Helmut Schwarz Forschungsbericht Nr. 12/94 Es wird dargestellt, daf die Nulldynamik
bilinearer Systeme (BLS) und der Systeme mit quadratischer Zustandsabhéngigkeit linear
ist. Die Koeffizienten des diese Nulldynamik charakterisierenden Polynoms lassen sich un-
mittelbar dem kanonischen Zustandsmodell entnehmen. Ist die Nulldynamik nicht stabil,
das System also ,nichtminimalphasig®, kann in einfacher Weise ein lineares System derart

parallel geschaltet werden, daff das Gesamtsystem minimalphasig ist.



1 Einleitung

Die Nulldynamik eines analytischen Systems mit linearer Steuerung ist der dynamische
Systemteil, der fiir den Systemausgang unbeobachtbar gemacht werden kann. Bei einem

linearen Eingrofensystem mit der Ubertragungsfunktion

Fls) = Z(s) _ Kbo +bis+ ... by 8" 4 5T
N{(s) ag+ays+ ... Fa,_1s" 1+ 57
(s — ) (1.1)
= K= =TI, - A7
,HI(S - )
]:

korrespondiert die Nulldynamik mit den Nullstellen N; des Systems. Diese Nullstellen
sind zwar invariant gegeniiber Systemriickfiihrungen (Kailath 1980), doch koénnen die
Eigenwerte A; bzw. Pole P; durch Zustandsriickfithrungen so gedndert werden, daf sie
die Werte der Nullstellen V; annehmen und damit in F'(s) eine Pol-/Nullstellen—-Kiirzung
eintritt. Es konnen also genau m Eigenbewegungen am Systemausgang unbeobachtbar

gemacht werden. Zwischen Zé&hler- und Nennergrad besteht der Differenzengrad
d=n—-—m (1.2)

der auch eine wesentliche Bedeutung bei der Verallgemeinerung des Begriffes ,,Nulldyna-
mik® auf Klassen von nichtlinearen Systemen hat. In diesem Bericht wird die Nulldynamik

fiir zwei einfache Unterklassen der ALS naher untersucht.

Ist das System (1.1) stabil — alle Eigenwerte (Pole) haben negative Realteile — und ha-
ben auch alle Nullstellen negative Realteile — Z(s) und N(s) sind Hurwitz—Polynome —,
dann heifit das System ein Phasenminimumsystem. Dieser Name rithrt bekanntlich da-
her, daB der Frequenzgang des Systems (1.1) mit F(jw) = F(s)|s=ju bei vorgegebe-
nen Zahlen n und m der Pole und Nullstellen eine maximale Phasennacheilung hat,
die dann minimal beziiglich n und m ist, wenn Z(s) und N(s) Hurwitz—Polynome sind.
Bei Phasenminimumsystemen besteht dariiberhinaus ein eindeutiger Zusammenhang zwi-
schen Amplituden- und Phasengang derart, daf, wenn einer von beiden (analytisch) ge-
geben ist, der andere daraus berechnet werden kann. Ferner zeichnen sich lineare Phasen-
minimumsysteme dadurch aus, daf} das invertierte System F~'(s) stabil ist. Neben der
Systeminvertierbarkeit gibt es eine Vielzahl von Regelungstrategien, bei denen die stabi-
le Nulldynamik der Regelstrecke zwingend ist, nicht nur bei linearen, sondern auch bei
nichtlinearen Systemen. Von (Hahn und Unbehauen 1982, Hahn u. a. 1983) wurde vor-
geschlagen, instabile Nullstellen linearer Regelstrecken durch Parallelschalten geeigneter
linearer Kompensatoren so zu modifizieren, dafl das Geamtsystem nur stabile Nullstel-
len hat. Dies brachte den Erfolg, dal z. B. adaptive Regelgesetze ein stabiles Verhalten
beziiglich des kompensierten Systems haben. In diesem Beitrag wird dargestellt, dafl die

Nulldynamikkompensation auch eine Methode fiir nichtlineare Systeme darstellt.



