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Skalare Gr�o�en�

c � Clusteranzahl

dik � Abstand zwischen i	tem Clusterzentrum vi und k	tem Datensatz xk gem�a�

einer vorzugebenden Abstandsnorm

D � Abstandsnorm

H � Partitionsentropie

Hn � normierte Partitionsentropie

i� k � Z�ahlvariable

m � Anzahl der eindimensionalen Eingangsgr�o�en �Dimension des Eingangsdaten�

raumes�

ni � Anzahl der Datens�atze im i	ten harten Cluster

N � Anzahl der Datens�atze

pi � G�utekriterium �mittlerer quadratischer Fehler� bzgl� nicht	normierter Gr�o�en

xj � j	te Eingangsgr�o�e

y � scharfe Ausgangsgr�o�e des gesamten Regelsatzes

yi � scharfe Ausgangsgr�o�e der i	ten Regel

� � Terminierungsgrenze bei Clusterverfahren

� � Maximal auftretende Verschiedenheit �z� B� Abstand� zweier Punkte im

Datenraum � � max
t�k

�kxt � xkk�

�ik � Zugeh�origkeit des Punktes xk zum Cluster �zur Partition� i

� � Unsch�arfeparameter �� � ��

�i � relatives Volumen des i	ten Clusters

	i � Gesamtpr�amisse der i	ten Regel

Mengen und R�aume�

A�B � Fuzzy	Mengen

D � De
nitionsbereich

DN � De
nitionsbereich normierter Gr�o�en �DN � ���� ���

D
�
N � De
nitionsbereich normierter positiver Gr�o�en �D�

N � ��� ���

D
m
N � normierter De
nitionsbereich der Dimension m �Dm

N � DN � � � �� DN �

m�mal�

I � Menge aller c Cluster� I� f�� 
� � � � � cg

Ik � Menge aller Cluster� bei denen xk den Abstand � vom

Clusterschwerpunkt hat
�Ik � �Ik � In Ik
M c � �

�
Harter�� c	Partitionsraum

M x � Menge aller Datens�atze xk
M i � Menge der Datens�atze im harten Cluster i
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M fc � Fuzzy c	Partitionsraum

M
�
x � Menge der um ihre Zugeh�origkeiten zu den Clustern erweiterten Datens�atze

R � Menge der reellen Zahlen
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m � reeller Vektorraum der Dimension m

W � Wertebereich

Funktionen und Operatoren�

d�a� b� � Abstand zweier Punkte a und b

f���� g���� h��� � allgemeine Funktion

J��� � Zielfunktion

max��� � Maximum

min��� � Minimum

k � k � Norm

���T � Transponiert

Vektoren und Matrizen�

D � Bewertungsmatrix bei Darstellung einer Norm als quadratische Form

x � Datensatz

U � Zugeh�origkeitsmatrix

vi � Clusterschwerpunkt des i	ten Clusters� Partitionsmittelpunkt der

i	ten Partition

Sonstige Symbole�

� � f�ur alle

n � ohne �Mengenalgebra�
���� � Sch�atzwert

��� � Mittelwert

���� � Gr�o�e bei harter Partitionierung

A��� � Kardinalzahl �Anzahl der Elemente�

Indizes�

���i � Regelnummer

���j � Nummer der Eingangsgr�o�e

���k � Nummer des Datums

����l� � l�ter Iterationsschritt

���n � normierte Gr�o�e

������ � Initialisierung

���opt � optimaler Wert
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� Einf�uhrung

Clusterverfahren wurden besonders f�ur Aufgabenstellungen der Mustererkennung �pat�

tern recognition� entwickelt� Sie k�onnen geometrische �beispielsweise sph�arische� ellipsoi�

de� punkt	� linien	 oder bogenf�ormige� Strukturen in einer durch Datentupel gegebe�

nen Datenmenge identi
zieren� W�ahrend
�
harte� Clusterverfahren nur eine Ja	�Nein	

Entscheidung bei der Zuordnung eines Datentupels zu einer Struktur gestatten� ordnen

�
Fuzzy	Clusterverfahren� diesem Zugeh�origkeiten zwischen Null und Eins zu allen Struk�

turen zu� Einen �Uberblick �uber einige Verfahren geben 
� 
 sowie 
� Besonders die metri�

schen Verfahren mit Zielfunktion 
nden auch bei Teilaufgaben der Strukturidenti
kation

von Fuzzy	Modellen Anwendung�

Fuzzy	Modelle stellen i� allg� zeitdiskrete parametrische Ein��Ausgangsgr�o�enmodelle ei�

nes Prozesses dar� Das System wird also als schwarzer Kasten betrachtet �
�� Ein sol�

ches Modell besteht aus mehreren Regeln� deren Ein�u�bereiche durch die sogenannten

Fuzzy	Referenzmengen festgelegt werden m�ussen� Diese k�onnen mit Hilfe von Clusterver�

fahren identi
ziert werden �
� 
� 
� 
� 
� 
�� Eine Verwendung von mehrdimensionalen

Zugeh�origkeitsfunktionen� deren Bestimmung durch Clusteralgorithmen erfolgen kann� er�

laubt ein Losl�osen von den verbreiteten relativ un�exiblen orthogonalen Partitionierungen�

die durch die Kombination explizit eindimensionaler Zugeh�origkeitsfunktionen entstehen�

Das erm�oglicht eine deutlich bessere Anpassung der Partitionierung an die Systemcharak�

teristik� die zudem einfach und automatisiert vorgenommen werden kann� Dadurch l�a�t

sich die Modellparameteranzahl bei gleicher Modellg�ute h�au
g reduzieren�

Bei der Anwendung von Clusteralgorithmen ist eine Vielzahl an Parametern festzulegen�

die das Ergebnis der Clusterung stark beein�ussen� Dazu enth�alt dieser Bericht systema�

tische Untersuchungen� die in den in der Literatur beschriebenen Anwendungen in der

Regel fehlen�

Bei der Bestimmung der Fuzzy	Partitionierung des Eingangsgr�o�enraumes mit Hilfe von

Clusterverfahren besitzt die im 
� Abschnitt behandelte Festlegung� ob nur im Eingangs�

datenraum oder im Ein��Ausgangsdatenraum geclustert wird� besondere Bedeutung�

Viele der Clusteralgorithmen� wie beispielsweise der Fuzzy	c	Means	Algorithmus �FCM��

konvergieren nur in lokalen Minima oder Sattelpunkten ihrer Zielfunktionen �
�� weshalb

die Wahl der Initialisierung der Zugeh�origkeiten bzw� der Clusterschwerpunkte zu beach�

ten ist �Abschnitt ���

Einige Zugeh�origkeitsfunktionen� wie die bei Fuzzy	c	Means	 und Gustafson	und	Kessel	

Algorithmus verwendeten� besitzten einen expliziten
�
Unsch�arfeparameter�� �uber den sich

die Unsch�arfe der Fuzzy	Partitionierung festlegen l�a�t� Seine Wahl hat Ein�u� auf die Mo�

notonieeigenschaften des Graphen der Zugeh�origkeitsfunktionen sowie auf die Modellg�ute

�
� 
� und wird in Abschnitt � behandelt�

Ein weiterer wichtiger Parameter ist die Anzahl c der Cluster� Aus dem Bereich der

Mustererkennung sind einige Kriterien zur Wahl eines optimalen Wertes f�ur c bekannt�
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Diese werden im �� Abschnitt vorgestellt� Die Aufgabenstellung wird als Clustervalidie�

rung bezeichnet� der Bestimmung der tats�achlich vorliegenden Anzahl an geometrischen

Strukturen in den Daten�

F�ur die modellbasierte Synthese von Fuzzy	Reglern wird im allgemeinen von eindimen�

sionalen orthogonalen Fuzzy	Referenzmengen ausgegangen �
� 
� 
� 
�� Der �� Abschnitt

behandelt die Frage� wie die mehrdimensionalen �durch Clusterung generierten� auf ein�

dimensionale orthogonale Fuzzy	Referenzmengen abgebildet werden k�onnen�

Eine Zusammenfassung mit Ausblick schlie�t den Bericht ab� Im Anhang A wird ei�

ne ge�anderte Terminierungsbedingung f�ur Fuzzy	c	Means	 sowie Gustafson	und	Kessel	

Algorithmus zur Steigerung der Verarbeitungsgeschwindigkeit vorgeschlagen�
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� Wahl des Datenraumes bei der Clusterung

Betrachtet werde die Anwendung der Clusterung zur Fuzzy	Partitionierung des Daten�

raumes� um bei Fuzzy	Modellen den durch die Pr�amisse de
nierten Ein�u�bereich der

Regeln festzulegen� Dieses Vorgehen entspricht der Identi
kation von mehrdimensionalen

Fuzzy	Referenzmengen f�ur die Eingangsgr�o�en�

��� Alternativen


 wendet die Clusterung nur auf den m	dimensionalen Eingangsdatenraum funktionaler

Fuzzy	Modelle an� Das f�uhrt zu c Clustern der Dimension m� die als mehrdimensionale

Fuzzy	Referenzmengen Ai� � � i � c� verwendet werden� Dabei de
niert die zu jeder

Fuzzy	Menge Ai korrespondierende Zugeh�origkeitsfunktion �Ai eine Abbildung

D � � � � �� Dm �� D
�
N � ��� �� � �
���

�Ai � g��x�� � � � � xm� � �
�
�

Die Ausgangsdaten werden bei dynamischen Fuzzy	Modellen insofern ber�ucksichtigt� als

da� ein Teil der Eingangsgr�o�en von verz�ogert r�uckgef�uhrten Ausgangsgr�o�en gebildet

wird�


 werten in der Pr�amisse jeder Regel jeweils zus�atzlich die Pr�adiktion der zugeh�origen

Konklusionsfunktion aus� um letztere dann zu gewichten� Bei der Strukturidenti
kation

wird zuerst eine Clusterung im �m���	dimensionalen Produktraum aus Eingangsgr�o�en

x und Ausgangsgr�o�e y durchgef�uhrt� die �m � ��	dimensionale Fuzzy	Referenzmengen

Ai liefert�

D � � � � �� Dm �W �� D
�
N � �
���

�Ai � g��x�� � � � � xm� y� � �
���

Anschlie�end werden bei der Parameteridenti
kation �uber das Verfahren der gewichteten

kleinsten Fehlerquadrate die c Konklusionspolynome als lineare Funktionen der m Ein�

gangsgr�o�en bestimmt� Die Gewichtung eines Datums bzgl� einer Regel ist durch seine

Zugeh�origkeit zur entsprechenden Fuzzy	Referenzmenge de
niert� Bei der Auswertung

des identi
zierten Modells liegt zwar der Wert von x� nicht aber der von y vor� Deshalb

erfolgen f�ur gegebenes x zuerst die Pr�adiktionen �yi �� � i � c� durch Auswertung aller c

Konklusionspolynome fi

D � � � � �� Dm �� W � �
���

�yi � fi�x�� � � � � xm� � �
���

in die y nicht eingeht� Die Gewichtung 	i der i	ten Regel bei der Zusammenfassung der
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Schlu�folgerungswerte �yi aller c Regeln nach

�y �

cP
i��

	i �yi

cP
i��

	i
�
���

wird durch Auswertung des i	ten Clusters f�ur das Argument �x� �yi� bestimmt� Es gilt

	i � �Ai�x�� � � � � xm� �yi�� � � i � c � �
���


 f�uhren die eigentliche Clusterung nur im Ausgangsgr�o�enraum durch und leiten daraus

zugeh�orige Cluster im Eingangsdatenraum ab� Anschlie�end erfolgt eine Projektion dieser

mehrdimensionalen Eingangsdatencluster auf die Koordinatenachsen des Eingangsdaten�

raumes� Die somit aus einem mehrdimensionalen Cluster entstehenden m eindimensiona�

len Fuzzy	Referenzmengen werden letztlich noch durch trapezoide Zugeh�origkeitsfunktio�

nen approximiert und deren genaue Form und Lage optimiert� Zuerst wird dazu vor der

Clusterung eine Abbildung des �m � ��	dimensionalen Ein��Ausgangsdatenraumes auf

den eindimensionalen Ausgangsdatenraum durchgef�uhrt� Dann wird die Clusterung �in c

Cluster� nur im Ausgangsdatenraum W durchgef�uhrt

W �� D
�
N � �
���

�Bi � h�y� � �
����

Dabei sindBi die eindimensionalen� durch Clusterung generierten� Fuzzy	Referenzmengen�

Durch Erweiterung der �m���	dimensionalen Datens�atze um ihre Zugeh�origkeiten zu den

c Clustern

D � � � � �� Dm �W �� D � � � � �� Dm �W � D�
N � � � �� D�

N� �z �
c�mal

�
����

entsteht eine Menge

M
�
x � f�xk� yk� �B��yk�� � � � � �Bc�yk�� j � � k � Ng �
��
�

von �m���c�	Tupeln� Anschlie�end wird jedem der c eindimensionalen Ausgangsgr�o�en�

cluster Bi ein m	dimensionales Eingangsgr�o�encluster Ai zugeordnet� Die Abbildungsvor�

schrift dazu ist punktweise de
niert �uber

W � D�
N �� D � � � � �� Dm � D

�
N �
����

�yk� �Bi�yk�� �� �xk� �Ai�xk�� mit �
����

�Ai�xk� �� �Bi�yk� � �
����

Praktisch k�onnen die entstehenden Punkte direkt aus den Elementen von M �
x in Gl� �
��
�

durch Streichung der irrelevanten Komponenten der �m��� c�	Tupel abgeleitet werden�

F�ur das i	te Eingangsgr�o�encluster folgt

Ai � f�xk� �Bi�yk�� j � � k � Ng � �
����
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Wenn sich herausstellt� da� ein Cluster Ai n�aherungsweise eine additive �Uberlagerung aus

f �gau�glockenf�ormigen� Subclustern darstellt� so wird Ai in diese f SubclusterA�
i � � � � � A

f
i

aufgespalten und letztere werden an Stelle von Ai verwendet� Falls Ai nicht konvex ist

�obwohl Bi diese Eigenschaft besitzt�� so wird an Stelle des nichtkonvexen exakten Gra�

phen 
 �Forster �������� von Ai dessen konvexe H�ulle��ache verwendet� 
 f�uhren an�

schlie�end noch eine �Uberf�uhrung dieser m	dimensionalen in eindimensionale trapezoide

Zugeh�origkeitsfunktionen durch und verwenden diese dann in der �ublichenWenn�Dann	

Regelstruktur�

��� Bewertung der Ans�atze

Der Ansatz von 
 ist auf relationale Fuzzy	Modelle zugeschnitten� f�ur deren Identi
kati�

on er auch angewendet wird� Die Idee dabei ist� vereinfacht ausgedr�uckt� alle Daten mit

jeweils etwa gleicher Ausgangsgr�o�e in einer Partition zusammenzufassen� Dies ist bei

den relationalen Modellen sinnvoll� da bei jeder Regel ein fester �unscharfer� Partialaus�

gangswert folgt� Der Erf�ulltheitsgrad der Pr�amisse f�uhrt nur indirekt �uber eine ver�anderte

Gewichtung der Schlu�folgerung zu einer Verschiebung des Wertes der Ausgangsgr�o�e bei

Aggregation und Defuzzi
zierung� Bei funktionalen Modellen dagegen wird unabh�angig

von der Wahl der Fuzzy	Referenzmengen zwischen den Punkten di erenziert� die in der

