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Nomenklatur

Nomenklatur
A Systemmatrix
b Eingangsvektor
C Ausgangsmatrix
EI Biegesteifigkeit
Ey kinetische Energie
E, potentielle Energie
F Systemmatrix des Beobachters
I Einheitsmatrix
L, Tragheitsmoment der Welle
k Parameter der Figenfunktionen
K, Verstarkungsmatrix des Beobachters
) Lange
q(t) verallgemeinerte Koordinaten
r Zustandsriickfithrungsvektor
R/ Menge der fx1-Vektoren

R/ x R/ Menge der fx f-Matrizen
t Zeit

u(t) Steuervektor

ws(t) Sollwert

w(x,t)  elastische Deformation
x(t) Zustandsgrofe

y(1) Ausgang

y(x,t) absolute Verschiebung

0 Nullmatrix

p gleichmifig verteilte Masse
(1) Winkel des Motors

é(x) Eigenfunktion

A Parameter der Figenfunktionen

Eigenfrequenz
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1 Einleitung

Anfang der siebziger Jahre begannen die Untersuchungen von Handhabungssystemen mit
elastischen Gliedern (Gevarter 1970). Seitdem sind viele Untersuchungen iiber die Rege-
lung elastischer Handhabungssysteme durchgefiihrt worden (Bayo 1987, Cetinkunt und
Yu 1991, Cetinkunt und Wu 1992, Chapnik u.a. 1991, Feliu u.a. 1993, Wang und Vi-
dyasagar 1991, 1992, Yuan u.a. 1993). Bei vielen Aufgabenstellungen, insbesondere in
der Raumfahrt, ist eine Gewichtsreduktion der Handhabungssysteme gefordert. Um hohe
Geschwindigkeiten zu erreichen und die Energieverluste zu verringen, werden elastische
Arme, die als Systeme mit verteilten Parametern betrachtet werden, eingesetzt. Die Re-
gelung der elastischen Handhabungssysteme hat nicht nur die Aufgabe, eine vorgegebene
Bahn zu verfolgen, sondern soll auch die wegen der Elastizitat auftretenden Schwingungen
unterdriicken. Im Hinblick auf die Regelung muf} zuerst ein geeignetes Modell bestimmt

werden.

Die Deformation eines elastischen Armes ist im Raum kontinuierlich, wobei die Dynamik
solcher Systeme durch partielle Differentialgleichungen beschrieben wird. Diese Gleichun-
gen kénnen mit Lagrange—, Hamilton— oder Euler—Newton—Verfahren aufgestellt werden.

Man nimmt {iblicherweise an, daf}

1. der elastische Arm sich in einer Ebene bewegt,

2. der Arm nach der Euler-Bernoulli-Balkentheorie einem schlanken Balken entspricht

sowie eine kleine Deformation besitzt und

3. die Masse des Armes gleichférmig verteilt ist.

Bei der Auflésung der partiellen Differentialgleichungen kénnen nur selten exakte Losun-
gen gefunden werden, wenn das System komplex ist. Deswegen versucht man, solche Syste-
me mit gewbhnlichen Differentialgleichungen darzustellen, d. h. die elastische Deformation
wird durch unendlichdimensionale, gewéhnliche Differentialgleichungen beschrieben. Da-
zu werden die Rayleigh—-Ritz Methode (assumed-mode method) oder Finite-Elemente—
Methoden angewendet (Cordes 1992). Um einen Regler zu entwerfen, ist das System
ndherungsweise durch eine endliche Zahl von Eigenfunktionen zu beschreiben. Die rest-
lichen Figenfunktionen werden vernachléssigt. Es werden meistens Figenfunktionen vom
einseitig gelenkigen Balken (pinned—free mode) und vom einseitig eingespannten Balken
(clamped—free mode) verwendet, wobei nur einige Eigenfunktionen (meist zwei oder drei)

beriicksichtigt werden.

Es sollte ein konstanter, robuster Regler oder ein adaptiver, zeitverdnderlicher Regler
gewdhlt werden, um die wegen der Parameterdnderungen (z. B. verschiedene Zusatzmas-
sen am Balkenende) unerwiinschten Schwingungen zu unterdriicken. Oakley und Cannon

(1989) sowie Yuan u.a. (1993) wenden PID-Regler an, wahrend ein adaptiver Regler von
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Cetinkunt und Wu (1992) entworfen wurde. Ein Regelungskonzept mit Hilfe der passiven
Regelungstheorie ist von Wang und Vidyasagar (1992) durchgefiihrt worden. Der vorlie-
gende Bericht stellt einen Regler mit Hilfe der Zustandsriickfiithrung vor, wobei nur eine
elastische Figenfunktion weiterverwendet wird. Ein reduzierter Beobachter 2.0rdnung,

der Schéatzwerte fiir die nicht gemessenen Zustande liefert, wurde entwickelt.