In Abschnitt 2 werden die wichtigen Begriffe ., Differenzengrad®, ,,Nulldynamik® sowie
yIsidori-Normalform* fiir nichtlineare Systeme des Typs ALS knapp zusammengefafit. Die
entsprechenden Eigenschaften werden dann in Abschnitt 3 fiir BLS und QLS in spezieller
Struktur dargestellt. Schlieflich wird in Abschnitt 4 die vorstehend skizzierte Moglichkeit
der Modifizierung der Nulldynamik durch Parallelkompensation bei nichtlinearen Syste-
men ausfiihrlicher beschrieben.

2 Differenzengrad, Nulldynamik und Isidori—-Normal-
form

In diesem Abschnitt werden Systeme der Form Eingréfen—ALS

e(t) = a(@(l)+b@))u(t) ; o=zl

YaLs y(t) = Ta(l) (2.1)

vorausgesetzt.

Definition 2.1 (Isidori 1989, Schwarz 1991)

Das Analytisch-Lineare-System (2.1) hat den Differenzengrad oder relativen Grad d in
einer Umgebung U um @q, wenn gilt:

i) LbLic(a:) = ( fiir alle @ in der Nahe von &g und V& < d — 1 (2.2)
ii) Lyl () £0 . (2.3)
O

Zunéchst einmal gibt d genau die Anzahl der benétigten zeitlichen Ableitungen des
Systemausganges y(t) an, bis zu der das Eingangssignal u(t) explizit auftritt. Es wird
wieder eine Umgebung ¢/ um @q betrachtet. Mit

y(to) = clx(ty) = Tz

und (2.1) 9(t) = Lectz(t) = claz(t)
(2.4)
dy(1)

y (1) = yr LicTa(t) + Loy Lo e (t)u(l)

Wurde der Differenzengrad d ermittelt, ist hiermit auch die Dimension m der Nulldynamik

bestimmt:



Satz 2.1 (Isidori 1989)

i) Die Nulldynamik eines Analytisch—Linearen Systems (2.1) in einer Umgebung von
xo ist eine (gegeniiber Zustandstransformationen) invariante Systemkenngrofie und

hat die Dimension g = n — d, worin d der Differenzengrad des Systems fiir @ ist.

ii) Der Systemzustand «(t) € R™ 148t sich in zwei Teilzustande aufspalten

2(t) = l @u(!) ] (2.5)

(1)

mit 2, € R? und @, € R"¢, wobei 2, der Nulldynamik zugeordnet ist.

iii) Anwendung des Regelgesetzes

W (t) = ult) = _Lf;dfilwc()a:) . (2.6)

bewirkt Ausgangssignalnullung fiir alle Anfangsbedingungen

#(io) = [ wz?fO) ]

mit &y(ty) € R4

iv) Das durch (2.6) geregelte System ist ein lineares ,integratorentkoppeltes® System
mit d in Reihe geschalteter Integratoren und einem (n — d)—-dimensionalen nicht
beobachtbaren (nichtlinearen) Teilsystem (Bild 2.1). O

Ein ALS (2.1) kann durch eine geeignete Koordinatentransformation
z(t)=t(z(t)) ; zeR* ; zeR" (2.8)

in einem anderen Koordinatensystem des Zustandes dargestellt werden. Geeignet ist eine

Koordinatentransformation (2.8), wenn

i) die Jacobimatrix

Q(x) = (2.9)

nicht singular ist: Rang Q(«) = n mit « € R",



y(t) = ¢'x
x(t)

B Lec(x) ]

Ly L e(x) a)

R A S S &0 e, (b

L
Unbeobachtbares Teilsystem
der Dimension @ =n—d b)

Bild 2.1: Struktur des Ausgangsnullungsproblemes a) Regelungsstruktur b) dquiva-

lentes System

ii) die inverse Transformation
x(t) = t_l(z(t)) (2.10)

existiert.