Partition einer Regel liegen� da die Schlu�folgerung nicht als Konstante� sondern i� allg� als

Polynom in den Eingangsgr�o�en gegeben ist� 
 beschreiben nicht� wie ein Eingangsgr�o�en�

cluster in Subcluster zu unterteilen ist� Auch bei der eventuell durchzuf�uhrenden Umfor�

mung nichtkonvexer in konvexe Eingangsgr�o�encluster besteht Verbesserungspotential� da

die Verwendung der konvexen H�ullen nicht zwangsl�au
g zu optimalen Ergebnissen f�uhrt�

Der Ansatz von 
 ist an funktionale Modelle angepa�t� Er geht davon aus� da� im Be�

reich einer H�aufung der Systemeingangsgr�o�en xk der Verlauf der Systemausgangsgr�o�e

yk sehr nichtlinear� z� B� unstetig� sein kann� Durch die Ber�ucksichtigung von y bei der

Clusterung kann dies durch mehrere Cluster in einem solchen Bereich grunds�atzlich besser

von dem Modell wiedergegeben werden� Fehler k�onnen aber dadurch entstehen� da� die

Pr�adiktion einer linearen Schlu�folgerung zur Auswertung der Referenz	Fuzzy	Mengen

mitbenutzt wird� Durch Abweichungen des Modells vom System �Strukturfehler� erfolgt

so durch Fehlerfortp�anzung eine Verschlechterung der Modellierungsg�ute�

Der Ansatz von 
 ist ebenfalls auf funktionale Modelle zugeschnitten� Die Idee bei dieser

reinen Eingangsgr�o�enclusterung besteht darin� bei jeder Regel das lineare Konklusions�

polynom besonders gut auf den Bereich anzupassen� in dem die gr�o�te Datenkonzentra�

tion vorliegt �Bereich um die Clusterschwerpunkte�� Dieses Vorgehen kann als Lineari�

sierung des Systemverhaltens jeweils in den Clusterschwerpunkten interpretiert werden�

Die Zugeh�origkeitsfunktionen bewirken eine Interpolation zwischen den einzelnen Lineari�

sierungen im Bereich zwischen den Clusterschwerpunkten� Die Bereiche� in denen die Sy�
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stemzust�ande vorzugsweise liegen� werden also besonders ber�ucksichtigt� Dabei sollten die

Me�daten repr�asentativ sein� Die in den einzelnen Eingangsdatenraumbereichen durchaus

unterschiedlichen Ausgangsgr�o�en k�onnen im Gegensatz zum relationalen beim funktio�

nalen Modellansatz besser durch die Konklusionsfunktionen approximiert werden� Da die

Pr�adiktionen �yi nicht zur Auswertung der Zugeh�origkeitsfunktionen notwendig sind� be�

steht hier nicht die erh�ohte Fehlerfortp�anzungstendenz wie bei 
� Allerdings geht die

Ausgangsgr�o�e nur verz�ogert als Eingangsgr�o�e in die Clusterung ein� Eine Nachoptimie�

rung der Parameter des Fuzzy	Modells stellt sich bei 
 deutlich schwieriger dar� 
 wertet

die Zugeh�origkeitsfunktionen und die Konklusionsfunktionen getrennt aus und verkn�upft

die beiden Teilergebnisse erst bei der Zusammenfassung aller Regeln gem�a� Gl� �
���� Bei


 geht die Auswertung der Konklusion sowohl in die Zugeh�origkeitsberechnung als auch

�multiplikativ� in die anschlie�ende Berechnung von �y gem�a� Gl� �
��� ein�

Eine nur auf den Eingangsgr�o�enraum bezogene Clusterung ist nur bei dynamischen Mo�

dellen sinnvoll� Bei statischen Fuzzy	Modellen fehlt dagegen die Ausgangsgr�o�enr�uck�

f�uhrung und damit die �indirekte� Auswertung der Ausgangsgr�o�eninformation bei der

Clusterung� Abhilfe bietet der Ansatz� die Clusterung im Ein��Ausgangsdatenraum durch�

zuf�uhren

D � � � � � � Dm �W �� D � � � � � � Dm � D
�
N � �
����

� �Ai � f�x� y� � �
����

die Fuzzy	Referenzmengen �Ai bzw� die Clusterzentren �vi dann aber auf den Eingangsda�

tenraum abzubilden�

D � � � � � � Dm �W � D�
N �� D � � � � � � Dm � D

�
N �
����

�x� y� � �Ai�x� y�� �� �x� �Ai�x�� � � � i � c mit �
�
��

�Ai�x� �� � �Ai�x� y� �
�
��

bzw�

D � � � � �� Dm �W �� D � � � � �� Dm �
�

�

�vi�x� y� �� vi�x� � � � i � c mit �
�
��

vi�x� �� �vi�x� y� � �
�
��

Falls die durch diese Clusterung generierte Partitionierung jedoch anschlie�end optimiert

wird� bringt dieser Ansatz �au�er eventuell besseren Startwerten� bei dynamischenModel�

len keinen Vorteil gegen�uber der reinen Eingangsgr�o�enraum	Clusterung� Dies ist o en�

sichtlich� da die resultierenden Referenz	Fuzzy	Mengen genau die gleichen Informationen

auswerten�

Impliziert wird bei den funktionalen Modellans�atzen� da� sich ein System bereichsweise

nahezu linear verh�alt und keine Unstetigkeiten aufweist� Ist das aber der Fall� so sind von

ihrer Konzeption her relationale Modelle besser geeignet� da diese das Systemverhalten
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punktweise mit i� allg� gro�er Au��osung abbilden und dazwischen interpolieren� Dagegen

bilden die funktionalen Modelle eher bereichsweise ab� wobei unscharfe �Ubergangsbereiche

generiert werden�
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� Initialisierung

Bei der Initialisierung der Zugeh�origkeiten beimFCM	 sowie beimGustafson	und	Kessel	

Algorithmus �
� k�onnen entweder die Zugeh�origkeitsmatrix U ��� oder direkt die Cluster�

schwerpunkte v���i �� � i � c�� vorgegeben werden� Bei Vorgabe von U ��� werden �uber

v
�l�
i �

NP
k��

�
�
�l�
ik

��
xk

NP
k��

�
�
�l�
ik

�� �����

�f�ur l � �� die v���i berechnet� Es wird die abk�urzende Schreibweise�ik � �i�xk� verwendet�

Dabei gilt

Satz ��� � Gegeben sei die Menge M x aller N Datens�atze� Bei Wahl von U ��� � ��
���
ik � mit

�
���
ik � ��� �� � i � f�� � � � � cg� k � f�� � � � � Ng und

cP
i��

�
���
ik � � � k � f�� � � � � Ng liegen alle

c � 
 �uber Gl� ����� bestimmten Clusterschwerpunkte vi auf oder innerhalb der konvexen

H�ulle um M x � �

Beweis�

a� Sei c � 
 und f�ur ein i � f�� � � � � cg sei �
���
ij � � sowie �

���
if � � � f � f�� � � � � Ng n

fjg� Aus Gl� ����� folgt

v
���
i �

NP
k��

�
�
���
ik

��
xk

NP
k��

�����ik �
�

� xj � ���
�

Es kann also mindestens ein Clusterschwerpunkt in einem beliebigen Datensatz xj
plaziert werden�

b� Sei c � 
 und f�ur ein i � f�� � � � � cg sei �
���
ij 	� �� �

���
ig 	� �� �

���
if � � � f �

f�� � � � � cg n fj� gg� Aus Gl� ����� folgt

v
���
i �

��
���
ij �

�
xj � ��

���
ig �

�
xg

��
���
ij �

� � ��
���
ig �

�
�

xj �

�
�����ig

�
���
ij

�
A�

xg

� �

�
�����ig

�
���
ij

�
A� �

xj � 
 xg
� � 


� �����

Wegen
cP

i��
�
���
ik � �

���
ig � �

���
ij � � und �

���
ig � �

���
ij � �� � �� folgt


 �

�
�� � �

���
ij

�
���
ij

�
A�

� �� � 
� � �����
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Einsetzen von

� ��



� � 

� �� � �� �����

liefert

v
���
i � ��� ��xj � �xg � xj � ��xg � xj� � �����

Also liegt v���i auf der Verbindungslinie von xj nach xg� In den Grenzf�allen � � �

oder � � � folgt Fall a��

Aus a� und b� folgt Satz ���� �

Die Vorgabe von U ��� ist also ein Spezialfall der Vorgabe der v���i � Eine Verletzung der

Bedingung

cX
i��

�
���
ik � � � k � f� � Ng �����

kann zu Clusterschwerpunkten au�erhalb der konvexen H�ulle um M x f�uhren� �Ubliche

Strategien �
� zielen auf eine Zufallsbelegung von U ��� unter Beachtung von Gl� ����� ab�

wodurch gem�a� Satz ��� eine zuf�allige Plazierung der v
���
i innerhalb oder auf der konvexen

H�ulle von M x folgt� Auszuschlie�en ist dabei der Fall� da� bei festen i � f�� � � � � cg

�
���
ik � ai � const� � k � f�� � � � � Ng �����

gilt� weil dann

v
���
i �

NP
k��

��
���
ik �

�
xk

NP
k��

�����ik �
�

�
ai

NP
k��
xk

Nai
� xk � i � f�� � � � � cg �����

folgt und damit alle c Clusterschwerpunkte in den Punkt xk fallen�

Werden die v���i so vorgegeben� da� Gl� ����� nicht erf�ullt ist� so f�uhrt die Zugeh�origkeits�

berechnung zu den Clusterschwerpunkten bereits nach der ersten Iteration des FCM	 oder

des Gustafson	und	Kessel	Algorithmus zu deren Einhaltung� Die Zuordnungsvorschrift

lautet wie folgt �
��

�
�l���
ik �

	











�












�

�
cX

j��

�
�d�l�ik
d
�l�
jk

�
A

�
���




�


�

f�ur I
�l�
k � �

�keine Singularit�aten�

� � i � �I�l�k

a
�l�
ik � i � I

�l�
k




�


�

f�ur I
�l�
k 	� �

�Singularit�aten liegen vor�

������
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Dabei sei I�l�k � fi � Ij d�l�ik � kxk � v
�l�
i kD � �g die Menge aller Cluster� bzgl� derer

xk den Abstand � vom Clusterschwerpunkt hat �singul�arer Fall�� I� f�� � � � � cg stellt die

Menge aller c Cluster und �Ik � In I
�l�
k die Menge der Cluster dar� bzgl� derer xk keine

Singularit�at darstellt� Au�erdem istX
i�I

�l�
k

a
�l�
ik �

X
i�I

�l�
k

�
�l�
ik � � � i � I�l�k 	� � � ������

W�ahle z� B� a
�l�
ik � �

A�I
�l�
k �

� i� Damit ist U �l��� �
h
�
�l���
ik

i
�

Es gilt also

Satz ��� � Die Zuordnungsvorschrift beim Fuzzy	c	Means	Algorithmus gem�a� Gl� ������

und ������ f�uhrt zu U �l�� die Gl� ����� erf�ullen� �

Beweis� Der Beweis wird von 
 gef�uhrt�

Satz ��� � Die Zuordnungsvorschrift beimGustafson	und	Kessel	Algorithmus �entspricht

Gln� ������ und ������ unter Verwendung lokaler Abstandsnormen� f�uhrt zu einem U
�l��

das Gl� ����� erf�ullt� �

Beweis�

a� Im Fall von Singularit�aten ist dies per de
nitionem wegen Gl� ������ der Fall�

b� Liegen keine Singularit�aten vor� so wird der Beweis formal wie f�ur den Fuzzy	c	

Means	Algorithmus gef�uhrt �
� mit dem Unterschied� da� f�ur jedes Cluster eine

andere Abstandsnorm gilt� �

Bei dem von 
 beschriebenen Backer	Algorithmus werden die Fuzzy	Cluster aus har�

ten Clustern berechnet� Deshalb mu� hier zur Initialisierung eine harte Clusterung U����

vorgegeben werden� Clusterschwerpunkte berechnet der Algorithmus nicht� Es gilt

Satz ��� � Die Abbildungsvorschrift �
��

�
�l�
ik �

n
�l�
i � �

�

NP
t��

�
��l�
it d

�l�
tk

N � �
�

NP
t��

d
�l�
tk

����
�

von einer harten auf eine weiche Clusterung �mit M i der Menge aller Daten des i	ten

harten Clusters und ni � A�M i�� f�uhrt zu Zugeh�origkeiten� die Gl� ����� erf�ullen� �

�Die von � aus � zitierte Formel ������ ist bereits in der erstgenannten Quelle nicht korrekt�
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Beweis�

Aus Gr�unden besserer �Ubersichtlichkeit wird der Iterationsschritt ����l� in Gl� ����
�

weggelassen� Es gilt

cX
i��

�ik �
cX

i��

ni �
�
�

NP
t��

��itdtk

N � �
�

NP
t��

dtk

������

mit ni � A�M i� und damit
cP

i��
ni � N � Damit folgt

cX
i��

�ik �
N � �

�

cP
i��

NP
t��

��itdtk

N � �
�

NP
t��

dtk

� ������

Jeder Datensatz ist exakt einem Cluster zugeordnet ���it � f�� �g�� Damit ergibt sich

cX
i��

NX
t��

��itdtk �
NX
t��

dtk ������

und somit

cX
i��

�ik � � � ������

�

Praktische Erfahrungen

Der FCM	Algorithmus berechnet bei wohlseparierten Clustern �
�� also z� B� deutlich

voneinander getrennten Datenh�aufungen� i� allg� unabh�angig von der Initialisierung die

gleichen Clusterschwerpunkte� Dies gilt sowohl bei Vorgabe von U ��� mit zuf�allig gew�ahl�

ten Elementen �
���
ij � �� � ��� wobei

cP
i��

�
���
ij � � �j � f�� � � � � Ng gilt �siehe z� B� 
�� wie

auch bei der Vorgabe von zuf�allig plazierten Clusterschwerpunkten v
���
i � Eine Plazierung

der v���i au�erhalb der konvexen H�ulle um M x bewirkt keine Probleme �vergleiche auch

Satz ��
 und ����� Bei nichtwohlseparierten Clustern gibt es i� allg� mehrere lokale Mi�

nima� zu denen das Verfahren konvergieren kann� Liegen die Datenpunkte beispielsweise

auf einer Parabel� so werden die Clusterschwerpunkte auch auf die Parabel gelegt�

Die Ergebnisse einer Clusterung mit dem Gustafson	und	Kessel	Algorithmus sind bereits

bei wohlseparierten Datenmustern deutlich von der Initialisierung abh�angig �
�� F�ur ein

exemplarisch ausgew�ahltes zweidimensionales Datenmuster� das aus einem kleinen �vier

Datenpunkte� und einem gro�en ��� Datenpunkte� Rechteck besteht� liefert der Algo�

rithmus bei unterschiedlicher Initialisierung �f�ur � � 
 sowie �� � � und �� � �� die in
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Bild ���� 
	Schnitte durch �� � � � Clusterschwerpunkt� Initialisierung� � � Datensatz

mit �
���
� � �� ���� 
 � Datensatz mit �

���
� � �� ����

Bild ��� und ��
 dargestellten Clusterungen� Dargestellt werden 
	Schnitte in Schritten

zu ��� durch die zum ersten Cluster �rechts in Bild ��� und oben in Bild ��
� geh�orige

Zugeh�origkeitsfunktion ��� die zur r�aumlichen Anschauung als dreidimensionale Graphi�

ken in den Bildern ��� und ��� dargestellt sind� Zur Beurteilung� ob die Datenstrukturen

erkannt wurden� kann das Prinzip der maximalen Zugeh�origkeit �
� angewendet werden�

Das hei�t� jedes Datentupel wird genau dem Cluster zugeordnet� zu dem es die h�ochste

Zugeh�origkeit besitzt� Im vorgestellten Beispiel mit c � 
 Clusterzentren mu� also eine

Zugeh�origkeit �i�xk� � �� � vorliegen� damit xk dem Cluster i zugeordnet wird� In Bild

��� liegen alle Punkte des kleinen Rechtecks innerhalb des 
	Schnittes f�ur �� � �� � �und

damit wegen �� � � � �� alle Punkte des gro�en Rechteckes innerhalb des 
	Schnittes

f�ur �� � �� ��� Die Datenstruktur wurde also erkannt� In Bild ��
 wurden die beiden

Rechtecke o ensichtlich nicht erkannt� Wegen der ge�anderten Initialisierung konvergiert

der Algorithmus in ein lokales Minimum der Zielfunktion� dessen zugeh�orige Clusterung

nicht der Vorstellung einer
�
guten� Clusterung entspricht� Das Ergebnis der Clusterung

h�angt au�erdem von der Wahl der relativen Clustervolumina �i �
� ab� Bei gleicher Initia�

lisierung f�uhren unterschiedlicheKombinationen der �i zu unterschiedlichenClusterungen�

Diese Verkopplung der Parameter erschwert die Anwendung des Gustafson	und	Kessel	

deutlich gegen�uber dem FCM	Algorithmus�
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Bild ���� 
	Schnitte durch �� � � � Clusterschwerpunkt� Initialisierung� � � Datensatz

mit �
���
� � �� ���� 
 � Datensatz mit �

���
� � �� ����

���
��

�
�

��

���
��

�
�

�

��


���

���

���

�

x�x�

�
�
�x
�

Bild ���� Zugeh�origkeiten ���x� zum Bild ���� in der x� � x�	Ebene sind zus�atzlich die


	Schnitte aus Bild ��� dargestellt
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���
��

�
�

��

���
��

�
�

�

��


���

���

���

�

x�x�

�
�
�x
�

Bild ���� Zugeh�origkeiten ���x� zum Bild ��
� in der x� � x�	Ebene sind zus�atzlich die


	Schnitte aus Bild ��
 dargestellt
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� Wahl des Unsch�arfeparameters

Beim FCM	 und beim Gustafson	und	Kessel	Algorithmus gilt wegen der Zuweisungsvor�

schrift f�ur die Zugeh�origkeiten Gl� ������ �unabh�angig von der Wahl von �� dik � djk f�ur

kxkk � 
 � i� j � f�� � � � � cg� da kvfk � 
 � f � f�� � � � � cg� Damit folgt �ik � �
c

f�ur kxkk � 
� F�ur den Verlauf von �ik besitzt der sogenannte Unsch�arfeparameter � eine

zentrale Rolle� Gro�e Werte von � f�uhren zu einer �nicht erw�unschten� schnellen Ann�ahe�

rung von � an �
c� Ein weiterer unerw�unschter E ekt liegt darin� da� �ik l�angs der von vi
ausgehenden �beliebigen� Strahlen nicht immer monoton f�allt� die Zugeh�origkeitsfunktio�

nen sind also nicht konvex� Um jedes andere Clusterzentrum vj 	� vi wird eine Mulde in

der Topologie von �ik erzwungen� Die Bilder ��� und ��
 illustrieren diese beiden E ekte

und verdeutlichen� da� diese f�ur einen kleinen Wert von � �im Beispiel � � �� �� eine un�

tergeordnete Rolle spielen� Auch in Bezug auf eine hohe G�ute eines Fuzzy	Modells �mit

Bild ���� ���x� in Abh�angigkeit von � f�ur Clusterschwerpunkte v� � �� � und v� � ��� �

durch Clusterung erzeugter Partitionierung� sollte � klein gew�ahlt werden� Eine optimale

Anpassung eines Modells an eine Datensatzmenge l�a�t sich f�ur � � �� also harter Parti�

tionierung� erzielen� Dann wird jedes Datum genau einer Partition zugeordnet� Im Sinne

einer robusten Modellidenti
kation verschieben sich g�unstige Werte zu � � �� 
� Bild ���

zeigt die Abh�angigkeit der G�ute von � beim ersten nichtlinearen Beispielsystem aus Kroll

�������� �� Gegen�ubergestellt werden eine Modellauswertung mit dem zur Identi
kation

benutzten Datensatz sowie einem anderen Datensatz �Kreuzvalidierung��
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Bild ���� ���x� in Abh�angigkeit von � f�ur Clusterschwerpunkte v� � �� �� v� � ��� �

und v	 � �

Bild ���� Modellg�ute pi f�ur Einschrittpr�adiktion in Abh�angigkeit vom Unsch�arfeparame�

ter � �Modell mit FCM	Algorithmus generiert� c � ���
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� Clustervalidierung

Bei der Mustererkennung 
nden mehrere Kriterien Verwendung� um die im Sinne der be�

trachteten Datenstruktur richtige Anzahl an Clustern zu bestimmen� Ein naheliegender

Ansatz dazu ist die Auswertung der der Clusterung zugrundeliegenden Zielfunktion�

Clusteranzahl aus Zielfunktionsminimum

FCM	 und Gustafson	und	Kessel	Algorithmus minimieren �implizit� die Gesamtsumme

der Summen �uber die gewichteten Abstandsquadrate aller Datenpunkte zum Cluster�

schwerpunkt innerhalb der Cluster �
�
overall within�group sum�of�squared�error �WGSS���


��

J����c� �
NX
k��

cX
i��

��ik�
� kxk � vik

�
Di

� �����

Die Idee liegt dabei in einer Minimierung der gewichteten Streuung der Datens�atze in den

einzelnen Clustern�


 erweitern Gl� ����� derart� da� au�erdem die Streuung der Clusterschwerpunkte maxi�

miert wird�

J����c� �
NX
k��

cX
i��

��ik�
�
�
kxk � vik

� � kvi � !xk�
�

� ���
�

Die Erfahrung zeigt allerdings� da� J��� �selbst bei wohlseparierten Clustern� i� allg� �streng�

monoton f�allt� Allerdings �andert sich das Steigungsverhalten bei wohlseparierten Clustern

deutlich in Abh�angigkeit von c� Bei steigenden Werten von c f�allt J��� stark ab� bis die

richtige �und eindeutig bestimmte� Clusteranzahl copt erreicht wird� Steigt c weiter an�

so nimmt J��� nur noch langsam ab� Je schlechter die Separierung der Cluster ist� desto

weniger deutlich tritt dieser E ekt auf� Dagegen zeigt J��� bei deutlich separierten kom�

pakten �balligen� Clustern und Werten von � gr�o�er als etwa ��� in den untersuchten

Beispielen ein Minimum bei der wahren Clusteranzahl copt� d� h� bei der Anzahl vonein�

ander getrennten geometrischen Strukturen in den Daten� Aber bereits bei beispielsweise

stufenf�ormig �abschnittsweise linear� angeordneten Daten und damit ebenfalls deutlich

separierten Clustern tritt kein Minimum bei J��� auf�

Die von 
 angegebene gleiche Gewichtung von Subtrahend und Minuend in Gl� ���
�

beruht auf einer gleichen Gewichtung der Bestrafung der Streuung der Datens�atze in den

Clustern sowie der Belohnung der Streuung der Clusterzentren bei der Berechnung der

�
Gesamtkosten� einer Clusterung� Diese Festsetzung ist willk�urlich� Bei Setzung anderer

Priorit�aten sollte eine entsprechend angepa�te Gewichtung der Teilkosten erfolgen�

J	���c� �
NX
k��

cX
i��

��ik�
�
�
kxk � vik

� � 
kvi � !xk�
�

� �����
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Da nur die relativen Werte der Kostenfunktion interessant sind� reicht die Gewichtung

eines Terms in Gl� ����� aus� Aber auch ein solcher Ansatz f�uhrt h�au
g nicht zu Extrema�

da sowohl Subtrahend als auch Minuend oft monoton fallende Funktionen sind� Dazu

kommt die Schwierigkeit� da� i� allg� kein Apriori	Wissen �uber eine geeignete Gewichtung

vorliegt�

Bei diesen Ans�atzen kann J� � insbesondere bei schlechter Separierung der Cluster� mehre�

re lokale Minima bei festem c besitzen� Dies ist z� B� bei bogenf�ormig angeordneten Daten

der Fall� Bei solchen Datenanordnungen existiert eine
�
wahre� Anzahl an Clustern mit

punktf�ormigen Clusterzentren �Prototypen� h�au
g nicht� Die Erfahrung zeigt aber� da�

die zu den lokalen Minima von J��� geh�orenden �durch den FCM	Algorithmus bestimm�

ten� Clusterzentren auf einem solchen Bogen liegen� Die zum �numerischen� globalen Mi�

nimum f�ur festes c geh�orende Clusterung mu� nicht global optimal f�ur das Fuzzy	Modell

sein� da dessen G�ute i� allg� nach anderen G�utekriterien bewertet wird� Deshalb k�onnen

die zu solchen lokalen Minima geh�orenden Clusterungen i� allg� als Partitionierungen bei

Fuzzy	Modellen eingesetzt werden� Sinnvoll ist dann eine Nachoptimierung der Partitio�

nierung im Sinne des G�utekriteriums bei der Modellbewertung� Zu bemerken bleibt� da�

bereits bei der Clusterung ein globales Minimum von J� nicht gleichbedeutend mit einer

guten Clusterung sein mu��

Partitionsentropie

Ein anderes Kriterium bewertet die Partitionsentropie� die wie folgt de
niert ist�

De�nition ��� � Partitionsentropie �Bezdek ���������

Die Partitionsentropie einer Fuzzy	c	PartitionU � M fc der DatenmengeM x mitA�M x� �

N ist f�ur � � c � N gegeben als

H�U � c� � �
�

N

NX
k��

cX
i��

�ik loga��ik� �����

mit der logarithmischen Basis a � �� � 
� und

�ik loga��ik� �� � � �ik � � � �����

�

Mit dieser De
nition ist H�U � c� ein Ma� f�ur die Unsch�arfe der Partitionierung� Es gilt

Satz ��� �
� � SeiU � M fc eine Fuzzy	c	Partition vonN Daten� Dann gilt f�ur � � c � N

und a � ���
�

� � H�U � c� � loga�c� �����

H�U � c� � � �� U � M c� ist hart �����

H�U � c� � loga�c� �� U � ��
c� � �����
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�

Das bedeutet� Bei U � ��
c� sind die Zugeh�origkeitszuweisungen der Daten zu den Clu�

stern maximal unsicher� bei harter c	Partition maximal sicher� Letzteres entspricht einem

Informationsgehalt von Null und damit einem maximalen Informationsgewinn durch die

Clusterung� Die Clusteranzahl c ist also genau so zu w�ahlen� da� H�U � c� minimal wird�

Eine Strategie l�a�t sich als zweistu
ger Algorithmus formulieren�

Entropie�Algorithmus �
�

�� BestimmeU � f�ur jedes feste c � f
� � � � � N��g so� da� die Partitionsentropie jeweils

minimal ist�

H�U �
c � c� � min

Uc�Mfc

�H�U c� c�� � �����


� Die optimale Partitionsanzahl copt f�uhrt zur minimalen Partitionsentropie aller

H�U �
c � c�� die im �� Schritt bestimmt wurden�

copt � fc
� j H�U �

c� � c
�� � H�U�

c � c� � c� c� � f
� � � � � N � �g� c� 	� cg � ������

�

�Uber die genaue Wahl von a in den Gln� ����� bis ����� wird keine Aussage gemacht� in

einem Beispiel wird a � e verwendet�

F�ur den Fall monotoner Verl�aufe vonH�U � c� f�ur ein gegebenes M x kannH�U � c� normiert

werden�

De�nition ��� Normierte Partitionsentropie �
�

Sei U � M fc eine Fuzzy	c	Partition von M x und A�M x� � N � Dann ist die normierte

Partitionsentropie von U f�ur 
 � c � N gegeben als

�H�U � c� �
H�U � c�

H�
�

H�U � c�

� � c
N

� ������

�

Der Algorithmus zur Bestimmung einer optimalen Clusteranzahl entspricht demEntropie	

Algorithmus� aber mit �H statt H� WegenH� � ���c
N� � � unterscheiden sich normierte

und nichtnormierte Partitionsentropie f�ur c� N nur unwesentlich�

Bei den untersuchten Datenstrukturen �Beispiel E
��� aus 
� Daten� die stufenf�ormig

angeordnet sind� oder solche� die auf einer Parabel liegen� Me�daten aus einem chemi�

schen Reaktor �
�� konnte mit dem Entropie	Algorithmus sowohl bzgl� H als auch �H
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bei wohlseparierten Clustern immer copt eindeutig bestimmt werden� Dabei unterschieden

sich H�copt� beziehungsweise �H�copt� deutlich von den Werten f�ur c 	� copt� Bei nichtwohl�

separierten Clustern besa� H�c� Randminima an den Intervallgrenzen des untersuchten

De
nitionsbereichs von c �

Die vorgestellten Kriterien zur Clustervalidierung k�onnen teilweise zur Bestimmung der

Clusteranzahl bei deutlicher Separation der Cluster eingesetzt werden� Mit einer solchen

Charakteristik der Ein	 und Ausgangsdaten kann bei technischen Systemen i� allg� aber

nicht gerechnet werden� In solchen F�allen sind J���� J��� sowie J	�� monoton� �Uber Betrach�

tungen der Partitionsentropie kann auch keine sinnvolle Aussage bzgl� einer �endlichen�

optimalen Clusteranzahl gemacht werden� Dann kann die Bestimmung von copt �uber das

zur Modellbewertung verwendete G�utekriterium erfolgen� Sollte letzteres ebenfalls mono�

ton von c abh�angen� so existiert copt im hier betrachteten Sinne nicht� Es tritt dann nur

ein zum Randminimumdes G�utekriteriums korrespondierender Wert auf� Eine Festlegung

der Partitionsanzahl kann dann durch Vorgabe einer gew�unschten Modellgenauigkeit oder

Parameteranzahl erfolgen�

Separationsindizes


 gibt als ein Kriterium zur �Uberpr�ufung einer harten Clusterung die Separationsindizes

an� Diese setzen den minimalen Abstand zwischen Elementen von zwei verschiedenen

Clustern� der �uberhaupt bei allen Daten auftritt� ins Verh�altnis zum Maximum der ma�

ximalen Durchmesser der c Cluster �oder deren konvexer H�ullen�� Mit steigenden Werten

dieser Verh�altnisse steigt auch die Separierung der Cluster an� Es gibt feste Schwellen�

ab denen eine CS	 �compact separated� oder CWS	 �compact and well separated� Clu�

sterung vorliegt �Bezdek ���������� Bei deutlicher Separierung der Cluster liefert der

FCM	Algorithmus gute Approximationen f�ur eine Clusterung� deren Strategie auf einer

Maximierung der Separationsindizes beruht� Da bei den betrachteten Aufgabenstellungen

der Modellbildung eine deutliche Separierung i� allg� nicht vorliegt und da die R�uckf�uhrung

der unscharfen auf eine scharfe Clusterung einen Verlust an Aussagekraft bewirkt� wird

dieser Ansatz hier nicht weiterverfolgt�
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	 Orthogonale Partitionierung

Bei der funktionalen Fuzzy	Modellbildung nutzen sehr viele Algorithmen �
� 
� 
�� bei

der funktionalen Fuzzy	Regelung die meisten Verfahren �
� 
� 
�� trapezoide Zugeh�orig�

keitsfunktionen� Auch bei relationalen Fuzzy	Modellen �uberf�uhren beispielsweise 
 die

�uber indirekte Clusterung generierten mehrdimensionalen in eindimensionale orthogonale

Zugeh�origkeitsfunktionen �siehe Abschnitt 
��

Eine Motivation f�ur die orthogonale Partitionierung liegt darin� da� bei linearen Schlu��

folgerungspolynomen in den linearen Kernbereichen der Regeln lineare Teilsysteme entste�

hen� die z� B� bei geschlossenen Regelkreisen mit gleichartigen funktionalen Fuzzy	Reglern

eine relativ einfache theoretische Behandlung gestatten� Deshalb soll hier diese Proble�

matik kurz behandelt werden� Dazu ist es zuerst n�otig� den mathematischen Hintergrund

metrischer Clusteralgorithmen zu erl�autern�

��� Metrische Clusteralgorithmen


 beschreibt mehrere metrische Clusteralgorithmen� Hier soll der mathemathische Hin�

tergrund zu metrischen und normierten R�aumen nachgeliefert werden�

De�nition 
�� � Metrik� metrischer Raum �
�

Ist je zwei Elementen a� b einer beliebigen nichtleeren Menge M eine reelle Zahl d�a� b� so

zugeordnet� da� die Axiome

�M�� d�a� b� � � mit d�a� b� � �� a � b �De
nitheit�

�M
� d�a� b� � d�b� a� �Symmetrie�

�M�� d�a� b� � d�a� c� � d�c� b� �Dreiecksungleichung�

�����

erf�ullt sind� so ist auf M die Metrik d eingef�uhrt und M ist ein metrischer Raum� Die

Elemente eines metrischen Raumes hei�en Punkte� die Zahl d�a� b� der Abstand zwischen

den Punkten a und b� �

Beispiel �
�� Wird der Abstand d�x� y� zweier Punkte a� b � Rm durch

d�a� b� ��

�
mX
i��

�ai � bi�
�

� �
�

���
�

de
niert� so wird die damit auf Rm de
nierte Metrik als euklidische bezeichnet� Auch

d��a� b� �� max
��i�m

�jai � bij� �����

sowie

d��a� b� ��
mX
i��

jai � bij �����

mit a� b � Rm erkl�aren jeweils eine Metrik auf Rm� �
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De�nition 
�� � Linearer Raum �
�

Eine Menge E von Elementen a� b hei�t ein linearer Raum bez�uglich der reellen Zahlen�

wenn in E die Operationen Addition und Multiplikation mit reellen Zahlen �� � erkl�art

sind und folgenden Axiomen gen�ugen�

�� F�ur a� b � E ist die Summe a� b � E eindeutig erkl�art� und es gilt�

�a� b� � c � a� �b� c� �Assoziativit�at�

a� b � b� a �Kommutativit�at� �
�����

Es existiert ein Nullelement � � E mit der Eigenschaft

� � a � a � a � E �neutrales Element bzgl� der Addition� �����

und zu jedem a � E existiert ein Element �a � E mit

a� ��a� � � �inverses Element bzgl� der Addition�� �����


� Zu jedem a � E und jeder reellen Zahl � gilt � � a � E mit

��a� b� � �a� �b �Linearit�at�

�� � ��a � �a� �a �Distributivit�at�

����a � ���a� �Assoziativit�at�

� � a � a �Neutrales Element bzgl� der Multiplikation�

�����

Es folgt � � a � � � a � E und � � � � � � � � R� �

Beispiel � R ist ein linearer Raum �Heuser ���������� �

De�nition 
�� � Normierter Raum �
�

Ein linearer Raum E hei�t ein normierter Raum� wenn jedem f � E eine reelle Zahl kfk�

die Norm von f � so zugeordnet ist� da� die drei Axiome

�N�� kfk � � mit kfk � �� f � �

�N
� k�fk � j�j kfk � � � R

�N�� kf � gk � kfk � kgk g � E

�����

gelten� �

Beispiel � Sei p � � eine feste reelle Zahl� Rm wird durch

kakp ��

�
mX
i��

jaij
p

� �
p

� a � �a�� � � � � am�
T ������

ein normierter Raum� Gilt p � 
� so spricht man vom euklidischen Raum� Auch

durch die Maximumnorm

kak� �� max �ja�j� � � � � jamj� � a � �a�� � � � � am�
T ������

wird Rm ein normierter Raum� �
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Ein normierter Raum E ist mit der Metrik

d�a� b� �� ka� bk � kb� ak ����
�

ein metrischer Raum� Die Metrik ����
� besitzt noch die zus�atzlichen Eigenschaften

�E�� d�a� c� b� c� � d�a� b� �Translationsinvarianz�

�E
� d��a� �b� � j�j d�a� b� �Stauchungsinvarianz� �
������

Ist ein metrischer Raum E ein linearer Raum und erf�ullt die Metrik �E�� und �E
�� dann

ist E mit der Norm

kak �� d�a� �� ������

ein normierter Raum �
�� Anzumerken ist� da� nicht jede Metrik translations� und stau�

chungsinvariant ist� wie z� B� die
�
Metrik des franz�osischen Eisenbahnsystems�� Es l�a�t

sich also nicht jeder metrische in einen normierten Raum �uberf�uhren� Andererseits kann

mittels De
nition ����
� jeder normierte Raum in einen metrischen �uberf�uhrt werden�

Der Datenraum R
m bei einer Clusterung ist z� B� mit der Norm ������ oder ������ ein

normierter Raum� Mit der De
nition des Abstandes �uber die Norm gem�a� ����
� ist

R
m auch ein metrischer Raum� Damit ist o ensichtlich� da� die von 
 beschriebenen

Clusteralgorithmen zu den metrischen Clusteralgorithmen geh�oren�

��� �Uberf�uhrung in orthogonale Partitionen


 schl�agt vor� von zwei 
	Schnitten bei � � �� � und bei � � �� 

c �empirische Werte�

die maximalen Ausdehnungen in alle Koordinatenrichtungen zu bestimmen und durch

die beiden Punkte� die durch Projektion der maximalen Ausdehnung auf die Koordina�

tenachsen jeweils entstehen� eine Gerade zu legen� Diese de
niert dann eine Flanke der

eindimensionalen orthogonalen Fuzzy	Referenzmenge� die andere entsteht entsprechend

durch Umsetzung der minimalen Ausdehnung� Zu beachten ist dabei� da� der Graph der

mehrdimensionalen Zugeh�origkeitsfunktionen nicht in alle Richtungen streng monoton ist

�Abschnitt �� und f�ur kxk � 
 gegen � � �
c geht� Durch dieses Vorgehen k�onnen nicht

abgedeckte Bereiche entstehen� insbesondere in den Randbereichen des Eingangsdaten�

raumes� Abhilfe bietet eine Ausweitung der �au�eren Fuzzy	Referenzmengen in Richtung

der De
nitionsbereichsgrenzen� Nachteilig ist au�erdem� da� i� allg� bei der Clusterung

mit dem FCM	Algorithmus die euklidische Abstandsnorm verwendet wird� die zu kon�

zentrischen Kreisen als Equinormalkurven f�uhrt� Im Hinblick auf die Umwandlung in

orthogonale Partitionen ist es nat�urlicher� bei der Clusterung eine Metrik mit rechtecki�

gen Equinormalkurven zu w�ahlen� Die Metrik d� liefert quadratische Equinormalkurven�

Nach der Umwandlung sollte eine Optimierung der Fuzzy	Referenzmengen im Hinblick

auf das bei der Modellbewertung verwendete G�utekriterium erfolgen�

Satz 
�� � Die Metrik d� ist Translations� und Stauchungsinvariant� �
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Beweis� Translationsinvarianz �E���

d��a� c� b� c� � max
��i�m

�j �ai � ci�� �bi � ci� j�

� max
��i�m

�j ai � bi j� � d��a� b�
������

Stauchungsvarianz �E
��

d���a� �b� � max
��i�m

�j �ai � �bi j�

� j � j max
��i�m

�j ai � bi j�

� j � j d��a� b�

������

�

Die Translations	 und Stauchungsinvarianz sind wichtige Eigenschaften� da sie Voraus�

setzung f�ur die Zul�assigkeit von Verschiebung und Stauchung bei einer Normierung der

De
nitionsbereiche sind �z� B� Normierung von Me�daten auf den Einheitsraum D
m
N �� Die

Bilder ��� und ��
 illustrieren die Wirkung von d� an dem bereits von 
 Kroll �������� �

f�ur die euklidische Abstandsnorm gegebenen Beispiel mit den Clusterschwerpunkten

v� � ���� �� �� ��T � v� � ���� �� �� ��Tund v	 � ��� �� ��T � ������

��
����

�
���

�

��

����
�

���
�
�

��


���

���

���

�

x�x�

�
�
�x
�

Bild 
��� Zugeh�origkeiten ���x� zum ersten Cluster f�ur ���� �� und Auswertung mit d�
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Bild 
��� Zugeh�origkeiten ���x� zum ersten Cluster f�ur � � 
 und Auswertung mit d�
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 Zusammenfassung und Ausblick

Bei der Anwendung von metrischen Clusteralgorithmen sind verschiedene Parameter ge�

eignet zu w�ahlen� um eine Datenstrukturanalyse erfolgreich durchzuf�uhren� Im Hin�

blick auf den Einsatz dieser Algorithmen zur Strukturidenti
kation bei der Fuzzy	Modell�

bildung ist der Datenraum� in dem die Analyse durchgef�uhrt wird� geeignet zu w�ahlen�

Verschiedene M�oglichkeiten hierzu wurden vorgestellt und diskutiert�

Fuzzy	c	Means	 sowie Gustafson	und	Kessel	Algorithmus konvergieren nur lokal �
��

deshalb ist besonderes Augenmerk auf die Initialisierung zu richten� Gerade der Gustafson	

und	Kessel	Algorithmus� bei dem auch noch die Wahl der relativen Clustervolumina �
�

das Ergebnis der Clusterung beein�u�t� ist sehr emp
ndlich gegen�uber der Anfangswert�

wahl �
�� Im Gegensatz zur �ublichen aufwendigen Initialisierung der Zugeh�origkeitsma�

trix k�onnen auch die Clusterschwerpunkte initialisiert werden� Deren Bewertung bei den

Terminierungsbedingungen f�uhrt zu einer Vereinfachung und somit einer Steigerung der

Verarbeitungsgeschwindigkeit�

Zur Bestimmung der optimalen Anzahl der Partitionen� der sog� Clustervalidierung� wur�

den verschiedene Kriterien aus dem Bereich der Mustererkennung vorgestellt� Diese be�

sitzen bei nicht wohlseparierten Datenstrukturen� die bei der Modellidenti
kation f�ur

technische Systeme vorwiegend auftreten� aber i� allg� nur Randmaxima im De
nitionsbe�

reich� Hier sollte eine Wahl der Partitionsanzahl nach dem G�utekriterium f�ur das Modell

erfolgen oder� falls dessen Abh�angigkeit von der Partitionsanzahl monoton ist� z� B� nach

der Vorgabe einer gew�unschten Parameteranzahl oder G�ute des Modells�

Es wurde ein Verfahren vorgeschlagen� um mehrdimensionale auf eindimensionale ortho�

gonale Referenz	Fuzzy	Mengen abzubilden� Dabei sollte die Clusterung bereits mit einer

Metrik durchgef�uhrt werden� die der orthogonalen Partitionierung verwandter ist als die

euklidische� wie z� B� die Maximum	Norm� In diesem Zusammenhang wurde gezeigt� da�

viele der eingesetzten Metriken translations� und stauchungsinvariant sind� Diese bei�

den Eigenschaften sind Voraussetzungen f�ur die Zul�assigkeit der �ublichen Normierung

der Me�daten vor der unscharfen Verarbeitung� Allerdings ist gerade wegen der Trans�

lationsinvarianz eine Bereinigung der Me�daten von O sets bei der Normierung f�ur die

Auswertung der ��uber Abst�ande zu Referenzpunkten de
nierten� Zugeh�origkeitsfunktio�

nen �uber��ussig�

Durch Ersetzen der �ublichen euklidischen Abstandsnorm durch eine allgemeine p	Norm

ist bei angepa�ter Wahl von p eine bessere Anpassung der Cluster an die real vorliegen�

den Datenstrukturen zu erwarten� Hierzu sind weitere Untersuchungen notwendig� H�au
g

erfolgt eine Normierung jeder Komponente der Me�daten auf den jeweils maximal auftre�

tenden Bertrag dieser Komponente in allen den Me�daten� Das f�uhrt zu einer willk�urli�

chen Festlegung der Gewichtung der Einzelbewertungen der einzelnen Koordinaten bei

der Berechung der Gesamtkosten der Clusterung� die �uber die Clusteralgorithmen mini�

miert werden� Deshalb kann eine als quadratische Form de
nierte Norm Verbesserungen

bringen� wenn die Komponenten der zugeh�origen Matrix geeignet optimiert werden�
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A Implementierung von Cluster�Algorithmen

Terminierungsbedingung


 vergleicht bei der Terminierungsbedingung die �Anderungen der in der Matrix U abge�

legten Zugeh�origkeiten aller N Me�werte zu jeweils allen c Clustern�

kU �l��� �U �l�kT � �U � �A���


 wendet hierzu die erweiterte H�older	Norm

kU �l��� �U �l�kT �

�
cX

i��

NX
k��

�����l���ik � �
�l�
ik

���p
� �

p

� �U �A�
�

mit p � � an� Dazu sind Nc Summationen vor dem Vergleich auszuf�uhren� Da sich bei

festem Unsch�arfeparameter � bei FCM� und Gustafson	und	Kessel	Algorithmus die Zu�

geh�origkeiten eines beliebigen Punktes im Datenraum zu allen Clustern eindeutig durch

Gl� ����� aus den c Clusterschwerpunkten vi berechnen lassen� kann zur Steigerung der

Rechengeschwindigkeit auch eine mit wesentlich weniger Operationen verbundene Aus�

wertung der Verschiebung der Clusterschwerpunkte erfolgen�

k�v
�l���
� � v

�l�
� � � � � �v�l���c � v�l�c �kT � �v � �A���

Eine Anwendung der erweiterten p	H�older	Norm �
� liefert

k�v�l���� � v�l�� � � � � �v�l���c � v�l�c �kT �

�
� cX
i��

mX
j��

���vi�j��l��� � vi�j��l����p
�
A

�
p

� �v �A���

mit der Dimensionm des Datenraumes� Bei p � � sind statt Nc nur noch m c Summatio�

nen n�otig� Wegen N � m folgt i� allg� eine deutliche Reduzierung des Rechenaufwandes

ohne Verlust an Information�

Bei dem von 
 angegebenen Backer	Algorithmus werden keine Clusterschwerpunkte be�

stimmt� sondern die unscharfen Zugeh�origkeitsgrade aus iterativ verbesserten harten Clu�

stern abgeleitet� Deshalb kann die oben vorgeschlagene Modi
kation der Terminierungs�

bedingung dort nicht angewendet werden�


