wie folgt�

Fuzzy Kovarianz�Matrizen�Algorithmus

�� Clusteranzahl c �
 � c � N�� geeignete Matrixnorm k � k
T
f�ur die Terminierungsbe�

dingung� Unsch�arfeparameter � � ������ �i � ����� �� � i � c� und Anfangswert

U
��� � M fc vorgeben� Es sei l � ��


� Clusterschwerpunkte vi berechnen �wie beim FCM��

v
�l�
i �

NP
k��

�
	
�l�
ik

��
xk

NP
k��

�
	
�l�
ik

�� i � �� � � � � c �
�
��

�� Die c Matrizen

S
�l�
fi �

NX
k��

�
	
�l�
ik

�� �
xk � v�l�i

� �
xk � v�l�i

�T
� �
�
��

det�Sfi� und S
��
fi f�ur alle � � i � c berechnen�

�� Lokale Matrizen Di

Di � ��i det�Sfi��
�
m S

��
fi � � � i � c �
�
 �

�mit der Dimension m des Eingangsdatenraums� berechnen�

�� Aktualisiere U �l� zu U �l��� �Vorgehen wie beim FCM� aber mit lokal unterschiedli�

chen Abstandsma�en��

d
�l�
ik � kxk � v�l�i kDi

� � i � c � � � k � N �
�
��

	
�l���
ik �

���������������������������

�
cX

j��

	
d�l�ik
d
�l�
jk

�A
�

���

�������
f�ur I

�l�
k � 


�keine

Singularit�aten�

� � i � �I
�l�
k

a
�l�
ik � i � I�l�k

�������
f�ur I

�l�
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�Singularit�aten

liegen vor�

�
����
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mit

a
�l�
ik �

X
i�I�l�

k

a
�l�
ik �

X
i�I�l�

k

	
�l�
ik � � � i � I�l�k �� 
 � �
����

W�ahle z� B� a
�l�
ik � �

��I�l�k �
� i� Damit ist U �l��� �

h
	
�l���
ik

i
�

�� Terminierungsbedingung pr�ufen�

Wenn kU �l��� �U �l�k
T
� �

Dann Stop �
��
�

Sonst l � l # �� zur�uck zu 
�



� Funktionale Fuzzy�Systeme ��

� Funktionale Fuzzy�Systeme

Ein Funktional
Fuzzy
System mit m Eingangsgr�o�en und einer Ausgangsgr�o�e beruht

auf n Regeln der Form

Ri � Wenn �X� Ist Ai
��r�i�� Und � � � Und �Xm Ist Ai

m�r�i��

Dann yi � fi�x�� � � � � xm�
�����

mit
xj � scharfe Eingangsgr�o�e� j � �� � � � �m � xj � D xj

Xj � unscharfe Eingangsgr�o�e� j � �� � � � �m �

Ai
j�r�i� � r
te Referenz
Fuzzy
Menge der j
ten Eingangsgr�o�e der i
ten Regel�

yi � scharfe Ausgangsgr�o�e der i
ten Regel und

fi�x�� � � � � xm� � Funktion der m scharfen Eingangsgr�o�en�

Ein solches System kann sowohl einen Regler als auch ein Modell beschreiben� Die Aus�

wertung der Pr�amissen der Fuzzy
Regeln erfolgt wie beim Relational
Fuzzy
Regler� F�ur

einen Eingangsgr�o�envektor X � �X�� � � � �Xm�
T bezeichnet

�j�i � Xj Ist Ai
j�r�i� ���
�

den Erf�ulltheitsgrad der j
ten Partialpr�amisse der i
ten Regel bzgl� der r
ten Referenz


Fuzzy
Menge� Bei Fuzzi	zierung �uber Fuzzy
Einermengen Se� deren Zugeh�origkeitsfunk�

tionen als

	Se�x� �

�
� � x � e

� � x �� e
�����

de	niert sind� vereinfacht sich ���
� zu

�j�i � 	Ai
j�r�i�

�xj� � �����

Diese Fuzzi	zierungsmethodik soll im folgenden vorausgesetzt werden� Bei multiplikativer

Verkn�upfung der Partialpr�amissen berechnet sich der Erf�ulltheitsgrad �i der Pr�amisse der

i
ten Regel zu

�i �
mY
j��

�j�i � �����

F�ur die Konklusionspolynome fi gibt Buckley ������ f�ur einen Regler mit zwei Eingangs�

gr�o�en �m � 
� einen allgemeinen Ansatz als

yi � fi�x�� x�� �
ha�i�X
a��

hb�i�X
b��

pi�a� b� x
a
� x

b
� i � �� � � � � n �����

an� wobei pi reelle Polynomkoe�zienten bezeichnen� Takagi und Sugeno ��� ��� Suge�

no und Kang ��� �� ��  � wie auch Sugeno und Tanaka ������ berechnen dagegen die

�Partial
� Modellausgangsgr�o�en als in den m Eingangsgr�o�en lineare Polynome zu

fi�x�� � � � � xm� � pi��� #
mX
a��

pi�a� xa � �����



� Funktionale Fuzzy�Systeme ��

In die Berechnung der n Gr�o�en yi gehen die Erf�ulltheitsgrade der Pr�amissen �i nicht ein�

Sie werden bei der Aggregation ber�ucksichtigt� Bei der Aggregation �uber eine gewichtete

Mittelwertbildung �Takagi und Sugeno �� �� gilt

y �

nP
i��

yi �i

nP
i��

�i
� ��� �

wobei mindestens ein �i �i � f�� 
� � � � � ng� gr�o�er als Null vorausgesetzt wird� Buckley

������ f�uhrt bei der Aggregation keine Normierung der Gewichte �i der Gr�o�en yi im

Sinne einer Summation zu eins 
 wie in ��� � 
 durch und erh�alt deshalb

y �
nX
i��

yi �i � �����

Die Gleichungen ������ ���
� und ����� beschreiben eine Pr�amissenstruktur� bei der die

Mehrdimensionalit�at des Eingangsgr�o�enraumes durch die Verkn�upfung explizit eindi�

mensionaler Zugeh�origkeitsfunktionen vorgenommen wird� In dem in diesem Bericht in

Abschnitt ��
 vorgestellten neuen Verfahren werden bei der Strukturidenti	kation �uber

Clusterverfahren explizit mehrdimensionale Zugeh�origkeitsfunktionen betrachtet� Dabei

wird in der Pr�amisse der i
ten Regel abgefragt� wie gro� die A�nit�at �Wesensverwand�

schaft� des Datums xk zum Partitions
 oder Clusterschwerpunkt vi unter der Randbedin�

gung ist� da� weitere c�� Partitions
 oder Clusterschwerpunkte v�� � � � �vi���vi��� � � � �vc
gegeben sind� Es werden also Punkta�nit�aten betrachtet� Eine solche Regelstruktur l�a�t

sich als

Ri � Wenn �x Ist vi�jv����vc
Dann yi � fi�x�

������

mit

xj � scharfe Eingangsgr�o�e� j � �� � � � �m � xj � D xj �

x � Vektor der scharfen Eingangsgr�o�en mit x��x�� � � � � xm�T � D x� � � � �� D xm �

vi � den Partitions
 oder Clusterschwerpunkten der i
ten Partition bzw� des

i
ten Clusters�

yi � scharfe Ausgangsgr�o�e der i
ten Regel und

fi�x� � Funktion der m scharfen Eingangsgr�o�en

schreiben� W�ahrend die Clusterschwerpunkte explizit durch die Clusteralgorithmen be�

rechnet werden k�onnen� bleibt noch der Begri� Partitionsschwerpunkt zu erl�autern� Aus�

gehend von einer orthogonalen Partitionierung kann statt der explizit eindimensional de�

	nierten orthogonalen Referenz
Fuzzy
Mengen auf explizit mehrdimensional de	nierte

Zugeh�origkeitsfunktionen �ubergegangen werden� Dazu sind die Mittelpunkte �z� B� die

geometrischen� �v einer jeden �orthogonalen� Partition� die sogenannten Partitionsschwer�

punkte� zu ermitteln und mit diesen genau wie mit den Clusterschwerpunkten zu verfah�

ren� Es gilt also �vi � vi�



� Funktionale Fuzzy�Systeme ��

F�ur die Auswertung der Pr�amisse in ������ wird die folgende� vom Fuzzy
c
Means


Algorithmus �ubertragene� Vorschrift verwendet�

	ik �

���������������������������

�
cX

j��

�
dik
djk

� �
���

�����
f�ur Ik � 

�keine

Singularit�aten�

� � i � �Ik

aik � i � Ik

�����
f�ur Ik �� 


�Singularit�aten

liegen vor�

������

Dabei ist

x � das k
te Datum�

dik � der Abstand zwischen dem Datum xk und dem Partitions
 oder Cluster


schwerpunkt vi nach der Abstandsnorm D� dik � kxk � vikD�
c � die Anzahl der Partitions
 oder Clusterschwerpunkte�

� � der Unsch�arfeparameter mit � � ������

I � der Menge aller Cluster I� f�� � � � � cg�
Ik � die Menge aller Cluster� bei denen xk den Abstand � vom Clusterzentrum

besitzt �dik � kxk � vikD � �� und
�Ik � die Menge aller Cluster� bez�uglich derer xk keine Singularit�at darstellt

��Ik � In Ik��
Die Fallunterscheidung

	ik � aik � i � Ik �� 
 ����
�

mit

X
i�I

k

aik �
X
i�I

k

	ik � � ������

besagt� da�� falls ein xk in einen mehrfachen Clusterschwerpunkt f�allt� die Zugeh�orig�

keiten zu diesen Clustern jeweils kleiner Eins sein m�ussen� Daf�ur ist die Randbedingung

verantwortlich� da� die Summe der Zugeh�origkeiten zu allen Partitionen f�ur alle Punkte

des De	nitionsraumes gleich Eins sein mu�� Sinnvoll ist hierbei z� B� eine Wahl

aik �
�

��Ik�
� i � ������

Da der Fall mehrfacher Clusterschwerpunkte in einem Punkt praxisfern ist� kann verein�

fachend angenommen werden� da� maximal ein Clusterschwerpunkt in einem Punkt des
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Eingangsgr�o�enraumes liegen kann� Ist Ik �� 
� dann enth�alt es genau ein Cluster h� f�ur

das dhk � � gilt� Damit vereinfacht sich ������ zu

	ik �

���������������������������

�
cX

j��

�
dik
djk

� �
���

�����
f�ur Ik � 

�keine

Singularit�aten�

� � i � �Ik

� � i � h

�����
f�ur Ik �� 


�Singularit�aten

liegen vor�

������

Die Gln� ������ und ������ gew�ahrleisten� da� die Summe der Zugeh�origkeiten eines Da�

tums xk zu allen c Partitionen exakt gleich Eins ist� Im Fall von Singularit�aten ist dies

o�ensichtlich� F�ur I� 
 gilt�

cX
i��

	ik �
cX

i��

�

cX
j��

�
dik
djk

� �
���

�
cX

i��

�

�dik�
�

���

cX
j��

�
�

djk

� �
���

������

�
�

cX
j��

�
�

djk

� �
���

cX
i��

�

�dik�
�

���

� �

Das hei�t� das mit ������ und ������ vorgestellte Verfahren zur Festlegung der Referenz


