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1 Einleitung

Fiir die erfolgreiche Lésung von regelungstechnischen Aufgaben sind die Kenntnisse {iber
die Figendynamik wie auch iiber die Nulldynamik der zu regelnden Strecke wesentlich. Ist
die Nulldynamik eines Systems instabil —im Falle der linearen Systeme existieren Nullstel-
len der Uberlagerungsfunktion mit positiven Realteilen — ist die erfolgreiche Losung einer
Regelungsaufgabe sehr erschwert: Viele durchaus bewdhrte Ansatze zur Synthese eines
Reglers sind dann nicht anwendbar. Dazu gehéren adaptive Regelungstrukturen (Hahn
u. a. 1982), die Methode der exakten Linearisierung, der exakten Folgeregelung, der ex-
akten Entkopplung bei Mehrgrofenregelungssystemen und manches mehr (Isidori 1989,
Schwarz 1991).

Die entsprechende Problematik wird dadurch erschwert, daff zwar die Figendynamik eines
Systems durch Riickkopplung veradnderbar ist (ein wesentlicher Grundsatz der System—
und Regelungstheorie), aber die Nulldynamik énvariant gegeniiber Riickfiihrungen ist
(Kailath 1980, Schwarz 1992). Um die durch instabile Nulldynamik verursachten Probleme
zu umgehen, sind unterschiedliche Vorgehensweisen bekannt geworden. Fiir die adaptive
Regelung linearer Nichtphasenminimumsysteme schlagen (Hahn und Unbehauen 1982)
vor, das Zahlerpolynom des zu regelnden Systems dadurch zu verdndern, dafl der Regel-
strecke ein lineares Phasenminimumsystem parallel geschaltet wird, so dafl das dadurch
entstandene Ersatzsystem nur Nullstellen mit negativen Realteilen hat. Das adaptive Re-
gelungssystem wird nun fiir dieses Ersatzsystem entworfen, und der Gesamtregler besteht

dann aus dem parallelgeschalteten Kompensator und dem adaptiven Regelungsgesetz.

Eine andere Vorgehensweise, die fiir Zustandsregelungen anwendbar ist, schlagen (Ben-
venuti u. a. 1993) vor. Hier wird fiir analytische Systeme mit linearer Steuerung (ALS)
die nichtlineare algebraische Gleichung, die das Ausgangssignal y(¢) mit den System-
zustdnden verkniipft, in mehreren Teilschritten so modifiziert, daf} beziiglich des modi-
fizierten Ausgangs y(f) das System eine stabile Nulldynamik hat. Instabile Nullstellen
des Jacobi-linearisierten Streckenmodells werden dabei eliminiert. Fiir das modifizierte
Streckenmodell wird dann das in Frage stehende Regelungsgesetz entworfen und anschlie-

Bend auf das urspriingliche Systemmodell angewendet.

In diesem Forschungsbericht wird dargestellt, dafl auch fiir allgemeine nichtlineare Sy-
steme des Typs ALS durch lineare Parallelkompensatoren sowohl der Differenzengrad
verringert als auch die Nulldynamik verdndert werden kann. Die hier vorgestellten Ergeb-
nisse stellen dabei eine Verallgemeinerung der von (Hahn u. a. 1982) fiir lineare Systeme
entwickelten Idee dar. In Abschnitt 2 wird als Referenz zunéchst knapp der lineare Fall
dargestellt und auf die Form von Zustandsmodellen gebracht. Die Darstellung der Null-
dynamikverdnderung durch lineare Parallelmodelle fiir ALS wird dann in Abschnitt 3

ausfiithrlicher diskutiert.



2 Veridnderung der Nulldynamik linearer Systeme

durch Parallelkompensation

Wie von (Hahn u. a. 1982) vorgeschlagen und in (Schwarz 1994) knapp zusammengefaft
dargestellt, 1a8t sich die Nulldynamik eines linearen Systems — also die Lage der Nullstel-
len in der s-Ebene — durch Parallelkompensation verdndern. In Bild 2.1 ist die hier zu

diskutierende Parallelkompensation als Blockschaltbild dargestellt.
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Bild 2.1: Zur Parallelkompensation eines linearen Systems

Das gegebene System werde durch die Ubertragungsfunktion /'(s) und der Kompensator
durch Fj(s) als echt gebrochen rationale Funktion charakterisiert:

Z(s) _ Z7(s)- 27 (s)

T = N TV e
H{Z(s)} = m=mt+m~ (2.1)
6{N(s)} = n=nt4+n" , m<n |,
mit
Z7(s) = (s=Ny)...(s=N,-) ; RAN7}>0
(2.2)
N=(s) = (s—F)...(s—P_) ;. RAP} >0
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Fir das Ersatzsystem F.(s) in Bild 2.1 gilt dann:
e 2 2Me) - Za(s)
F.(s) = F(s)+ Fy(s) N.(s) ~ N*(s)N—(s) Ny, () o)
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N*(s)N= () Niy (s)




War das gegebene System instabil, dann muf} auch das Ersatzsystem durch Riickfithrung
stabilisiert werden. Die noch frei wiahlbaren Polynome Zj, (s) , Ni, (s) in (2.3) sind so zu
bestimmen, daf§ fiir Fi(s) gilt:

5{Zk(8)} = mg
O{Ni(s)} = nu

In der Anwendung kann dabei my = nyg, also Fi(s) ist keine echt gebrochen rationale
Funktion, zugelassen werden, da der Kompensator als Algorithmus zusammen mit dem
iiberlagerten Regelungsalgorithmus als Rechnerprogramm realisiert wird. Dariiberhinaus
ist das Hauptauslegungskriterium, dafl in (2.4) das Zahlerpolynom nur Nullstellen mit
negativen Realteilen hat.

In (Schwarz 1994) wurde darauf hingewiesen, dafl bei der Systemrepréasentation in Form
von Zustandsmodellen die Verhéaltnisse dann besonders ibersichtlich werden, wenn sowohl
das gegebene lineare System als auch der Kompensator jeweils Regelungsnormalform ha-
ben, und im Falle eines stabilen Systems fiir beide Systeme exakt die gleiche Dynamik
(Systemmatrix A) angesetzt wird.

Ist in einem praktischen Anwendungsfall — wie sicherlich haufig — das charakterisierte Po-
lynom der Regelstrecke nicht exakt bekannt, kann kein Parallelkompensator mit gleicher
Dynamik entworfen werden. Unter Bezug auf Bild 2.1 wird dem gegebenen System F(s)
ein Zustandsmodell mit @1(¢) € R™ und dem Kompensator mit @;(¢) € R™ zugeordnet.
Ohne Verlust an Allgemeingiiltigkeit kann aus Griinden der Ubersichtlichkeit fiir beide
Teilsysteme Regelungsnormalform angenommen werden, so daf fiir das Ersatzsystem die-
ses Zustandsmodell existiert:

ot
(1) = &1(1)
| k(1) -
[0 1 0 ' 0
0 0 1 0
0 0
0 1 Ky
== —agg . —a1Ny —1 Q?(t)—|— 0 U(t)
0 1 0 :
0 0 1 0 :
0 0
i _ako o .. o .. _ak2nk’ —1 ] [(2
y(t) =[cio o.-... Ctm-1 1 0 ¢y oooocgmr —1 1 0]a(). ) ]
Hierin ist @(¢) € R™*™ und fiir die Differenzengrade der beiden Teilsysteme gilt:
dl = N1 —m (2 7)

dy = np—my

(2.6)



Wird nun das Gesamtsystem untersucht, dann wird mit

A O
A=
oA

fiir den Differenzengrad des Gesamtsystems (2.6) gefunden

cT'Av% = 0
cTA"D £ 0 (2.8)
d = min(dy,dy)

Die Nulldynamik des Ersatzsystems hat die Dimension:
w=ny+np—d . (2.9)

Bei geeigneter Wahl des Parallelkompensators sind hinreichend viele Parameter vorzuge-

ben, um eine stabile Nulldynamik des Ersatzsystems zu erzeugen.

Beispiel 2.1
Gegeben sei ein Nichtphasenminimumsystem
s—b
F(s)=k——
(5) aop + a5 + 82
Mit dem Kompensator
s
ag + s
hat das Ersatzsystem diese Form
K(s—bo)(ag+ s)+ Blao+ a1s + s%)
(a1 4 a1s + s?)(ag + 5)

Fk(S) =

Fu(s) = F(s)+ Fy(s) =
Wird g = — K gewihlt, ist
Ze(s) = =K (agbo + ag) + K(a + by — ay)s

Mit (aobo + ag) > 0 und (a4 by — a1) < 0 ist mittels des noch freien Parameters aq

zu erreichen, dafi Z.(s) eine Nullstelle mit negativem Realteil hat. O
Beispiel 2.2

Als Uberleitung zum nachsten Abschnitt soll fiir das System F(s) und den Kom-
pensator Fj(s) aus Beispiel 2.1 die Nulldynamikveranderung im Zustandsmodell

dargestellt werden:

Sels)  a(l) = [ 0 11]w1<t>[;]u<t>

Tr(s) @) = —aoxa(t) + Bult)



Es werden diese Systemmodelle in (2.6) eingesetzt:

0 1 0 0

x(t) = —ag —a; 0 x(t)+ | K |u(t)
0 0 —ao I¢]

y(t) = [bo 1 1]a(t)

Fine Transformation auf Isidori—-Normalform liefert mit
z21(t) = za(t) =y(t)

1) = z¢(1

() y(t) = z1(t)

z3(t) = wa(t)

box1 (1) + xa(t) 4+ x3(t)
x3(t) = z1(f) — boz2(t) — z3(1)

I
%)
N
o~
S—’

Z(t) = el Ax(t) + eTbu(t)

= [—ap:by—ar: — aole(t) + [K + Blu(t)
Zo(t) = @1(t) = @1(t) = z3(8)
Z5(t) = @2(t) = —apr1(t) — arxa(t) + Ku(t)

= apz(t) —a1z3(t) + Ku(t)

Die Nulldynamik hat mit d = 1 die Dimension g = n — d = 2 und wird nun durch

»Ausgangsnullung® ndher untersucht. Mit

y(t) = Zl(tl)zza(t)zo ;
ult) = gglaoz(t) + (0 = bo)za(t)] = colboza(t) + 25(1)]
manit o0 = [0 =L ][0 ]
worin = Ky = — Ki 6[%_%60]_%
K, = K[i [a1 — bo — cg) — ay
ist. O

3 Kompensation der Nulldynamik von ALS

Die bisher fiir gegebene lineare Systeme besprochene Anderung der Nulldynamik durch
Parallelkompensation ist auch fiir nichtlineare Systeme der Klasse ALS auzuwenden (Bild
3.1). Mittels eines parallel angeordneten linearen Systems kann einmal der Differenzengrad

verdndert, genauer verkleinert werden.



Bild 3.1: Zur Beeinflussung der Nulldynamik von ALS

Sei d der Differenzengrad des ALS und dj, der des linearen Kompensators, dann gilt fiir

den Differenzengrad des Ersatzsystems
d. = min(d, dy) ) (3.1)

Behmenburg (1994) benutzt die Parallelkompensation fiir die Auslegung eines ,sliding
mode“—Reglers, fiir dessen praktischen Einsatz ein vorgegebener (relativ kleiner) Differen-
zengrad zweckméfig ist. Zumindest in der Umgebung eines Arbeitspunktes kann die fiir
diesen Punkt Jacobi-linearisierte Nulldynamik eines ALS mit instabiler Nulldynamik so
beeinfluit werden, daff die Nulldynamik des Ersatzsystems (lokal) stabil ist. Ohne Verlust
an Allgemeingiiltigkeit sei angenommen, dafl ein gegebenes ALS in Isidori-Normalform

vorliegt:

(t) = a(t)
To(t) = as(t)

i}d_l(t)‘ = l’d(t)
Fa(t) = alz)+ bla)u(t)
Fa(t) = () = (3:2)
Ba(l) = i(t) = gu(a)
y(t) = a(1)
zeR" ; x=




Fiir den Kompensator wird Regelungsnormalform angenommen:

0 1 0 - 0 ] 0
0 0 1 0 :
0 0 o0 .- 1 0
| —do —0q | ] I K |
Mit
x(t) = [zq, ... ,2,)]  €R"
a:k(t) = [l’kl, ,l’]mk]TERnk

erhilt das Zustandsmodell des Ersatzsystems diese Form:

b e [F0] (2] |
K

y(t) = [10bo ... by, 10Jac(t); & € R™T"F

(3.4)

(3.5)

Im Anwendungsfall muff dann in einem weiteren Schritt das System (3.5) auf Isidori—

Normalform transformiert werden.

Beispiel 3.1 In (Isidori 1989. Beispiel 4.1.4, S. 154) ist dieses ALS gegeben:

T2y + @ 0
1 2 + 21’3
e = ||
SI/’% + 29

s =1[000 1]a(t)

Es ist leicht zu priifen mit

41’1 — $'1 —|— j/’g = 41’1[1’11’2 —|— $?] —|— 1 —|— (2 —|— 2$3)U(t> 5

daBl das System den Differenzengrad d = 2 hat.

Es wird nun mit dem Parallelkompensator:

TR(t) =
yi(t) =

—ax(t) + Ku(t)
l’k(t)



das Ersatzsystem

T1x + :1?:1)’ 0
. 1 2 —|— 21’3
(1) = l &(1) ] S S T T
$2(t) 513% + 29 0
| —ary | K]

y(t) = x4+ a22=1[0001 1]a.(t)
bestimmt. Dieses System hat mit
Y(t) = a4+ 75 = 22 + 29 — axp + k- u(t)

den Differenzengrad d = 1, und damit hat die Nulldynamik des Ersatzsystems die

Dimension m = 4.

Mit der Koordinatenwahl:
z1(t) = za(t) = a4(t) + 21(t) =[000 1 1]a(t)

$1t = th
Al) = znlt) = wl) ) = =)
B B zo(t) = z3(1)
z3(t) = = xy(t) B
B B z3(t) = z(1)
zy(t) = = a3(t) .
z(t) 21(t) — 24(t) = 21(t) — 25(t)

erhilt das Ersatzsystem diese Normalform:

Z(t) = zo(t) + z3(t) + alz1(t) — z5(t) + Ku(t)

H(t) = =(t)- =) + (1)

Z(t) = 21) + (24 2z4(2))u(?)
all) = —z(l) + u(t)

Z5(19 = 23(t) + z3(t)

y(t) z1(1)

Uber die , Ausgangsnullung®

y(t) = () =2z1(1) =0 = z3(t) + 23(1) + azs(t) + Ku(t)

() = — zo(t) + 23([? + azs(t)

ist die Nulldynamik des Ersatzsystems bestimmt zu

(1) = wlt)(l) + 2(0)

ég(t) — Zz(t) . OéZS(t) + Z;((t) + Zg(t) (2 n 224(t))
a(t) = —zy(t) = 22 2! £ ()
Z(t) = 23(t) + 2(t)

K



Die Jacobi—Linearisierung der Nulldynamik lautet

0O 0 0 0
-2 =2 —«

A-| K K K
-1 -1 —«
K K = K
o 1 0 0 |

Diese Matrix hat die Figenwerte A\; = 0, A2 = —1, A3(er, K') und Ay(ar, K); A3 und Ay

lassen sich damit geeignet festlegen.

4 Zusammenfassung und Ausblick

In diesem Bericht wurde dargestellt, dal die Methode zur Veranderung der Nulldyna-
mik mittels Parallelkompensatoren, die vor ewa 10 Jahren fiir lineare Systeme entwickelt

wurde, auch auf nichtlineare Systeme der Klasse ALS anwendbar ist.

e Unter welchen Voraussetzungen hat ein technisches System eine instabile Nulldyna-
mik?

o Wie grof} ist die Dimension der Nulldynamik in Abhangigkeit vorgegebener System-

strukturen?

e Kann sich durch Approximation eines ALS durch BLS, QLS oder Polynomsysteme
mit linearer Steuerung die Dimension der Nulldynamik und/oder der Typ (sta-
bil /instabil) d&ndern?
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