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Ubersicht: In diesem Bericht wird auf der Basis des linearen Integralfilters und der rekur-
siven Methode der Hilfsvariablen ein Identifikationsverfahren fiir nichtlineare zeitkontinu-
ierliche Systeme in der nichtlinearen Beobachternormalform entwickelt. Die praktische Er-
probung des Verfahrens bezieht sich auf einen elektro-hydraulischen Translationsantrieb.

Die Modelle werden in approximierter quadratischer Beobachternormalform identifiziert.
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Nomenklatur
Abkiirzungen
ALS Analytisches System mit linearer Steuerung
BLS Bilineares System
LIF Lineares Integralfilter
LS Lineares System
ML Maximum-Likelihood
NBNF Nichtlineare Beobachternormalform
QBNF Quadratische Beobachternormalform
QLS Quadratisches System mit linearer Steuerung
RIV Rekursiv Instrumental Variables
Formelzeichen
al(+) kanonische Nichtlinearitat
A Systemmatrix
b Eingangsvektor
b(-) kanonische Nichtlinearitat
B Eingangsmatrix
e’ Ausgangsvektor
e(+) analytische Ausgangsfunktion
€ Schétztehler
Enm normierter mittlerer Fehler
€n Einheitsvektor in der n-ten Koordinatenrichtung
E, Shift-Einheitsmatrix
7, J Laufindizes
1, n-taches Integral
I, Finheitsmatrix
J() Zielfunktion
k diskretes Zeitargument, k = t/T
ko Verzégerungsparameter
) Langenfaktor des LIF
L Anzahl der Meflwerte
L Parameterkorrekturvektor
m bewegte Masse
n Systemordnung
N Systemmatrix
P Kovarianzmatrix
g Verzoégerungsoperator



Nomenklatur I1I
T lineare Transformation
t kontinuierliche Zeit
T Schrittweite, Abtastzeit
u normietes Eingangssignal (Spannung)
u(t) kontinuierliche Eingangsgrofie
Ug diskrete Eingangsgrofie
u Vektor der Zeitableitungen von u(t), u(t) = [u(t), u(t),..., u(”_l)(t)] !
U absolutes Eingangssignal (Spannung)
x(t) Zustandsvektor eines kontinuierlichen Systems
To Zustandsvektor zum Zeitpunkt tg
Xy, Zustandsvektor eines zeitdiskreten Systems
y(1) kontinuierliche Ausgangsgrofie
Yk zeitdiskrete Ausgangsgrofie

kontinuierliche Ausgangsgrofie

Vektor der gemessenen Ausgangssignale
Vektor der geschdtzten Ausgangssignale
Vektor der Hilfsvariablen
Vergessensfaktor

Datenvektor

wahrer Parametervektor

geschétzter Parametervektor

sonstige Zeichen

Kronecker-Produkt

Betragsbildung

Normbildung

Inversion

Transponieren eines Vektors bzw. einer Matrix
Differentiation nach der Zeit

Wert an der Stelle &

partielle Differentiation

Polynom
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1 Einleitung

Beim Aufstellen von mathematischen Modellen dynamischer Systeme werden bekanntlich
zwei verschiedene Wege unterschieden, die theoretische und die experimentelle Systemana-
lyse. Die theoretische Modellbildung fithrt iiber die Verwendung von geeigneten Bilanz-
gleichungen (z. B. Bilanzierungen fiir Krifte, Momente, allgemeine Erhaltungssitze fiir
Masse, Energie, Impuls usw.) iiblicherweise auf nichtlineare Zustandsmodelle komplexer
Struktur mit zahlreichen nicht genau bekannten Parametern. Bei der experimentellen Sy-
stemanalyse, auch Identifikation genannt, werden Ein-/Ausgangsmodelle aus geeignet zu
wahlenden Eingangssignalen und gemessenen Ausgangssignalen berechnet. Anschliefend
kénnen die fiir den Entwurf von Beobachtern und Reglern benétigten Zustandsraumdar-

stellungen aus den Parametern der Fin-/Ausgangsmodelle entwickelt werden.

Zur Zeit stehen zahlreiche und bewéhrte Identifikationsverfahren auf dem Gebiet der Iden-
tifikation linearer Systemmodelle (Goodwin und Payne 1977, Ljung 1987, Iserman 1992,
Unbehauen 1993) zur Verfiigung. Lineare Systemmodelle kénnen das dynamische Verhal-
ten technischer Systeme in der Nahe eines eingestellten Arbeitspunktes hinreichend gut
beschreiben. Gilt das Interesse aber dem dynamischen Verhalten bei gréfleren Arbeits-
bereichen, z. B. bei der Regelung hydrostatischer Antriebe, dann sind oft nichtlineare
Approximationsmodelle, z. B. bilineare, quadratische und Polynomsysteme erforderlich

(Schwarz 1991).

Im Bereich der Identifikation nichtlinearer, vor allem zeitkontinuierlicher Systemmodelle
sind in der Literatur nur wenige bewdhrte Verfahren zu finden, so dafl hier noch grofler
Forschungsbedarf besteht. Die Parameterschitzung ist aufgrund der wesentlich aufwendi-
geren mathematischen Operationen schwer durchzufiihren, vor allem fiir Systeme, welche
die Linearitidt in den Parametern nicht erfiillen. Zusétzlich besteht ein Hauptproblem der
Identifikation zeitkontinuierlicher Systeme darin, dafl Zeitableitungen der Systemkenn-
grofen auftreten, die zundchst ermittelt werden miissen. Da Digitalrechner differentielle
Operationen nicht durchfithren kénnen, sind letztere durch algebraische Operationen zu

ersetzen.

Vor der eigentlichen Parameteridentifikation miissen Modellstruktur und -ordnung sowie
Abtastzeit festgelegt werden. Modellordnung und Abtastzeit werden in Anlehnung an die
Untersuchungen von Reuter (1992, 1993b) gewéahlt. In dieser Arbeit werden die Systeme
in der nichtlinearen — speziell quadratischen — Beobachternormalform identifiziert. Diese
zeichnet sich einerseits dadurch aus, dafi die zugehorige Ein-/Ausgangsdarstellung linear
in den Parametern ist und hierfiir Verfahren der kleinsten Fehlerquadrate (Least-Squares-
Verfahren) eingesetzt werden konnen. Andererseits besitzt die nichtlineare Beobachternor-
malform im Hinblick auf eine spétere Beobachtersynthese den Vorteil, dafl man hierbei auf

eine lineare Fehlerdynamik gefithrt wird, so dafl das Verfahren der Polvorgabe angewendet

werden kann (Jelali 1993).
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Im folgenden Abschnitt wird die nichtlineare Beobachternormalform vorgestellt und auf
die Klasse der quadratischen Systeme mit linearer Steuerung spezialisiert. Zusétzlich er-
folgt die Einfithrung einer approximierten quadratischen Beobachternormalform und de-

ren Uberfithrung in die zugehorige Ein-/Ausgangsdarstellung.

