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1 Einleitung

In diesem Bericht wird die Grundlage eines systematischen Reglerentwurts fiir Fuzzy—
Regler vorgestellt. Der systematische Reglerentwurf stiitzt sich dabei auf konfektionierte
relationale Fuzzy—Regler (Standard-Fuzzy—Regler) fiir Systemklassen. Die konfektionier-
ten relationalen Fuzzy—Regler werden anhand von linearen Systemen (I-System, PTy—
System) nach heuristischen Gesichtspunkten (Lenat 1983) erstellt. Die Einteilung der Sy-
steme (Objekte) (Bocklisch 1987b) in Systemklassen erfolgt aufgrund ihres dominanten
dynamischen Verhaltens (I-Verhalten, Totzeit—Verhalten, schwingungsfahiges Verhalten)
bzw. ihrer charakteristischen Eigenschaften durch Messung der Fin— und Ausgangswerte

(Saridis und Hofstadter 1974).

Die Zuordnung der Systeme in Systemklassen geschieht durch die Methoden der Klas-
sifikation (Nagao 1990, Lunze 1987a und 1987b) und der Merkmalsextraktion. Da die
Klassifikation nicht nur durch den mefitechnischen Zugang erfolgen soll, sondern auch die
Moglichkeit gegeben werden soll, durch subjektive Beschreibung das System zu charak-
terisieren, wird die Klassifikation durch eine unscharfe Klassifikation (Bocklisch 1987a,
Bothe 1993, Tilli 1994, Schroer, Frey, Vater und Klein 1994) realisiert. Der unscharfe
Klassifikator erdffnet die Méglichkeit, unscharfe Basisinformationen relativ leicht zu ver-
arbeiten (Bocklisch 1987b). Entsprechend der Systemklassenzugehorigkeit werden dem

Prozefl konfektionierte relationale Fuzzy—Regler zugewiesen.

Die Klassifikation ist nur dann notwendig, wenn kein A—priori-Wissen iiber den Prozef}
vorliegt, wenn es sich also um eine black box handelt (Schwarz 1991). Ist Systemwissen
tiber den Prozefl vorhanden, z.B. ob es sich um eine Strecke mit oder ohne Ausgleich han-
delt, so kann entsprechend auf Teile der Klassifikation verzichtet werden und direkt der
Standard-Fuzzy—Regler fiir die Systemklasse [-System bei einer Strecke ohne Ausgleich

dem Prozefl zugeordnet werden.

Bei den hier erstellten relationalen Fuzzy-Reglern handelt es sich um MISO! Fuzzy—
Reglern mit den EingangsgroBen Regelabweichung e und Anderung der Regelabweichung
Ae sowie der StellgréBe u bzw. Anderung der StellgroBe Au als Ausgangsgrofe. Die Ein-

gangsgrofen sowie die Ausgangsgrofie werden durch die Fuzzy—Referenzmengen

X = {X;| X, —=[0,1] V i=1,....mg} (1.1)

Y = {Y;|Y,—=1[0,1] V j=1,....mag} (1.2)
sowie

U = {U|U,—10,1] V k=1,...,my} (1.3)
bzw.

AU = {AU|AU, = [0,1] V [I=1,...,mav} (1.4)

! Multi Input Single Qutput
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partitioniert. Die Anzahl der maximalen Fuzzy-Referenzmengen wird auf mpg 4, =
MAE maz = MUmar = MAUmae = O begrenzt, da in den meisten Féllen eine solche
Partitionierung mehr als ausreichend ist. Weiterhin hat sich eine ungerade Anzahl der
Fuzzy—Referenzmengen fiir eine Eingangsgrofie in der Praxis bewahrt (Traeger 1993). Es

existieren somit maximal
Z =My MAE — 29 (15)

linguistische Regeln pro Standard-Fuzzy—Regler, wenn der Erfiilltheitsgrad o (Bertram
1991) der Pramisse einer Fuzzy—Regel mit einer Fuzzy—Referenzmenge Uy bzw. AU, ver-
kntipft wird. Die Ausgangsgrofe der Standard—Fuzzy—Regler werden on line bestimmt,
u.a. um hier im Vergleich zur off line Bestimmung der Ausgangsgrofie empfindlicher (Wu,
Boning und Schneider 1994) und dem linguistisch formulierten Algorithmus naher zu sein

(Bertram 1992).

Die Anwendbarkeit der konfektionierten relationalen Fuzzy—Regler fiir Systemklassen wer-
den am Beispiel eines translatorischen hydraulischen Antriebes dokumentiert. Die Simu-
lation wird anhand des identifizierten bilinearen Modells (Dorifien 1990b)

@(t) = Ax(t)+ Na(t)ut)+bu(t) (1.6)
y(t) = Ta(t), (1.7)

durchgefiihrt. Eine Zusammenfassung und ein Ausblick in Abschnitt 6 schlieflen den For-
schungsbericht.

1.1 Beschreibung der Fuzzy—Referenzmengen

Die zur Klassifizierung und zur Auslegung der konfektionierten relationalen Fuzzy—Reglern

bendtigten Fuzzy—Referenzmengen

A= {(z,pa(z)) | v € D} (1.8)

(Lee 1990a, b) werden durch Dreiecke, Trapeze, Fuzzy—FEinermengen (Singletons) und
halbe Trapezel bzw. halbe Trapeze! beschrieben Bild 1.1, 1.2 und 1.3 (Tilli 1993a und
1993b). Der Exponent L weist auf den ,linken“ Teil und der Exponent R auf den ,rechten®
Teil des Trapezes hin (Bohme 1993). Diese Unterteilung ist notwendig, da auch bei diesen
Fuzzy—Refterenzmengen die Definition der ,linken Spannweite® a4 = m — ¢ bzw. der
yrechten Spannweite® 34 = ¢ — m angewandt werden soll. Charakteristisch fiir diese
Mengen sind die Modalwerte m und die Begrenzungen des Einflulbereiches ¢ (Bohme

1993, Pedrycz 1993) mit

pale) = 0 (1.9)
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pa(m) =1 (1.10)
und die lineare Zugehorigkeitsfunktion g4 im Intervall [¢, m]. Das heifit, der Trager
T(pa) ={z |z eD,pus >0} (1.11)

der Fuzzy—Mengen (Bertram 1991, Tilli 1993a, Bertram u.a. 1994) wird durch die Begren-
zungen der Finflulbereiche ¢ und die Hohe der Fuzzy—Mengen durch die Modalwerte m
bei normalen Fuzzy—Mengen hgt(A) = 1 gebildet (Bertram 1991, Rommelfanger 1994).
Durch diese Art der Beschreibung lassen sich die Fuzzy—Referenzmengen, wie es in der
Fuzzy—-Arithmetik (Kaufmann und Gupta 1988) fiir Referenzfunktionen L, R (Mayer, Me-
chler, Schwindwein und Wolke 1993) {iblich ist, als Kurzschreibweise (Buckley 1992, Zeng
und Singh 1994), A = (¢1, m1, ma, ¢z) darstellen (Tabelle 1.1).

| |
| |
| |
| |
-
C m1 mz C2

Bild 1.2: Fuzzy-Referenzmenge als Trapeze (links) und als halbes Trapez! (rechts)
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Die mathematische Beschreibung der Fuzzy—Referenzmengen ist im Anhang A aufgefiihrt.
Diese Fuzzy—Referenzmengen werden vor allem deswegen verwendet, weil sie durchzufiihr-
ende Berechnungen des Fuzzy—Reglers bei stiickweise linearen Funktionen sehr vereinfa-

chen (Kruse, Gebhardt und Klawonn 1993, Traeger 1993).

Fuzzy—Referenzmengen H Kurzschreibweise ‘

Dreiecke A= (e1,m, )
Einermengen A= (m)

Trapeze A = (e1,mq,ma, ¢2)
halbe Trapeze” A= (e,m)

halbe Trapeze® A= (m,c)

Tabelle 1.1:  Kurzschreibweisen der Fuzzy—Referenzmengen

X

Bild 1.3: Fuzzy Referenzmenge als halbes Trapez
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2 Systemklassen

Bei der Bestimmung von Systemklassen handelt es sich um die typische Form von Muste-
rerkennungsproblemen, wobei unter Mustererkennung die Suche nach Strukturen in Daten
verstanden werden kann (Tilli 1994). Bei dem hier verwendeten Mustererkennungsverfah-
ren handelt es sich um ein numerisches Mustererkennungsverfahren. Generell werden in
einem numerischen Mustererkennungssystem entweder Datenmatrizen oder Distanzma-
trizen verwendet. Datenmatrizen — welche auch hier verwendet werden — beinhalten
eine Kollektion von Datenvektoren, die aufgrund von Messungen am System (Objekte)
gewonnen werden (Bocklisch 1987a). Die Datenvektoren werden aufgrund von Erregun-
gen des offenen Systems durch Sprungfunktionen u(kT') = u,-1(kT) mit unterschiedlicher

positiver und negativer Amplitude u, gewonnen.

Systemklassen umfassen solche Objekte, die eine Einheitlichkeit aufweisen. Die Einheit-
lichkeit stiitzt sich dabei auf inhaltliche oder formale Kriterien. Aufgrund dieser Beurtei-
lung entstehen semantische oder natiirliche Systemklassen. Die natiirlichen Systemklas-
sen kénnen als primére Einteilungsstruktur angesehen werden. Die Unterscheidung der
natiirlichen Systemklassen stiitzt sich dabei auf natiirliche GesetzmafBigkeiten, das heifit,
sie ist standpunktunabhéngig und somit nicht subjektiv. Die semantischen Systemklassen
werden hier als sekundare Fintellungsstrukturen verwendet. Bei der Bildung der seman-
tischen Klassen wird auf das Wissen von Experten zuriickgegriffen. Hier kann die Ein-
teilung standpunktabhéngig erfolgen. Die Standpunktabhéngigkeit ist in erster Linie von
der Verwendbarkeit der semantischen Systemklasse abhidngig. Objekte entstehen durch
Messungen am realen System, das heif}t, sie sind durch einen Satz von Mefldaten charak-
terisiert. Bei der Systemklassenbildung wird grundsétzlich ein stabiles Systemverhalten

vorausgesetzt. Im folgenden sind die natiirlichen Systemklassen,
o oszillatorisch
e monoton
o [-System
o Totzeit—System
o statische Nichtlinearitdten
o Sammelklasse

welche in diesem Bericht unterschieden werden, dargestellt. Die Sammelklasse dient zur

Aufnahme der nicht zu klassifizierenden Objekte.
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Die natiirlichen Systemklassen oszillatorisch und statische Nichtlinearititen lassen sich

weiterhin in semantische Systemklassen unterteilen:

e oszillatorisch

— schwach oszillatorisch,
— mittel oszillatorisch und

— stark oszillatorisch
e statische Nichtlinearititen

— Tote—Zone,

— Begrenzer,

— Zweipunktschalter und
— Dreipunktschalter

Die natiirlichen Systemklassen werden aufgrund von inhaltlichen Kriterien in semantische
Systemklassen unterteilt. Bei der natiirlichen Systemklasse oszillatorisch ist das inhalt-
liche Kriterium die Uberschwingweite o, (Abschnitt 2.3.2). Die Objekte werden aufgrund
ihres dominanten dynamischen Verhaltens bzw. ihrer charakteristischen Eigenschaft klas-
sifiziert. Dieses geschieht anhand von einfach zu beschreibenden Merkmalen (Bothe 1994,
Kahlert und Frank 1993). Die Klassifikation stiitzt sich dabei auf Aussagen und Daten
des Objektes. Dies geschieht durch

e experimentellen meftechnischen Zugang und/oder

o subjektive Aussagen und Einschdtzungen von Experten.

2.1 Zeitreihenobjekt

Objekte sind im allgemeinen diskrete Abbildungen (Modelle) von Systemen. Sie werden
durch einen Satz von Informationen iiber das System erklart (Bocklisch 1987a). Die In-
formationen liegen meist als Mefldatenvektor vor. Der Mefldatenvektor besteht dann aus
abgetasteten Mefidaten. Fiir die Betrachtung von Sprungantworten 148t sich der Objekt-
begriff konkretisieren. Die Sprungantworten werden im Rahmen der Systemklassenbildung
von nun an als Zeitreihenobjekte bezeichnet. Das Zeitreihenobjekt ist an spezielle Zeit-
punkte der Zeitreihe und deren Umgebung gebunden. Das heifit, es existiert eine eindeuti-
ge Zuordnung zwischen Objekt und Abtastzeitpunkt. Zur Bestimmung der Systemklassen
durch Zeitreihenobjekte wird ein Zeitreihenobjektvektor z benétigt. Dabeil bestimmt die
Anzahl m der Abtastungen die Dimension des Zeitreihenobjektvektors z:

z2=[ys o Yol (2.1)
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Da meist ein Zeitreihenobjektvektor z zur Bestimmung der Systemklassen nicht ausreicht,

wird eine Zeitreihenobjektmatrix

Y11 Y12 -+ Yin
N e (2.2)
yml ym2 e ymn

bendtigt. Es entsteht so eine m x n Matrix, wobei n die Anzahl der Sprungfunktionen

angibt. Die Sprungfunktion 1a8t sich dann als Testsignalvektor
U= [UpUo2 ... uom]T (2.3)

mit den n Amplituden u,; < U,z < ... < Uy, mit u,, € [—1,1] zusammenfassen.

2.2 Merkmale

Merkmale sind charakteristische Figenschaften von Objekten und wirken insofern un-
terscheidend. Die Merkmale lassen sich anhand von zwei Vorgehensweisen beschreiben,
welche zuvor genannt worden sind. Subjektive Einschétzungen kénnten z.B. ausgeprigte
Schwingungserscheinungen sein, mefitechnische Auswertungen kénnten z.B. an Zeitreihen-

objekten durchgefiihrt werden. Die Menge aller Merkmale wird zu einem Merkmalsvektor
m = [mymsy ... mN]T (2.4)

mit den N Merkmalen mq, my, ..., my zusammengefafit.

Die Zuordnung eines Objektes zu einer oder mehreren Systemklassen geschieht in er-
ster Linie iiber die Implikation® (¢ = b) (Béhme 1992 und 1993). In einer Implikation
(WENN ... DANN Regel) bildet der Merkmalsvektor m die Pramisse und die System-
klasse K, die Konklusion. Da man meist mehrere Partialprdmissen zur Systemklassenzu-
ordnung bendétigt, werden die Konjunktion und die Disjunktion (Bohme 1993) als weitere
Verkniipfungen gebraucht. Im folgenden ist die Verkniipfung Subjunktion als WENN ...
DANN Regel dargestellt, wobei die einzelnen Merkmalsvektoren m konjunktiv tiiber den
Minimum—Operator und disjunktiv {iber den Maximum-Operator (Zadeh 1965) verkniipft
sind:

WENN my A my vV ms3 V... A mpy .k DANN [X’k . (25)

Da ein Ziel dieses Berichtes darin besteht, reale Strecken (Prozesse) in Systemklassen

einzuteilen und dementsprechend damit zu rechnen ist, dafl die Zeitreihenvektoren mit

2Im Gegensatz zur Subjunktion (¢ — b) (Bocklisch 1987a) bringt die Implikation direkt eine logische
Folgerung und einen urséchlichen oder bedingungsgeméfen, inhaltlichen Zusammemhang zwischen ¢ und

b zum Ausdruck (WENN a DANN &) (Bshme 1993)
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Stérungen oder mit sogenannten , Ausreiflern belegt sind, werden fiir die Einzelmerk-
male Toleranzintervalle zugelassen. Aus diesem Grunde werden die Merkmale durch un-
scharfe Mengen und die Regeln fiir die Systemklassenbildung durch unscharfe Relationen
dargestellt. Das heifit, es wird eine unscharfe Klassifikation, welche sich besonders durch
ihre grofie Robustheit auszeichnet, durchgefithrt (Schroer, Frey, Vater und Klein 1994,
Priber u. a. 1994). Ein weiterer Vorteil des unscharfen Klassifikators liegt in der relativ
einfachen Verarbeitung von unscharfen Basisinformationen (elementaren Informationen
des Objektes). Die Unschéarfe der Basisinformationen beruht z.B. auf Mefigeratefehlern,
Storeinfliissen beim Messen und nichtreproduzierbaren Anfangs- und Randbedingungen
(Bocklisch 1987b). Der Aufbau des unscharfen Klassifikators erfolgt analog zu dem Auf-
bau eines Fuzzy—Reglers. Welche Merkmale zu verkniipfen sind und wie die Klassifizierung
im Merkmalsraum von statten geht, entscheidet der Klassifikator (siehe Abschnitt 2.3.1).
In einem weiteren Schritt wird dann jeweils ein Standard—Fuzzy—Regler jeder natiirlichen

und semantischen Klasse zugeordnet.

2.3 Systemklassenbildung

Zur Einteilung der Systemklassen werden die Sprungantworten des Systems (Objekt)
abgetastet und als Zeitreihenobjektvektor z bzw. als Zeitreihenobjektmatrix Z abgespei-
chert. Die Abtastzeit T' wird aus der Sprungantwort des Systems bestimmt. So kann aus
der Zeit Tgs ein Intervall T € [0, 18 Tys; 0,36 Tg3] bestimmt werden (Mindel 1993). Fiir die

erste Messung wird die initiale Abtastzeit

1.
200
in Abhéangigkeit der Einschwingzeit T, festgelegt.

T, =

(2.6)

Nach dieser ersten Messung kann dann zunéchst Tg3 und damit 7" berechnet werden.
Im Bild 2.1 ist die Vorgehensweise zur Bestimmung der Systemklassen aufgezeichnet. In
der Merkmalsextraktion sind die Merkmalsvektoren m abgelegt. Da hier die Merkmale
zur Unterscheidung der Klassen von vornherein bekannt sind, 1duft die Merkmalsextrakti-
on darauf hinaus, die Merkmale zu ,messen®. Zur Merkmalsextraktion werden meist nicht
nur die Zeitreihenobjekte benétigt, sondern auch die entsprechenden Sprungfunktionen
un(kT). Das heifit, daBf neben dem Zeitreihenobjektvektor z bzw. der Zeitreihenobjekt-
matrix Z auch der Testsignalvektor uw ausgewertet wird. Der Klassifikator ordnet dann

das System (Objekt), charakterisiert durch die Merkmale, einer Systemklasse zu.

2.3.1 Unscharfer Klassifikator

An Skalen und folglich auch an Variablen, die zu Merkmalen fithren, werden die nicht

metrischen nominalen und ordinalen Skalen sowie die metrischen Intervall- und Verhalt-
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U1 (]CT) . 21 my Kl

System " Merkmals— : : . Klassifi— : :
Y extraktion . . kator . .
w (k)| | Zn T i my £y,

Bild 2.1: Vorgehensweise bei der Systemklassenbildung

nisskalen unterschieden. Zu den Metrischen gehéren direkt gemessene oder vorverarbeitete
Signale — Zeitreihenobjekte — und Bestimmungsgrofien — Betrag der Toten—Zone —
des Prozesses. Durch den Menschen werden Informationen oft mittels ordinaler Skalen
angegeben. Derartige Informationen treten haufig als linguistische Variablen auf (Bert-
ram 1991). Die Besonderheit des unscharfen Klassifikators besteht darin, dafl alle Arten
von Skalen und auch ihre Kombinationen verarbeitet werden kénnen, womit die Opti-
on der Beschreibung des Systems mit subjektiven Einschatzungen gewéhrleistet ist. Die
Grundstruktur des unscharfen Klassifikators ist im Bild 2.2 dargestellt. Er besteht aus
den gleichen Grundelementen wie ein Fuzzy—Regler. Es wird jedem Merkmal ein Sympa-
thiewert p% = p*(my) zugewiesen, welcher vergleichbar mit dem Zugehorigkeitsgrad pa

beim Fuzzy-Regler ist.

A

my 3 i K,
Fuzzifi—| - . Regelbasis . - | Defuzzifi-
zlerung | * : Inferenz, : : zierung

my [y [ K,

HE,

Bild 2.2: Unscharfer Klassifikator

Da jedoch aufgrund der hohen Anzahl der Merkmale der Aufwand relativ grof} ist die-
se zu verarbeiten, werden aus den Merkmalsvektoren bzw. den Merkmalmatrizen (wenn
moglich) signifikante Merkmale im Vorfeld selektiert. Dies konnen z.B. die Maximum-,
Minimum- oder arithmetischen Mittelwerte sein. Es wird also angestrebt, die Dimension
des Merkmalsvektors N wesentlich kleiner zu halten als die des Zeitreihenobjektes n. Dies
bedeutet, dafl in der Merkmalsextraktion gleichzeitig auch eine Merkmalsselektion ent-
halten ist. Eine weitere Moglichkeit zur Datenreduktion ergibt sich, wenn die Merkmale
im relativen Bereich zu einem Bezugspunkt £*T" beschrieben werden. Dieser Bezugspunkt
koénnte z.B. durch die subjektive Aussage eines Experten bestimmt werden. Die scharfen

Werte der Merkmale werden durch die Fuzzifizierung in unscharfe Werte tiberfithrt. Durch
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die Inferenzmethode, basierend auf der Regelbasis, entstehen die Hauptsympathiewerte
(*. Diese werden durch die Maximalentscheidung (Kahlert und Frank 1993, Tilli 1993a)
gebildet:

A, = max (1) . (2.7)

mit ¢ =1,2,....k und j = 1,2,..., N, wobei K; die zutreffende Systemklasse im

scharfen Sinne darstellt.

Die Defuzzifizierung weist dann einem Objekt eine oder mehrere Systemklassen aufgrund
des Betrages der Hauptsympathiewerte zu. Die Ausgangs—Fuzzy—Mengen werden durch
Fuzzy-Einermengen (Singletons) (Bertram u.a. 1994) modelliert. Die Defuzzifizierung er-
folgt nach der Maximum-Methode (MAX) (Bertram 1991, Kahlert und Frank 1993).
Dadurch wird eine konkrete Klassifizierung erzielt, da nur die Regel mit dem héchsten
Hauptsympathiewert fij. ~beriicksichtigt wird. Eine fehlerhafte Mittelung zwischen den
verschiedenen Klassen K (wie sie sich mit der Hohenmethode einstellen kann) ist da-
her nicht méglich. Die Maximum—Defuzzifizierungsmethode erlaubt hohe Verarbeitungs-
geschwindigkeiten und ist fiir die Klassifizierung geeignet, die eine harte Zuordnung der
Objekte zu den vordefinierten Klassen vornimmt (Tilli 1994). Der Nachteil der Maximum-—
Methode ist jedoch, daf die Findeutigkeit erzwungen werden muf. Diese wird durch eine

Verfeinerung der Merkmalsextraktion erzielt, wodurch sich die Anzahl der Regeln erhoht.

2.3.2 Systembklasse oszillatorisch

Bei der weiteren Einteilung der nartiirlichen Systemklassen in semantische Systemklassen
werden inhaltliche Kriterien (Bocklisch 1987a) beriicksichtigt. Im Falle der Systemklasse
oszillatorisch ist das inhaltliche Kriterium die Uberschwingweite o,. Sie gibt das Verhalt-
nis des maximalen Uberschwingens des Zeitreihenobjektvertors max(z) — 2., zu dem
stationdren Endwert z., wider:

0, 1= max{z} — 2 (2.8)

Zoo

Die Uberschwingweite 0, 1st das charakteristische Merkmal m,. der natiirlichen System-
klasse oszillatorisch mit ihren semantischen Systemklassen. Dieses charakteristische Merk-
mal wird fuzzifiziert und entsprechend den Bildern 2.1 und 2.2 ausgewertet. In den Bildern
2.3 und 2.4 sind die Fuzzy—Referenzmengen der Pramisse und der Konklusion dargestellt.
Zur Systematik der Klassifizierung der anderen natiirlichen und semantischen System-

klassen wird auf Berger (1994) verwiesen.
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wi
N NP PM PG
f 1 moT
C1,]:’M mPM CZ,PM
Myp  Cre My

CNP

Bild 2.3: Fuzzy—Referenzmengen der Pramissen

S0z MOZ  STOZ  KOZ

Sy
K5 K6 K’? KB

Bild 2.4: Fuzzy—Referenzmengen der Konklusionen

Die Regelbasis zur Klassifizierung besteht aus vier relationalen Regeln:

WENN  (m,, IST N) DANN  (Sy IST KOZ),
WENN  (M,. IST NP) DANN  (Sy IST 502%),
WENN  (M,. IST PM)  DANN  (Sy IST MOZ),
WENN  (M,. IST PG) DANN  (Sy IST STOZ).
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3 Konfektionierte relationale Fuzzy—Regler

3.1 Struktur der konfektionierten relationalen Fuzzy—Regler

Jeder natiirlichen Systemklasse wird ein konfektionierter relationaler Fuzzy—Regler in
Form eines Fuzzy—PD-Reglers bzw. eines Fuzzy—PI-Reglers zugeordnet, wobei sich die
Regler aufgrund ihrer Ausgangsgréfie unterscheiden. Der Unterschied wird durch einen
Vergleich des Fuzzy-PD-Reglers bzw. des Fuzzy-PI-Reglers mit den konventionellen
(Kahlert und Frank 1993) PD-Regler bzw. PI-Regler erlautert (Driankov, Hellendoorn
und Reinfrank 1993). Ein konventioneller PD-Regler wird durch die Differentialgleichung

u(t) = Kpe(t) + Kpé(t) (3.1)

beschrieben, das heifit, er verarbeitet die Regelabweichung e(t) und die Ableitung der Re-
gelabweichung é(2) zu einer Stellgrofe u(?). Die gleiche strukturierte Verarbeitung der
Eingangsgrofien zur Ausgangsgrofle weist der Fuzzy—PD-Regler auf, nur dafl hier die
Anderung der Regelabweichung Ae(kT) verwendet und die Stellgrofe w(kT) aufgrund

von relationalen Fuzzy—Regeln der Form
WENN (F IST X;) UND (AF IST Y;) DANN (U IST Uy) (3.2)

mit X; € {NG,NM,NP,PM, PG}
Y, € {NG,NM,NP,PM, PG}
U, € {NG,NM,NP,PM, PG}

gebildet wird. Der konventionelle PI-Regler wird durch die Differentialgleichung

() = Kpe(t) + K /e(t) dt (3.3)
beschrieben, differenziert man diese Gleichung, so erhélt man einen d&quivalenten Ausdruck
der Form

u(t)= Kpé(t)+ Kre(t) . (3.4)

Das heifit man erhélt als Eingangsgrofie die Regelabweichung e(¢) und die Ableitung
der Regelabweichung é(¢) sowie die Ableitung der StellgroBe w(?) als Ausgangsgrofie. Die
gleiche Struktur beziiglich der Verarbeitung der Fingangsgréfien zu der Ausgangsgrofe
weist der Fuzzy-PI-Regler auch auf, nur daf hier die Anderung der Regelabweichung
Ae(kT) verwendet und die Anderung der StellgréBe Au(kT') aufgrund von relationalen
Fuzzy—Regeln der Form

WENN (£ IST X;) UND (AE IST Y;) DANN (AU IST AU) (3.5)

mit X; € {NG,NM,NP,PM, PG}
Y, € {NG,NM,NP,PM, PG}
AU, € {NG,NM,NP,PM, PG}
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gebildet wird. Die verwendeten konfektionierten relationalen Fuzzy—Regler bestehen aus
den Grundelementen Fuzzifizierung, Regelbasis und Defuzzifizierung. Dem Regler werden
die Regelabweichung e(kT) und deren zeitliche Anderung Ae(kT) in Form eines einfachen

Differenzenquotienten

e(kT) = w(kT)—y(kT) (3.6)
Ae(kT) = e(kT)_e;(k_l)T) (3.7)
zugefithrt.

Da der Fuzzy Regler selbst ein rein statisches Ubertragungsverhalten besitzt, muf er mit
dynamischen Gliedern ergénzt werden (Preuff 1992a, b) (Bild 3.1 und 3.2). Aus diesem
Grunde wird vor dem Fuzzy—Regler ein Differenzierer D geschaltet. Zusétzlich werden
die Skalierungsfaktoren k., ka. bzw. k.r, kacr eingefithrt, mit denen die Wertebereiche
der Fingangsgrofien e, Ae auf das Definitionsintervall Dy = [—1, 1] normiert werden (nor-

mierte Regelabweichung € und normierte Anderung der Regelabweichung A¢€).

v
ke Fuzzy- U
v - ¢ pD,y i ky, Strecke LA
D he k., he Regler

A

Bild 3.2: Fuzzy—PI-Regler im Regelkreis

Da der Fuzzy-PI-Regler als Ausgangsgrofe die Anderung der Stellgrofe Au(kT) besitzt,

muf} diese noch summiert werden:

w(kT) = kaw Au(kT) + u((k — 1)T) . (3.8)

Eine Erhéhung der Skalierungsfaktoren k. und ka. bzw. k.; und ka.; fithrt zu einer Sensi-
bilisierung der Regelung in der Umgebung des Arbeitspunktes und zu einer Desensibilisie-

rung in der transienten Phase (Kroll 1993). Bei der Einstellung der Skalierungsfaktoren k.
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und ka. bzw. k.; und ka.; wird zunédchst von den Maximalwerten der jeweiligen skalier-
ten Groflen ausgegangen und die Skalierungsfaktoren so eingestellt, dafl beim Einstellen
dieser Maximalwerte der normierte Grundbereich Dy gerade ausgeschépft wird. FEinen si-
gnifikanten Einflul auf das Systemverhalten hat der Skalierungsfaktor ka,. Ein zu kleiner
ka,—Wert hat ein zu trages Systemverhalten zur Folge. Fin zu grofl gewahlter ka,—Wert
kann eine Instabilitdt mit grofen Amplitudendnderungen um den Sollwert verursachen
(Bare, Mulholland und Sofer 1990). Bei der Auslegung der Standard-Fuzzy—Regler wer-
den verschiedene Werte fiir die Skalierungsfaktoren ka, untersucht. Die besten Ergebnisse
werden bei einem Skalierungsfaktor von
T T
kau € [E7 Z]

erzielt (Berger 1994). Die normierte Regelabweichung ¢(kT'), die normierte Anderung der
Regelabweichung Aé(kT) und die StellgréBe u(kT) bzw. die Anderung der Stellgrofie
Au(kT) werden jeweils durch fiinf Fuzzy—Referenzmengen partitioniert. Die Fuzzy—Refer-
renzmengen assoziieren dabei die linguistischen Variablen negativ groff (NG), negativ mit-
tel (NM), in der Nihe des Nullpunktes (NP), positiv mittel (PM) sowie positiv grof§ (PG)
(Bild 3.3 und 3.4). Weiterhin sind die Fuzzy—Referenzmengen der Eingangsgrofien der
Fuzzy—Regler orthogonal auf Dy geméfl der

Definition:(Rommelfanger 1993)

Eine Menge A = { A} }r=1,. x unscharfer Mengen A = {(z, 4, (z)) | * € Dy}

heifit genau dann orthogonal auf Dy, wenn gilt
K
Z/LAk(l'):l A J?EDN
k=1
O

wenn die Menge aller Fuzzy—Referenzmengen A nicht iiber eine linguistische Beschrei-

bungsweise

A={NG,NM,NP,PM, PG} , (3.9)
sondern iiber eine numerische Bezeichnungsweise

A=1{1,2,3,4,5} (3.10)

dargestellt wird. Somit ergibt sich fiir die konfektionierten relationalen Fuzzy—Regler

dux(é)=1 ¥V éeDy (3.11)
=1
dopy,(Aé)=1 ¥V A¢eDy (3.12)

i=1
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2
NG NM NP PM PG
f f i i i = =N
Mg Cwe Copw  Mpy  Copy € A€
Coaom Myy  Conu  Cre M pg

Cowp Muyp  Conp

Bild 3.3: Fuzzy—Referenzmengen der Pramissen X; und Y]

NG NM P PM PG

—
T honuy

Myg  Myy Myp  Mpy Mp U AU

Bild 3.4: Fuzzy-Referenzmengen der Konklusionen Uy und AU,

Fir die Fuzzy—Referenzmengen der Pramissen und der Konklusionen ergeben sich folgende

Kurzschreibweisen,
Xng = Yng =(-0,5, —1,0) (3.13)
Xnvv =Yvu =(-1,0, —=0,5,0,0) (3.14)
Xnp =Ynp=(-0,5,0,0,0,5) (3.15)
Xpyv = Ypnm =1(0,0,0,5, 1,0) (3.16)
Xng =Yneg =(0,5, 1,0) (3.17)
Uneg = AUng = (—1,0) (3.18)
Uny = AUny = (—0,5) (3.19)

Unp = AlUyp = (0,0) (3.20)
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UPM = AUPM = (0,5) (3.21)
Une = AUpg = (1,0) . (3.22)

Bei der Verkniipfung der Partialpramissen (FIST X;) und (AEISTY;) wurden die aus
der Praxis bekanntesten #~Normen (Gottwald 1993, Kruse, Gebhardt und Klawonn 1993)
untersucht (Ying, Silver und Buchley 1990). Ausgangspunkt der Untersuchungen ist die
min—Verkniipfung der Zadehschen Logik (Zadeh 1965). Nachteilig wirkt sich bei dieser
Verkniipfung das nicht interaktive Verhalten (Grimm 1994) aus, da das Verkniipfungs-
ergebnis nur von einer Partialprdmisse abhangt und sich nur dann andert, wenn eine
Partialpramisse kleiner ist als die andere. Aufgrund von experimentellen Untersuchungen
von Berger (1994) und Pedrycz (1989) wird als Verkniipfung der Partialpramissen das
algebraische Produkt verwendet (Bohme 1992, 1993, Grimm 1994).

Diese Verkniipfung zeichnet sich besonders durch ihr interaktives und sensitives Verhalten
aus (Grimm 1994). Weiterhin ist mit dieser Verkniipfung eine ,glattere* Stellgroflenge-
nerierung zu erreichen (Brown and Harris 1991). In den Bilder 3.5 und 3.6 sind binére
Fuzzy—Relationen R = {((e, Aé), a(é, A¢)) | € € X, Aé € Y} einmal {iber den Minimum-
Operator und einmal iiber das algebraische Produkt dargestellt, welches die Unterschiede

im interaktiven und sensitiven Verhalten verdeutlicht.

Somit berechnet sich der Erfillltheitsgrad ap, der Pramisse der r—ten Regel zu
ar,(€,A¢) = px,(€) py;(Ae) . (3.23)

Die Defuzzifizierung erfolgt nach der Schwerpunktmethode fiir Fuzzy—Einermengen (Kah-
lert und Frank 1993). Es wird fiir jede Regel R, der Erfillltheitsgrad ag, mit dem Modal-
wert mp, multipliziert. Die Produkte ar, mpg, werden iiber alle Regeln aufsummiert und

durch die Summe der Erfiilltheitsgrade ag, dividiert:

Zn:OéRT(kT) mRT
u(kT) = =
Z_;OéRT(kT)

(3.24)
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4 Standard—Fuzzy—Regler

Ausgangspunkt zur Erstellung der Standard-Fuzzy—Regler ist die in Abdelnour, Chang,
Huang und Cheung (1991) sowie in Buckley und Ying (1991) vorgestellte 8 x8 Regelbasis—
Matrix (Tabelle 4.1) fiir die Fuzzy—Referenzmengen X, ¢ = =3,...,43.,Y;, j = —-3,...,
+3 und Ui, & = —6,...,46, welche vergleichbar mit der Macviar—Whelan—Matrix
(Tzafestas und Papanikolopoulos 1990, Bare, Mulholland und Sofer 1990) ist. Hierbei

wurde die linguistische Beschreibungweise der Fuzzy—Referenzmengen z.B.
A={NG,NM,NK, NNP,PNP,PK,PM, PG} (4.1)
durch eine numerische Beschreibungsweise
A={-3-2-1,-0,40,+1,42,+3} (4.2)

ersetzt.

—3|=2]-1]-0]+0[+1[+2]+3
=3[ -6[-5]-4][-3]-3]-2]-1]+0
25| 4|3 -2[-2]-1]+0]+1
1[4 -3 2[-1[-1]+0]+1]+2
el—of 3] —2[-t]-0]-0]+1]+2]+3
+0 [ 3] —2]-1[+0[+0|+1[+2]+3
1 =2 1[40 [ +1 [+ [ +2 | +3 ] +4
+2 [ -1 +0[+1 [ +2[+2 [ +3 [ +4 [ +5
30 [+L[+2 [ 43 [ 3| +4 [ 45| +6

Tabelle 4.1: Regelbasis—Matrix (Karnaugh—Tafel) nach Abdelnour, Chang, Husang
und Cheung (1991)

Eine weitere Hilfestellung zur Erstellung der Standard-Fuzzy—Regler ist gegeben, wenn
eine typische Systemantwort in ihre charakteristischen Bereiche aufgeteilt (Buckley und
Ying 1991) und diese Bereiche dann auf die Regelbasis—Matrix iibertragen wird (Lee
1990). Die Standard-Fuzzy—Regler werden entsprechend der Systemklassen fiir lineare
[-Strecken, PTy—Strecken mit/ohne Totzeit erstellt.
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4.1 Systemklasse I-System

Die Standard—Fuzzy—Regler werden nach heuristischen Gesichtspunkten (Lenat 1983) er-
stellt. Ausgehend von den relationalen Fuzzy—Regeln aus (Gleichung (3.2) und (3.5))
mit den Fuzzy—Referenzmengen X,,Y;, Uy, AU, € {NG,NM,NP,PM,PG} und der
Regelbasis—Matrix nach Abdelnour, Chang, Husang und Cheung (1991), ergibt sich eine
5 x b—Regelbasis—Matrix mit der linguistischen Beschreibung der Fuzzy—Referenzmengen
(Tabelle 4.3). Dabei werden die Fuzzy—Referenzmengen der Regelbasis—Matrix nach Ab-
delnour, Chang, Husang und Cheung (1991) X;, « = {-3,-0,4+3}, Y;, j ={-3,-0,+3},
Up, k = {—6,—5,45,46} nicht betrachtet. In der Tabelle 4.2 ist aufgefithrt, wie die
anderen Fuzzy—Referenzmengen in Beziehung zur linguistischen Beschreibungsweise der
Standard—Fuzzy—Regler gesetzt wurden.

| Ur, AU, [ XY,

{—4,-3} = NG || {-2} = NG
{-2,—-1} = NM || {-1} = NM
{+0,-0} = NP || {+0} = NP
{+1,+2} = PM || {+1} = PM
{+3,44} = PG || {+2} = PG

Tabelle 4.2: Transformation der numerischen Beschreibungsweise in die linguistische

Beschreibungsweise

Aé
NG |NM | NP | PM | PG
NG | NG | NG | NM | NM | NP
NM | NG |[NM | NM | NP | PM
¢ NP |[NM|NM| NP | PM|PM
PM || NM | NP | PM | PM | PG
PG | NP | PM | PM | PG | PG

Tabelle 4.3:  Erster Entwurf der Reglerbasis—Matrix (Karnaugh—Tafel) des Fuzzy—PD
—Reglers fiir die Systemklasse [-System nach der Vorlage der Regelbasis
—Matrix Tabelle 4.1
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4.2 Systemklasse oszillatorisch

Bei der natiirlichen Systemklasse oszillatorisch mit ithren semantischen Systemklassen
schwach oszillatorisch, mittel oszillatorisch und stark oszillatorisch werden die Standard—
Fuzzy—Regler genauso erstellt wie bei der Systemklasse [-System, nur daf hier ein Fuzzy—
PI-Regler verwendet wird. Aus diesem Grunde werden hier nur die Regelbasis—Matrizen
der semantischen Systemklassen dargestellt, fiir die weiteren Ergebnisse wird auf Berger

(1994) verwiesen.

Aé
NG |[NM | NP | PM | PG
NG | NM | NM [ NM | NM | NM
NM || NP | NM [ NM | NM | NM
¢ NP [ PM|PM | NP[NM]|NM
PM | PM | PM | PM | PM | NP
PM | PM | PM | PM | PM|PM

Tabelle 4.5: Karnaugh—Tafel des Fuzzy-PI-Reglers fiir die natiirliche Systemklasse

oszillatorisch mit der semantischen Systemklasse stark oszillatorisch

Aé
NG |NM | NP | PM | PG
NG | NM | NM | NG | NG | NG
NM | NP | NM | NM | NM | NM
¢| NP || PM | PM | NP | NM | NM
PM | PM | PM | PM | PM | NP
PG | PG| PG| PG | PM | PM

Tabelle 4.6: Karnaugh—Tafel des Fuzzy-PI-Reglers fiir die natiirliche Systemklasse
oszillatorisch mit der semantischen Systemklasse mittel oszillatorisch
und schwach oszillatorisch

4.3 Systemklasse Totzeit—System

Bei der Klassifizierung eines Prozesses zur Systemklasse Totzeit—System wird die Regelba-
sis—=Matrix bzw. der Skalierungsfaktor ka, angepafit und zwar in der Form, dal der Reg-
lereingriff im Bereich grofier Regelabweichung ,vorsichtiger® generiert wird (Frenck und
Kiendl 1993), welches nur beim Fuzzy—PI-Regler notwendig ist. Dieses verdeutlicht die
Regelbasis—Matrix fiir die Systemklassen mittel oszillatorisch und Totzeit=System (Ta-
belle 4.7). Eine sinnvolle Anpassung des Skalierungsfaktors ka, ist nur moglich, wenn
dieser nicht global definiert ist (ka, = const). Erste Ansitze zur lokalen Definition z.B.
kaw = f(e,Ae) finden sich in Peng, Liu und Yamakawa (1988) sowie in Liaw und Wang
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(1991). Der Skalierungsfaktor ka, mufl im Bereich der Totzeit, also im Bereich grofier
Regelabweichung einen kleineren Wert erhalten als im iibrigen Bereich, um so eine zu
grofie StellgroBengenerierung u(kT') bedingt durch die Aufsummierung der Anderung der
StellgroBe Au(kT') im Bereich der Totzeit zu vermeiden.

Aé
NG |NM | NP | PM | PG
NG | NM | NM | NG | NM | NM
NM | NP | NM | NM | NM | NM
¢| NP || PM | PM | NP | NM | NM
PM | PM | PM | PM | PM | NP
PM || PM | PM | PG | PM | PM

Tabelle 4.7: Karnaugh—Tafel des Fuzzy-PI-Reglers fiir die natiirliche Systemklasse
oszillatorisch mit der semantischen Systemklasse mittel oszillatorisch

und der natiirlichen Systemklasse Totzeit—System

4.4 Systemklasse statische Nichtlinearititen

Bei der Klassifizierung eines Prozesses zur natiirlichen Systemklasse statische Nichtli-
nearitdten mit der semantischen Systemklasse Tote—Zone erfolgt eine Aufschaltung eines
Offset auf die StellgroBe des anderen klassifizierten Standard—Fuzzy—Reglers. Somit ergibt
sich eine generierte Stellgrofie von

Zn: OéRT(kT) me,
u(kT) = =L

Zi; OéRT(kT)

ku + uoff(kT) (43)

fiir einen Fuzzy—PD-Regler bzw.

Zn:OéRT(kT) mRT
u(kT) = =

Zi; OéRT(kT)

kauw + uP[((k — 1)T) + uoff(kT) (4,4)

fiir einen Fuzzy—PI-Regler. u,¢(kT) wird iiber einen Fuzzy—Regler (Fuzzy—Regler—Tote—
Zone) generiert und iiber eine Rekursionsformel (Bertram 1993)

Uosp(KT) = uos (K — 1)T) + Augps(kT) (4.5)

berechnet, also in Form eines Fuzzy—PI-Reglers. Die Fuzzy—Referenzmengen der Parti-
alpramissen X; und Y; mit ¢, € {NSK,NPK, PSK} sowie die Fuzzy—Referenzmengen
der Konklusionen AU; mit [ € {N, NP, P} sind im Bild 4.4 dargestellt.
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NSK  NPK  PSK NN P

f f i T T = % T —
Cowvsk Mosk Cansk Cower Copsk © A My 0 mp A uoff
Cyvpr Moypx My psk
€ psk

Bild 4.4: Fuzzy—Referenzmengen der Partialpramissen X; und Y; (links) und der Kon-
klusionen AU (rechts)

Die Werte der Begrenzungen der Einflulbereiche ¢ und die Modalwerte m miissen auf
das System abgestimmt werden. Aus Bertram (1993) und Wagner (1994) ist bekannt, daf
dieser Offset erst in der Nahe des Nullpunktes einsetzt. Somit werden zur ersten Auslegung

folgende numerische Werte fiir die Fuzzy—Referenzmengen angesetzt:

Xnsk = (—0,25,—0,125, 0,0) (4.6)
Xypx = (=0,125,0,0, 0,125) (4.7)
Xpsk = (0,0, 0,125, 0,25) (4.8)
AUy = (=0,2) (4.9)
AUyp = (0, ) (4.10)

und
AUp = (0,2) (4.11)

Liegen die Werte der normierten Regelabweichung ¢ bzw. der normierten Anderung der
Regelabweichung Aé auflerhalb der Begrenzungen der Einflubereiche ¢; ysx und ¢ psi,
dann nimmt die StellgroBe u,ss den Betrag der Toten—Zone a an (Berger 1994). In der
Tabelle 4.8 ist die Regelbasis—Matrix des Standard—Fuzzy—Reglers fiir die natiirliche Sy-
stemklasse statische Nichtlinearitdten mit der semantischen Systemklasse Tote—Zone als
Karnaugh—Tafel dargestellt.
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Ae
NSK | NPK | PSK
NSK N N P
e | NPK N NP P
PSK N P P

Tabelle 4.8: Karnaugh—Tafel des Fuzzy—Reglers fiir die natiirliche Systemklasse sta
tische Nichtlinearitdten mit der semantischen Systemklasse Tote—Zone

Die gleiche Systematik der Reglerzuweisung wie bei der semantischen Systemklasse Tote—
Zone wird bei der semantischen Systemklasse Dreipunktschalter angewendet. Dies liegt
in der Tatsache begriindet, dafl ein Dreipunktschalter eine Tote-Zone enthélt. Bei der
Klassifizierung der semantischen Systemklassen Begrenzer und Zweipunktschalter werden

zum jetzigem Stand der Forschung keine Standard-Fuzzy—Regler zugewiesen.
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5 Anwendung der Standard—Fuzzy—Regler an einem

technischen Beispiel

In diesem Abschnitt wird das Regelungskonzept der Standard-Fuzzy—Regler am Bei-
spiel eines translatorischen hydraulischen Antriebes gemiafl der Skizze Bild 5.1 doku-
mentiert. Geregelt werden soll die Kolbengeschwindigkeit vx des hydraulischen Zylinders
(y(t) = vg). Zur Simulation des translatorischen hydraulischen Antriebes wird ein bilinea-
res Systemmodell (Bild 5.2) wegen seiner sehr guten Approximation der realen Dynamik
verwendet (Beater 1986, Schwarz und Doriflen 1989). Das kontinuierliche bilineare Modell

der Form

mit den numerischen Werten

_[0,0037 —0,2232 N —0,0266 0,0683
- 10,2232 —0,1449 | | —0,0070 —0,0667

b =[—0,0473 0,1187]7 , '=[-0,2730 —0,2352]

wurde mit einem Identifikationsverfahren von Doriflen (1990a, 1990b) bestimmt.

hydr. Zylinder
Last

/
I by A B pgl

| m
[ Vi Vo

T T R
Q1 Qe

Proportionalventil

E R

Bild 5.1: Skizze eines translatorischen hydraulischen Antriebes
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] ¥ —

uft L2t x(t t
CEra ISl W[

Bild 5.2: Blockschaltbild eines bilinearen Systems

5.1 Klassifizierung des translatorischen hydraulischen Antrie-
bes

Zur Klassifizierung wird das offene System durch einen Testsignalvektor
w=1[0,1051,0" (5.3)

erregt und nach der Vorgehensweise der Systemklassenbildung (Bild 2.1 und 2.2) aus-
gewertet. Es entstehen so die Zeitreihenobjektvektoren 21,z und z3 welche zur Merk-
malsextraktion verwendet werden (Bild 5.3). Die Tabelle 5.1 zeigt die Ergebnisse der
Klassifikation. Der Prozefl wird der natiirlichen Systemklasse oszillatorisch mit der se-

mantischen Systemklasse mittel oszillatorisch zugeordnet.

H klassifiziert | nicht klassifiziert

oszillatorisch X

schwach oszillatorisch X

mattel oszillatorisch X

stark oszillatorisch

monoton
[-System
Totzeit—System

XXX | X]|X

statische Nichtlinearititen

Tabelle 5.1: Klassifizierung des identifizierten bilinearen Modells eines translatorischen

hydraulischen Antriebes
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3,0
zZ.

e 3
= 25+ T~ 1
S 20F 1
[aB)
<
S 15t i ]
= 1,0+ |
L
s
= 05 r 24 .
: o |
:

-0,5

0 20 40 60 80 100

Anzahl der Abtastungen m
Bild 5.3: Zeitreihenobjektvektoren 2z, zo und 23

5.2 Regelung des translatorischen hydraulischen Antriebes

Nachdem die Klassifizierung abgeschlossen ist, wird entsprechend der Zuordnung des Pro-
zesses ein Standard—Fuzzy—Regler automatisch ausgewéhlt. Hier wird dem Proze ein

Standard-Fuzzy—Regler der semantischen Systemklasse mittel oszillatorisch in Form ei-

nes Fuzzy—PI-Reglers mit der Regelbasis Tabelle 5.3 (Bild 5.4) zugeordnet.

translatorischer

A U
o Y s hydraulischer UKy
Antrieb

Bild 5.4: Zuordnung des Standard-Fuzzy—Reglers zum klassifizierten System eines trans-

latorischen hydraulischen Antriebes

In den Bildern 5.5 und 5.6 sind die Simulationsergebnisse des geregelten identifizierten bi-
linearen Systemmodells eines translatorischen hydraulischen Antriebes fiir einen Sollwert
von vg = 0,3 m/s dargestellt. Die Bilder 5.5 und 5.6 demonstrieren das gute Fithrungsver-
halten des Standard—Fuzzy—Reglers und unterstreichen die Anwendbarkeit der Standard—
Fuzzy—Regler auch fiir nichtlineare Strecken. Weitere Simulationsergebnisse sind im An-
hang B dargestellt.
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0,35
03 [ i
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02 | ]
0,15 - ]
0.1 © ]

Systemantwort [m/s]
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-0,05

0 20 40 60 80 100 120 140
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Bild 5.5: Kolbengeschwindigkeit vg des bilinearen Systemmodells eines translatorischen

hydraulischen Antriebes fiir einen Sollwertsprung von w = 0,3 m/s
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Bild 5.6: Spannung (StellgroBe) up; des Standard-Fuzzy—Reglers fiir die natiirliche Sy-
stemklasse oszillatorisch mit der semantischen Systemklasse mittel oszillato-

risch
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6 Zusammmenfassung und Ausblick

In diesem Bericht® wurden die Grundlagen eines systematischen Reglerentwurfs fiir Fuzzy—
Regler vorgestellt. Der systematische Reglerentwurf stiitzte sich dabei auf konfektionier-
te relationale Fuzzy—Regler fiir Systemklassen. Die konfektionierten relationalen Fuzzy—
Regler wurden anhand von linearen Systemen (I-System, PTy—System) nach heuristischen
Gesichtspunkten erstellt. Die Systeme (Objekte) werden aufgrund ihres dominanten dy-
namischen Verhaltens bzw. ihrer charakteristischen Eigenschaften in Systemklassen ein-

geteilt. Dies geschieht durch Messungen der Ein— und Ausgangswerte des Prozesses.

Die Zuordnung der Systeme in Systemklassen geschieht durch die Methoden der Klas-
sifikation und der Merkmalsextraktion. Um die Klassifizierung durch subjektive Beschrei-
bungen zu ermoéglichen, wurde die Klassifikation durch eine unscharfe Klassifikation rea-
lisiert. Entsprechend der Systemklassenzugehérigkeit werden dem Prozefl konfektionierte

relationale Fuzzy—Regler zugewiesen.

Die Anwendbarkeit der Standard-Fuzzy—Regler wurde an einem identifizierten bilinearen
Systemmodell eines translatorischen hydraulischen Antriebes dokumentiert. Es wurde ex-
perimentell gezeigt, dafl mit den Standard—Fuzzy—Regler auch bei nichtlinearen Strecken
ein gutes Fiithrungsverhalten erzielt werden kann, obwohl die Standard-Fuzzy—Regler an-
hand einer linearen Strecke mit niedriger Ordnung erstellt wurden und der Regler nicht

speziell an die physikalische Strecke angepafit wurde.

Im weiteren mufl nun das Regelungskonzept der Standard—Fuzzy—Regler fiir Systeme aus-

gebaut werden, die sich aus mehr als einer Systemklasse zusammensetzen.

3Die Ergebnisse dieses Berichtes entstanden im Rahmen des Projektes ,, Fuzzy—Regler fiir lineare und
bilineare Systeme bei verinderlichen Systemparametern®, das von der DFG Az.: schw 120/53—1 gefordert
wurde.
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A Mathematische Beschreibung der Fuzzy—Re-

ferenzmengen

Fuzzy—Referenzmenge als Dreieck:

0 fir

v & Je, o
LT fir oz € [e,m]
palr) = in “ fir x=m (A1)
Co— T g
ﬁ fir = € |m, ¢
Fuzzy—Referenzmenge als Fuzzy—Einermenge:
0 fir =« m
palr) = { -~ f (A.2)
ir = =m
Fuzzy—Referenzmenge als Trapez:
0 fir = & e, e
LA fir oz € [e,my]
-G ’
IMA(J?) B 1 fir =z € [ml,mg] (Ag)
% fir = € |ma, e
Fuzzy-Referenzmenge als halbes Trapez’:
0 fir z <c
palr) =4 ==5 fir = € [e,m] (A4)
1 fir =z >m

Fuzzy-Referenzmenge als halbes Trapez’:

c—m
1 fir z <m

0 fir @ >c¢
palz) =4 £=L fir = € [e,m] (A.5)
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Bild B.1: Kolbengeschwindigkeit vy des bilinearen Systemmodells eines translatorischen

hydraulischen Antriebes fiir einen Sollwertsprung von w = 0,25 m/s
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Bild B.2: Spannung (Stellgroie) up; des Standard-Fuzzy—Reglers fiir die natiirliche Sy-

stemklasse oszillatorisch mit der semantischen Systemklasse mittel oszillato-
risch
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Bild B.3: Kolbengeschwindigkeit v des bilinearen Systemmodells eines translatorischen

hydraulischen Antriebes fiir einen Sollwertsprung von w = 0,2 m/s
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Bild B.4: Spannung (Stellgroie) up; des Standard-Fuzzy—Reglers fiir die natiirliche Sy-

stemklasse oszillatorisch mit der semantischen Systemklasse mittel oszillato-
risch