Fir die Simulation bzw. die Darstellung der Systembewegung wird die Animation des
Systems durchgefithrt. Fiir die Animation unter MATLAB werden einige Vorschlige ge-
geben, um die Animationsdauer zu verkiirzen. Im folgenden Abschnitt wird zunéchst die
Modellbildung eines elastischen Armes vorgestellt. In Abschnitt 3 werden Analyse, Syn-
these und Simulation des Systems dargestellt. Fine Zusammenfassung mit anschlielendem

Ausblick beendet diesen Bericht.
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2 Modellbildung eines elastischen Manipulatorar-

mes

In diesem Abschnitt werden die Bewegungsgleichungen, das Zustandsmodell sowie die

Gewichtsfunktionen eines elastischen Manipulatorarmes vorgestellt.

2.1 Beschreibung des elastischen Armes

Ko

Kl Ay

\ﬂ\

Iw 0(t)
\

Mot
u\(tr'o or

Bild 2.1: Ein elastischer Arm

Als ein einfaches Beispiel elastischer Handhabungssysteme wird ein direkt von einem
Gleichstrommotor angetriebener, unbelasteter und elastischer Arm der Lange [ (Bild 2.1)
betrachtet. Die Biegesteifigkeit und die gleichméfig verteilten Masse werden durch KT
und p beschrieben, das Stellmoment des Motors durch u(t). Der Arm dreht in einer ho-
rizontalen Ebene. Die Referenzsysteme sind hier willkiirlich mit Ky und K; bezeichnet,
wobei 6(t) dem Winkel des Motors entspricht. Die elastische Deformation wird durch

w(x,t) bezeichnet, wahrend fiir die absolute Verschiebung eines beliebigen Punktes
(o, t) = 0(t)a + w(z, 1 2.1)

gilt. Die Deformation w(x,?) kann nach der Rayleigh-Ritz Methode diskretisiert werden
(Meirovitch 1967) :

wla, ) = iQi(t)¢i($)

Dabei entspricht die ¢;(¢) den verallgemeinerten Koordinaten und ¢;(z) die Eigenfunktio-
nen. Wenn die Eigenfunktionen des einseitig eingespannten Balkens verwendet werden,
dann kénnen die ¢;(x) durch

di(x) = [ (cosh (\;jx) — cos (A;x) — k; (sinh (M) — sin (M) (2.2)
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beschrieben werden (Fraser und Daniel 1991) mit
_cos (Ail) 4 cosh (Al)
~ sin (A:l) + sinh (A1) ’

und A; den Wurzeln der Gleichung

1 + cos (M) cosh (A1) =0

Die Eigenfunktionen erfiillen die folgenden orthogonalen Bedingungen:

l
| poutarosarde = o,

2 2
/ E]a oilz) 9 qu( )d:zj = pl’w?éi;
Ox?

! 2pl3
7 d = N2 )
/0 proi(z)dr = =5
wobei die Figenfrequenzen
w2 — ﬂ)\4
o
sind. Fiir das Kroneckerdelta gilt
{ 0 , wennzi#j
52']‘ =

1, wenni=)

(2.3)

(2.4)

(2.5)

(2.6)

(2.8)

(2.9)

Nach der Euler-Bernoulli-Balkentheorie wird angenommen, dafl die Deformation klein

und der Arm schlank ist. Dann werden die gesamte kinetische Energie und die potentielle

Energie berechnet zu

T B e

= %/ ( J}—I—ZQZ 2:1;) d:)(;—l—%]wé(t)2 ,

1 ) ’
1 o)\
_ _/ Bl (qu (x)) dx
Unter Verwendung der Gleichungen (2.5) bis (2.7) kénnen FEj und E, in
P’

By = 5 ((? +1 ) 0 (1) + 4pl%0 (t)i q;(f) + Ni’)iqi (t)2) und

1 o0
E, = 5ol a (1) w;

(2.10)

(2.11)

(2.12)

(2.13)
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umgeschrieben werden. Es gelten die Lagrange—Gleichungen

a( oL oL o
5(8@@)) ~5a = Li=1,2, (2.14)
a (oL oL
_t(aé(t))_aﬁ(t) - 1)
mit
L = B—F,
5 (5 + 1) dorearoo 50 4P 5 0r)
_%pzi’);qi(t)%f : (2.16)

Es folgen die unendlichdimensionalen Bewegungsgleichungen

& e
(5 n)io+ 22000 = w (217)
- 2/’13 3. 3 2
> )\2 +Zpl s )+Zpl wig(t) = 0 . (2.18)
=1 =1

Werden nur die ersten n Eigenfunktionen weiterverwendet und der Rest vernachlassigt,

dann kénnen die Gleichungen in der Matrixform
Mi(1) + Kq(t) = ult) (219)

dargestellt werden. Die Matrizen M, K € R"*! x R"*! und die Vektoren q(t),u(t) €
R™! des Modells sind definiert als

NN
3 AT e 0 T
2pl3 " (*)
— P o t
M - ST =" e
: 0o . '
2pl° qn (1) ]
b or
[0 u(t)_
plPwi 0 0
K = . Cu(t)=| . (2.21)
i plw;, 0
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2.2 Zustandsmodell

Der Zustandsvektor (1) € R2" 1) des Systems wird aus q(#) und seiner ersten zeitlichen

Ableitung q(t) gebildet:

_a)
x(t) = [ alt) ] : (2.22)
Durch Auflésen von Gleichung (2.19) nach ¢(¢) kann der Vektor @(¢) bestimmt werden:
o Tan]_ a0
=150l el wao ] 22

Dann gilt fiir das Zustandsmodell

&(t) = Az(l)+ bu(l) (2.24)

y(t) = CTx(1) (2.25)
mit

AZ[—MO—lK ﬂ Cb=10 ... 0 myy ... Mg mn+171]T. (2.26)

Hierbei ist I € R x R"*! die Einheitsmatrix. Die letzten n + 1 Elemente des Vektor
b € R2" stellen die erste Spalte von M ~! dar. Die Matrix C ist von den gewéahlten

Ausgangsgrofen abhéangig. Hier werden der Winkel #(¢) und die absolute Verschiebung
des Endpunktes y(I,) betrachtet. Dann gilt C € R+ x R? und

T
C:ll 0O ... 0 ... 0

I o (D) .. ¢u(D) ... 0 (2.27)

2.3 Gewichtsfunktionen des offenen Regelkreises

Der in Bild 2.1 dargestellte elastische Arm wurde mit den in Tabelle 2.1 gegebenen Para-

metern des Systems simuliert.

Lange [ (m) 1,0
Biegesteifigkeit £1 (Nm?) 1,0
gleichméBig verteilte Masse p (kgm™) || 0,8
Tréagheitsmoment der Welle I,, (kgm?) || 0,9

Tabelle 2.1: Parameter des Systems

Es wird nur die erste Eigenfunktion ¢1(x) weiterverwendet, und die restlichen Eigen-

funktionen werden vernachléssigt. Dann folgt fiir das System ein Zustandsmodell vierter



2 Modeliblldung eines elastischen Manipulatorarmes 7

Ordnung. Fiir den einseitig eingespannten Balken ist A;/ = 1,87510 (Bishop und John-
son 1979) und deswegen Ay = 1,87510. Nach der Gleichung (2.8) kann die Eigenfrequenz

berechnet werden zu
wy & 3,93 rad/s . (2.28)

Analog ergeben sich fiir das System mit zwei Eigenfunktionen (¢1(x), ¢o(x)) und mit drei
Eigenfunktionen (¢1(x), ¢2(x), #5(x)) die in Tabelle 2.2 dargestellten Werte.

‘ i ‘ Al ‘ wi(rad/s) ‘ Ordnung des Zustandsmodells ‘

1[1.87510 ] 3.93 4
2 [ 4,69409 | 24,64 6
3| 7,85476 | 68,98 8

Tabelle 2.2: Figenfrequenzen verschiedener Eigenfunktionen

Die Gewichtsfunktionen des offenen Systems fiir die verschiedenen Modelle sind in den
Bildern 2.2 bis 2.4 dargestellt.

9

y(Lt) [m]

o(t) [rad]

t [s]
Bild 2.2: Gewichtsfunktion des offenen Regelkreises mit der Eigenfunktion ¢q(x)
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o o 2 @@

y(Lt) [m]

o(t) [rad]

t[s]

Bild 2.3: Gewichtsfunktion des offenen Regelkreises mit den Eigenfunktionen ¢4(2) und

o)

y(Lt) [m]

[Av] o =
T

o(t) [rad]

Bild 2.4: Gewichtsfunktion des
¢1(2), ¢2(x) und ¢a(x)

offenen  Regelkreises

mit

den

Eigenfunktionen
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Ohne Beriicksichtigung der Reibungskréifte erhdlt man als Gewichtsfunktionen des offe-
nen Systems ein rampenformiges Verhalten mit tiberlagerten Schwingungen. Es ist noch
unklar, wie viele Eigenfunktionen in Hinsicht auf eine Regelung weiterverwendet werden
sollten (Fraser und Daniel 1991). Fiir dieses System gibt es keinen grofen Unterschied
zwischen Bildern 2.3 und 2.4, d. h. fiir die Modellbildung kann das System mit zwei
Eigenfunktionen verwendet werden.
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3 Analyse, Synthese und Simulation des Systems

Fir die Regelung wurde zuerst ein einfaches Modell, das nur eine elastische Eigenfunktion

é1(x) besitzt, angewendet. Dann ergibt sich das Zustandsmodell:

2(1) = Ax(t)+bult) @o=2(0)=0 (3.1)
y(t) = CTan (32)
mit
[0 0 1 0
w) = [0 a@imam] A=l o] (33)
| 0 -19,859 0 O
b= [0 0 1,102 0,627 ,C:-i g 8 8 . (3.4)

3.1 Steuerbarkeit und Beobachtbarkeit

Zum Entwurf eines Zustandsreglers miissen die beiden Systemeigenschaften Steuerbarkeit
und Beobachtbarkeit gepriift werden. Die beiden Figenschaften zeigen, ob die Stell- und
MefBglieder in ausreichender Anzahl und an den richtigen Stellen benutzt werden. Dazu
stehen die Kriterien von Kalman und Hautus fiir lineares zeitinvariantes System der Ord-
nung n zur Verfiigung. Das Kriterium von Kalman {iberpriift den Rang der wie folgt aus

den Systemmatrizen aufgebauten Matrizen:
Q = [b | A | ... | A7
P = |C | ATC | ... | (AT)"'C |

Wenn Rang@ = n, dann ist das System vollstdndig z—steuerbar. Wenn RangP = n, dann
ist es vollstandig beobachtbar (Schwarz 1971). Hier wurde das durch die Gleichungen
(3.1) und (3.2) bezeichnete Modell, das den elastischen Manipulatorarm naherungsweise
beschreibt, nach dem Kriterium von Kalman gepriift. Es ergibt sich als Resultat, daf} alle

Zustandsgréfien vollstandig steuerbar und beobachtbar sind.

3.2 Entwurf eines Zustandsreglers

Eine vollstandig steuerbare und beobachtbare Regelstrecke kann durch eine konstante
Zustandsriickfithrung u(t) = —rTa(t) geregelt werden. Damit das System nicht nur einer
Abweichung vom Nullzustand entgegenwirkt, sondern einer Fithrungsgréfie folgen kann,
wird eine Sollwerteingabe wy(t) = 0,5rad (Winkel des Motors) vorgegeben. Aus u(t) =

sw,(t) — vl (t) erhilt man das Zustandsmodell des geregelten Systems

2(1) = (A—brT)a(t) +bsw,(t) (3.5)
y(t) = Cla(t) . (3.6)
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Die Sollwertverstarkung s ist vom Riickfiihrungsvektor » abhingig und wird nach der

Berechnung von = bestimmt.

Die Wahl der Pole des geschlossenen Systems wird entsprechend der Giite der Regelung,
z. B. fiir die Schnelligkeit, durchgefithrt. Dazu muf} ein geeigneter Kompromifl zwischen
der Schnelligkeit und der Dampfung gefunden werden. Auflerdem ist auch zu beachten,
dafl durch die Riickfiihrung keine Pol-Nullstellenkompensation auftritt. Die Pole des ge-

schlossenen Systems sind vorgegeben als
s12=—5=%734,5 834 = —10 .

Damit folgt
ry = 265,55, ro = —64, r5 = 111,15, ry = 147,4 .

Aus der Forderung, dafi der Winkel 6(¢) dem Sollwert w;(t) entsprechen sollte, folgt s = r.

3.3 Entwurf eines reduzierten Beobachters

Die Zustandsriickfithrung basiert auf der Annahme, daf§ alle Zustandsgréfien @ mefibar
sind. Aber tatsdchlich ist das nicht der Fall. Aus Kostengriinden oder mefitechnischen
Griinden sollen hier der Winkel §(¢) und die Position des Endpunktes y(/,t) erfait wer-

den. Deswegen wird ein reduzierter Beobachter 2.0rdnung, der Schitzwerte é(t) und gj(l, t)
fiir die nicht gemessenen Zustande 6(¢) und y(l,t) liefert, entwickelt. Ein vollstandig be-

obachtbares lineares zeitinvariantes System kann durch

Bt I it | bt B P R .
vy = [1 o] [ 20 e a8

beschrieben werden. Dabei ist der Zustandsvektor @1(t) € R7 meBbar, wihrend xy(t) €

R"~/ geschitzt werden soll. Fiir die Dimensionen der Matrizen gilt:

A € RS x RS ,Alz € RS x R*/ ,A21 € R x RS ,
Ay € R/ x R*f 7b1 € RS ,bz € R/,

Aus den Gleichungen (3.7) und (3.8) ergibt sich somit

a:l(t) = Anazl(t) + Alzwz(t) + b1U(t) = All’y(t) + Alzwz(t) + b1U(t) 5 (39)
wg(t) = Aglwl(t) + Agzwz(t) + bQU(t) = Azl’y(t) + Agzwz(t) + bQU(t) 5 (310)
y() = @:(1) . (3.11)

Dann gilt fiir das Subsystem das Zustandsmodell
wg(t) = Agzwz(t) + Azl’y(t) + bQU(t) 5 (312)

yo(t) = Apxs(t) =y() — Any(t) — bu(t) . (3.13)
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Ein Beobachter der Ordnung n — f wird dem Subsystem der Form
25(1) = Fo(t) + Gy (1) + hu(t) + Any(1)
hinzugefiigt mit

F = A22_K1A12 )
G — K1 5
h — b2 .

Unter Verwendung der Gleichung (3.13) kann (3.14) in

2a(t) = (Ap— KiAp)as(t) + (An — K1 An)y(?)
+ (b — Kiby)u(t) + Kiy(1)

umgeschrieben werden. Fiir z(t) := &4(¢) — Kyy(t) folgt

2(t) = (Ap—KiAp)z(t)+ (An — KiAn + (A — K Ap) Ky) y(t)

+  (by — Kiby)u(t)
= Fz+ Gy, + hu(t) )
zo(1) = =(t) + Kiy(t)

(3.14)

(3.17)
(3.18)

Die Pole des Beobachters sind durch die Matrix K festzulegen und koénnen beliebig
gewahlt werden. Die Matrix K wird so gewdhlt, dal der Beobachter stabil ist. Damit
der Beobachtungsfehler schneller abklingt als die Zeitvorgdnge im System, sollten die Pole

des Beobachters weiter links als die Streckenpole in der s-Ebene liegen. Werden aber die

Pole zu weit nach links verschoben, so wird das System sehr storempfindlich (Follinger

1978). Bild 3.1 zeigt das Blockschaltbild des geregelten Systems.

Mit der Lineartransformation

1 0 0 0
[ 1
— 0 0
_ | ) el
=1 " " 0( ) 1 0
0 0 — [ 1
L $1(l) ¢1(1) |
gilt fiir
6 (t) (1)
q (1) y(L,1) -
x(t) = 0 (1) =T ' =Tx(t)
¢ (t) Y (lv t)
Nach Gleichung (3.1) und (3.2) ergibt sich

x(t) = T 'AT&(t)+ T 'bu(t) = Apa(t) + bru(l)
y(1) = C'Ti(t) = Cra(l)

Y

(3.19)

(3.20)
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Ws(t) u(t) X(t) f X(t)

(G -

Y oz(y j z(t)

-— Kl <'i

Bild 3.1: Blockschaltbild des geregelten Systems

mit
[0 0 10 0
0 0 0 1 0
Ay — by = 2
4 ~3,873 3,873 0 0| 1,102 |’ (3.23)
| 15,986 —15,986 0 0 —0,152
- T
1000
Cr = : 24
’ 010 0] (3:24)

Die Elemente des Vektors @1(t) = l 0 gti

‘ y(l,1)
ig(t):[ 952

] geschétzt werden mufl:

] sind mefibar, wahrend der Zustandsvektor

y (L)
o = [ =L A [20 ]+ 5] 529
gy = |1 0][2:8]:&1@), (3.26)

an=lyo] A=y U] (3.21)
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—3,873 3,873 00
A — ’ ’ A = 2
A l 15,986 —15, 986 ] ’ - l 0 0 ] ’ (3.28)
0 1,102
b, = b, = ’ : 2
! [0] o [—0,152] (3.29)
Vorgegeben sind die Pole des Beobachters zu sy 3 = —15. Dann ergibt sich
K, — 15 0
0 15
Fiir das System mit reduziertem Beobachter gilt das Zustandsmodell 6.0rdnung
(1) A Ap 0] [ &(t) by
ig(t) = A21 A22 0 ig(t) + b2 U(t) 5 (330)
2(t) G 0 F z(t) h
(1)
gty = [I 0 0] @) (3.31)

u(t) = rlws(t)—rTa:(t)
= rws(t) — T (1)

_ T y(1)
= rws(t)—r'T [ (1) + Kig(t) ] . (3.32)

Fiir die Matrizen gilt

—15 0
F = 3.33
0 —15] ’ (3.33)
) [ —929
o - 8,873 3,873 | (3.31)
15,986  —240, 986
1,102
h = ’ .
| —0,152 (3.35)

3.4 Simulationsergebnisse und Animation

Das in den Bildern 3.2 und 3.3 dargestellte Regelverhalten fithrt zu dem Ergebnis, dafl
der geregelte elastische Manipulatorarm hinreichend genau positioniert werden kann. Die
wegen der Elastizitdt auftretenden Schwingungen werden unterdriickt.

Um die Systembewegung aller Arbeitspunkte deutlich auf dem Bildschirm darzustellen,
wurde ein einfaches Programm unter MATLAB geschrieben. Der elastische Arm wurde
gleichméfBig in 10 Teilen unterteilt. Fin grofles Problem betrifft die lange Animationsdauer.
Hier hilft bei der Animation unter MATLAB die Eigenschaft ,,FraseMode“. Es gibt vier
Méglichkeiten (normal, background, xor und none), wenn man ein Bild am Bildschirm

darstellt. In Tabelle 3.1 ist die Animationsdauer mit verschiedenen ,,EraseModes“ gegeben.
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EraseMode H Animationsdauer [s] ‘ Echtzeit [s] ‘

normal 27,9 3
background 7,1 3
XOr 6,2 3
none 5,5 3

Tabelle 3.1: Animationsdauer mit verschiedenen , EraseModes*

Mit der Animation kann man die Figendynamik des einfachen elastischen Handhabungs-

systems lernen. Auflerdem kann der Prozef einer Regelung deutlich beobachtet werden.
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Bild 3.2: Zeitverlauf des geregelten Systems
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Bild 3.3: Zeitverlauf des Stellmoments



4  Zusammentassung und Ausblick

4 Zusammenfassung und Ausblick

In dem vorliegenden Bericht werden Modellbildung, Simulation und Regelung eines elasti-
schen Manipulatorarmes dargestellt. Die Dynamik des Systems 1483t sich durch unendlich
vielen gewohnlichen Differentialgleichungen beschreiben, wobei die Rayleigh—Ritz Metho-
de (assumed-mode method) und Lagrange—Verfahren angewendet werden. Hier sind die
Eigenfunktionen des einseitig eingespannten Balkens zu verwenden. Die Bewegungsglei-
chungen und das Zustandsmodell des Systems werden vorgestellt. Fiir die Regelung wird
eine elastische Eigenfunktion weiterverwendet, die restlichen werden vernachlassigt. Das
System ist vollstandig steuerbar und beobachtbar. Die Regelung 148t sich mit Hilfe der
Zustandsriickfithrung durchfithren,wozu ein reduzierter Beobachter 2.0rdnung entwickelt
wird. Das Regelverhalten zeigt, dafl das geregelte System hinreichend genau positioniert

und die Eigenschwingungen unterdriickt werden. Die Animation des Systems erfolgt unter

MATLAB.

In Fortfiihrung dieser Arbeit sollen

1. das Systemmodell mit Beriicksichtigung der Reibungskrafte und einer Zusatzmasse

am Balkenende sowie
2. verschiedene Regelungskonzepte

untersucht werden.
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