Abschnitt 3 gibt einige Ansétze zur Identifikation zeitkontinuierlicher Modelle. Dann wird
auf der Basis des linearen Integralfilters von Sagara und Zhao (1989) und der rekursi-
ven Methode der Hilfsvariablen (Ljung und Séderstrom 1987) ein Identifikationsverfahren
fiir nichtlineare Systeme in der approximierten quadratischen Beobachternormalform ent-
wickelt. Dies stellt eine effiziente praktische Methode zum Erhalt von Prozeimodellen di-
rekt in der nichtlinearen Beobachternormalform dar. Die Identifikation gewéhrleistet, dafl
der Fehler zwischen realem System und Modell minimal ist. Dadurch entfallt die Uber-
priifung der strengen und komplexen Existenzbedingungen (Keller 1986, Zeitz 1989), die
bei realen technischen Systemen selten ertiillt sind, sowie die analytische Berechnung von

nichtlinearen Transformationen.

Der 4. Abschnitt berichtet iiber die praktische Anwendung des entwickelten Identifika-
tionsverfahrens auf einen elektro-hydraulischen Antrieb. Als Frgebnis der Identifikation
werden quadratische Zustandsmodelle des Antriebs angegeben. Die Wahl méglicher Ein-
fluifaktoren auf die Modellgiite wird diskutiert. Eine Zusammenfassung mit Ausblick in

Abschnitt 5 schliefit diesen Bericht ab.
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2 Quadratische Beobachternormalform

Die allgemeine nichtlineare Beobachternormalform (NBNF) fiir analytische Systeme mit
linearer Steuerung (ALS) besitzt die Zustandsdarstellung (Keller und Fritz 1986, Keller
1987, Zeitz 1989)

0...... 0 ar (T, u, 7u(n—l))
=" ap) — | 2ot 7)
0 10 n(Tp, )
= FE,2(t) — a(@,,u) ; Z(to) = o (2.1)

y() =clz) 5 oalt)=[ult),i(t),....u" D)

Gl (2.1) ist als Erweiterung der Beobachternormalform fiir lineare Systeme anzusehen.
Wegen der Abhéngigkeit des nichtlinearen Terms von den Ableitungen des Fingangssi-
gnals, diei. allg. mefitechnisch nicht erfait werden konnen, ist die NBNF nach Gl. (2.1) fiir
die praktische Anwendung beim Beobachterentwurf wenig geeignet. Wesentlich niitzlicher

ist dagegen die folgende vereinfachte NBNF (Keller 1986, Schwarz 1990, Schwarz 1992):

0...... 0 ar(z,) bi(z,)
: as( Ty bs(z),
= e (E ) . (‘ ) ()
0 10 an(Z0) b (25)
= E,2(t) — a(z,) + b(z,)u(t) ;o Z(ty) = o (2.2)
y(t) = @n

Diese Normalform ist, wie die oben erwadhnte, nur beziiglich des gemessenen Systemaus-
gangs nichtlinear; der Zustandsvektor & geht dabei linear ein. Die Zeitableitungen der

Ein- und Ausgangsgroflen tauchen hier nicht auf.

2.1 Exakt quadratische Beobachternormalform

Die Uberfithrung eines quadratischen Systems mit linearer Steuerung (QLS)
(t) = Ajx(t) + Az (t) @ x(t) + [bo + Bra(t) + Bax(t) @ x(t)]u(t)
(1) = () 0= a(to)

in die NBNF gemaf GI. (2.2) kann z. B. nach Keller (1986) iiber eine Zwei-Schritt-

Transformation vorgenommen werden. Hierbei wird allerdings der Aufwand fiir die Her-

(2.3)

leitung der Existenzbedingungen mit héherer Systemordnung immer gréfler. Diese werden
fiir Systeme 2. Ordnung bei Keller (1986) und fiir Systeme 3. Ordnung bei Keller (1987)
sowie Jelali (1993) explizit formuliert.
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Im Sinne einer Erweiterung der aus der linearen Systemtheorie bekannten Ergebnisse
auf nichtlineare Systeme besteht ein naheliegender Gedanke in der Untersuchung, unter

welchen Bedingungen die lineare Transformation

r=1tx)="Tx (2.4)

_cTA?_l + ancTA7f_2 4. 4azcT A+ ach_
cTA7f_2 + an_lcTA?_S + ...+ azc”

T — (25)

AL+ a,ct

CT

ein QLS nach GI. (2.3) in die NBNF nach Gl. (2.2) tberfiihrt. Die a; (¢ =0,1,...,n —1)

sind die Koeffizienten des charakteristischen Polynoms der Matrix A;. Eine erste Voraus-

setzung ist die vollstindige Beobachtbarkeit des linearen Teilsystems {A;, by, ¢}, da T

sonst eine nichtinvertierbare Matrix darstellt. Die Anwendung der Transformation geméaf

Gl (2.4) auf QLS liefert

(t) = B,2(t) —az,(t) + TAT @ T 2(t) @ 2(t) +

+ [Tho + TBT™ 5 (t) + TBT™ @ T7a(t) @ 2(t)] u(t) (2.6)
= Ay z(t) + Az (t) @ 7(t) +
+ [bo + Bua(t) + Boz(t) @ 2(1)] u(t) (2.7)

y(t) = T 2(t) = z,(t) .

Dabei diirfen die Terme Aypz(t) @ (1), Bipz(t) und Bypa(t) @ (1) nur von &,(t) bzw.
y(1) abhangen. Dies fithrt zu den Struktureinschrankungen (Ingenbleek 1991, Jelali 1993)

A2 = T_lklcT & CT

B1 = T_leCT (2 8)
B2 = T_lkgcT & CT '
' =eIrT |

wobei e, der Einheitsvektor in der n-ten Koordinatenrichtung ist.
So kann der folgende Satz formuliert werden:

Satz 2.1 :
Wenn

i) das lineare Teilsystem { Ay, by, ¢’ } vollstindig beobachtbar ist und

ii) die Strukturbedingungen nach Gln. (2.8) erfiillt sind,



2 Quadratische Beobachternormalform 5

dann tberfiihrt die lineare Transformation #(x) = T'x mit T' nach Gl. (2.5) das QLS nach
Gl. (2.3) in die vereinfachte Keller-NBNF mit dem Zustandsmodell

0...... —ay 0...0 ky
=1 T2+ 0 ! k,” #(1) @ (1) +
0 1 —a, 0... 0 Ky
by 0...0 ky 0... 0 kay
+ bf o '-(.)‘km}x 0 _ 0k32 (1) © ()| u(t)
b Lo 0 ke 0.0 0 ko,
y(t) = 2a(1) i To = z(lo)
oder auch
o(t) = [Bn — aeg]a(t) + kial (1) + [ka2a(t) + ka2l (1) + blu(?)

(1) = 2.0 =) 2

Hierbei enthélt der Vektor a weiterhin die Koeffizienten des charakteristischen Polynoms
CN) =ar +aA+...+a, "7+ A" (2.10)
der Matrix A;. O

Die Strukturbedingungen nach Gln. (2.8) garantieren, daf die transformierten Matrizen
Ay, By und B, nur in der jeweils letzten Spalte mit von Null verschiedenen Elementen
besetzt sind. Es ist aber zunéchst zu priifen, ob ¢! mit der letzten Zeile der Transforma-

tionsmatrix T iibereinstimmt.

Wegen der Linearitét der Transformation 2.4 ist die vereinfachte NBNF fiir diese sehr spe-
zielle Teilklasse der QLS, die den obigen Bedingungen geniigt, quadratisch im Zustand. Da
fiir reale technische Systeme eine solche exakt quadratische Beobachternormalform (QB-
NF) nur in seltenen Féllen existiert und die Suche nach nichtlinearen Transformationen

in der Praxis aufwendig ist, erscheint es sinnvoll, eine approximierte QBNF einzufiihren.

2.2 Approximierte quadratische Beobachternormalform

Die nichtlinearen Funktionen a;(z,) und b;(z,) in Gl. (2.2) kénnen durch ihre Taylorrei-

henentwicklungen

las .

ai(Tn) = 3 aij o
lbz o1 =1,2,....n (2.11)

( ) Z ﬂl] Tn
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dargestellt werden. Fiir die QLS ist es naheliegend, eine quadratische Approximation
(lsi = Ly = 2)
ai(Tn) = an Ty + i@l )
bi(Tn) = Bio + BaTn + BTl ’
anzusetzen. Damit erhdlt man eine approximierte quadratische Beobachternormalform

(QBNF)
F(1) = End(t) — cra(t) — a0z (1) + [Bo + Bra(t) + Aoz ()]u()

i=1,2,....n (2.12)

yi1) = 2.1) o= (o) 21
fiir QLS. Die Parametervektoren

of = [oni, oy« ..y Qi o1 =1,2 (2.14)

B =181y Bojs -+ Py ; J=0,1,2 (2.15)

dieser approximierten QBNF kénnen anhand des im Abschnitt 3.3 vorgestellten Identi-
fikationsverfahrens aus bekannten Ein-/Ausgangsmessungen am realen System ermittelt
werden und miissen nicht mit den Vektoren k; in Gl. (2.9) {ibereinstimmen, falls letztere
iiberhaupt existieren. Die Parameter der QBNF sollen so ermittelt werden, dafl der mitt-
lere quadratische Fehler zwischen gemessenen und geschiatzten Ausgangssignalen minimal
ist. Somit eriibrigt sich in der Praxis die Frage nach einer nichtlinearen Transformation,
die ein gegebenes System in die NBNF iiberfiihrt.

2.3 Ein-/Ausgangsdarstellung

Da in der Praxis i. allg. nicht alle inneren Systemzustdnde vorliegen, mufl zunéchst eine
Systembeschreibung in Form einer Ein-/Ausgangsdarstellung gefunden werden, wobei so-
wohl die Ein- als auch die Ausgangsgréfien bekannt bzw. einer Messung zuginglich sein

mussen.

Durch sukzessives Einsetzen der einzelnen Zustandsgleichungen (2.13) in
(1) = [ (D] (2.16)

ergibt sich die gesuchte Ein-/Ausgangsbeziehung zu:

n

Z[aﬂx )+ an (7)) +

3 [ oul ™+ B (2 u) Y+ Bo(u) Y] (2.17)

Hier tritt das Kernproblem der Identifikation zeitkontinuierlicher Systemmodelle in Fr-
scheinung, ndmlich die Notwendigkeit der Kenntnis der Zeitableitungen der Ein- und
Ausgangsgrofen in der Ein-/Ausgangsbeziehung (2.17). Diese sind mefitechnisch nicht
erfaflbar und miissen daher anderweitig ermittelt werden. Daher ist eine weitere Behand-
lung von (2.17) erforderlich. Bei der Identifikation zeitdiskreter Modelle stellt sich das

angesprochene Problem nicht, da dort lediglich eine Zeitverschiebung auftritt.
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3 Zeitkontinuierlicher Identifikationsalgorithmus

In der ingenieurwissenschaftlichen Praxis sind die betrachteten dynamischen Prozesse na-
turgeméaf zeitkontinuierlich. Daher ist es wichtig, die Prozesse in zeitkontinuierlicher Pa-
rarametrierung zu identifizieren. Weil aber bei der Parameteridentifikation grofle Mengen
von Daten verarbeitet werden miissen, ist dies nur mit Hilfe digitaler Rechner durch-
zufithren, die mit abgetasteten Signalen arbeiten. Somit enthalt der Wunsch, kontinuierli-
che Modelle aus zeitdiskret abgetasteten Datensequenzen zu identifizieren, einen gewissen
Widerspruch, der einige Schwierigkeiten mit sich bringt. Die Hauptschwierigkeit besteht

in der Notwendigkeit, die Zeitableitungen der Ein- und Ausgangsgréfien zu ermitteln.

Trotzdem ist das Interesse an der Identifikation kontinuierlicher Modelle in den letzten
fiinfzehn Jahren standig gewachsen. Umfassende Studien in diesem Bereich finden sich z.
B. bei Young (1981) sowie Unbehauen und Rao (1987, 1990). Zhang (1994) gibt eine gute
Ubersicht mit Anwendung iiber die Methoden zur Identifikation nichtlinearer kontinuier-
licher Systeme. Auch Sagara und Zhao (1989), Sagara und Zhao (1990) beschéftigten sich
intensiv mit dem Thema und entwickelten einige effektive Verfahren, allerdings nur fir
die Identifikation linearer Modelle.

In einer neueren Arbeit von Yin (1994) wird eine allgemein einsetzbare Identifkationsme-
thode, die Maximum-Likelihood-Methode (ML-Methode), ausfiihrlich behandelt und zur
praktischen Anwendung herangezogen. Diese Methode liefert nur dann gute Ergebnisse,
wenn die Starparameter geniigend gut sind, was aber in der Praxis selten der Fall ist.
Sowohl ungiinstig gewéhlte Startwerte als auch schlecht konditionierte Mefidatenvektoren

fiihren hdufig zur numerischen Instabilitat.

3.1 Ansatze zur Identifikation zeitkontinuierlicher Modelle

Zur Identifikation kontinuierlicher Modelle gibt es zwei grundséatzlich unterschiedliche Vor-

gehensweisen, ndmlich
i) die indirekten und

ii) die direkten Verfahren.

Indirekte Verfahren

Die indirekten Verfahren umgehen das oben genannte Problem, indem in einem ersten
Schritt ein zeitdiskretes Modell identifiziert wird. Dies hat den Vorteil, daf} die hierfiir
geeigneten Methoden — teilweise auch fiir nichtlineare Systeme — ausgiebig erforscht sind
(Ljung und Soderstrom 1987, Ljung 1987, Séderstrom und Stoica 1989, Iserman 1992).

Im zweiten Schritt erfolgt dann die Herleitung eines Kontinuierlichen Modells.
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Liegt z. B. ein identifiziertes zeitdiskretes bilineares Modell
w(k+ 1) = Agae(k) + [Ngz (k) 4 bau(k)

3.1
y(k) = cLa(h) (31)
vor, so kann das zugrundeliegende zeitkontinuierliche BLS
#(t) = Aca(t) + [Nea(t) + beJu(t)
T (3.2)
y(t) = c.x(1)
mit den Vorschriften (Schwarz 1991)
A, = %ln(Ad)

bc = (Ad + Nd)[ Ad+Nd) — ]n]_lbd
. =¢

berechnet werden. Dieses Verfahren wurde vom Autor implementiert und an von Reu-
ter (1993a) identifizierten zeitdiskreten Modellen fiir den in Abschnitt 4 beschriebenen
elektro-hydraulischen Antrieb angewendet. Es hat sich gezeigt, dafl die Anwendung der
Relationen (3.3) in vielen Fallen zu Systemmatrizen A., N. mit komplexen Elementen
fiihren, womit die physikalischen Verhaltnisse prinzipiell nicht richtig wiedergegeben wer-
den. Ein weiterer Nachteil dieses indirekten Verfahrens ist, daf} die Systemstruktur (z. B.
Beobachter- oder Beobachtbarkeitsnormalform) unter der Transformation nicht erhalten
bleibt. Weiterhin kann diese Methode nicht in einfacher Weise auf allgemeine QLS erwei-
tert werden. Aus diesen Griinden beschréanken sich die weiteren Untersuchungen auf die
direkten Vertahren.

Direkte Verfahren

Bei diesen Verfahren werden die auftretenden differentiellen Operationen durch algebrai-
sche Operationen ersetzt. Erst nach dieser Umformung kann die Identifikation durch-

gefithrt werden. Zur Algebraisierung stehen u. a. folgende Methoden zur Verfiigung:

1. Numerische Differentiation:
Eine einfache Methode zur Approximation der benétigten Zeitableitungen der Ein-
und Ausgangsgroflen ist die Differenzenquotientenbildung. Allerdings fithrt diese
Methode bei Vorhandensein hochfrequenter Stérsignale, wie z. B. Mefirauschen, zu
unbrauchbaren Ergebnissen, da die numerische Differentiation eine Hochpaficharak-

teristik besitzt und damit die Storsignale zusdtzlich verstarkt.

2. Kubische Spline-Interpolation:
Hierbei werden stetig differenzierbare Naherungsfunktionen fiir die Ein- und Aus-
gangsgroflenverlaufe ermittelt, womit sich im deterministischen Fall noch zuverlassi-
ge Werte fiir die ersten und zweiten Ableitungen bestimmen lassen. Die Spline-
Interpolation ist aber sehr empfindlich gegeniiber hochfrequenten Stérungen, so daf

auch hier keine befriedigende Ergebnisse zu erwarten sind.
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3. Numerische Integration:

Ein sehr wirkungsvoller Weg stellt die Uberfithrung der Ein-/Ausgangsbeziehung in
eine dquivalente Integralgleichung dar, die dann mit Hilfe numerischer Integrations-
methoden gelést werden kann. Ein besonderer Vorteil dieser Methode besteht darin,
dafl dabei die Rauschsignale reduziert werden, da die Integration eine glattende Wir-
kung hat. Mit diesem Verfahren lassen sich Identifikationsmethoden der kleinsten
Fehlerquadrate (Least-Squares) anwenden, die im Gegensatz zur ML-Methode we-
der Startwerte noch Anfangszustidnde bendtigen. Voraussetzung ist allerdings, daf3
die unbekannten Parameter linear in die Ein-/Ausgangsdarstellung eingehen. Dies
ist der Fall bei Systemen sowohl in der NBNF als auch in der nichtlinearen Beob-
achtbarkeitsnormalform (Yin 1994).

3.2 Uberfiithrung in eine Integralgleichung

Zur Behandlung der in der Ein-/Ausgangsbeziehung (2.17) auftretenden, meftechnisch
nicht erfaflbaren Zeitableitungen der Ein- und Ausgangsgrofien schlagen Sagara und Zhao
(1989) eine numerische Integrationsoperation, das sog. lineare Integralfilter (LIF), vor.
Einige Rechenregeln zu diesem LIF sind im folgenden aufgefiithrt (Sagara und Zhao 1989,
Sagara und Zhao 1990, Yin 1994):

e Das n-fache Integral eines zeitkontinuierlichen Signals z(¢) wird definiert durch

tn—1
(1) —/ / / PVt - dt 3.4
=T Jt1— lT tpo1 =T w( ) ! ! ( )

mit 7', der Schrittweite und [ dem Langenfactor des LIF.

e Das n-fache Integral der Ableitung 2\ (#) = d;2(t)/dt? des Signals (1) kann néhe-

rungsweise berechnet werden durch:

L29(t) ~ sz (t—:T) Zplq z( (3.5)

oder in zeitdiskreter Form (z)

) nl )
]n ~ Lz = szzk i prq_lzk (3.6)
mit dem Polynom

I =(1 —q_l)j(f0+flq_1 -I-----l-flq_l)n_j- (3.7)
und dem Verzdgerungsoperator

q_iZk = Zk—¢ (38)
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o Ist das Eingangssignal in [ty — (T, {;] konstant, dann gilt:

]n[zzuk](j) R~ Ij[zéuk] = ukljz}; ) (3.9)

o Die Verwendung der Trapezregel bedeutet

fo=fi=
fi=T

s (3.10)

g Ly ooy

I—1.

?

Die Anwendung der n-fachen Integration anhand des LIF auf die Ein-/Ausgangsdarstellung
(2.17) unter Benutzung der abgetasteten Mefidaten uy, y; liefert

n

Lye=—Y_ [ailli—lyk + Oéizli—lyz)] +
=1

+3 [@oh-ﬂ% + BaLici (ypur) + 52'212'—1(%3”)] +er . (3.11)
=1

Dabei setzt sich der Gleichungsfehler e, aus dem Approximationsfehler durch das LIF

und einem Fehleranteil durch das Mefirauschen zusammen.

3.3 Rekursive Methode der Hilfsvariablen

Definiert man den wahren Parametervektor

0" = |of, of, 8T, 87, 81 (3.12)
den geschédtzten Parametervektor
éT = [&{7 &27 Bgv BlTv Bg] (313)

und den MeBdatenvektor

er = [—loye, —Liyrs -0 —Liciyes —loyi, —Liyg, - —Locayds
Loug, Liwg, ..y Licvug; To(yeur), Li(ysug), -y Lot (yrug);
Io(gZ“k), Il(yzuk)v ceey In—l(yzuk)] ) (314)

so kann GI. (3.11) in
Lk = @10+ e (3.15)

umgeschrieben werden. In dieser Form, in der die Parameter linear eingehen, kénnen Iden-
tifikationsverfahren der kleinsten Fehlerquadrate sowie deren Modifikationen angewendet
werden. Dabei ist die Verlustfunktion

J(0) = Z er = Z [Lyr — 99{(9]2 (3.16)
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beziiglich des Parametervektors zu minimieren.

Um biasbehaftete Parameterfehler zu vermeiden, ist ein Schitzverfahren notwendig, das
iiber ein einfaches Verfahren der kleinsten Fehlerquadrate hinausgeht. Hierzu bietet sich

besonders die rekursive Methode der Hilfsvariablen (RIV-Methode) an, die u. a. folgende

Vorteile aufweist:
o Sie liefert bei einer geeigneten Wahl der Hilfsvariablen erwartungstreue Schatzungen.

e Es sind keine Apriori-Kenntnisse iiber die statistischen Merkmale des Mefirauschens

notwendig; dies kann ein beliebiges stationéres farbiges Signal sein.
o Die RIV-Methode eignet sich fiir eine on-line Identifikation.

Eine ausfiihrliche Darstellung dieser Methode geben z. B. Ljung und Soéderstrom (1987)

sowie Soderstrom und Stoica (1989).

In dieser Arbeit wird folgende RIV-Methode mit nachlassendem Gedéchtnis nach Ljung
und Soderstrom (1987) verwendet:

Op = 0y + Li(Loye — @%ék—l)

Ao = ANy + (1= \0)

Y = Ak + 0 Peci G cok=1,...,L (3.17)
Li = Pooa G/

P, = [Pk—l — Pk—1Ck99;€Pk—1/7k] [ Ak

mit der Kovarianzmatrix Py, dem Parameterkorrekturvektor L, dem Hilfsvariablenvektor
(r, dem Vergessensfaktor Ay und der Anzahl der Meflwerte L.

Das eigentliche Problem der RIV-Methode, das allerdings weitgehend geldst ist, besteht
in der Generierung geeigneter Hilfsvariablen. Diese miissen so festgelegt werden, daf} sie
moglichst

e nicht korreliert sind mit dem Mefirauschen und
o stark korreliert sind mit den ungestérten Signalen, also den Nutzsignalen.

Eine ausfiihrliche Ubersicht iiber mdgliche Alternativen zur Wahl der Hilfsvariablen sowie
deren Vergleich findet sich z. B. in Ljung und Séderstrom (1987) und Soderstrom und
Stoica (1981). In der Praxis hat sich bew&hrt, die Hilfsvariablen als Kombination der

Eingangsgrofien mit einem Verzogerungsfaktor ko, z. B.

CT_ T
k Pk Yk =Uk—kg
. 2 2
= [—Iouk_ko, —Iluk_ko, ceey —In_luk_ko, _Iouk—k()? _Iluk—k()? ceey
2 . .
_In—luk—k()? Iouk, Iluk, ceey In_luk, Io(uk_ko uk), Il(uk_kouk), ceey

In_l(uk_kouk);Io(uz_kouk), Il(uz_kouk), ce In_l(uz_kouk)] (3.18)
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zu verwenden. Als Startwerte fiir den Algorithmus (3.17) wird in der Literatur (Ljung
und Soéderstrom 1987, Iserman 1992)

0o =0 , Py=pl, , 10<p<10° (3.19)
und fiir den Vergessensfaktor (Ljung und Soderstrom 1987)
A=0,99 . A =0,95 (3.20)

vorgeschlagen. Diese Wahl tragt entscheidend zur Steigerung der Konvergenzgeschwindig-
keit des Algorithmus bei.

3.4 Implementierung des Algorithmus

Die Implementierung des oben vorgestellten Identifikationsalgorithmus erfolgte aufgrund
seiner weiten Verbreitung in MATLAB. Diese Interpretersprache zeichnet sich durch ih-
re einfache Programmiersyntax im Bereich der Regelungstechnik. Auflerdem existieren

hierfiir umfangreiche mathematische Grundfunktionen und -algorithmen.

Der Anwender hat zunéchst die Modellstruktur (LS, BLS oder QLS) und -ordnung festzu-
legen. Danach erfolgt die Eingabe der Verfahrensparameter [ und ko, womit die Parame-
teridentifikation gestartet wird. Anschlielend werden die geschdtzen mit den gemessenen
Ausgangssignalen verglichen. Ist das Modell zufriedenstellend, dann werden die gewiinsch-
ten Daten gespeichert und das Programm beendet. Andernfalls muf} die Identifikation mit

einer neuen Wahl von [ und k¢ oder einer neuen Modellstruktur wieder gestartet werden.
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4 Experimentelle Ergebnisse

Dieser Abschnitt enthdlt Ergebnisse, die bei der praktischen Erprobung des im letzten
Abschnitt vorgestellten Identifikationsverfahrens erzielt wurden. Hierbei werden zustands-
quadratische Modelle identifiziert, die die Dynamik eines elektro-hydraulischen Antriebs
approximieren.

lzphot90mmZylinderpriifstand ehaskOmm75mmSchematische Darstellung des Antriebs
Der betrachtete Antrieb (sog. ,lange“ Zylinderpriifstand, Bild 4.1) ist im Hydrauliklabor
des Fachgebietes MefB-, Steuer- und Regelungstechnik der Universitat Duisburg vorhan-
den. Die Beschreibung des Systems sowie die Durchfiihrung der Messungen erfolgen in
starker Anlehnung an Reuter (1993a).

Es handelt sich um einen elektro-hydraulischen Translationsantrieb mit ausgepragten
Nichtlinearitdten (Kockemann 1988, Dorifien 1990, Schwarz 1991). Dieser Antrieb besteht
im wesentlichen aus einem Proportionalventil als Stellglied und einem hydraulischen Zy-

linder als Motor (Bild 4.2).

Das Proportionalventil steuert die Olvolumenstrome fiir die Anschliisse A und B, in de-
ren Abhéngigkeit der Hydraulikzylinder die Last m ~ 5 kg bewegt. Die Eingangsgrofie
u des Systems ist die elektrische Steuerspannung des Ventils, die Ausgangsgrofie y die
Lastposition. Vor dem Start der Messung wurde die Masse mittels eines Reglers in die
Nullstellung gebracht, damit der elektrische und der hydraulische Nullpunkt {ibereinstim-
men. Denn fiir die Eingangsspannung u = 0 ergibt sich ein Geschwindigkeitsoffset bzw.
eine Positionsdrift. Anderes ausgedriickt: Um den Zylinder zum Stillstand zu bringen, ist
ein geringer Spannungsoffset uy # 0, die sog. Nullsteuerspannung, erforderlich.

eingdmm9>mmVerwendetes Fingangssignal — Als Eingangsspannung sind Werte im Be-
reich U € [—10,+410] V moglich. Das entspricht einer normierten Fingangsgrofie u =

10UV € [-1,+1]. Als Eingangssignal wurde eine gleichverteilte weiie Rauschsignalfolge

verwendet. Um die Dynamik des Systems gut erfassen zu kénnen, muf} hierbei einerseits
die Tastzeit T' moglichst klein (1-3 ms) gehalten werden. Andererseits muf das Eingangs-
signal aber auch so beschaffen sein, dafl die Dynamik des Systems ausreichend erregt
wird und damit die Meldaten moglichst viel Systeminformation enthalten. Dazu ist es
notwendig, dafl das Eingangssignal einen moglichst groflen Amplituden- und Frequenz-
bereich abdeckt. Aulerdem soll die Taktzeit fiir das Eingangssignal im Bereich 150-200
ms gewahlt werden. Deutlich niedrigere Taktzeiten sind ungiinstig und fithren zu schlech-
ten Identifikationsergebnissen, da zum einen nur ein kleiner Bereich der méglichen Aus-
gangssignalwerte erreicht wird. Zum anderen kommen fiir kleinere Eingangssignale ein
signifikanter Haftreibungseinflul und der damit verbundene Stick-Slip-Effekt deutlich zur
Geltung (Kockemann 1988, Reuter 1993a).

In dieser Arbeit wurde das in Bild 4.3 dargestellte diskrete Eingangssignal mit einer
Taktzeit von 180 ms verwendet. Die Zylinderposition wurde mit einer Abtastzeit von 1 ms
gemessen (Reuter 1993b). Da der betrachtete Antrieb bei Nutzung des Positionssignals
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zur Identifikation ein integrales Verhalten aufweist, wurde wegen der geforderten Stabilitét

des Modells das durch Differenzenbildung aus x erzeugte Geschwindigkeitssignal

Tl — Tk-1

- (4.1)

Ye =
herangezogen.

Fiir verschiedene Werte des Langenfaktors [ des LIF und des Verzogerungsfaktors kg des
Eingangssignals wurden zustandsquadratische Modelle der Form

& (1) = Ena*(t) — aqay (1) — ag@j?(1) 4 Bou(t) + Bray () |u(t)]
y(t) = (1) ;o xp=2(to) -

identifiziert. Dieses etwas modifizierte Modell soll dem Umstand Rechnung tragen, dafl

(4.2)

sich die Geschwindigkeitsverldufe bei Eingangssignalen gleicher Hohe, aber mit unter-
schiedlichem Vorzeichen auch nur im Vorzeichen unterscheiden. Das heifl, das dynami-
sche Verhalten des Antriebs weist anndhernd Nullpunktsymmetrie auf (Reuter 1993a,

Yin 1994). Zum Vergleich verschiedener Modelle wurde der normierte mittlere Fehler

Ny =al?

e =
N 1S

benutzt. Tabelle 4.1 enthalt exemplarisch einige identifizierte Modelle 4. Ordnung. Die

- 100% (4.3)

zugehorigen Ausgangssignalverlaufe sind in den Bildern 4.4 bis 4.7 dargestellt. Aus diesen

und anderen Identifikationen lassen sich folgende Fakten ableiten:

O Von entscheidender Bedeutung fiir die Giite der Identifikationsergebnisse ist die
Wahl eines geeigneten Léangenfaktors. Fiir Langenfaktoren [ kleiner als 20 oder
grofer als 25 verschlechtert sich die Qualitat der erzielten Modelle. Der Grund dafiir
liegt darin, dafl das Integralfilter wie ein Vorfilter wirkt, dessen Bandbreite von [
abhdngt. Um das Stoérsignal zu unterdriicken ohne dabei das Nutzsignal zu beein-
trachtigen, soll [ moglichst der Bandbreite des Systems entsprechen (Sagara und
Zhao 1990, Yin 1994). Bei richtiger Wahl von [ besitzt ko keinen groBen Einflufl auf
das Identifikationsergebnis mehr. Auflerdem fithrt nicht jede Kombination von [ und
ko zu einem stabilen Modell, was durch eine sich der Identifikation anschliefende

Simulation tiberpriift werden kann.

O Fir kleinere Modellordnungen als 4 sind die identifizierten Modelle deutlich schlech-
ter, aber fiir groflere nicht mehr deutlich besser.

O Der verwendete Algorithmus funktioniert in den meisten Féllen und die erzielten
Ergebnisse sind recht gut.

O der Zeitaufwand fiir die Identifikation ist wesentlich geringer als bei Verwendung der
ML-Methode (Yin 1994). Vor allem entféllt hier die Vorgabe von Startparametern
und es treten selten Konvergenzprobleme auf.
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O Als problematisch erwiesen hat sich allerdings die Verwendung von groflen Mefda-
tensitzen (L > 1500) zur Identifikation, da dann die Mehrfachintegration instabil

werden kann und damit die zu integrierenden Funktionen mit zunehmendem In-

tegrationsgrad dem Betrage nach sehr rasch iiber alle Grenzen wachsen. So ergibt

sich eine schlechte Konditionierung des Schétzproblems, die zu unbefriedigenden

Ergebnissen fiihrt.

|| Modell 1 Modell 2 Modell 3 Modell 4
I 22 23 25 26
ko 7 5 5 10
0.1 0.1 0.1 0.0
7.4 5,9 3.5 9,6
2 w1072 7| w1072 2| 103 O 103
“ 52,5 45,5 34,6 66,5 |
270, 9 243, 8 180,0 236, 0
0.0 70,0 70,0 0,0
0,6 0,5 0,8 0,2
O 10-2 2| w1072 ° |« 1073 2 % 1073
@ 0,3~ 0,1] " 58] " 6,0 "
38,4 45,3 48,0 69,0
0.1 [ 0,17 [ 0,17 0.0
6,0 4,8 2.8 8,9
Pl 10-e ° | w1072 ° |« 1073 7 1073
Po 4,7 " 6,9~ 9,8~ 311"
66,7 44,0 98,6 140, 2
20,0 20,0 20,0 0.0
—2.8 2.4 11 3.3
O w1072 2 x10-2 | <1073 2| 1073
b _70,0] ~ 58,4 325" 02,1 "
~120,3 91,4 —106,9 —383,8
o 0,12 0,11 0,116 0,13

Tabelle 4.1: Einige Identifikationsergebnisse
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v2270mm100mmGeschwindigkeitsverlaufe (Modell 1) v2350mm100mm Geschwindigkeitsverlaufe
(Modell 2)
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v2550mm100mmGeschwindigkeitsverlaufe (Modell 3) v26100mm100mmGeschwindigkeitsverlaufe
(Modell 4)
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Bemerkungen zu den Modellen 14

Die Modelle 1-4 unterscheiden sich im wesentlichen durch die Qualitat der Approximation
in Abhéngigkeit der Verfahrensparameter [ und k. Die Geschwindigkeitsverlaufe in den
Bildern 4.4 bis 4.7 lassen erkennen, dafy die Modelle 2 und 3 das statische und dynamische
Verhalten des Antriebes am besten approximieren und fiir eine spétere Beobachtersynthe-
se zu verwenden sind. Dies wird auch durch Vergleich der Werte des normierten mittleren
Fehlers €,,, (Tab. 4.1) bestatigt. Aulerdem zeigt Bild 4.7, daf sich das Identifiakations-
ergebnis bei Verwendung eines Langenfaktors [ > 25 deutlich verschlechtert. Weiterhin,
ist anzumerken, daf} die otimale Wahl fiir [ durchaus von der Mefdatensatzlange (hier
L = 1200) abhangt, so daf} ein gutes Modell nur nach mehrmaliger Durchfithrung der

Identifikation unter Variation der Verfahrensparameter [ und k¢ zu erhalten ist.
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5 Zusammenfassung und Ausblick

In der vorliegenden Arbeit! wurde ein Identifikationsverfahren fiir eine Klasse nichtlinea-
rer zeitkontinuierlicher Systeme vorgestellt und erprobt. Das Verfahren basiert auf dem
linearen Integralfilter, das differentielle Operationen algebraisiert und somit eine Behand-
lung mit dem Digitalrechner erméglicht, sowie der rekursiven Methode der Hilfsvariablen,

die sich durch ihre Echtzeitfidhigkeit und asymptotische Biasfreiheit auszeichnet.

Die Systeme werden in der nichtlinearen Beobachternormalform identifiziert, die eine in
den Parametern lineare Fin-/Ausgangsdarstellung besitzt, was eine Voraussetzung fiir
die Anwendung des oben genannten Identifikationsverfahrens darstellt. Speziell fir die
praktische Anwendung wurde eine approximierte quadratische Beobachternormalform ein-
gefiithrt. Durch die Identifikation wird gewahrleistet, dal der Fehler zwischen realem Pro-
zefl und approximierendem Modell minimal ist. Die Vorteile der hier gewahlten Vorgehens-
weise liegen eindeutig darin, daB komplizierte analytische Berechnungen zur Uberpriifung
der Bedingungen, unter denen eine nichtlineare Transformation der Systeme in die nicht-
linearen Beobachternormalform existiert, vermieden werden. Diese Bedingungen sind sehr

streng und in der Praxis selten erfiillt.

Die praktische Erprobung des formulierten Algorithmus bezog sich auf einen elektro-
hydraulischen Translationsantrieb. Die FErgebnisse lassen erkennen, daff zustandsquadra-
tische Zustandsmodelle in Beobachternormalform relativ gut das Verhalten des realen
Prozesses wiedergeben. So kann die Beobachterauslegung auf der Basis der identifizierten
Modelle erfolgen. Weiterhin soll die Identifikation fiir den Antrieb in der nichtlinearen
Beobachtbarkeitsnormalform durchgefithrt werden. Es ist zu erwarten, dafl hier relativ
bessere Ergebnisse zu erzielen sind, da die Beobachtbarkeitsnormalform von der Struktur
her die physikalischen Gegebenheiten des hier betrachteten Antriebs besser wiedergibt als
die Beobachternormalform. Die Stellgrofie w(?) ist ndmlich multiplikativ mit dem ersten
Zustand (Position des Zylinders) — in einem als Integratorkette darzustellenden Zustands-

modell — verkniipft (Schwarz 1994).

!Die Arbeit entstand im Rahmen des von der Deutschen Forschungsgemeinschaft geférderten Projek-
tes ,Zustands- und Parameterschitzung bei analytischen Systemen mit linearer Steuerung®.



6 Literaturverzeichnis 20

6 Literaturverzeichnis

Doriflen, H. T. 1990. Zur Minimalrealisierung und Identifikation bilinearer Systeme
durch Markovparameter. Dissertation. Universitdt —-GH- Duisburg. VDI Fortschritts-
berichte Reihe 8, Nr. 221. Diisseldorf: VDI-Verlag.

Goodwin, G. C. und R. L. Payne. 1977. Dynamic System Identification: Frperiment
Design and Data Analysis. New York: Academic Press.

Ingenbleek, R. 1991. Zustandsbeobachter und Schdtzfilter fir eine Klasse analytisch li-
nearer Systeme. Forschungsbericht 14/91 MSRT. Universitat ~GH— Duisburg.

Iserman, R. 1992. ldentifikation dynamischer Systeme I und II. Berlin: Springer.

Jelali, M. 1993. Beobachter und Filter fir im Zustand quadratische Systeme mit linearer
Stewerung (QLS). Diplomarbeit. MSRT, Universitat -GH— Duisburg.

Keller, H. 1986. Entwurf nichtlinearer, zeitinvarianter Beobachter durch Polvorgabe mit
Hilfe einer Zwei-Schritt-Transformation. Automatisierungstechnik. 34. 271-324 and
326-331.

Keller, H. 1987. Non-linear observer design by transformation into a generalized observer
canonical form. International Journal of Control. 46. 1915-1930.

Keller, H. und H. Fritz. 1986. Design of nonlinear observers by a two-step-transforma-
tion. Algebraic and Geometric Methods in Nonlinear Control Theory, hg. M. Fliess
und M. Hazewinkel. Dordrecht: Reidel.

Kockemann, A. 1988. Zur adaptiven Regelung elektro-hydraulischer Antriebe. Disserta-
tion. Universitdt —GH— Duisburg. VDI Forschungsberichte Reihe 8, Nr. 174. Diissel-
dorf: VDI-Verlag.

Ljung, L. 1987. System Identification: Theory for the User. Englewood Cliffs: Prentice-
Hall.

Ljung, L. und T. Séderstrom. 1987. Theory and Practice of Recursive Identification.
First MIT Paperback edition. Cambridge/Mass.: The MIT Press.

Reuter, H. 1992. Zur Wahl der Startparameter beim rekursiven Prddiktionsfehlerverfah-
ren und zur Suche der Modellordnung nichtlinearer Systemmodelle. Forschungsbe-

richt 11/92 MSRT. Universitdt -GH- Duisburg.

Reuter, H. 1993a. Zur Identifikation bilinearer Modelle in kanonischer Form. Forschungs-
bericht 8/93 MSRT. Universitat -GH- Duisburg.

Reuter, H. 1993b. Ein neues Verfahren zur Abschitzung einer giinstigen Abtastzeit mit-
tels Entropieanalyse. Forschungsbericht 9/93 MSRT. Universitdt ~GH- Duisburg.



6 Literaturverzeichnis 21

Sagara, S. und Z. Y. Zhao. 1989. Recursive identification of transfer function matrix

in continuous systems via linear integral filter. International Journal of Control. 50.

4574717,

Sagara, S. und Z. Y. Zhao. 1990. Numerical integration approach to on-line identifica-

tion of continuous-time systems. Automatica. 26. 63-74.

Schwarz, H. 1990. ALS-Beobachter und Filter. Forschungsbericht 7/90 MSRT. Univer-
sitdét —GH- Duisburg.

Schwarz, H. 1991. Nichtlineare Regelungssysteme: Systemtheoretische Grundlagen. Miin-
chen: Oldenbourg.

Schwarz, H. 1992. BLS-Beobachter in kanonischer Form. Forschungsbericht 4/92 MSRT.
Universitat -GH— Duisburg.

Schwarz, H. 1994. Kanonische Strukturen und Beobachterentwurf fiir BLS. Forschungs-
notiz Juni 1994 MSRT. Universitdt Duisburg.

Séderstrom, T. und P. Stoica. 1981. Comparison of some instrumental variable me-

thods —consistency and accuracy aspects. Automatica. 17. 101-115.
Soéderstrom, T. und P. Stoica. 1989. System Identification. London: Prentice-Hall.
Unbehauen, H. 1993. Regelungstechnik I1l. Braunschweig: Vieweg.

Unbehauen, H. und G. P. Rao. 1987. [dentification of Continuous Systems. Amster-
dam: North-Holland.

Unbehauen, H. und G. P. Rao. 1990. Continuous-time approaches to system identifi-

cation - a survey. Automatica. 26. 23-35.

Yin, X. 1994. Zur ldentifikation zeitkontinuierlicher nichtlinearer Systeme. Dissertation.
Universitdt —-GH— Duisburg. VDI Forschungsberichte Reihe 8, Nr. 385. Diisseldorf:
VDI-Verlag.

Young, P. C. 1981. Parameter estimation for continuous-time models - a survey. Auto-
matica. 17. 23-39.

Zeitz, M. 1989. Canonical forms for nonlinear systems. Proc. of the [FAC Symposium
on Nonlinear Control System Design, hg. A. Isidori. Oxford: Pergamon Press.

Zhang, R. 1994. Identifikation physikalischer Systemparameter nichtlinearer kontinuier-
licher Mehrgrifiensysteme. Dissertation. Universitdt Paderborn. VDI Forschungsbe-
richte Reihe 8, Nr. 193. Diisseldorf: VDI-Verlag.