Von Isidori (1989) wird eine spezielle nichtlineare Koordinatentransformation angegeben,
die ein ALS auf eine spezielle Normalform transformiert, die fiir eine Reihe von Problemen
der Regelung nichtlinearer Systeme auferordentlich niitzlich ist. Diese Transformation

wird hier in Form eines Satzes eingefiihrt.

Durch diese Koordinatentransformation wird ein zustandsdquivalentes System erzeugt.
Darauf wird dann eine Zustandsriickfiihrung angewendet, die dann eine Klasse zustands-
rickfihrdquivalenter Systeme liefert. Durch geeignete Wahl dieser Zustandsriickfithrung
kénnen wichtige Probleme wie lokale Linearisierung, lokale Stabilisierung oder auch Storsi-

gnalunterdriickung in ibersichtlicher Weise angegangen werden.



Satz 2.2 (Isidori 1989)
Ein System (2.1) habe den Differenzengrad d < n.

i) Man wéhle fiir eine Koordinatentransformation (2.8)

(2.11)

ta(@) = Lg'c()

Ist d < n, dann ist es immer moglich, n — d weitere Funktionen t441 (@) ...t ()
derart zu finden, dafi die Abbildung (Zustandstransformation):

() =tx)=| (2.12)

eine Jacobimatrix hat, die nichtsingular fiir @, ist. Damit ist ¢(@) fiir eine lokale

Koordinatentransformation geeignet.

ii) Der Wert der Funktionen t441(@),...,t,(®) an der Stelle @ = @, kann beliebig
festgelegt werden.

iii) Dartiber hinaus ist es moglich, die tgp1(@®), ..., t,(2) so zu wihlen, daf:

Lpti(z) =0 firalled+1<:<n

und alle @ in einer Umgebung von x ist.

}(2.13)

O
Der vorstehende Satz beschreibt eine lokale Koordinatentransformation, bei der alle ;(@)
linear unabhéngig sind, also eine Basis in R™ bilden. Dariiber hinaus bewirkt diese Trans-
formation eine Darstellung des Systems in einer ausgezeichneten Normalform, die hier

Isidori-Normalform heifle:

Z(t) = z(t)
ZH(t) = 2(t)

Z"d_l(t)‘ = Zd(t)
) = a*(z() + 6 (2(1))u(t) (2.14)
Zam(t) = qap(z(1))

Glt) = qul=(t)
y(t) = =(t)




In (2.14) sind die skalaren Vektorfunktionen a*(z) und b*(2) gegeben zu:

a’(z) = Lic(a:)|w: 1
b (z) = Lylilc ;13'; - } (2.15)

In (2.14) 148t sich der Zustandsvektor z(¢) in zwei Teilvektoren aufspalten:

> . Zl(t)

"= lzw)]

z(t) = &) =[a(), ...,z - (2.16)
2(t) = ) =[zan(D), ...,z

Der Teilvektor n(x) ist der Zustand der Nulldynamik, so daff (2.14) auch in dieser kom-

pakteren Form geschrieben werden kann:
z1(t) = z(1)
2(t) = z(l)

zd_l(tj = (1) (2.17)

z(t) = a*(&(t),n(t)) + b (&(t), n(t))u(?)
n(t) = q(&(t),n(t))

3 LS, BLS und QLS in Steuerungsnormalform

Es ist bekannt, daf} in der regelungskanonischen und in der beobachterkanonischen Form
der Zustandsmodelle linearer Eingroflensysteme die Koeffizienten des Zahler— und des
Nennerpolynoms der zugehérigen Ubertragungsfunktion direkt ablesbar sind (Schwarz
1969, 1994b). Damit ist bei diesen linearen Systemen (LS) die Nulldynamik und ihre
Dimension eindeutig bestimmt, ohne die Systeme zunéichst auf Isidori-Normalform zu
transformieren. Es wird gezeigt werden, dafl bilineare Systeme (BLS) und Systeme mit
quadratischer Zustandsabhangigkeit und linearer Steuerung (QLS) in Regelungsnormal-
form eine lineare Nulldynamik haben, und auch hier die Koeffizienten des charakteristi-

schen Polynoms der Nulldynamik im Zustandsmodell zu finden sind.

3.1 Lineare Systeme

Zunichst wird einfithrend, um die Verhéltnisse zu klaren, Isidori (1989) folgend ein lineares

EingréBensystem in Isidori-Normalform transformiert. Der Ubertragungsfunktion

bo+bis+...4+b,_15m 5™

ap+ais+ ...+ a,_q1s"1 4+ s

F(s)=K (3.1)




ist ein Zustandsmodell in Regelungsnormalform zuzuordnen

0 1 0 0
a(1) = L P B o
1 0 (3.2)
—ag —aq — Uy K
y(6) = [bo by .o bpa 10 . Ja(t) |

das in Bild 3.1 als Blockschaltbild dargestellt ist.

u(t) - @ xn(t) {I,Mt) Xm(1) @ Xm-1(t)

Bild 3.1: Blockschaltbild eines linearen Systems in Regelungsnormalform

Mit (2.11) sind die Koordinaten der Isidorinormalform zu bestimmen:

z(t) = AT x(t) 5 i=1,2,...,d=n—-m (3.3)
z1(t) = ti(®e) =boxy +bjxs+ ...+ b1, + g
(

29 t) = tQ(w) = bOxQ ‘I‘ e —I_ bm—lxm-l—l —I_ xm-l—? . (34)

zq(t) = ta(x) =boxg + bizapr + ...+ bp1z0y + 2,

Fiir die frei ergdnzbaren Koordinaten z; fiir ¢ = d +1,...,n ist im Falle des vorliegenden
linearen Systems diese Wahl naheliegend:

G = ailt)

2y = w() . (3.5)

A = n(t) = 2pea(t)

Es ist leicht zu {iberpriifen, daff die Jacobimatrix

[ g e 10 - 0
0 ¢ ¢ - ¢, 1
_ 3.6
0 0
. O 1 1




nichtsingular ist. Mit den so bestimmten Koordinaten hat das System (3.1) bzw. (3.2)

diese Isidorinormalform entsprechend (2.14):

Z(1)
Z9(1)

faa(t)
Zq(t)

Zay1()

= (1)
= z3(t)

Zd(t)
cTAd(a:(t)|w:t—1(z) + T A bu(t)
= a"(z)+ Ku(t) = aipz(t) + Ku(t)

fl = T9 = Zd+2(t>

zn(1)
—bozar1(t) — b1zaga(t) — oo — bpo12,(t) + 21(1)

= z(t)

(3.7)

Die Struktur dieses Systems entsprechend (2.17) 148t sich fiir das untersuchte lineare

System expliziter angeben:

0 1 0 0 0
z1(t) = t) + : +
(0 e+ 0
rT sTn(t) K
PE(t) + Qn(t)
Die die Nulldynamik bestimmende Matrix Q hat diese Besetzung:
1 0 0
0 1 0
.. 1
—bo —b —bp-1 |

Beispiel 3.1

Das System mit n = 3,m = 1 und damit d = 2

0 1 0 0
0 0 1 |a)+| 0 |u@
—dg —d1 —day K

(3.9)



soll vor allem verdeutlichen, wie die inverse Transformation «(¢) = t~'(z), die in (3.7)
bzw. (2.17) bendtigt wird, zu bestimmen ist. Mit (3.3) und (3.4) erhalten wir

Zl(t) = bol’l + T2
Zg(t) = bol’g + T3

Zg(t) = I
Daraus folgt:

2(t) =t (2(1) = | 21 — bozs

29 — boz1 + b3z3
und schlieflich:
at) = =)
Z(t) = [agho —ay — b by — ay i boay + by — ag — azbi)z(t) + Ku(t)
Z3(t) = z1—bozs
Mit (3.8) und (3.9) ist die Nulldynamik bestimmt:
ilt) = —con(t) i Aa=N = by
Es wird nun noch die Ausgangsnullung in Originalkoordinaten bestimmt. Aus (2.6) folgt
cT A%z (t)

u'(t) = —m+w(t)

_ [—ag: — allf(bo — az)e(t) ()

und damit fiir das riickgefiithrte (,genullte®) System:

0 1 0
z(t) = [0 0 1 |x®)+| 0 |w(t)
0 0 —by K
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3.2 Bilineare Systeme

Bilinearen Systemen kann diese Regelungsnormalform zugeordnet werden (Schwarz 1994a):

0 1 0 O --- 0 0
& = : R z(t)+ | - “le®ut)+ | |t
0 - 0 1 O I AR ()(3.10)
_ao _al o« s . _an—l nl .« . o nn [{
y(t) = Jeoer -+ cmo1 1 0]a(t) \

die durch Bild 3.2 verdeutlicht ist.

y(t)

u(t) ’7‘ Xq(t) ‘ T‘Xn,l(t) Xpm(t) ’7‘ Xmoq(t) Xp(t) f x4 (t)
_

o

() &) ? OISHOIONOXO
; H ; H [

Bild 3.2: Blockschaltbild des BLS in Regelungsnormalform

Wird das System (3.10) auf Isidori-Normalform transformiert

2(t) = 2()

() = zal)
) = TA(t) + T A [ Na(t) + blu(t) . (3.11)

Zapi(t) = () = 22()

0 = el

so zeigt ein Vergleich mit (3.7), dal der homogene Systemteil identisch mit dem des

linearen Systems ist. Fiir Z4(¢) ist nun aber
Lo L 'b(@)u(t) = {[n1,na, ... na]a(t) + K u(t) . (3.12)

Die BLS in Regelungsnormalform haben damit diese interessante Figenschaft:
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Satz 3.1
Ein BLS nach GI. (3.10) in nichtlinearer Regelungsnormalform hat

i) eine lineare Nulldynamik.
ii) Die Nullstellen sind die Nullstellen des Polynoms der (linearen) Fehlerdynamik.

iii) Die Elemente der Ausgangsmatrix ¢’ sind die Koeffizienten des Nullstellenpoly-
noms. o

Beispiel 3.2
In Anlehnung an Beispiel 3.1 wird das bilineare System in Regelungsnormalform mit
n=3,m =1 und d = 2 betrachtet:

0 1 0 0 0
x(t) = 0 0 1 x(t) + [ n me s ] x(t)u(t)+ | 0 | u(t)
—ag —a] —as K
y(t) = [bo 1 0]

Die zugehorige Isidori—-Normalform lautet:
at) = z(t)
H(t) = z(l)
= [—aozs — ai(z2 — bozs) + (bo — az)(z2 — boz1 — biz3]+

—|—[an3 + n2(22 — 6023) + n3(22 — boZl — 6(2)23) + [X’]U(t)

2'3(15) = 2z —byzs >
also hat das System die endliche Nullstelle N = —b,.

Es wird nun die Riickfithrung in Originalkoordinaten bestimmt, die die Ausgangsnullung

bewirkt. Mit (2.6) gilt:

ui(t) = - Li%% +w(t) = — % +w(t)
cTA%2(t) = [—ari —ag by — ag)e(t)
cTA(Nz+b) = [ngingingle(t)+ K

Das riickgekoppelte System hat mit u*(¢) diese Form:

01 0

x(t) = |0 0 1 |[x()+]| 0 |w(t)
0 0 —bo K

y(t) = [bo 1 0x(t)
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3.3 QLS in Regelungsnormalform

Die in (Schwarz 1994b) definierte Regelungsnormalform fiir Systeme mit quadratischer
Zustandsabhéngigkeit und linearer Steuerung (QLS) haben dieses Zustandsmodell, das in
Bild 3.3 als Blockschaltbild dargestellt ist:

[0 1 0 0 0
) 0 0 r .- 0 : : )
o(t) = . . . o(t)+ | 2B+
: e e e : 0 0
—dg —a1 —dp—1 —dao1 — gy

f . ¢ (t)
X
. ® g az = [ag; ... agye]
== b X2 b, = [bg ... byyz]

Bild 3.3: QLS in Regelungsnormalform




13

In (3.13) wurde das ,reduzierte“ Kroneckerprodukt verwendet mit

el = (22, 2129, L1203, . . Ty, T2, ToT3, o oo, Lo, ..., 22 )T € RT (3.14)
mit
1
r = 7”(”; ) i weR" (3.15)

Damit haben dann auch die Zeilenvektoren al und bl jeweils » Komponenten.

Im folgenden sind in Analogie zu den in den Abschnitten 3.1 fir LS und 3.2 fiir BLS

angegebenen Beziehungen die Beobachtungsgleichung
y(t) = CT;E = [707717 <oy Ym—1 1 O]w(t)
(3.16)
sowie b, = K
eingefithrt. Es wird nun fiir das QLS in (3.12) mit (3.16) der Differenzengrad bestimmt:

y(t) = clae(t)

g(t) = L.cTa(t) = T[Az(l) + Asxld(1)] = T A (t)
(3.17)
y(d—l) — CTAd_laZ(t)

y @ = A% (1) + al2l(t) + [K + b 2(1) + b (1)]u(t)

Fir die QLS in Regelungsnormalform ist also wie bei den LS und BLS die Dimension m
der Nulldynamik m = n — d genau gleich der Zahl m der Koeffizienten in der (linearen)

Beobachtungsmatrix ¢ in (3.16).

Mit der Transformation auf Isidori—-Normalform

z(t) = y(t) = CT?E(t) = Y1 t+tNT2t . V1T, T T
Zg(t) = CTAQE(t) = o2 + Y123 + ... Tm+1
zq(t) = CTAd_liB(t) = Yorqgt+MNTdt1t .ot V1Tt + T4
(3.18)
zapi(t) = 21(t)
zapa(t) = a(1)
) = nlt) = aall)
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erhalten wir das System (3.12) in Normalform:
alt) = =)

Z9(t) = z3(t)

Za(t) = z(?)
2(t) = €T A%(t)| oz + @l @ g 2y + Ku(t)+ 1)
+b7 (1) |@=i-1(2) + by 2|z oi-1(2)
Zag1(t) = zaya(?)

z':n_l(t)‘ = z,(t)
Gl) = @man(t) = 21(8) = 0z () = Gmor (1)

Diesem transformierten System ist das interessante Ergebnis zu entnehmen:

Satz 3.2
Ein QLS in Regelungsnormalform nach GI. (3.12) hat

i) eine lineare Nulldynamik der Dimension m = n — d.

ii) Die Nullstellen sind die Nullstellen des charakteristischen Polynoms der (linearen)

Fehlerdynamik.

iii) Die Elemente der Ausgangsmatrix ¢! in (3.16) sind die Koeffizienten des Nullstel-

lenpolynoms.

Beispiel 3.3

0 1 0
0 0
i — (2]
x(t) 0 0 L |+ [ . o ] x(t) + [ P ] u(t)+
—dg —a1 —da4y
T PN RS I P
biy bz bis ba bae
y(t) = [co e 1a(?)
a) Bestimmung des Differenzengrades:
y(t) = cle =[coer 1a(t)
y(t) = [—Closco — alfcl — Gz]w(t) + [Clll e Cl16]£13[2](t) + Ku(t)—l—

b7 (t)u(t) + bla()
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er ist also mit Definition 2.1:
d=1 bzw. m =2
b) Koordinatentransformation:
z1(t) = ti(®) = cor1(t) + craa(t) + x3(t) = zq(t)
2(t) = a(l)

z3(t) = waq(t)

H() = ZH(t) = LeelTa(t) + LyLcTa(t)
= cTAz(t) 4+ al2P(t) + [K + bl @ (t) + bl 2 (1)]u(t)
H(t) = @1(t) = 22(t) = 23(1)

Z3(t) = @o(t) = a3(t) = z1(t) — coz2(t) — c123()

z(t) = t7Hz(1): a1(t) = 2(t)

¢) Ausgangsnullung

. B LicTa(t) L,eTz(t)
uw(t) = — LyLi-1eTa(t) - cla(t) - b(x(t))
LocTx(t) = [—aoico—aric —ale(l)+[ag,..., a0 2P(t)

LieTa(t) = K +[by by bola(t) + b, bl 2(1)

Damit erhilt das riickgekoppelte System diese Form:

0 1 0

x(t) = 0 0 1| x(t)
0 —¢g —c

y(t) = Jeo a 1]z(t)
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4 Nullstellenverschiebung durch Kompensation

Fiir eine Reihe von Regelungstrategien — auch Zustandsregelungen linearer Systeme — ist
eine wesentliche Voraussetzung fiir das stabile Verhalten des geregelten Systems, daf} die
Regelstrecke minimalphasig ist, ihre Nulldynamik also stabil ist. Bei der Untersuchung
adaptiver Regelungskonzepte fiir lineare Systeme konnten (Hahn und Unbehauen 1982,
Hahn u. a. 1983, Torres 1990) zeigen, daf die gegebenenfalls vorhandenen Nullstellen der
Regelstrecke in der rechten s—Halbebene durch Parallelschalten eines geeignet ausgelegten
linearen Systems kompensiert werden kénnen derart, dafl ein Ersatzsystem mit stabiler
Nulldynamik entsteht. Der Gesamtregler setzt sich dann aus dem Kompensator und dem

fiir das Ersatzsystem konzipierten Regler zusammen.

y(t)
F(s)
u(t) |
L ve(t)
| yi(t)
Fl(s)
Fe<s)

Bild 4.1: Zur Nullstellenverschiebung durch Parallelkompensation

In Bild 4.1 ist eine lineare Regelstrecke mit parallelgeschaltetem linearen Kompensator
als Blockschaltbild dargestellt. Das gegebene System habe die Ubertragungsfunktion

Z(s) _ Z7(s)-Z7(s)

Fs) = NG = ¥ ) v )
{Z(s)} = m=mt+m~ (4.1)
6{N(s)} = n=nt4+n" , m<n |,

worin Z*(s) und N*(s) Hurwitzpolynome seien, wahrend fiir Z~(s) und N~ (s) gelte:
Z7(s) = (s=Ny)...(s=N,-) ; RAN7}>0
(4.2)
N=(s) = (s=P7)...(s—P_) ;. RAP} >0

n

Der stabile Kompensator habe eine gebrochen rationale Ubertragungsfunktion und wird

so angesetzt:

Fu(s) = 268) _ , (4.3)
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daf} die stabilen Zahler— und Nennerteilpolynome des gegebenen Systems iibernommen
werden. Fiir das Ersatzsystem gilt mit (4.1) und (4.3):

Zs) __ ZF(s) Zls)
N(s) ~ VAN (5N )
ZH($)[Z ()N () + 2 ()N~ (5)]

NHSIN ()N, (5)

Fo(s) = F(s)+ Fi(s) =
(4.4)

War das gegebene System instabil, dann muf} auch das Ersatzsystem durch Riickfithrung
stabilisiert werden. Die noch frei wiahlbaren Polynome Z, (s) , Ni, (s) in (4.3) sind so zu
bestimmen, daf§ fiir Fi(s) gilt:

5{Zk(8)} = mg }
. (4.5)

my < ny

O{Nk(s)} = mp

In der Anwendung kann dabei myj = ny, also Fj(s) ist keine echt gebrochen rationale
Funktion, zugelassen werden, da der Kompensator als Algorithmus zusammen mit dem
iiberlagerten Regelungsalgorithmus realisiert wird. Dartiberhinaus ist das Hauptausle-
gungskriterium, dafl in (4.4) das Z&hlerpolynom nur Nullstellen mit negativen Realteilen
hat. Insbesondere Torres (1990) beschreibt Methoden zur Auslegung geeigneter Kompen-
satoren.

Um die Ubersichtlichkeit fiir das folgende zu erhhen, wird nun vorausgesetzt, daB I(s)

stabil sei, also gelte:
N(s)=N*t(s) und N7 (s)=1 . (4.6)

Damit vereinfacht sich der Kompensator mit:

Ni(s) = N(s) (4.7)

Fk(S) _ Z+(S)[Z_A§‘2)+ Zk1(5)] (48)
und damit gilt fiir das Ersatzsystem:

pe) = ZONZ) 4 2] 242 (1.9)

N(s) N(s)

Zur Erzeugung eines Ersatzsystems mit stabiler Nulldydnamik durch ,, Nullstellenverschie-
bung“ mittels Parallelkompensation muf also das gewlinschte Z&hlerpolynom 7., (s) vor-

gegeben werden und dann Zj, (s) bestimmt werden:

Ze(s) = Z7(s) + Zy, (5)
(4.10)
oder Zi(8) = Ze(s)—Z7(s)
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Mit Ze(8) = v+ms+ .. -8
Z7(s) = Po+bis+ .. A+ Bu-s" (4.11)
Zi(s) = aptars+ ... Fa,-s"

ist eine einfache Auslegung auch fiir den Fall méglich, dafl das gegebene System in Form
eines Zustandsmodells vorliegt. Hat dieses Zustandsmodell Regelungs— oder Beobach-
ternormalform, dann lassen sich wie in Abschnitt 3 fiir das lineare System in Regelungs-
normalform ausgefiihrt, die Zahlerpolynom—Koeffizienten direkt aus dem Zustandsmodell

entnehmen. Es ist dabei nur zu beachten, daf} tiir die Gesamtzahlerpolynome gilt:
Z(s) = zT(s)z7(s) = K[Bo+ Pas+ ...+ Buors™ ' + 5™
Z(s) = 27(s)z(s) = Kywo+7s+. .+ Ymo1s™ !+ 57 m = mT+m™(4.12)

Zr(s) = 2T(s)zr,(s) = Klag+ais+ ...+ qpoys™ 1t + 5™

Wird die Regelstrecke mit einem Kompensator parallel geschaltet, erhdlt man ein Zu-
standsmodell des Ersatzsystems mit Gl. (3.2)

0 1 o .- 0 0
0 0 1 0
1) = t ‘ t
K
| —% —@& —dz - —dp—q |
y() = o - w1 1 0](t)
mit Vi = a; + 53 i=1,2,...,.m—1, (4.14)

auf das nun das tiberlagerte Regelungsgesetz anzuwenden ist.

Fafit man die Ergebnisse aus Abschnitt 3 mit den vorstehenden dieses Abschnitts zusam-

men, so wird erhalten:

Satz 4.1

Die Nulldynamik linearer Systeme sowie von BLS und QLS in Regelungsnormalform
1aBt sich durch Parallelschalten eines linearen Kompensators in Regelungsnormalform
so verandern, daf} das entstandene Frsatzsystem eine global giiltige lineare Nulldynamik

mit beliebig vergebbaren ,stabilen® Nullstellen hat. O

Bemerkung:
Fiir beliebige ALS lassen sich zu Satz 4.1 analoge Ergebnisse fiir eine lokale Umgebung
in einer Gleichgewichtslage finden, wenn die Nulldynamik des ALS in Isidori-Normalform

in die betrachtete Gleichgewichtslage linearisiert wird. O