Fuzzy
Mengen f�uhrt per se zu einem Fuzzy
Informationssystem �Meyer
Gramann und

J�ungst ������ Anstelle der in ������ und ������ verwendeten global einheitlichen Ab�

standsnorm kann auch eine lokal variierende Abstandsnorm wie beim Algorithmus von

Gustafson und Kessel �Bezdek �� �� eingesetzt werden� Auch hier gilt
cP

i��
	ik � �� wie an

������ abzulesen ist�

F�ur den Fall eines zweidimensionalen normierten Eingangsgr�o�enraumes� einer f�ur alle

Partitionen einheitlichen Euklidischen Norm als Abstandsnorm und drei Clustern mit

den Schwerpunkten

v� � ���� �� �� ��T � v� � ���� ����� ��T und v	 � ��� �� ��T ������

sieht die zur Referenz
Fuzzy
Menge des ersten Clusters korrespondierende echt
mehrdi�

mensionale Zugeh�origkeitsfunktion nach ������ mit � � �� �� wie in Bild ��� gezeigt aus� Je

kleiner � gew�ahlt wird� desto sch�arfer werden die Partitionen� F�ur � � � folgen letztlich
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��
����

�
���

�

��
����

�
���

��

��


���

���

�� 

�

x�x�

	

Bild ���� Zugeh�origkeiten 	�k von xk � �x��x��T zum ersten Cluster f�ur � � �� ��

harte Partitionen �	ik � f�� �g�� F�ur gr�o�ere Werte von � werden die Zugeh�origkeitsfunk�

tionen unsch�arfer� Bild ��
 zeigt 	�k�xk� f�ur eine Auswertung von ������ mit � � 
 gem�a�

������� Die beiden Mulden liegen genau in den beiden Schwerpunkten v� und v� des 
�

und �� Clusters� Hier gilt 	�k�v�� � 	�k�v	� � ��

Mit steigendem Wert von � wird allerdings der Abstand eines Datenpunktes vom Clu�

sterschwerpunkt st�arker bestraft� Dadurch folgen f�ur gro�e Werte von � Zugeh�origkeits�

funktionen� die im Schwerpunkt des korrespondierenden Clusters � liefern� in den Schwer�

punkten der anderen Cluster � und im �ubrigen Bereich nahezu 	 � ��c� Bild ��� illustriert

dies f�ur einen bereits relativ gro�en Wert � � ��

Mit der bei mehrdimensionalen Zugeh�origkeitsfunktionen sinnvollen Vorgabe� da� der Ein�

gangsgr�o�enraum und das Argument der Zugeh�origkeitsfunktionen die gleiche Dimension

besitzen �wie dies bei einer Clusterung auch automatisch der Fall ist�� stellt der Zugeh�orig�

keitsgrad 	ik des Datums xk zur Partition i direkt auch den �Gesamt
� Erf�ulltheitsgrad

der Regelpr�amisse dar� also gilt

�i�xk� � 	ik � ���� �

Dadurch entf�allt die explizite Verkn�upfung der eindimensionalen Partialpr�amissen wie bei

der oben beschrieben Regelstruktur nach ������
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Bild ���� Zugeh�origkeiten 	�k von xk � �x��x��T zum ersten Cluster f�ur � � 
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Bild ���� Zugeh�origkeiten 	�k von xk � �x��x��T zum ersten Cluster f�ur � � �
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� Parameteridenti�kation des Konklusionspolynoms

Eine der Aufgaben bei der Identi	kation eines funktionalen Fuzzy
Modells besteht darin�

die Parameter der n Schlu�folgerungsfunktionen zu bestimmen� Setzt man �wie allgemein

�ublich� Sugeno und Kang ��  � Sugeno und Tanaka ����� Takagi und Sugeno �� �� Tan u�

a� ����� als Funktionen in den Eingangsgr�o�en lineare Polynome an� so sind diese linear in

ihren Parametern� so da� Least
Squares
Verfahren �LS
Verfahren� angewendet werden

k�onnen �Reuter ���
��

Da jede Fuzzy
Regel eine der c Partitionen des Eingangsgr�o�enraumes beschreibt� sind

die zur Identi	kation zur Verf�ugung stehenden Daten den einzelnen Partitionen zuzuord�

nen� Dadurch entstehen bei Verwendung eindimensionaler orthogonaler Referenz
Fuzzy


Mengen im unscharfen �Uberlappungsbereich der benachbarten Partitionen Kon!ikte� Nutzt

man ein Datum nur zur Identi	kation der Partition� zu der es die gr�o�te Zugeh�origkeit be�

sitzt� so werden i� allg� nicht alle Daten ber�ucksichtigt� die in den Einzugsbereich �� � ��

der Partition fallen �d� h� es werden nicht alle relevanten Daten ausgewertet�� Verwen�

det man dagegen alle Daten im Einzugsbereich� so f�uhrt ein Standard
LS
Verfahren zur
�Uberbetonung der Daten in den �Ubergangsbereichen zwischen den Partitionen� Bei den

im vorherigen Abschnitt vorgestellten echt
mehrdimensionalen Referenz
Fuzzy
Mengen

ist ein Standard
LS
Verfahren nicht sinnvoll anwendbar� Abhilfe bietet die Nutzung eines

gewichteten LS
Verfahrens �Isermann ��  a�� das bereits von Sugeno und Tanaka ������

eingesetzt wurde� Dabei wird jedes Datum� gewichtet entsprechend seiner Zugeh�origkeit

zu der zu identi	zierenden Partition� bei der Identi	kation jeder Partition ber�ucksichtigt�

Dem LS
Verfahren liegt dann nicht mehr eine Verlustfunktion

V � eTe �����

mit

e�k� � x�k�
mes

� x�k�
mod

und ���
�

e � �e���� � � � � e�N��T �����

zugrunde� sondern

V � eTWe �����

mit einer Diagonalmatrix W � Die Diagonalelemente wkk von W sind dabei die Gewich�

tungen des k�ten Datums xk� F�ur diese Form der Gewichtung gibt Isermann ���  a� das

rekursive Verfahren der kleinsten Fehlerquadrate �Weigthed Recursive Least Squares Ver�

fahren� WRLS� wie folgt an�

Gesucht seien die Parameter einer linearen Di�erenzengleichung

y�k� � ��a�y�k���� � � ���a�yy�k�
y�#�b�x�k�� ���# � � �#�b�xx�k�� �
x������
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mit bekannter diskreter Totzeit � des Eingangsignals x�k�� Die Parameter werden zum

Vektor

�� � ��a�� � � � � �a�y ��b�� � � � ��b�x �
T �����

zusammengefa�t� Dann bestimmt sich der �k # ��
te Sch�atzwert ���k # �� zu

���k # �� � ���k� # ��k��y�k # �� ��T �k # �� ���k�� �����

mit

��k� �
P w�k���k # ��

�
T �k # ��P w�k�� �k # �� #

�

w�k # ��

��� �

und

P w�k # �� � �I � ��k��T �k # ���P w�k� � �����

Dabei ist

� �k� � ��y�k � ��� �y�k � 
�� � � � ��y�k � 
y��

x�k � � � ��� � � � � x�k � � � 
x��
T ������

der k�te Datenvektor�

Zu einer i� allg� gew�unschten Modellbildung f�ur Systeme mit m Eingangsgr�o�en gelangt

man durch eine Erg�anzung von Gleichung ������ ����� und ������ wie folgt�

y�k� � ��a�y�k � �� � � � �� �a�yy�k � 
y� #

#�b�x��k � �x� � �� # � � �#�b�x�x��k � �x� � 
x��

# � � �# ������

#�c�xm�k � �xm � �� # � � �# �c�xmxm�k � �xm � 
xm� � ����
�

�� � ��a�� � � � � �a�y ��b�� � � � ��b�x� � � � � � �c�� � � � � �c�xm �
T ������

und

� �k� � ��y�k � ��� �y�k � 
�� � � � ��y�k � 
y��

x��k � �x� � ��� � � � � x��k � �x� � 
x��� ������

� � �

xm�k � �xm � ��� � � � � xm�k � �xm � 
xm��
T �

Wie beim ungewichteten Verfahren sind hier die Startwerte f�ur ����� und P w��� vorzu�

geben� Reuter ����
� und Ben Farhat ������ geben Hinweise zur Wahl der Startwerte�
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Das WRLS�Verfahren wird wegen der c Partitionen auch c
mal durchgef�uhrt� Das Ge�

wicht wi
k � ��� �� des k
ten Datums bei der Identi	kation der i�ten Partition wird dabei

gleich der Zugeh�origkeit zu dieser Partition gesetzt� Daten mit der Zugeh�origkeit Null

sollten zur Erh�ohung der Rechengeschwindigkeit und zur Vermeidung numerischer Pro�

bleme beim WRLS
Verfahren nicht ber�ucksichtigt werden� Dies ist numerisch exakt� da

f�ur w�k # �� � � aus den obigen Gleichungen ���k # �� � ���k� folgt�

W�ahrend die im folgenden Abschnitt beschriebenen Clusterverfahren bewirken� da� die

Summe der Zugeh�origkeiten eines Datums zu allen Clustern exakt gleich � ist� h�angt

dies bei Partitionierung �uber orthogonale Referenz
Fuzzy
Mengen von der Festlegung

der �eindimensionalen� Referenz
Fuzzy
Mengen und des Verkn�upfungsoperators bzgl� der

Partialpr�amissen ab� Im folgenden seien Referenz
Fuzzy
Mengen angenommen� deren Zu�

geh�origkeitsfunktionen sich im gesamten De	nitionsbereich f�ur jede Stelle zu Eins addieren

�verbreitetes Vorgehen�� Bei einer multiplikativen Verkn�upfung der Partialpr�amissen wie

in ����� ergibt die Summe der �Gesamt
� Zugeh�origkeiten eines Datums zu allen Partitio�

nen exakt � �siehe Anhang B�� Bei Wahl der Gewichte wi
k gleich der Gesamtzugeh�origkeit

�i�xk� zur Partition i haben alle Daten bzgl� der gesamten Identi	kation das gleiche Ge�

wicht� Kein Datum wird im �kritischen� �Ubergangsbereich �uber
 oder unterbewertet�

Werden die Partialpr�amissen dagegen �uber den Minimum
Operator

�i�xk� � min
��j�m

��ji� ������

verkn�upft� so erfolgt eine �Uberbewertung der Daten im �Ubergangsbereich �siehe Anhang

B�� wenn wi
k � �i�xk� gew�ahlt wird�

In diesem Bericht wird von multiplikativer Verkn�upfung nach ����� und wi
k � �i�xk�

ausgegangen� Es besteht aber auch die M�oglichkeit� die Datengewichtung gezielt zu be�

ein!u�en� So k�onnen die �i�xk� z� B� �uber eine konzentrierende oder kontrastverst�arkende

Funktion auf die wi
k abgebildet werden� Die Beschreibung von Konzentration� Kontrast�

verst�arkung u� a� m� entnehme man z� B� Zadeh �������
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	 Strukturidenti�kation

Bei der Strukturidenti	kation von Fuzzy�Modellen �sowohl relationaler als auch funktio�

naler� stellt sich die Aufgabe einer geeigneten Partitionierung des Eingangsgr�o�enraumes�

Ein einfaches Vorgehen besteht in einer gleichf�ormigen Partitionierung der De	nitionsbe�

reiche der Eingangsgr�o�en� Eine solche regelm�a�igeModellstruktur stimmt im allgemeinen

aber nicht mit der Struktur des nichtlinearen Systems �uberein� Bessere Ergebnisse bei der

Modellierung sind durch Anpassung der Zugeh�origkeitsfunktionsform und �lage an das

System zu erwarten� Hier existieren Ans�atze� die eine Anpassung der jeweils bzgl� einer

Eingangsgr�o�e de	nierten Referenz
Fuzzy
Mengen vornehmen und solche� die sich von

der strikten Zuordnung der Zugeh�origkeitsfunktionen zu einer Dimension �d� h� einer Ein�

gangsgr�o�e� l�osen� Zu letzteren geh�oren z� B� die Clusteranalyse der Testdaten und eine

daraus abgeleitete Partitionierung des Eingangsgr�o�enraums� Der folgende Unterabschnitt

geht auf die h�au	g benutzten orthogonalen eindimensionalen Referenz
Fuzzy
Mengen ein�

Anschlie�end wird ein neues Verfahren mit mehrdimensionalen Zugeh�origkeitsfunktionen

vorgestellt�


�� Orthogonale Partitionierung

Beimmodellbasierten Entwurf funktionaler Fuzzy�Regler 	nden Modelle mit orthogonaler

Partitionierung des Eingangsgr�o�enraumes h�au	g Verwendung �Sugeno und Kang �� ��

Tanaka und Sugeno ���
�� Deshalb sollen in diesem Abschnitt einige Betrachtungen zu

dieser Form der Pr�amisse gemacht werden� Wegen der Bedeutung der Wahl der Referenz�

Fuzzy�Mengen f�ur eine gute Modellierung werden im folgenden Abschnitt einige typische

Fuzzy�Mengentypen vorgestellt und daran anschlie�end der Zusammenhang zwischen der

Wahl der Referenz�Fuzzy�Mengen und der Parameter der Konklusionspolynome betrach�

tet�


���� Wahl des Zugeh�origkeitsfunktionstyps

Im folgenden soll von auf DN � ������ normierten Eingangsgr�o�en des Modells ausgegan�

gen werden� Durch die Gewichtung der Partialausgangsgr�o�en yi der n einzelnen Regeln

mit den Erf�ulltheitsgraden �i der entsprechenden Pr�amissen nach ��� � oder ����� erreicht

man eine Partitionierung des Raums der Eingangsgr�o�en

D x� � � � �� D xm � DN � � � �� DN � D
m
N �����

in unscharfe Subr�aume� Diese Partitionierung h�angt von Anzahl� Form und Lage der mit

den Referenz
Fuzzy
Mengen korrespondierenden Zugeh�origkeitsfunktionen ab� Beispiels�

weise f�uhren Einer
Fuzzy
Mengen
Zugeh�origkeitsfunktionen nach ����� dazu� da� die in

den Konklusionen de	nierten Regelgesetze nach ����� oder ����� nur punktuell gelten� Bei

treppenf�ormigen Zugeh�origkeitsfunktionen� d� h�

	Ai
j
�xj� �

�
� � xiug�j � xj � xiog�j
� sonst

���
�
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und l�uckenlosem Angrenzen benachbarter Referenz
Fuzzy
Mengen� d� h� es sei x �

�x�� � � � � xj� � � � � xm�T � Dm
N und es gelte � 	Ai

jr
�xj� � �� i � f�� � � � � ng f�ur alle xj � DN mit

j � f�� � � � �mg� dann erh�alt man Partitionen� in denen jeweils nur genau ein fi�x�� � � � � xm�

einen Beitrag zu y liefert� da die �i nur Werte �i � f�� �g annehmen k�onnen� Dagegen

f�uhren Zugeh�origkeitsfunktionen mit
�
weichen� Flanken� d� h� Flankenbreiten � �� zu

unscharfen R�andern der Partitionen� Damit entstehen �Ubergangsbereiche zwischen be�

nachbarten Referenz
Fuzzy
Mengen� wenn der Eingangsgr�o�enraum D
m
N l�uckenlos durch

die Regelbasis abgedeckt wird� d� h� es ist x � �x�� � � � � xj� � � � � xm�
T � dann gilt f�ur jedes

xj � DN mit j � f�� � � � �mg� � 	Ai
j
�xj� � �� i � f�� � � � � ng� F�ur die Bedingung der

L�uckenlosigkeit reicht � � �� Um
�
kr�aftige� Regeln zu erhalten� sollte z� B� � � �� �

gew�ahlt werden �Lee ������ Zu den Zugeh�origkeitsfunktionen mit
�
weichen� Flanken

z�ahlen z� B� trapezoide nach

	T �x� �

�������������������������

� x � �

x� �
� � �

� � x � �

� � � x � �

� � x
� � �

� � x � �

� x � �

� �����

die f�ur � � � in triangulare �ubergehen� sowie gemischt trigonometrisch
lineare nach

	TL�x� �

�����������������������������

� x � �

�� � # �� � cos

�
�

�
x� �

� � �
# �

��
� � x � �

� � � x � �

�� � # �� � cos
�
�
x� �
� � �

�
� � x � �

� x � �

�����

oder Zugeh�origkeitsfunktionen mit S
Flanken �Driankov u� a� ����� nach

	TS�x� �

���������������������������������������������������������

� x � �




�
x� �

� � �

��

� � x � � # �



� � 

�
x� �
� � �

��
�# �

 � x � �

� � � x � �

�� 


�
x� �

� � �

��

� � x � � # �





�
x� �
� � �

�� � # �

 � x � �

� x � �

�����
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�siehe Bild ����� Die Auswahl der passenden Zugeh�origkeitsfunktionen erfolgt in Abh�angig�

keit von der Anwendung� W�ahrend 	TL�x� und 	TS�x� stetig di�erenzierbar sind� gilt dies

nicht f�ur 	T �x�� Falls eine Optimierung der Zugeh�origkeitsfunktionen �uber Gradienten�

verfahren erfolgen soll� ist deren stetige Di�erenzierbarkeit erforderlich� und damit sind

trapezoide Funktionen f�ur diese Anwendung nicht einsetzbar� In diesen F�allen 	nden auch

gau�f�ormige Zugeh�origkeitsfunktionen nach

	G�x� � exp

�
�
�
x� a

b

���
�����

Anwendung �z�B� Tan u� a� �����

Bild 
��� Trapezoide �
� und gemischt trigonometrisch
lineare �
 
� Zugeh�origkeits�

funktionen� Zugeh�origkeitsfunktion mit S
Flanken �� � �� f�ur � � �� ��� � � �� ��

� � �� � und � � �� ��

In den �Ubergangsbereichen liefern mehrere Regeln Beitr�age zur resultierenden Ausgangs�

gr�o�e y� Dadurch erh�alt man einen stetigen Verlauf von y beim �Ubergang zwischen be�

nachbarten Partitionen�


���� Referenz�Fuzzy�Mengen und die Koe�zienten der Konklusionsfunkti�

onen

F�ur den Fall von Konklusionspolynomen nach ������ die linear in den einzelnen Eingangs�

gr�o�en sind� soll der Zusammenhang zwischen der Wahl der Referenz
Fuzzy
Mengen und

der Polynomkoe�zienten pi�j�� j � f�� � � � �mg bei eindimensionaler orthogonaler Par�

titionierung untersucht werden� Im Falle treppenf�ormiger Zugeh�origkeitsfunktionen nach

���
� zeigt sich� da� die Verschiebung einer Referenz
Fuzzy
Mengen!anke unter Beibehal�

tung des Konklusionspolynoms sich auch durch Beibehaltung der Referenz
Fuzzy
Menge

und �Anderung des Konklusionspolynoms ausdr�ucken l�a�t� Betrachtet wird zuerst der Fall
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einer gleichm�a�igenVerschiebung zweier benachbarter Referenz
Fuzzy
Mengen �l�uckenlos

aneinandergrenzende Treppenfunktionen�� Da �uberlappungsfreie Referenz
Fuzzy
Mengen

vorausgesetzt werden sollen� gilt vor der Verschiebung

u�x � M i� �
ui�i
�i

����
x�Mi

� ui

����
x�Mi

�����

mit

M i � fx � Dm
x j x � �x�� � � � � xj� � � � � xm�T �

xug�j � xj � xog�j � j � f�� � � � �mgg ��� �

und dem zugeh�origen Konklusionspolynom

ui � pi� # pi�x� # � � �# pinxm � �����

Eine lineare Verschiebung zweier benachbarter Referenz
Fuzzy
Mengen um xc in der

Eingangsgr�o�e xj f�uhrt zu einer resultierenden Ausgangsgr�o�e von

�u�x � �M i� �
ui��i
��i

����
x� �Mi

� ui

����
x� �Mi

������

mit

�M i � fx � Dm j x � �x�� � � � � xj� � � � � xm�T �

xug�j # xc � xj � xog�j # xc � j � f�� � � � �mgg �
������

Dabei ist

fui � pi� # pi�x� # � � �# pij�xj # xc� # � � �# pimxm

� ui # pijxc � ����
�

Dieses Ergebnis l�a�t sich aber auch durch ein ge�andertes Konklusionspolynom unter Bei�

behaltung der urspr�unglichen Zugeh�origkeitsfunktionen erreichen� F�ur eine Wahl

�ui � �pi� #
mX
j��

pijxj ������

mit

�pi� � pi� # pjxc ������

gilt

�u �
�ui�i
�i

�����
x�Qi

� �ui

����
x� �Qi

� �u � ������

Also unterscheiden sich ui und fui nur im statischen Anteil� Damit wurde gezeigt� da�

eine Verschiebung zweier benachbarter Referenz
Fuzzy
Mengen einer Eingangsgr�o�e des

Fuzzy
Systems durch die �Anderung des konstanten Anteils der Konklusion substituiert
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werden kann� Das gilt auch f�ur nichtlineare Funktionen fi� die aber in der betrach�

teten Koordinate linear sind� Durch wiederholtes Anwenden dieses Verfahrens k�onnen

auch die Verschiebungen mehrerer Referenz
Fuzzy
Mengen durch die geeignete Wahl des

konstanten Anteils im Konklusionspolynom substituiert werden� Bei den an den Gren�

zen eines De	nitions
Intervalls liegenden Referenz
Fuzzy
Mengen ist dabei zu beachten�

da� diese nicht verschoben� sondern in Abzissenrichtung gestaucht oder gestreckt wer�

den m�ussen� damit der De	nitionsbereich DN am betre�enden Rand weiterhin von der

Referenz
Fuzzy
Menge voll abgedeckt wird�

Bei Zugeh�origkeitsfunktionen mit
�
weichen� Flanken �z� B� trapezoide� f�uhrt die �Ande�

rung einer oder zweier benachbarter Referenz
Fuzzy
Mengen zu �Anderungen der Erf�ullt�

heitsgrade � der betro�enen Regeln� die nicht durch geeignete �Anderung der Konklu�

sionsfunktionen� die eine beliebige Form besitzen d�urfen� kompensiert werden k�onnen�

Dies ist bei nichtlinearen Flanken der Zugeh�origkeitsfunktion und in den Eingangsgr�o�en

linearen Konklusionspolynomen o�ensichtlich� Falls nur die Form aber nicht die Lage ei�

ner Flanke modi	ziert wird� kann bei Zulassung eines Polynoms h�oherer Ordnung kei�

ne generelle Aussage gemacht werden� Hat man z� B� trapezoide Zugeh�origkeitsfunk�

tionen� so kann weder mit einem in den Eingangsgr�o�en linearen Konklusionspolynom

noch bei Polynomen h�oherer Ordnung die nichtlineare �Anderung der Zugeh�origkeits�

funktion bei �Anderung des�der Knickpunkte�s� durch eine �Anderung des Konklusions�

polynomes substituiert werden� Selbst bei Beschr�ankung auf den reinen Flankenbereich

�Fl � fxi j � � 	��xj� � � � � � 	��xj� � � � � � �	��xj� � � � � � �	��xj� � �g in

Bild ��
� kann gezeigt werden� da� die Substituierbarkeit nicht immer gilt �Anhang A��

Bild 
��� Reiner Flankenbereich Fl bei linearer Zugeh�origkeitsfunktion�


���� Anpassung der Zugeh�origkeitsfunktionen

Die wahrscheinlich einfachste Form der Partitionierung des Eingangsgr�o�enraumes be�

steht in einer gleichf�ormigen orthogonalen Teilung �uber Referenz�Fuzzy�Mengen gleicher

Form� die nur innerhalb ihres De	nitionsbereiches verschoben sind� Dabei wird die Sy�

stemanpassung einzig �uber die Anzahl der Referenz�Fuzzy�Mengen sowie eventuell �uber

deren Form �z� B� Flankenform� vorgenommen� Nachteilig ist hierbei� da� die System


bzw� Datenstruktur nicht direkt ber�ucksichtigt wird� Dadurch werden i� allg� unn�otig viele



� Strukturidenti�kation 
 

Regeln� vergleichbar einer unn�otig hohen Systemordnung bei konventionellen Modellen�

verursacht� Au�erdem kann es Probleme geben� wenn zu wenig Daten pro Partition zu

deren Identi	kation zur Verf�ugung stehen�

Bei einer heuristischen Partionierung kann i� allg� die Regelanzahl gesenkt werden� We�

gen fehlender Systematik emp	elt sich diese Vorgehensweise nicht generell� Es existieren

aber auch Verfahren� die Referenz
Fuzzy
Mengen systematisch zu modi	zieren� Im fol�

genden sollen f�ur einige dieser Algorithmen kurz die zugrundeliegenden Ideen beschrieben

werden� Sugeno und Kang ���  � stellen einen Algorithmus vor� der die Anzahl� Lage

und Form trapezoider Zugeh�origkeitsfunktionen �andert �Identi	kation Teil Ib� II�� Opti�

mierungskriterium ist das Unbiasedness�Kriterium �Sugeno und Kang �� ��� Startpunkt

ist ein Modell mit einer Regel� also ein lineares Modell� Bei diesem wird der De	niti�

onsbereich der �� Eingangsgr�o�e in 
 Teilbereiche aufgeteilt� Dann werden die Pr�amis�

senparameter� d�h� die Parameter der trapezoiden Zugeh�origkeitsfunktionen identi	ziert�

Dabei werden die St�utzpunkte der Zugeh�origkeitsfunktionen so variiert� da� die Di�e�

renz zwischen Modellausgang und Me�werten minimal wird� Anschlie�end werden die

Konklusionsparameter bestimmt� Sugeno und Kang ���  � geben hierzu kein Verfahren

an� Hebisch ����
� setzte hierzu das ungewichtete rekursive Verfahren der kleinsten Feh�

lerquadrate ein� Letztlich wird mit dem Unbiasedness�Kriterium die G�ute des Modells

bestimmt� Im folgenden Schritt wird statt der �� die 
� Eingangsgr�o�e und dann alle

weiteren entsprechend der oben beschriebenen Form untersucht� Das Modell mit dem ge�

ringsten Wert des Unbiasedness�Kriteriums wird weiterverwendet� Ausgehend von diesem

Modell werden wieder sukzessive alle Eingangsgr�o�ende	nitionsbereiche einmal mehr un�

terteilt� Das Modell mit dem geringsten Wert des G�utekriteriums wird ausgew�ahlt� Das

Verfahren terminiert� wenn der Wert des G�utekriteriums wieder ansteigt� Die von Hebisch

����
� vorgenommene Anwendung des Algorithmus auf ein technisches hydraulisches Sy�

stem wies allerdings Probleme bei der Konvergenz der Strukturidenti	kation auf� deshalb

wurde die Pr�amissenidenti	kation heuristisch durchgef�uhrt�

Um die Anzahl der zu identi	zierenden Parameter zu reduzieren� beschr�anken Sugeno und

Tanaka ������ die Anzahl der Freiheitsgrade bei der Festlegung der Zugeh�origkeitsfunkti�

on� Die Summe der Zugeh�origkeitsgrade zweier benachbarter Zugeh�origkeitsfunktionen ist

gleich eins� Dadurch reichen zur Festlegung zweier benachbarter Flanken zwei statt vier

Parameter aus� Ein �ahnliches Verfahren� das orthogonal partitioniert und die beste Parti�

tionierung ausw�ahlt �triangulare Zugeh�origkeitsfunktionen�� stellen Araki u� a� ������ vor�

Sugeno und Yasukawa ������ f�uhren die Strukturidenti	kation Teil Ib wie Sugeno und

Kang ���  � durch� nutzen aber den Fuzzy
c
Means
Clusteralgorithmus f�ur Teil II �die

Bezeichnungsweise wurde in Abschnitt � eingef�uhrt�� Die Cluster werden anschlie�end mit

Hilfe eines Algorithmus �iterativ� auf trapezoide Zugeh�origkeitsfunktionen abgebildet� So�

mit werden Teil IIa und IIb in einem Schritt abgearbeitet�
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Tan u� a� ������ benutzen eine Modellstruktur mit gau�f�ormigen Referenz
Fuzzy
Mengen

und linearen Konklusionspolynomen� Ihr zweistu	ger Algorithmus geht von einer Initiali�

sierung der Zugeh�origkeitsfunktionen und des Konklusionspolynoms aus� Im ersten Schritt

werden mit Hilfe des Verfahrens der kleinsten Fehlerquatrate die Konklusionsparameter

bestimmt� wobei die Zugeh�origkeitsfunktionen unver�andert bleiben� Im 
� Schritt wer�

den die Konklusionspolynomparameter festgehalten und mit Hilfe eines Gradientenver�

fahrens �Newton�Verfahren� die Zugeh�origkeitsfunktionsparameter optimiert� Dabei wird

ein quadratisches Fehlerkriterium zu Grunde gelegt� Die beiden Schritte werden wieder�

holt� bis die gew�unschte Modellgenauigkeit erreicht ist oder das Verfahren konvergiert� Zur

Anwendbarkeit des Gradientenverfahrens m�ussen die Partialpr�amissen multiplikativ mit�

einander verkn�upft werden und die Zugeh�origkeitsfunktionen in ihren Parametern stetig

di�erenzierbar sein� Deshalb verwenden Tan u� a� ������ gau�f�ormige Zugeh�origkeitsfunk�

tionen�


�� Partitionierung mitmehrdimensionalen Zugeh�origkeitsfunk�

tionen

Das hier vorgestellte neue Verfahren identi	ziert Regeln mit einer Struktur nach �������

Bei vorgegebener Abstandsnorm sind nur die Partitions� bzw� Clusterschwerpunkte zu

bestimmen� Dabei besteht hier die M�oglichkeit� von orthogonalen Partitionen auszugehen

und deren Mittelpunkte als Partitionsschwerpunkte zu nutzen� Ein sehr systematisches

und automatisiertes Vorgehen ergibt sich bei Anwendung der Clusteranalyse zur Bestim�

mung der Clusterschwerpunkte �als Partitionsschwerpunkte nicht orthogonaler Partitio�

nen�� Im �� Abschnitt wurden dazu bereits mehrere Verfahren vorgestellt� Das Ergebnis

einer im Eingangsdatenraum durchgef�uhrten Clusterung sind bei vorgegebener Anzahl

der Cluster und einer Abstandsnorm D die Clusterschwerpunkte v�� � � � � vc� Somit sind

die Pr�amissen der Fuzzy
Regeln gem�a� ������ identi	ziert� Anschlie�end erfolgt die in

Abschnitt � beschriebene Konklusionsparameteridenti	kation �uber das gewichtete rekur�

sive Verfahren der kleinsten Fehlerquadrate� Wie bereits im Abschnitt � erl�autert wurde�

liefern die Clusterverfahren eine im Sinne der jeweils zu Grunde liegenden Abstands�

norm optimierte Partitionierung des Datenraumes� Das bedeutet allerdings nicht� da�

die tats�achlich vorliegenden Strukturen oder eine im Sinn der Modellbildung optimale

Partitionierung identi	ziert wird� Das letztere� aus der Wahl der G�utekriterien resultie�

rende� Problem kann dadurch abgeschw�acht werden� da� nach der Clusterung eine Nach�

justierung der Clusterschwerpunkte durchgef�uhrt wird� Das G�utekriterium hierbei ist das

gleiche wie bei der Modellbeurteilung� so da� eine Modellmodi	kation in die gew�unschte

Richtung erfolgt� Im folgenden Abschnitt wurde dazu eine einfache iterative Varitati�

on der Clusterschwerpunkte um die von der Clusterung gelieferten guten Anfangswerte

durchgef�uhrt� Bei diesem Iterationsverfahren werden die Clusterschwerpunkte in alle Ko�

ordinatenrichtungen mit von Iteration zu Iteration abnehmender Schrittweite verschoben�
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Verfeinerte Verfahren k�onnten hier sicher noch Verbesserungen der G�ute und eine Stei�

gerung der Rechengeschwindigkeit erzielen� Allerdings sollte das Modell nicht zu fein auf

einen speziellen Datensatz optimiert werden� da sonst die Robustheit des Modells abneh�

men kann� Dieser Algorithmus geht von einer Situation aus� in der die Eingangsgr�o�en

�z� B� durch physikalische �Uberlegungen� Expertenwissen� Beschr�ankung der Anzahl der

Modellparameter� und die Signalverz�ogerungen �z� B� durch Korrelationsanalyse� festge�

legt wurden �siehe auch Abschnitt ��� Der folgende Abschnitt beschreibt die Anwendung

dieses Verfahrens auf zwei nichtlineare Testsysteme�
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In diesem Abschnitt wird die Identi	kation von funktionalen Fuzzy�Modellen nach dem

zuvor beschriebenen Algorithmus mit mehrdimensionalen Zugeh�origkeitsfunktion f�ur zwei

nichtlineare Testsysteme beschrieben� Das erste ist ein Testsystem� f�ur das bereits einige

Vergleichsergebnisse f�ur relationale Fuzzy
Modelle vorliegen �K�upper ����a� Suprijadi

������ Das zweite Beispiel� die von Box und Jenkins ������ ver�o�entlichten Me�daten

f�ur einen Gasofen� stellt ein Benchmark
Problem dar� Beim WRLS wurde P w��� � cI

mit c � ��� und ����� � 	 gew�ahlt� Als Abstandskriterium fand bei den Clusterungen

die euklidische Norm und als Terminierungsnorm beim FCM die gem�a� �
��� erweiterte

H�older
Norm mit p � �

kU �l��� �U �l�kT �
cX

i��

NX
k��

j	�l���ik � 	
�l�
ik j � � �����

Verwendung� BeimGustafson und Kessel
Algorithmus wurde eine feste Anzahl von �� Ite�

rationen vorgegeben� Als G�utekriterium wird der mittlere quadratische Fehler verwendet�

Ein Vergleich funktionaler Fuzzy
Modelle untereinander oder mit relationalen Fuzzy


Modellen ist schwierig� F�ur eine n�aherungsweise Absch�atzung soll die Anzahl der Mo�

dellparameter als Ma�stab angesetzt werden� Die in diesem Bericht beschriebenen echt


mehrdimensionalen Zugeh�origkeitsfunktionen sind eindeutig durch ihre Clusterschwer�

punkte festgelegt� Dabei ist ein Clusterschwerpunkt ein Vektor� wobei die Komponen�

tenzahl der Dimension des Eingangsdatenraumes entspricht� Deshalb sollte bei jedem

Clusterschwerpunkt pro Dimension ein Parameter angesetzt werden�

��� Modellierung eines nichtlinearen Testsystems

In diesem Abschnitt wird die Ein
�Ausgangsmodellierung f�ur Testdaten beschrieben� die

mit dem nichtlinearen zeitdiskreten System �K�upper ����a�

y�k� � �� �y�k���u�k�
���� 
y�k�
�#�� �u�k��� cos���  y�k����#�� �u��k��� ���
�

gewonnen wurden �Anfangswerte y��� � y��� � ��� F�ur das Testsignal wurde ein im

Intervall ���� �� gleichverteiltes Zufallssignal generiert� Dann wird u�k� dadurch generiert�

da� jede Zufallszahl f�ur � Abtastzeitpunkte in Folge konstant gehalten wird� Bild ��� zeigt

den Verlauf der Eingangsgr�o�e u�k� und der Ausgangsgr�o�e �y�k # ��� die nach

�y�k� �
y�k�� �� 
��


�� ����
�����

aus y�k� berechnet wurde� Diese Transformationsvorschrift dient dazu� den normierten

Eingangsgr�o�enraum besser auszunutzen� W�ahrend die Zufallszahlen von u�k� dies bereits

gew�ahrleisten� ist das f�ur y�k� nicht der Fall� Die Transformation ist gerade bez�uglich der

Clusterverfahren sinnvoll� Da absolute Abstandsdi�erenzen bewertet werden� k�onnte es
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Bild ���� Eingangsgr�o�e u�k� und Ausgangsgr�o�e �y�k # �� des nichtlinearen Systems

sonst unter Umst�anden zu einer ung�unstigen �Uber� oder Unterbewertung einzelner Ein�

gangsgr�o�en kommen�

Im folgenden werden Fuzzy
Modelle vorgestellt� die zur Pr�adiktion von y�k� die Eingangs�

gr�o�en u�k � ��� �y�k � �� und �y�k � 
� verwenden�

Vergleichsergebnisse

Suprijadi ������ identi	ziert f�ur das oben beschriebene System selbstlernende Fuzzy


Relational
Modelle� Das beste Modell mit gleichverteiltenReferenz
Fuzzy
Mengen �gleich�

schenklige Dreiecke gleichen Fl�acheninhalts� benachbarte schneiden sich bei 	 � �� �� drei

Referenz
Mengen pro Eingang� zwei f�ur die Konklusion� und �� Parametern �die Regel�

gewichte� erreichte eine G�ute �mittlerer quadratischer Fehler� von pi � �� �� � ���
 ����

Iterationen�� Bei gleichzeitiger Optimierung der Referenz
Fuzzy
Mengen
St�utzpunkte er�

zielte das beste Modell ��
 Parameter� eine G�ute von pi � �� �� � ���
 ���� Iterationen��

Dabei wurden bei den Referenz
Fuzzy
Mengen Flankenbreiten �separat� sowie Lage und

H�ohe der Dreiecksspitze variiert �� Parameter pro Referenz
Fuzzy
Menge��K�upper ������

verwendet einen anderen Algorithmus zur Identi	kation der gleichen Modellstrukturen als

Suprijadi und erreicht dabei f�ur das Modell mit �� Parametern pi � ��  � ����
 ���� Itera�

tionen�� Bei gezielter �heuristischer� �Anderung der Partitionierung bzgl� u�k� �� �dann �

Referenz
Fuzzy
Mengen� wird eine G�ute von pi � �� �� ����
 f�ur ein Modell mit nunmehr

�
 Parametern ���� Iterationen� bestimmt�
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Eigene Ergebnisse

Bei Anwendung des FCM �� � ��� in ������ zeigen sich eindeutige Tendenzen bzgl� der

Wahl des Unsch�arfeparameters � und der Clusteranzahl c� Wie Bild ��
 zeigt� steigt die

Modellg�ute mit steigendem c und fallenden �� Bei diesen Ergebnissen f�ur Einschrittpr�adik�

tion wurde

pi �
�

N � �

N����X
k��

�ymes�k�� ymod�k��
� �����

betrachtet� Bei den Ergebnissen der rekursiven Modellauswertung in Tabelle ��� wurden

nur die vollst�andig rekursiv pr�adizierten Ausgangsgr�o�en ber�ucksichtigt�

pi �
�

N � �

N����X
k��

�ymes�k�� ymod�k��
� � �����

��
 ��� ��� �� �


�
��

��
�

�

����

��

�
��

�


����

log�����c

lo
g �
�
�p
i�

Bild ���� Logarithmisch aufgetragene Modellg�ute in Abh�angigkeit von der Clusteranzahl

c und dem Logarithmus des Unsch�arfeparameters log����� bei Anwendung des

FCM �Einschrittpr�adiktion�

Bei Werten von � nahe bei � ergeben sich allerdings numerische Probleme wegen der be�

grenzten Genauigkeit des verwendeten Computers � �� � CPU�� Eine Wahl von � � �� ��

f�uhrt beim FCM zu ausreichenden numerischen Reserven� F�ur dieses � erh�alt man z� B�

die in Tabelle ��� exemplarisch aufgef�uhrten Ergebnisse �Spalte
�
FCM���
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Anzahl der Parameter FCM FCM # Optimierung Modell


c pi pi Iterationen auswertung

� �� �� ��� � ���� �� �
� � ���
 
��
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Tabelle ���� Einige Ergebnisse f�ur Identi	kation mit FCM f�ur � � �� �� und f�ur Modelle

mit nachoptimierten Clusterschwerpunkten

Bild ��� zeigt exemplarisch einen Ausschnitt aus Bild ���� Dargestellt sind zus�atzlich die

einschrittpr�adizierten Werte f�ur �y�k # �� bei Clusterung �uber den FCM mit � � �� ��

f�ur c �  �f�uhrt zu �� Iterationen des FCM� und c � �� �f�uhrt zu 
� Iterationen des

FCM�� Die zugeh�origen G�utewerte enth�alt Tabelle ���� Die rekursive Pr�adiktion wird

hier graphisch nicht dargestellt� da die Ergebnisse bei Einschrittpr�adiktion und rekursiver

Pr�adiktion nur wenig voneinander abweichen �vergleiche numerischeWerte in Tabelle �����

Dies liegt daran� da� u�k� die dominante Eingangsgr�o�e des Modells ist� Somit nimmt eine

R�uckf�uhrung des Modellausgangs nur Ein!u� auf die rezessiven Eingangsgr�o�en �y�k� ��

und �y�k � 
��

Bei � Eingangsgr�o�en ergeben sich � Koordinaten der Clusterschwerpunkte und � Konklu�

sionspolynomparameter pro Regel� Damit folgt die Gesamtanzahl der Modellparameter

zu �c� Die oben angegebenen relationalen Fuzzy
Modelle mit �� Parametern sind etwa

um einem Faktor 
 besser als das nicht nachverfeinerte Funktionalmodell mit �� Para�

metern� Das Modell von Suprijadi mit �
 Parametern ist etwa um einen Faktor � besser

als das nicht nachverfeinerte Funktionalmodell mit �� Parametern� Dies �uberrascht nicht�

da die Referenz
Fuzzy
Modelle auf das G�utema� hin optimiert werden� nach dem auch

die Modellg�ute bewertet wird� Bei der Identi	kation der Zugeh�origkeitsfunktionen �uber

den FCM ist das� wie bereits oben erl�autert� nicht der Fall� Diesen Aspekt illustriert die

Anwendung des in Abschnitt ��
 beschriebenen iterativen Optimierungsverfahrens f�ur die
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Bild ���� Me�werte und Einschrittpr�adiktion f�ur �uber den FCM mit � � �� �� und c �  

bzw� c � �� generierte Modelle

Lage der Clusterschwerpunkte� Durch die Anwendung des Optimierungsverfahrens kann

die G�ute der Funktional
Modelle deutlich verbessert werden �siehe Tabelle ����� Dann ist

das funktionale Modell mit �� Parametern etwa vergleichbar mit den relationalen Model�

len mit �� Parametern und das relationale Modell mit �
 Parametern ist nur noch etwa

um einen Faktor �� � besser als das funktionale Modell mit �� Parametern�

Bei der Clusterung werden bei der Initialisierung alle Clusterschwerpunkte nur in der

Richtung der ersten Eingangsgr�o�e u�k � �� verteilt� Damit folgt

v
���
i �

�
�� #

� # 
�i� ��


c
� �� �


T
� i � �� � � � � c � �����

Aus den Clusterschwerpunkten lassen sich alle 	
���
ik nach ������ berechnen� Dieser Ansatz

wurde auf Grundlage von Wissen �uber die Struktur des Datensatzes vorgenommen� Ver�

gleiche mit anderen Vorinitialisierungen der Clusterschwerpunkte� bei denen diese nicht

auf einer Geraden lagen� zeigten nur geringf�ugige Abweichungen der Ergebnisse nach den

Clusterungen� Dieses Resultat kann so allerdings nicht verallgemeinert werden� Da viele

Clusterverfahren in einem lokalen Minimum der Zielfunktion konvergieren� kann die Vori�

nitialisierung sehr wohl einen Ein!u� auf das Ergebnis der Clusterung nehmen� Auch eine

Beein!ussung der Konvergenzgeschwindigkeit ist m�oglich� F�ur eine Wahl von � � ���

	nden aber beim FCM bei diesem System nur einige wenige �� ��� Iterationen statt� so

da� die Konvergenz sehr schnell eintritt�
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Bild ���� Modellg�ute in Abh�angigkeit vom Logarithmus des Unsch�arfeparameters log���

und Terminierungsgrenzwert � f�ur c � �� beim FCM �Einschrittpr�adiktion�
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Bild ��
� Modellg�ute in Abh�angigkeit von Regelanzahl c und Terminierungsgrenzwert �

f�ur � � 
� � beim FCM �Einschrittpr�adiktion�
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Die Wahl von � in ����� hat keinen wesentlichen Ein!u� auf die Modellg�ute� Zur Illu�

stration zeigt Bild ��� die G�ute von Modellen mit c � �� Regeln in Abh�angigkeit von

� � f��� 
�� � � � � ���g und �� �� � � � ��� Bild ��� zeigt exemplarisch die Abh�angig�

keit der Modellg�ute von der Regelanzahl c und dem Terminierungsgrenzwert � f�ur festes

� � 
� �� Es best�atigt sich wieder der vernachl�assigbare Ein!u� der Wahl der Terminie�

rungsgrenze auf die Modellg�ute�

Die Anwendung des Algorithmus von Gustafson und Kessel f�uhrt zu den gleichen Ten�

denzen bei der Wirkung der Parameter � und c� wie Bild ��� zeigt� Beim Gustafson und

�
��
 ��� ��� �� �
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�����
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�����
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log�����c
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Bild ���� Modellg�ute in Abh�angigkeit von der Clusteranzahl c und dem Logarithmus

des Unsch�arfeparameters log��� bei Anwendung des Gustafson und Kessel


Algorithmus �Einschrittpr�adiktion�

Kessel
Algorithmus wurde als Terminierungsgrenze ein feste Iterationszahl vorgegeben�

Diese hat allerdings genauso wie die Terminierungsgrenze �uber Vorgabe des � in �����

keinen wesentlichen Ein!u� auf die Modellg�ute� wie die Bilder ��� und �� illustrieren�

Mit dem FCM konnten h�ohere G�uten erreicht werden� W�ahrend der FCM bei steigender

Clusteranzahl c schnell� beim Unsch�arfeparameter � dagegen erst bei sehr kleinen Werten

zu h�oheren G�uten f�uhrte� ist die Tendenz beim Gustafson und Kessel
Algorithmus ver�

tauscht� Eine Verringerung von � f�uhrt schnell� eine Erh�ohung von c dagegen nur langsam

zu h�oheren G�uten� Dies kann auf die
�
bogenf�ormigen� Strukturen im ausgewerteten Da�

tensatz zur�uckgef�uhrt werden� Da sich die lokalen Abstandsnormen hierauf einstellen� ist

der Ein!u� der Clusteranzahl nicht so dominant� Wichtiger hierbei erscheint� da� die
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Bild ���� Modellg�ute in Abh�angigkeit von log��� und Anzahl r der Iterationen f�ur c � ��

beim Gustafson und Kessel
Algorithmus �Einschrittpr�adiktion�
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Bild ��
� Modellg�ute in Abh�angigkeit von Regelanzahl c und Anzahl r der Iterationen

f�ur � � 
� � beim Gustafson und Kessel
Algorithmus �Einschrittpr�adiktion�
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Unsch�arfe der bereits formangepa�ten Cluster richtig gew�ahlt wird�

Anzumerken ist� da� die Clusterung mit global einheitlicher Wahl von �� � � durch�

gef�uhrt wurde� Bei lokal angepa�ter Wahl der �i sind wahrscheinlich noch G�utesteige�

rungen m�oglich� Allerdings existieren hierzu keine systematischen Vorgehensweisen� F�ur

eine sinnvolle lokale Anpassung der �i m�u�ten A
priori
Informationen �uber die Cluster

vorhanden sein� die im allgemeinen nicht vorliegen�

��� Modellierung eines Gasofens

In diesem Abschnitt soll die Fuzzy
Modellbildung f�ur einen Gasofen beschrieben wer�

den� Die Ein
�Ausgangsmodellbildung f�ur die von Box und Jenkins ������ angegebe�

nen 
�� Testdatenpaare ist ein Benchmark Problem� Bild ��� zeigt den Me�datenverlauf�

Modelliert wird die CO��Emission eines Ofens �y�t� �$��� Das physikalische Stellsignal

Bild ���� Testdaten f�ur den Gasofen nach Box und Jenkins ������� Eingangssignal u�k�

und Ausgangssignal y�k�

u�t� steuert einen Methangasvolumenstrom

q�t� � ��� � � �� �� u�t�� �� ��� � ���� m	

s
� �����

Das im Bereich ��
����� 
� ��� liegende Stellsignal f�uhrt zu einem Volumenstrom q�t� �
�
� 
�� � ����� �� ��� � ����� m�s� Als Testsignal u�t� wurde ein ge	ltertes wei�es Rauschen

verwendet und die Daten mit T � � s abgetastet �K�upper ������ F�ur die Identi	kation

wurden Ein
 und Ausgangsgr�o�e gem�a�

�y�t� �
y�t�� ��� ��

�� ��
und �u�t� �

u�t�� �� ���


� � 
��� �
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normiert�

Vergleichsergebnisse

Bei K�upper ������ sowie Sugeno und Yasukawa ������ 	nden sich Vergleiche von linearen

Modellen mit verschiedenen relationalen und funktionalen Fuzzy
Modellen� Besonders in�

teressant f�ur diesen Bericht ist ein Vergleich mit den beiden funktionalen Fuzzy
Modellen

von Sugeno und Tanaka ������� Deren erstes Modell �M�� pr�adiziert y�k� mit 
 Regeln

aus �y�k� ��� �y�k� 
�� �y�k� ��� �u�k�� �u�k� �� und �u�k� 
� mit einem mittleren quadrati�

schen Fehler von pi � �� �� � Hierbei ist zu beachten� da� �u�k� zur Berechnung von y�k�

benutzt wird� also nicht wirklich ein Schritt in die Zukunft geschaut wird� Das zweite

Fuzzy
Modell �M
� pr�adiziert y�k� mit zwei Regeln aus �y�k � �� und �u�k � �� mit einer

G�ute von pi � �� ���� Bemerkenswert ist dabei� da� die Pr�amissen nur �y�k� �� bewerten�

Die beiden verwendeten halbtrapezoiden Referenz
Fuzzy
Mengen addieren sich an jeder

Stelle zu Eins und lassen sich deshalb �zusammen� �uber zwei Parameter festlegen� F�ur

das erste Modell kommt man damit auf 
 Pr�amissen und �� Konklusionsparameter� f�ur

M
 entsprechend auf 
 # � Parameter� Sugeno und Tanaka ������ geben nicht an� ob

die Modelle zur Einschrittpr�adiktion oder rekursiv ausgewertet werden� W�ahrend Sugeno

und Tanaka die ersten �� Me�daten bei der G�utebewertung nicht betrachten�

pi �
�

N � ��

N��
�X
k�
�

�ymes�k�� ymod�k��
� � �����

werden bei den im folgenden beschriebenen eigenen Ergebnissen immer alle Daten ber�uck�

sichtigt�

pi �
�

N � � � �

N��
�X
k����

�ymes�k�� ymod�k��
� � ������

Dabei ist � � max���� ��� in ymod�k� � f�y�k � � � ���� u�k � � � �����

Eigene Ergebnisse

Eine Auswertung des Modells M
 von Sugeno und Tanaka ������ liefert die etwas bessere

G�ute von pi � �� ��� �� Parameter�� Die leichte Abweichung ist darauf zur�uckzuf�uhren�

da�� wie oben angemerkt� Sugeno und Tanaka ������ nicht alle Me�daten zur G�uteberech�

nung verwenden� Bei Verwendung von �u�k � �� statt �u�k � �� und Zulassung konstanter

Anteile in den Konklusionspolynomen� l�a�t sich die G�ute etwa um einen Faktor 
 auf

pi � �� ���� steigern �Modell mit 
 Regeln und  Parametern�� Bei Auswertung des letzt�

genannten Modells �uber echt
mehrdimensionale Referenz
Fuzzy
Mengen l�a�t sich hier

die Modellg�ute nicht verbessern� Legt man die Partitionsschwerpunkte in die Schwer�

punkte der beiden von Sugeno und Tanaka ������ angegebenen� auf normierte Gr�o�en
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umgerechneten� �eindimensionalen� Referenz
Fuzzy
Mengen bzgl� �y�k � �� �die andere

Koordinate wird zu Null gesetzt�

v� � ����  �� ��T und v� � ���� ��� ��T � ������

so folgt eine G�ute von pi � �� ����� Legt man die Partitionsschwerpunkte in die Mittel�

punkte der konstanten Bereiche der beiden von Sugeno und Tanaka ������ angegebenen�

auf normierte Gr�o�en umgerechneten� �eindimensionalen� Referenz
Fuzzy
Mengen bzgl�

�y�k � �� �die andere Koordinate wird zu Null gesetzt�

v� � ���� ��� ��T und v� � ���� 
�� ��T � ����
�

so folgt eine G�ute von pi � �� ���
�

Benutzt man die Clusterung �FCM� � � �� ��� f�ur den gesamten von �y�k��� und �u�k���

aufgespannten Eingangsgr�o�enraum� so folgen als Clusterschwerpunkte

v� � ��� � ��� ��� ���T und v� � ����� ��� ���  ��T ������

bei einer Modellg�ute von pi � �� ���� �
 Regeln� �� Parameter�� Als Initialisierung wurde

v
���
� � ��
��� ��T und v���� � �
��� ��T verwendet� Das letztere Modell wurde allerdings

v�ollig automatisch generiert� ohne jegliche Heuristik bei der Festlegung von Referenz


Fuzzy
Mengen oder Konklusionsfunktionsparametern� Durch eine Erh�ohung der Clu�

steranzahl l�a�t sich wieder die Modellg�ute steigern� Abbildung ���� zeigt dies f�ur das

Modell mit �y�k � �� und �u�k � �� als Eingangsgr�o�en bei Clusterung �uber den FCM mit

� � �� ���

Bild ���	� Modellg�ute in Abh�angigkeit von der Clusterzahl c bei Clusterung mit dem

FCM mit � � �� ��
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Bei den eigenen Untersuchungen zum Modell M� wurden� abweichend von Sugeno und

Tanaka ������ bzgl� der Stellgr�o�e �u�k���� �u�k�
� und �u�k��� anstelle von �u�k�� �u�k���

und �u�k�
� verwendet� Dies geschah aus der �Uberlegung� da� das Modell eine �zuk�unftige�

Ausgangsgr�o�e y�k� pr�adizieren soll� Dann steht aber �u�k� nicht als Modelleingangsgr�o�e

zur Verf�ugung� Eine Nachrechnung des Ansatzes von Sugeno und Tanaka mit dieser �Ande�

rung brachte eine G�ute von pi � �� ���
� Werden zwei echt
mehrdimensionale Referenz


Fuzzy
Mengen mit den Partitionsschwerpunkten wie bereits zuvor beschrieben jeweils in

der Mitte der konstanten Bereiche der Referenz
Fuzzy
Mengen von Sugeno und Tanaka

������ �bzgl� normierter Gr�o�en� verwendet und anschlie�end �automatisch� iterativ bzgl�

�y�k � �� nachverfeinert� so l�a�t sich eine G�ute von pi � �� ���� erreichen�

Bild ���� vergleicht Me�daten und pr�adizierte Daten f�ur Einschrittpr�adiktion und rekursi�

ve Pr�adiktion f�ur das Fuzzy
Modell mit 
 Regeln f�ur komplette Eingangsraumclusterung

�uber den FCM �� � �� ���� Der mittlere quadratische Fehler betr�agt dabei f�ur Einschritt�

pr�adiktion pi � �� ��� und pi � 
� ��� f�ur rekursive Auswertung des Modells� Wie bereits

Bild ���� illustriert� f�uhrt eine Erh�ohung der Anzahl der Partitionen bei ansonsten gleicher

Modellstruktur zu keiner wesentlichen Verbesserung� So folgt f�ur c � � Cluster pi � �� ���

f�ur Einschrittpr�adiktion und pi � �� ��� f�ur rekursive Pr�adiktion�

Bild ����� Me�daten y�k�� einschrittpr�adizierte yein�k� und rekursiv pr�adizierte Daten

yrek nach dem hier vorgestellten Algorithmus f�ur c � 
 �k � �� � � � � 
���

Festlegung der Signalverz�ogerungen

Angesprochen werden soll hier die Problematik bei der Festlegung der Signalverz�ogerun�

gen� Bei der Festlegung von Totzeiten bez�uglich der Stellgr�o�en eines Systems sollten
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immer prim�ar physikalische �Uberlegungen vorgenommen werden� Sonst besteht die Ge�

fahr� da� bei der Anpassung von Pr�adiktions
 und Me�kurvenverlauf �uber die numerische

Optimierung eines G�utekriteriums durch die Dominanz anderer E�ekte �wie z� B� eine

i� allg� nicht exakt richtige Modellstruktur� eine Totzeit identi	ziert wird� die real nicht

vorliegt� Dies kann insbesondere bei einem geschlossenen Regelkreis zu falschen Aussagen

f�uhren� Die in Bild ���
 gezeigte Kreuzkorrelation zwischen y�k� und u�k� favorisiert ein

Modell mit �u�k� �� zur Pr�adiktion von y�k�� Da das negative Vorzeichen bzgl� u�k� ��

Bild ����� Kreuzkorrelation Ryu�� � der Signale y�k� und u�k� �� ist die diskrete Zeitver�

schiebung� t � �T mit T � �s�

automatisch bei der Identi	kation der Konklusionsparameter identi	ziert wird� k�onnen als

Modelleingangsgr�o�en y�k� �� und u�k� �� angesetzt werden� Das gleiche Ergebnis folgt

bei der Identi	kation eines linearen Modells f�ur y�k� nur mit �u�k���� � als Eingangsgr�o�e
und quadratischemG�utekriterium� Dagegen ist f�ur ein Modell mit �y�k��� und �u�k���� �
als Eingangsgr�o�en bez�uglich eines quadratischen G�utekriteriums � � 
 optimal� Diese
�Anderung der im Sinne der Modellg�ute optimalen Signalverz�ogerung �opt illustriert� da�

�opt nicht mit der physikalischen Totzeit im realen Proze� zu verwechseln ist� Diese ist nicht

von der Modellstruktur� sondern von physikalischen Zusammenh�angen abh�angig� Dagegen

k�onnen die Zeitverz�ogerungen bez�uglich r�uckgef�uhrter Modellausgangsgr�o�en im Sinne ei�

ner optimalen Modellg�ute gew�ahlt werden�




 Zusammenfassung und Ausblick ��

� Zusammenfassung und Ausblick

Dieser Bericht befa�t sich mit funktionalen Fuzzy
Systemen� Der erste hier vorgestell�

te neue Aspekt besteht in der Einf�uhrung mehrdimensionaler Referenz
Fuzzy
Mengen�

die durch ihren Partitionsschwerpunkt und eine Abstandsnorm de	niert sind� Dabei wird

in der Pr�amisse abgefragt� wie gro� die A�nit�at eines Datums zum Partitions
 oder

Clusterschwerpunkt ist� es werden also Punkta�nit�aten betrachtet� Dadurch ist f�ur je�

den Punkt des Eingangsgr�o�enraumes eine Zugeh�origkeit in diese Partition bzw� Fuzzy


Menge und damit zur korrespondierenden Regel de	niert� Der zweite in diesem Be�

richt behandelte Punkt ist die Identi	kation von funktionalen Fuzzy
Modellen mit echt


mehrdimensionalen Referenz
Fuzzy
Mengen� F�ur die Strukturidenti	kation wurden Clu�

sterverfahren eingesetzt� f�ur die Konklusionsparameteridenti	kation das gewichtete rekur�

sive Verfahren der kleinsten Fehlerquadrate� Hierzu wurden drei Clusterverfahren �FCM�

Algorithmen nach Backer sowie Gustafson und Kessel� vorgestellt�

Das vorgestellte Verfahren wurde mit sehr gutem Erfolg auf zwei nichtlineare Testsyste�

me angewendet� Dabei brachte der FCM die besten Ergebnisse� Der Algorithmus nach

Gustafson und Kessel birgt den Nachteil� da� man ohne A
priori
Vorwissen �uber die

Datenstruktur das Potential der lokalen Abstandsnormen nicht richtig nutzen kann� Es

konnten eindeutige Vorschriften zur Wahl der Identi	kationsalgorithmusparameter ge�

macht werden� um die Modellg�ute zu beein!ussen� Damit ist� im Gegensatz zu noch

vielfach verwendeten Trial
and
error
Verfahren bei der Strukturidenti	kation� ein sehr

systematisches� weitgehend automatisiertes Vorgehen m�oglich� Dies zeichnet den Algo�

rithmus gegen�uber solchen aus� die f�ur eine Partition nur einen lokalen Tr�agerbereich

verwenden� Hierzu z�ahlen die meisten Verfahren mit orthogonalen Partitionen� Dort kann

z� B� eine Variation der Referenz
Fuzzy
Mengen zu sprunghaften G�ute�anderungen f�uhren�

die durch Wechsel von Daten zwischen verschiedenen Tr�agerbereichen hervorgerufen wird�

Somit ist es oft nicht m�oglich� eine Richtlinie f�ur die Wahl der Modellparameter anzuge�

ben� Au�erdem kann dort bei ungeeigneter Partitionierung der Fall eintreten� da� einige

Partitionen zu wenig Datenpunkte f�ur eine Identi	kation oder eventuell gar keine ent�

halten� Solche E�ekte k�onnen bei dem hier vorgestellten Verfahren nicht auftreten� da

alle Zugeh�origkeitsfunktionen Werte gr�o�er Null im gesamten De	nitionsbereich �ausge�

nommen die Clusterschwerpunkte� liefern� In den Clusterschwerpunkten liefert nur eine

Zugeh�origkeitsfunktion 	 � �� alle anderen Null� So werden beim hier vorgestellten Iden�

ti	kationsverfahren sprunghafte G�ute�anderungen bei �Anderung einzelner Modellparam�

ter vermieden� Da auch die Lage der Daten untereinander vom Identi	kationsverfahren

ber�ucksichtigt wird� folgt eine �w�unschenswerte� globale Anpassung des Modells� Dadurch

werden bei Erh�ohung der Partitionsanzahl automatisch alle Partitionsschwerpunkte im

Sinne des zu Grunde gelegten G�utekriteriums durch die Clusterung optimal gelegt� Es

bestehen keine Dimensionsgrenzen f�ur die Verschiebung der Clusterschwerpunkte� Bei an�

deren Identi	kationsverfahren kann i� allg� immer nur eine Dimension feiner unterteilt

werden� was im globalen Sinne meistens nicht optimal ist�
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Die hier vorgestellten Untersuchungen k�onnen in mehrerer Hinsicht fortgef�uhrt werden�

Wegen der gleichen Pr�amissenstruktur von funktionalen und relationalen Fuzzy
Systemen

k�onnen die vorgestellten mehrdimensionalen Referenz
Fuzzy
Mengen� die damit verbun�

denen Zugeh�origkeitsbestimmung �uber �Ahnlichkeitsvergleich sowie der Algorithmus zur

Strukturidenti	kation ohne �Anderungen direkt auch auf relationale Fuzzy
Systeme ange�

wendet werden� Die E�ektivit�at des bei nicht hyperellipsoiden Datenstrukturen g�unstigen

Backer�Algorithmus sollte gepr�uft werden� Desweiteren ist zu untersuchen� nach welchen

Kriterien der Clusteralgorithmus systematisch bei wenig Vorwissen �uber die betrachtete

Datenstruktur ausgew�ahlt werden kann� Der vorgestellte einfache Algorithmus zur Fein�

einstellung der mit Clusteranalyse bestimmten Partitionsschwerpunkte sollte z� B� durch

Anwendung eines Gradientenverfahrens im Hinblick auf eine Steigerung von Modellg�ute

und Rechengeschwindigkeit verbessert werden� Auch w�are eine Pr�ufung der Robustheit

des hier vorgestellten Identi	kationsverfahrens bei verrauschten Me�werten sinnvoll�
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A Verschiebung von Zugeh�origkeitsfunktions
anken

In diesem Abschnitt wird gezeigt� da� die Verschiebung einer oder zweier benachbarter

linearer Referenz
Fuzzy
Mengen!anken selbst im Flankenbereich i� allg� nicht durch eine

Modi	kation des Konklusionspolynoms der beiden an der Flanke in Verschiebungsrich�

tung aneinander grenzenden Regeln substituiert werden kann� Betrachtet wird dazu der

Flankenbereich Fl zweier Regeln� in den die �Anderung der Flanken f�allt� Desweiteren be�

schr�ankt wird der Bereich auf das Gebiet� in dem nur diese beiden Regeln feuern �in den

Randbereichen von Fl feuern im allgemeinen vier Regeln gleichzeitig�� Verschoben werden

sollen eine oder zwei benachbarte Flanken in xj
Richtung� Deshalb kann die Betrachtung

auf die Abh�angigkeit des Erf�ulltheitsgrades der Pr�amisse � alleine auf xj beschr�ankt wer�

den� Es gilt

�� � �T�� � ���xj� und �A���

�� � �T�� � ���xj�

mit �T�� �� f�xj� und �T�� �� f�xj� sowie

� � �T�� � � und �A�
�

� � �T�� � � �

da die betrachteten Regeln in Fl feuern� �T�� ��T��� stellt dabei das Produkt der Erf�ullt�

heitsgrade allerm Teilpr�amissen �i bis auf �� ���� dar� Eine �Anderung der beiden Flanken

f�uhrt zu

f���xj� � ���xj� # %���xj� �A���

anstelle von ���xj� und

f���xj� � ���xj� # %���xj� �A���

anstelle von ���xj�� Damit folgt als resultierende Stellgr�o�e

�u �
�T����� #%���u� # �T����� #%���u�
�T����� #%��� # �T����� #%���

� �A���

Zu pr�ufen ist nun� ob man �u auch durch Beibehaltung der Referenz
Fuzzy
Mengen

�%�� � %�� � �� aber �Anderung der Konklusionen erhalten kann�

�u �
�T���� �u� # �T���� �u�
�T���� # �T����

�
� �u � �A���

Wegen �A�
� kann man

g ��
�T��
�T��

�A���

abk�urzen und erh�alt durch Gleichsetzen von �A��� und �A���
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g������ #%����u� � �u�� # g����� #%����u� � �u�� �A� �

#g����� #%����u� � �u�� # ����� #%����u� � �u��
�
� �

Beschreibt man die Flanken vor der Verschiebung durch

�� � m� x# n� und �� � m� x# n� � �A���

so erh�alt man durch die Verschiebung

%�� � ��� � �� � �n� � n� �� c� und

%�� � ��� � �� � �n� � n� �� c� � �A����

Bei den Konklusionspolynomen k�onnen alle nicht von xj abh�angigen Terme mit dem

konstanten Anteil zusammengefa�t werden�

u� � p� # p	 x u� � p� # p� x � �A����

Die modi	zierten Polynome werden durch
�
�� � beschrieben�

�u� � �p� # �p	 x �u� � �p� # �p� x � �A��
�

Die Ersetzbarkeit der Referenz
Fuzzy
Mengen
�Anderung durch andere Konklusionen mu�

f�ur alle xj � Fl gelten� Durch Einsetzen von �A��� 
 �A��
� in �A� � erh�alt man mit

der Bedingung� da� die jeweiligen Koe�zienten der Potenzen von x identisch Null sein

m�ussen� ein Gleichungs
System �� Ordnung� Hat das System den vollen Rang� so gibt

es eine eindeutige L�osung und die Substituierbarkeit von Referenz
Fuzzy
Mengen durch

Konklusionspolynom�anderung ist gegeben� Nach Anwendung des gau�schen Eliminations�

algorithmus enth�alt die Dreieckdiagonalmatrix die folgenden � Elemente�

d� � �g�m�
� � gm�m� � �A����

d� �
g�n�m�m� � n�m

�
�g �m�n�g m� #m�

�n�
g m�

� �A����

d	 � d� und �A����

d� � ��gm�c
�
�n�n�m� � �g	m�

�c�n�n
�
� # �g	m�n

�
�c�m�n� # g	m�m�c

�
�n�n�

#
g	m�n
	
�m�n� � 
g	m�

�n
�
�n

�
� � 
g�m�

�n
�
�n�c� � 
g�m�

�n
	
�n�

#�g�m�c�n�n
�
�m� # �g�m�n

�
�c�n�m� # �g�m�n

�
�n

�
�m�

#
g�m�c�n�c�n�m� � g�n	�c�m
�
� � 
g�c�n

�
�n�m

�
� � 
g�n	�n�m

�
�

�g�c�n��c�m�
� � gc��n

�
�m

�
� � 
gn��n

�
�m

�
� � �gn�n

�
�c�m

�
� �m�c

�
�n�n�m�
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�
m�n
	
�n�m� � �m�n

�
�n�c�m� # �n�n

�
�c�m

�
� # c��n

�
�m

�
� # 
n��n

�
�m

�
�

�g	m�
�c

�
�n

�
� � g�m�

�c�n
	
� � g�m�

�n
�
�c�c� # 
gm�n

	
�n�m�

#�gm�n
�
�n�c�m� � n�c

�
�g

�m�n�m� � �n��m�n�m�gc�

�
n�c�m�n�m�gc� # 
n��n
�
�g

�m�
� # 
n	�n�gm

�
� # gn	�c�m

�
�

�
n	�m�g
�n�m� # 
n�c�gm

�
�n

�
� # gc�c�m

�
�n

�
� � �n��m�g

�c�n�m�

��n��n
�
�m�m�g � �n��c�m�n�m�g # �n�n

�
�c�g

�m�
� # 
n�n

�
�c�m

�
�g

#
n�n
	
�m

�
�g # g�m�

�c
�
�n

�
� # gm�

�c�n
	
� # gm�

�n
�
�c�c��

��m��g
�n�m�m� � n�m

�
�g �m�n�g m� #m�

�n��� �� Z��N� �A����

Bei den betrachteten benachbarten Referenz
Fuzzy
Mengen ist g � � und �A���� f�ur

alle m� �� m� erf�ullt� �Dies entspricht bereits einer starken Einschr�ankung� da h�au	g

benachbarte Referenz
Zugeh�origkeitsfunktionen so de	niert werden� da� sich im �Uber�

lappungsbereich die Zugeh�origkeitsgrade zu � addieren�� Au�erdem gilt� m� �� �� m� �� ��

�n� �� � � n� �� ��� Damit ist

d� �
m�m��n� � n�� # n�m

�
� � n�m

�
�

m�
� �A����

Weil f�ur die benachbarten Flanken sgn�m�� � 
 sgn�m�� und sgn�n�� � 
 sgn�n��

oder ��n� � � � n� � �� � �n� �� �� � �n� �� ��� gilt� sowie m� �� � und m� �� � ist�

gilt d� �� �� Der Z�ahler von d� tritt zusammen mit einem Faktor m� als Nenner von d�
auf� welcher somit auch �� � ist� Beim Z�ahler zu �A���� dagegen gibt es Parameterkombi�

nationen� f�ur die das Z�ahlerpolynom den Wert � annimmt� Aus g � � und n� � � folgt

beispielsweise Z� � � oder aus g � � und n� � � folgt Z� � �m�
� c� n

�
��c� # c� # n���

wobei Kombinationen c� # c� # n� � � m�oglich sind�
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B Zur Wahl der Operatoren

Im folgenden wird der Ein!u� des Partialpr�amissen
Verkn�upfungsoperators auf das Ge�

wicht eines Datums bei der Regelauswertung oder bei der Identi	kation erl�autert� Exem�

plarisch wird von einer 
 � 

Partitionierung eines zweidimensionalen Eingangsgr�o�en�

raumes ausgegangen �Bild B����

Bild B��� 
� 

Partitionierung

Vorausgesetzt seiX
i

	Ai
�x�� � � �x� � D x� und �B���

X
j

	Bj
�x�� � � �x� � D x� � �B�
�

Zur Abk�urzung sei

a � 	A� �x�� � ��� �� und b � 	B��x�� � ��� �� �B���

eingef�uhrt� F�ur den Produkt
Operator folgt die Summe der �Gesamt
� Zugeh�origkeiten

eines Datums zu

�X
i��

�i � a b# ��� a�b# �� � a���� b� # a��� b� � � � �B���

F�ur den Minimum
Operator folgt�

�X
i��

�i � min�a� b� # min�� � a� b� # min�� � a� �� b� # min�a� �� b� � �B���
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Bei der n�otigen Fallunterscheidung werde der Fall a � b und � � a � b betrachtet� Daf�ur

ergibt sich

�X
i��

�i � �� 
a � � �B���

im �Ubergangsbereich� �Ahnliche Ergebnisse folgen f�ur die anderen F�alle�


