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Clusteranzahl

Abstand zwischen i—tem Clusterzentrum v; und k—tem Datensatz x; gemaf
einer vorzugebenden Abstandsnorm

Abstandsnorm

Partitionsentropie

normierte Partitionsentropie
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Anzahl der eindimensionalen Eingangsgrofien (Dimension des Eingangsdaten-
raumes)

Anzahl der Datensitze im :—ten harten Cluster

Anzahl der Datenséatze

Giitekriterium (mittlerer quadratischer Fehler) bzgl. nicht-normierter Grofien
J—te Eingangsgrofie

scharfe Ausgangsgrofle des gesamten Regelsatzes

scharfe Ausgangsgrofle der i—ten Regel

Terminierungsgrenze bei Clusterverfahren

Maximal auftretende Verschiedenheit (z. B. Abstand) zweier Punkte im

Datenraum ¢ = Htl%X(szs — i)

Zugehorigkeit des Punktes &y zum Cluster (zur Partition) ¢
Unschéarfeparameter (v > 1)
relatives Volumen des 1—ten Clusters

Gesamtpramisse der i—ten Regel

Mengen und Raume:
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Fuzzy—Mengen

Definitionsbereich

Definitionsbereich normierter Groflen (Dy = [—1;1])

Definitionsbereich normierter positiver GroBen (D = [0;1])
normierter Definitionsbereich der Dimension m (D =Dy x ... x Dy ,
m-mal)

Menge aller ¢ Cluster, I = {1,2, ... ,c¢}

Menge aller Cluster, bei denen @; den Abstand 0 vom
Clusterschwerpunkt hat

I, =1I\1I,

(,Harter*) c-Partitionsraum

Menge aller Datenséitze @y

Menge der Datensédtze im harten Cluster ¢



Nomenklatur 111

M. : Fuzzy c-Partitionsraum

M! @ Menge der um ihre Zugehérigkeiten zu den Clustern erweiterten Datenséatze
R : Menge der reellen Zahlen

R™ . reeller Vektorraum der Dimension m

W Wertebereich

Funktionen und Operatoren:

d(a,b) :  Abstand zweier Punkte a und b
f(-), g(+), h(-) : allgemeine Funktion

J() : Zielfunktion

max(-) ¢ Maximum

min(-) ¢ Minimum

I Norm

. : ransponiert

()* Transponi

Vektoren und Matrizen:

D : Bewertungsmatrix bei Darstellung einer Norm als quadratische Form
x : Datensatz

U : Zugehorigkeitsmatrix
v; : Clusterschwerpunkt des :—ten Clusters, Partitionsmittelpunkt der

1—ten Partition

Sonstige Symbole:

fiir alle

ohne (Mengenalgebra)

7 <€
~—

Schatzwert
Mittelwert
Grofle bei harter Partitionierung

A(-) : Kardinalzahl (Anzahl der Elemente)

o
N’
*

Indizes
(+); : Regelnummer
(-); ¢ Nummer der Eingangsgrofie
(‘)& = Nummer des Datums
()@ [ter Iterationsschritt
(‘)n  : mnormierte Grofie
(1) Initialisierung
()opt : optimaler Wert
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1 Einfiihrung

Clusterverfahren wurden besonders fiir Aufgabenstellungen der Mustererkennung (pat-
tern recognition) entwickelt. Sie kénnen geometrische (beispielsweise sphéarische, ellipsoi-
de, punkt—, linien— oder bogenférmige) Strukturen in einer durch Datentupel gegebe-
nen Datenmenge identifizieren. Wihrend ,harte® Clusterverfahren nur eine Ja—/Nein—
Entscheidung bei der Zuordnung eines Datentupels zu einer Struktur gestatten, ordnen
»Fuzzy—Clusterverfahren® diesem Zugehorigkeiten zwischen Null und Eins zu allen Struk-
turen zu. Einen Uberblick iiber einige Verfahren geben ?, ? sowie ?. Besonders die metri-
schen Verfahren mit Zielfunktion finden auch bei Teilaufgaben der Strukturidentifikation

von Fuzzy—Modellen Anwendung.

Fuzzy-Modelle stellen i. allg. zeitdiskrete parametrische Ein-/AusgangsgroBenmodelle ei-
nes Prozesses dar. Das System wird also als schwarzer Kasten betrachtet (7). Ein sol-
ches Modell besteht aus mehreren Regeln, deren Einflubereiche durch die sogenannten
Fuzzy—Referenzmengen festgelegt werden miissen. Diese kénnen mit Hilfe von Clusterver-
fahren identifiziert werden (?, 7, ?, 7, 2. 7). Eine Verwendung von mehrdimensionalen
Zugehorigkeitsfunktionen, deren Bestimmung durch Clusteralgorithmen erfolgen kann, er-
laubt ein Loslésen von den verbreiteten relativ unflexiblen orthogonalen Partitionierungen,
die durch die Kombination explizit eindimensionaler Zugehorigkeitsfunktionen entstehen.
Das erméglicht eine deutlich bessere Anpassung der Partitionierung an die Systemcharak-
teristik, die zudem einfach und automatisiert vorgenommen werden kann. Dadurch 1&£t
sich die Modellparameteranzahl bei gleicher Modellgiite haufig reduzieren.

Bei der Anwendung von Clusteralgorithmen ist eine Vielzahl an Parametern festzulegen,
die das Ergebnis der Clusterung stark beeinflussen. Dazu enthélt dieser Bericht systema-
tische Untersuchungen, die in den in der Literatur beschriebenen Anwendungen in der

Regel fehlen.

Bei der Bestimmung der Fuzzy—Partitionierung des Eingangsgroflenraumes mit Hilfe von
Clusterverfahren besitzt die im 2. Abschnitt behandelte Festlegung, ob nur im Eingangs-

datenraum oder im Ein-/Ausgangsdatenraum geclustert wird, besondere Bedeutung.

Viele der Clusteralgorithmen, wie beispielsweise der Fuzzy—c—Means—Algorithmus (FCM),
konvergieren nur in lokalen Minima oder Sattelpunkten ihrer Zielfunktionen (?), weshalb
die Wahl der Initialisierung der Zugehorigkeiten bzw. der Clusterschwerpunkte zu beach-
ten ist (Abschnitt 3).

Einige Zugehorigkeitsfunktionen, wie die bei Fuzzy—c—Means— und Gustafson—und—Kessel-
Algorithmus verwendeten, besitzten einen expliziten , Unscharfeparameter®, iiber den sich
die Unschérfe der Fuzzy—Partitionierung festlegen 1afit. Seine Wahl hat Einfluf} auf die Mo-
notonieeigenschaften des Graphen der Zugehorigkeitsfunktionen sowie auf die Modellgiite
(7, 7) und wird in Abschnitt 4 behandelt.

Ein weiterer wichtiger Parameter ist die Anzahl ¢ der Cluster. Aus dem Bereich der

Mustererkennung sind einige Kriterien zur Wahl eines optimalen Wertes fiir ¢ bekannt.



1 FEinfiihrung 2

Diese werden im 5. Abschnitt vorgestellt. Die Aufgabenstellung wird als Clustervalidie-
rung bezeichnet, der Bestimmung der tatséchlich vorliegenden Anzahl an geometrischen

Strukturen in den Daten.

Fir die modellbasierte Synthese von Fuzzy—Reglern wird im allgemeinen von eindimen-
sionalen orthogonalen Fuzzy—Referenzmengen ausgegangen (?, 7, 7, 7). Der 6. Abschnitt
behandelt die Frage, wie die mehrdimensionalen (durch Clusterung generierten) auf ein-

dimensionale orthogonale Fuzzy—Referenzmengen abgebildet werden kénnen.

Eine Zusammenfassung mit Ausblick schliefit den Bericht ab. Im Anhang A wird ei-
ne gednderte Terminierungsbedingung fiir Fuzzy—c—Means— sowie Gustafson—und-Kessel—

Algorithmus zur Steigerung der Verarbeitungsgeschwindigkeit vorgeschlagen.
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2 Wahl des Datenraumes bei der Clusterung

Betrachtet werde die Anwendung der Clusterung zur Fuzzy—Partitionierung des Daten-
raumes, um bei Fuzzy-Modellen den durch die Pramisse definierten Einflubereich der
Regeln festzulegen. Dieses Vorgehen entspricht der Identifikation von mehrdimensionalen

Fuzzy—Referenzmengen fiir die Fingangsgréfen.

2.1 Alternativen

? wendet die Clusterung nur auf den m—dimensionalen Eingangsdatenraum funktionaler
Fuzzy—Modelle an. Das fithrt zu ¢ Clustern der Dimension m, die als mehrdimensionale
Fuzzy—Reterenzmengen A;, 1 < 1 < ¢, verwendet werden. Dabei definiert die zu jeder

Fuzzy-Menge A; korrespondierende Zugehorigkeitsfunktion py; eine Abbildung

Dy x...xD, —D§ =[0,1] (2.1)
pai = g (@1, .., Tm) . (2.2)

Die Ausgangsdaten werden bei dynamischen Fuzzy—Modellen insofern berticksichtigt, als
daBl ein Teil der Eingangsgrofien von verzogert riickgefithrten Ausgangsgréflen gebildet

wird.

? werten in der Pramisse jeder Regel jeweils zusitzlich die Prédiktion der zugehérigen
Konklusionsfunktion aus, um letztere dann zu gewichten: Bei der Strukturidentifikation
wird zuerst eine Clusterung im (m + 1)—dimensionalen Produktraum aus Eingangsgrofien

x und Ausgangsgrofe y durchgefithrt, die (m + 1)-dimensionale Fuzzy—Referenzmengen

A; liefert:

Dy x...xD, xW—Df | (2.3)
HAq :gZ(xlv"'vxmvy)

Anschlielend werden bei der Parameteridentifikation iiber das Verfahren der gewichteten
kleinsten Fehlerquadrate die ¢ Konklusionspolynome als lineare Funktionen der m Ein-
gangsgroBen bestimmt. Die Gewichtung eines Datums bzgl. einer Regel ist durch seine
Zugehorigkeit zur entsprechenden Fuzzy—Referenzmenge definiert. Bei der Auswertung
des identifizierten Modells liegt zwar der Wert von @, nicht aber der von y vor. Deshalb
erfolgen flir gegebenes @ zuerst die Pradiktionen g; (1 < ¢ < ¢) durch Auswertung aller ¢

Konklusionspolynome f;

Dy x...xD, —W | (2.5)
?)i :fi($17"'7xm) 9 (26)

in die y nicht eingeht. Die Gewichtung w; der i—ten Regel bei der Zusammenfassung der



2 Wahl des Datenraumes bei der Clusterung 4

SchluBfolgerungswerte y; aller ¢ Regeln nach

j== 27)

wird durch Auswertung des i—ten Clusters fiir das Argument (&, 3;) bestimmt. Es gilt

wi:ﬂAi(xlv"'vxmvgji)7 1 SZSC . (28)

? fithren die eigentliche Clusterung nur im Ausgangsgréfenraum durch und leiten daraus
zugehorige Cluster im Fingangsdatenraum ab. Anschlieflend erfolgt eine Projektion dieser
mehrdimensionalen Eingangsdatencluster auf die Koordinatenachsen des Eingangsdaten-
raumes. Die somit aus einem mehrdimensionalen Cluster entstehenden m eindimensiona-
len Fuzzy—Referenzmengen werden letztlich noch durch trapezoide Zugehorigkeitsfunktio-
nen approximiert und deren genaue Form und Lage optimiert. Zuerst wird dazu vor der
Clusterung eine Abbildung des (m + 1)-dimensionalen Ein-/Ausgangsdatenraumes auf
den eindimensionalen Ausgangsdatenraum durchgefiithrt. Dann wird die Clusterung (in ¢

Cluster) nur im Ausgangsdatenraum W durchgefiihrt

W —Df (2.9)
pei =h(y) . (2.10)

Dabei sind B; die eindimensionalen, durch Clusterung generierten, Fuzzy—Referenzmengen.

Durch Erweiterung der (m+1)-dimensionalen Datensétze um ihre Zugehéorigkeiten zu den

¢ Clustern
Dy x...xDp, xW —Dy x...xD, xWxDf x...xDf (2.11)
c—mal
entsteht eine Menge
MG = {(®k, yr, B1(Yr), - - s pe(yr)) | 1<k < N} (2.12)

von (m-+1+c¢)-Tupeln. AnschlieBend wird jedem der ¢ eindimensionalen Ausgangsgrofen-
cluster B; ein m—dimensionales Eingangsgrofiencluster A; zugeordnet. Die Abbildungsvor-

schrift dazu ist punktweise definiert tiber

W xDf — Dy x...xD, xD§ (2.13)
(Yr, pBi(Yyr)) — (®p, pai(®r)) mit (2.14)
pai(®r) = psi(yr) (2.15)

)

Praktisch konnen die entstehenden Punkte direkt aus den Elementen von M¥ in GI. (2.12
durch Streichung der irrelevanten Komponenten der (m + 1+ ¢)-Tupel abgeleitet werden:

Fiir das —te Eingangsgrofiencluster folgt

Ai={(®r, ppilyr)) | 1< k<N . (2.16)
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Wenn sich herausstellt, daB ein Cluster A; niherungsweise eine additive Uberlagerung aus
[ (gauBglockenférmigen) Subclustern darstellt, so wird A; in diese f Subcluster A}, ..., Alf
aufgespalten und letztere werden an Stelle von A; verwendet. Falls A; nicht konvex ist
(obwohl B; diese Eigenschaft besitzt), so wird an Stelle des nichtkonvexen exakten Gra-
phen 7 (Forster 1984:33) von A; dessen konvexe Hiillefliche verwendet. ? fithren an-
schlieBend noch eine Uberfithrung dieser m-dimensionalen in eindimensionale trapezoide
Zugehorigkeitsfunktionen durch und verwenden diese dann in der iiblichen WENN—DANN—
Regelstruktur.

2.2 Bewertung der Ansitze

Der Ansatz von ? ist auf relationale Fuzzy—Modelle zugeschnitten, fiir deren Identifikati-
on er auch angewendet wird. Die Idee dabei ist, vereinfacht ausgedriickt, alle Daten mit
jeweils etwa gleicher Ausgangsgrofle in einer Partition zusammenzufassen. Dies ist bei
den relationalen Modellen sinnvoll, da bei jeder Regel ein fester (unscharfer) Partialaus-
gangswert folgt. Der Erfiilltheitsgrad der Pramisse fithrt nur indirekt iiber eine verdnderte
Gewichtung der Schluifolgerung zu einer Verschiebung des Wertes der Ausgangsgrofie bei
Aggregation und Defuzzifizierung. Bei funktionalen Modellen dagegen wird unabhingig
von der Wahl der Fuzzy—Referenzmengen zwischen den Punkten differenziert, die in der
Partition einer Regel liegen, da die Schluf)folgerung nicht als Konstante, sondern i. allg. als
Polynom in den Eingangsgrofien gegeben ist. 7 beschreiben nicht, wie ein Eingangsgrofien-
cluster in Subcluster zu unterteilen ist. Auch bei der eventuell durchzufithrenden Umfor-
mung nichtkonvexer in konvexe Eingangsgrofiencluster besteht Verbesserungspotential, da

die Verwendung der konvexen Hiillen nicht zwangslaufig zu optimalen Ergebnissen fiihrt.

Der Ansatz von ? ist an funktionale Modelle angepafit. Er geht davon aus, dafl im Be-
reich einer Haufung der Systemeingangsgrofen @ der Verlauf der Systemausgangsgrofie
yr sehr nichtlinear, z. B. unstetig, sein kann. Durch die Beriicksichtigung von y bei der
Clusterung kann dies durch mehrere Cluster in einem solchen Bereich grundsétzlich besser
von dem Modell wiedergegeben werden. Fehler kénnen aber dadurch entstehen, daf} die
Prédiktion einer linearen Schluffolgerung zur Auswertung der Referenz—Fuzzy—Mengen
mitbenutzt wird. Durch Abweichungen des Modells vom System (Strukturfehler) erfolgt
so durch Fehlerfortpflanzung eine Verschlechterung der Modellierungsgiite.

Der Ansatz von ? ist ebenfalls auf funktionale Modelle zugeschnitten. Die Idee bei dieser
reinen FEingangsgroflenclusterung besteht darin, bei jeder Regel das lineare Konklusions-
polynom besonders gut auf den Bereich anzupassen, in dem die gréfite Datenkonzentra-
tion vorliegt (Bereich um die Clusterschwerpunkte). Dieses Vorgehen kann als Lineari-
sierung des Systemverhaltens jeweils in den Clusterschwerpunkten interpretiert werden.
Die Zugehérigkeitstunktionen bewirken eine Interpolation zwischen den einzelnen Lineari-

sierungen im Bereich zwischen den Clusterschwerpunkten. Die Bereiche, in denen die Sy-
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stemzustdnde vorzugsweise liegen, werden also besonders beriicksichtigt. Dabei sollten die
Mefdaten reprasentativ sein. Die in den einzelnen Eingangsdatenraumbereichen durchaus
unterschiedlichen Ausgangsgrofien koénnen im Gegensatz zum relationalen beim funktio-
nalen Modellansatz besser durch die Konklusionsfunktionen approximiert werden. Da die
Pradiktionen g; nicht zur Auswertung der Zugehorigkeitsfunktionen notwendig sind, be-
steht hier nicht die erhéhte Fehlerfortpflanzungstendenz wie bei ?. Allerdings geht die
Ausgangsgrofie nur verzogert als Eingangsgrofie in die Clusterung ein. Eine Nachoptimie-
rung der Parameter des Fuzzy—Modells stellt sich bei ? deutlich schwieriger dar: ? wertet
die Zugehorigkeitsfunktionen und die Konklusionsfunktionen getrennt aus und verkniipft
die beiden Teilergebnisse erst bei der Zusammenfassung aller Regeln gemif Gl. (2.7). Bei
? geht die Auswertung der Konklusion sowohl in die Zugehorigkeitsherechnung als auch

(multiplikativ) in die anschliefende Berechnung von y gemaff Gl. (2.7) ein.

Eine nur auf den FEingangsgréflenraum bezogene Clusterung ist nur bei dynamischen Mo-
dellen sinnvoll. Bei statischen Fuzzy—Modellen fehlt dagegen die Ausgangsgréfenriick-
fithrung und damit die (indirekte) Auswertung der Ausgangsgrofieninformation bei der
Clusterung. Abhilfe bietet der Ansatz, die Clusterung im Ein-/Ausgangsdatenraum durch-
zufithren

Dy x---xDy, xW —Dy x---xD,, xD§ , (2.17)
Hi; = f(il?, y) ” (218)

die Fuzzy-Referenzmengen A; bzw. die Clusterzentren @; dann aber auf den Eingangsda-

tenraum abzubilden:

Dy X+ xD,, xWxDf — Dy x---xD,, xDf (2.19)
(wvywu,ii(wvy)) - (QZ,IMAZ(QZ)) 1 < 1 <c mit (220)
pai(@) := (e, y) (2.21)

bzw.
D x...xD, xW-—D; x...xD, (2.22)
vi(x,y) — vi(x) 1 <i<e mit (2.23)
vi(x) :=v(e,y) . (2.24)

Falls die durch diese Clusterung generierte Partitionierung jedoch anschlieflend optimiert
wird, bringt dieser Ansatz (aufler eventuell besseren Startwerten) bei dynamischen Model-
len keinen Vorteil gegeniiber der reinen Eingangsgroflenraum—Clusterung. Dies ist offen-
sichtlich, da die resultierenden Referenz—Fuzzy—Mengen genau die gleichen Informationen

auswerten.

Impliziert wird bei den funktionalen Modellansédtzen, dafl sich ein System bereichsweise
nahezu linear verhélt und keine Unstetigkeiten aufweist. Ist das aber der Fall, so sind von

ihrer Konzeption her relationale Modelle besser geeignet, da diese das Systemverhalten
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punktweise mit i. allg. groler Auflésung abbilden und dazwischen interpolieren. Dagegen
bilden die funktionalen Modelle eher bereichsweise ab, wobei unscharfe Ubergangshereiche

generiert werden.
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3 Initialisierung

Bei der Initialisierung der Zugehérigkeiten beim FCM- sowie beim Gustafson—und-Kessel-
Algorithmus (?) kénnen entweder die Zugehorigkeitsmatrix U oder direkt die Cluster-
)
N v

> (M(Q) Tk

W) _ &

=1
N v
k; (MEQ)

(fiir [ = 0) die vgo) berechnet. Es wird die abkiirzende Schreibweise p;x = p; (@) verwendet.
Dabei gilt

schwerpunkte v; ’(1 < i < ¢), vorgegeben werden. Bei Vorgabe von U werden iiber

(3.1)

Satz 3.1 : Gegeben sei die Menge M, aller N Datensitze. Bei Wahl von U®) = | 52)] mit
uﬁ,(j) el0,1]vVie{l,....c}, ke {l,...,N} und ch,ugz) =1Vke{l,...,N} liegen alle
=1

¢ > 2 tiber Gl. (3.1) bestimmten Clusterschwerpuniite v; auf oder innerhalb der konvexen

Hiille um ML, . O

Beweis:

)

a) Sei ¢ > 2 und fiir ein ¢ € {1,..., ¢} sei ,ug? = 1 sowie ,ugg):() Vied{l,...,N}\

{7} Aus GIl. (3.1) folgt
IR L — z; . (3.2)

Es kann also mindestens ein Clusterschwerpunkt in einem beliebigen Datensatz ;

plaziert werden.

b) Sei ¢ > 2 und fiir ein 7 € {1,...,c} sei ,ME?) # 0, ,ugg) # 0, ,ugg) =0 V[ e
{1,...,¢}\{J;9}. Aus Gl. (3.1) folgt

(MO) |
0)\, 0)\, z;+ Z—g Ly
o ) )y ) _wtaw, (33)
[ 0 0 - v - :
(1) + () 14 (ﬁ) Lta
(0)
Ium

Wegen 3 Y = 5 + 1 =1 und 12,4 € (0, 1) folgt
=1

ig g

1— 02\
a = (0)” €0, ) . (3.4)
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Einsetzen von

o
1= €0, 1) (3:5)
liefert
vl = (1 —y)a; + 9@y = o) + (2, — ;) . (3.6)

(0)

Also liegt v; "’ auf der Verbindungslinie von @; nach ;. In den Grenztéllen v — 0
oder v — 1 folgt Fall a).

Aus a) und b) folgt Satz 3.1. O

(0)

Die Vorgabe von U ist also ein Spezialfall der Vorgabe der v; ’. Eine Verletzung der

Bedingung

Suld =1 VEke{l, N} (3.7)
=1
kann zu Clusterschwerpunkten auflerhalb der konvexen Hiille um M, fiihren. Ubliche
Strategien (?) zielen auf eine Zufallshelegung von U® unter Beachtung von Gl. (3.7) ab,
(0)

wodurch geméf Satz 3.1 eine zuféllige Plazierung der v;’ innerhalb oder auf der konvexen

Hiille von M, folgt. AuszuschlieBen ist dabei der Fall, daB} bei festen ¢ € {1,... ¢}
,ugg) =a; =const. YVke{l,...,N} (3.8)

gilt, weil dann

N N
Z(N ) Ty, a; Y T

o0 =k — k=t =%, Vie{l,...,c} (3.9)
NCLZ'

K3

>
Z:: (quk )

folgt und damit alle ¢ Clusterschwerpunkte in den Punkt @, fallen.

Werden die vgo) so vorgegeben, dafl Gl. (3.7) nicht erfiillt ist, so fithrt die Zugehorigkeits-
berechnung zu den Clusterschwerpunkten bereits nach der ersten Iteration des FCM— oder
des Gustafson—und—Kessel-Algorithmus zu deren Einhaltung. Die Zuordnungsvorschrift
lautet wie folgt (7):

c fiir ]Ig) =0
) (keine Singularitaten)
AL (3.10)
0 Vv iell i 1O £ 0
GEQ v ie ]Ig) (Singularltaten liegen vor)
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Dabei sei ]I = {1 € ]| dlk |er — v HD = 0} die Menge aller Cluster, bzgl. derer
x; den Abstand 0 vom Clusterschwerpunkt hat (singularer Fall). I = {1,..., ¢} stellt die
Menge aller ¢ Cluster und I = I \ ]Ig) die Menge der Cluster dar, bzgl. derer @ keine
Singularitét darstellt. Auflerdem ist

Sad =Sl =1V ier)#0 . (3.11)
el et
Wihle z. B. ¢! = —L 4. Damit ist U = [+
ik A(]Iﬁf)) [/%k ]

Es gilt also

Satz 3.2 : Die Zuordnungsvorschrift beim Fuzzy—c—Means—Algorithmus gemafl Gl. (3.10)
und (3.11) fithrt zu UWY, die GL. (3.7) erfiillen. O

Beweis: Der Beweis wird von ? gefiihrt.

Satz 3.3 : Die Zuordnungsvorschrift beim Gustafson—und—Kessel-Algorithmus (entspricht
Gln. (3.10) und (3.11) unter Verwendung lokaler Abstandsnormen) fithrt zu einem U,
das Gl. (3.7) erfiillt. 0

Beweis:
a) Im Fall von Singularititen ist dies per definitionem wegen Gl. (3.11) der Fall.

b) Liegen keine Singularitidten vor, so wird der Beweis formal wie fiir den Fuzzy—c-
Means—Algorithmus gefiithrt (?) mit dem Unterschied, daff fiir jedes Cluster eine
andere Abstandsnorm gilt. O

Bei dem von ? beschriebenen Backer—Algorithmus werden die Fuzzy—Cluster aus har-
ten Clustern berechnet. Deshalb muf hier zur Initialisierung eine harte Clusterung U*(®)

vorgegeben werden; Clusterschwerpunkte berechnet der Algorithmus nicht. Es gilt

Satz 3.4 : Die Abbildungsvorschrift (?)*

() L $5 =000

ny’ — = .
y 7 ¢t1 Hiz

,ng— 1]\7
52

(3.12)

von einer harten auf eine weiche Clusterung (mit M; der Menge aller Daten des i—ten

harten Clusters und n; = A(M;)) fithrt zu Zugehorigkeiten, die Gl. (3.7) erfiillen. O

!Die von 7 aus ? zitierte Formel (2.17) ist bereits in der erstgenannten Quelle nicht korrekt.
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Beweis:

Aus Griinden besserer Ubersichtlichkeit wird der Iterationsschritt (-)(l) in GI. (3.12)
weggelassen. Es gilt

n; — L ]ZV: *d
c c 7 - MGtk
Sun=3 =5 (3.13)
=1 = y_Lls g,

=1

mit n; = A(M;) und damit Zc: n; = N. Damit folgt

=1
1 C N
. _N-bE L
S iy = =lis (3.14)
= N -5 dy
¢ t=1

Jeder Datensatz ist exakt einem Cluster zugeordnet (xf, € {0;1}). Damit ergibt sich

c N

N
DD whd = du (3.15)
t=1

=1 t=1

und somit

=1

Praktische Erfahrungen

Der FCM-Algorithmus berechnet bei wohlseparierten Clustern (?), also z. B. deutlich
voneinander getrennten Datenh&ufungen, i. allg. unabhéngig von der Initialisierung die
gleichen Clusterschwerpunkte. Dies gilt sowohl bei Vorgabe von U® mit zufillig gewhl-

ten Elementen ,u(q) € [0 ; 1], wobei Zc: ,ug?) =1Vje{l,...,N} gilt (siche z. B. ?), wie
=1

g
(0)

auch bei der Vorgabe von zufillig plazierten Clusterschwerpunkten v; . FEine Plazierung

(0)

7

Satz 3.2 und 3.3). Bei nichtwohlseparierten Clustern gibt es i. allg. mehrere lokale Mi-

der v;’ auBerhalb der konvexen Hiille um M, bewirkt keine Probleme (vergleiche auch
nima, zu denen das Verfahren konvergieren kann. Liegen die Datenpunkte beispielsweise

auf einer Parabel, so werden die Clusterschwerpunkte auch auf die Parabel gelegt.

Die Ergebnisse einer Clusterung mit dem Gustafson—und—Kessel-Algorithmus sind bereits
bei wohlseparierten Datenmustern deutlich von der Initialisierung abhéangig (7). Fiir ein
exemplarisch ausgewihltes zweidimensionales Datenmuster, das aus einem kleinen (vier
Datenpunkte) und einem grofien (16 Datenpunkte) Rechteck besteht, liefert der Algo-

rithmus bei unterschiedlicher Initialisierung (fiir ¥ = 2 sowie g, = 1 und gy = 5) die in
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10

—10 ‘ ‘ ‘
—10 -5 0 5 10

Ty

Bild 3.1: a—Schnitte durch gy ( x : Clusterschwerpunkt; Initialisierung: o : Datensatz
mit AO) = 0,854, e : Datensatz mit AO) =0,146)

Bild 3.1 und 3.2 dargestellten Clusterungen. Dargestellt werden a—Schnitte in Schritten
zu 0,1 durch die zum ersten Cluster (rechts in Bild 3.1 und oben in Bild 3.2) gehorige
Zugehorigkeitsfunktion py, die zur rdumlichen Anschauung als dreidimensionale Graphi-
ken in den Bildern 3.3 und 3.4 dargestellt sind. Zur Beurteilung, ob die Datenstrukturen
erkannt wurden, kann das Prinzip der maximalen Zugehérigkeit (7) angewendet werden.
Das heifit, jedes Datentupel wird genau dem Cluster zugeordnet, zu dem es die héchste
Zugehorigkeit besitzt. Im vorgestellten Beispiel mit ¢ = 2 Clusterzentren muf} also eine
Zugehorigkeit p;(xy) > 0,5 vorliegen, damit @) dem Cluster ¢ zugeordnet wird. In Bild
3.1 liegen alle Punkte des kleinen Rechtecks innerhalb des a—Schnittes fiir g = 0,5 (und
damit wegen po = 1 — py alle Punkte des grofien Rechteckes innerhalb des a—Schnittes
fir py = 0,5). Die Datenstruktur wurde also erkannt. In Bild 3.2 wurden die beiden
Rechtecke offensichtlich nicht erkannt. Wegen der gednderten Initialisierung konvergiert
der Algorithmus in ein lokales Minimum der Zielfunktion, dessen zugehérige Clusterung
nicht der Vorstellung einer ,guten® Clusterung entspricht. Das FErgebnis der Clusterung
héngt auBBerdem von der Wahl der relativen Clustervolumina g; (?) ab. Bei gleicher Initia-
lisierung fithren unterschiedliche Kombinationen der p; zu unterschiedlichen Clusterungen.
Diese Verkopplung der Parameter erschwert die Anwendung des Gustafson—und—Kessel-

deutlich gegeniiber dem FCM—-Algorithmus.
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—-10 -5 0 o 10
Ty
Bild 3.2: a—Schnitte durch gy ( x : Clusterschwerpunkt; Initialisierung: o : Datensatz
mit AO) = 0,854, e : Datensatz mit AO) =0,146)

SSSUNINNNNNN
N\

X
==

. -10 -10

Bild 3.3: Zugehorigkeiten pq (@) zum Bild 3.1, in der @1 — z3-Ebene sind zusétzlich die
a—Schnitte aus Bild 3.1 dargestellt
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- -10 -10

Bild 3.4: Zugehorigkeiten pq (@) zum Bild 3.2, in der @1 — x3-Ebene sind zusétzlich die
a—Schnitte aus Bild 3.2 dargestellt
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4 Wahl des Unscharfeparameters

Beim FCM- und beim Gustafson—und—Kessel-Algorithmus gilt wegen der Zuweisungsvor-
schrift fiir die Zugehorigkeiten Gl. (3.10) (unabhéngig von der Wahl von v) d;, — d;y, fiir
|ek|]] = 00 Vi,5 €{l,...,¢c},da||vs]| <o V¥V fe{l,...,c}. Damit folgt pix — 1/c
fiir [|@x|| — oo. Fiir den Verlauf von p;;, besitzt der sogenannte Unscharfeparameter v eine
zentrale Rolle: Grofle Werte von v fithren zu einer (nicht erwiinschten) schnellen Ann&he-
rung von g an 1/c. Ein weiterer unerwiinschter Effekt liegt darin, daff ;. 1angs der von v,
ausgehenden (beliebigen) Strahlen nicht immer monoton fallt, die Zugehorigkeitsfunktio-
nen sind also nicht konvex. Um jedes andere Clusterzentrum v; # v; wird eine Mulde in
der Topologie von p;; erzwungen. Die Bilder 4.1 und 4.2 illustrieren diese beiden Effekte
und verdeutlichen, daff diese fiir einen kleinen Wert von v (im Beispiel v < 1,5) eine un-

tergeordnete Rolle spielen. Auch in Bezug auf eine hohe Giite eines Fuzzy—Modells (mit
1

Bild 4.1: yy(«) in Abhéngigkeit von v fiir Clusterschwerpunkte vy = 0,5 und vy, = —0,5

durch Clusterung erzeugter Partitionierung) sollte v klein gew&hlt werden. Eine optimale
Anpassung eines Modells an eine Datensatzmenge 1488t sich fiir v — 1, also harter Parti-
tionierung, erzielen. Dann wird jedes Datum genau einer Partition zugeordnet. Im Sinne
einer robusten Modellidentifikation verschieben sich giinstige Werte zu v ~ 1, 2. Bild 4.3
zeigt die Abhdngigkeit der Giite von v beim ersten nichtlinearen Beispielsystem aus Kroll
(1994:311f). Gegeniibergestellt werden eine Modellauswertung mit dem zur Identifikation

benutzten Datensatz sowie einem anderen Datensatz (Kreuzvalidierung).
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0 )
—1 0.5

Bild 4.2: yy(«) in Abhéngigkeit von v fiir Clusterschwerpunkte vq = 0,5, vy = —0,5
und v3 =0

107" ¢ -
107% & .
= ; Auswertung mit zur :
i [dentifikation i
1077 & —genutzten -
& ~-nicht genutzten 1
i Daten ]
10
1 12 2 b5 10
v

Bild 4.3: Modellgiite p: fiir Einschrittpradiktion in Abhéngigkeit vom Unscharfeparame-
ter v (Modell mit FCM-Algorithmus generiert, ¢ = 10)
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5 Clustervalidierung

Bei der Mustererkennung finden mehrere Kriterien Verwendung, um die im Sinne der be-
trachteten Datenstruktur richtige Anzahl an Clustern zu bestimmen. Ein naheliegender

Ansatz dazu ist die Auswertung der der Clusterung zugrundeliegenden Zielfunktion.
Clusteranzahl aus Zielfunktionsminimum

FCM- und Gustafson—und-Kessel-Algorithmus minimieren (implizit) die Gesamtsumme
der Summen iiber die gewichteten Abstandsquadrate aller Datenpunkte zum Cluster-
schwerpunkt innerhalb der Cluster (,,overall within-group sum-of-squared-error (WGSS)“,
?):

N ¢

Jio(e) =32 (pin)” g — vl

k=11:=1

b, - (5.1)

Die Idee liegt dabei in einer Minimierung der gewichteten Streuung der Datensétze in den

einzelnen Clustern.

? erweitern Gl. (5.1) derart, dafl auBerdem die Streuung der Clusterschwerpunkte maxi-

miert wird:

N ¢

Jau(e) = 3 S ()" (e — wil* = [lo: — 2]2) . (5.2)

k=11:=1

Die Erfahrung zeigt allerdings, dafl J; , (selbst bei wohlseparierten Clustern) i. allg. (streng)
monoton féllt. Allerdings &ndert sich das Steigungsverhalten bei wohlseparierten Clustern
deutlich in Abhéngigkeit von c¢: Bei steigenden Werten von ¢ fallt J; , stark ab, bis die
richtige (und eindeutig bestimmte) Clusteranzahl ¢,,: erreicht wird. Steigt ¢ weiter an,
so nimmt J; , nur noch langsam ab. Je schlechter die Separierung der Cluster ist, desto
weniger deutlich tritt dieser Effekt auf. Dagegen zeigt J;, bei deutlich separierten kom-
pakten (balligen) Clustern und Werten von v grofler als etwa 1,5 in den untersuchten
Beispielen ein Minimum bei der wahren Clusteranzahl c,,;, d. h. bei der Anzahl vonein-
ander getrennten geometrischen Strukturen in den Daten. Aber bereits bei beispielsweise
stufenférmig (abschnittsweise linear) angeordneten Daten und damit ebenfalls deutlich

separierten Clustern tritt kein Minimum bei J,, auf.

Die von ? angegebene gleiche Gewichtung von Subtrahend und Minuend in GI. (5.2)
beruht auf einer gleichen Gewichtung der Bestrafung der Streuung der Datensétze in den
Clustern sowie der Belohnung der Streuung der Clusterzentren bei der Berechnung der
»Gesamtkosten® einer Clusterung. Diese Festsetzung ist willkiirlich. Bei Setzung anderer

Prioritdten sollte eine entsprechend angepafite Gewichtung der Teilkosten erfolgen:

Joule) = 30 i) (lex — vil* = oljv; — 2|?) . (5.3)

k=1 :=1
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Da nur die relativen Werte der Kostenfunktion interessant sind, reicht die Gewichtung
eines Terms in Gl. (5.3) aus. Aber auch ein solcher Ansatz fithrt haufig nicht zu Extrema,
da sowohl Subtrahend als auch Minuend oft monoton fallende Funktionen sind. Dazu
kommt die Schwierigkeit, daf} i. allg. kein Apriori-Wissen iiber eine geeignete Gewichtung

vorliegt.

Bei diesen Ansétzen kann J,, insbesondere bei schlechter Separierung der Cluster, mehre-
re lokale Minima bei festem ¢ besitzen. Dies ist z. B. bei bogenférmig angeordneten Daten
der Fall. Bei solchen Datenanordnungen existiert eine ,wahre“ Anzahl an Clustern mit
punktformigen Clusterzentren (Prototypen) haufig nicht. Die Erfahrung zeigt aber, daf}
die zu den lokalen Minima von J;, gehorenden (durch den FCM-Algorithmus bestimm-
ten) Clusterzentren auf einem solchen Bogen liegen. Die zum (numerischen) globalen Mi-
nimum fiir festes ¢ gehérende Clusterung muf} nicht global optimal fiir das Fuzzy—Modell
sein, da dessen Giite i. allg. nach anderen Giitekriterien bewertet wird. Deshalb kénnen
die zu solchen lokalen Minima gehérenden Clusterungen i. allg. als Partitionierungen bei
Fuzzy—Modellen eingesetzt werden. Sinnvoll ist dann eine Nachoptimierung der Partitio-
nierung im Sinne des Gilitekriteriums bei der Modellbewertung. Zu bemerken bleibt, daf3
bereits bei der Clusterung ein globales Minimum von J, nicht gleichbedeutend mit einer

guten Clusterung sein muf.
Partitionsentropie

Ein anderes Kriterium bewertet die Partitionsentropie, die wie folgt definiert ist:

Definition 5.1 : Partitionsentropie (Bezdek 1981:111)

Die Partitionsentropie einer Fuzzy—c—Partition U € My, der Datenmenge M, mit A(M,.) =
N ist fir 1 < ¢ < N gegeben als

C

HU,¢) =~ 323 plos, () (5.4

k=11=1
mit der logarithmischen Basis @ € (1, oo) und

Hik loga(,uik) =0 A Hik = 0 . (55)
O

Mit dieser Definition ist H(U,c¢) ein Maf fiir die Unschéarfe der Partitionierung. Es gilt

Satz 5.1 (?):SeiU € My, eine Fuzzy—c—Partition von N Daten. Dann gilt fir | <¢ < N
und «a € (1,00)
0 <H(U,c)< log,(c) (5.6)
HU,c)=0 — U € M,g ist hart
H(U,c) =log,(c) = U=][l/c . (5.8)
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a

Das bedeutet: Bei U = [1/¢] sind die Zugehorigkeitszuweisungen der Daten zu den Clu-
stern maximal unsicher, bei harter ¢-Partition maximal sicher. Letzteres entspricht einem
Informationsgehalt von Null und damit einem maximalen Informationsgewinn durch die
Clusterung. Die Clusteranzahl ¢ ist also genau so zu wahlen, daf H(U,¢) minimal wird.

Eine Strategie 1at sich als zweistufiger Algorithmus formulieren:

Entropie—Algorithmus (?)

1. Bestimme U~ fiir jedes feste ¢ € {2,..., N —1} so, daB die Partitionsentropie jeweils
minimal ist:

HWU?:,¢c)= min (HU,¢)) . (5.9)

Uc erc

2. Die optimale Partitionsanzahl ¢,y fithrt zur minimalen Partitionsentropie aller
H(U?,c¢), die im 1. Schritt bestimmt wurden:

c?

ot ={c" | HUL, ") < HUZ,¢) Ve, e{2,....,N—=1}, ¢ #¢} .(5.10)

a

Uber die genaue Wahl von « in den Gln. (5.4) bis (5.8) wird keine Aussage gemacht, in
einem Beispiel wird ¢ = e verwendet.

Fiir den Fall monotoner Verlaufe von H(U , ¢) fiir ein gegebenes M, kann H(U , ¢) normiert
werden:

Definition 5.2 Normierte Partitionsentropie (?)

Sei U € M. eine Fuzzy—c—Partition von M, und A(M,) = N. Dann ist die normierte
Partitionsentropie von U fiir 2 < ¢ < N gegeben als

H(U,¢) = H(go’ o) _ [f(_U’_]cvc) . (5.11)
O

Der Algorithmus zur Bestimmung einer optimalen Clusteranzahl entspricht dem Entropie—
Algorithmus, aber mit H statt H. Wegen Hy = (1—¢/N) &~ 1 unterscheiden sich normierte

und nichtnormierte Partitionsentropie fiir ¢ < N nur unwesentlich.

Bei den untersuchten Datenstrukturen (Beispiel E20.1 aus ?, Daten, die stufenférmig
angeordnet sind, oder solche, die auf einer Parabel liegen, Mefldaten aus einem chemi-
schen Reaktor (?)) konnte mit dem Entropie-Algorithmus sowohl bzgl. H als auch H
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bei wohlseparierten Clustern immer ¢,,; eindeutig bestimmt werden. Dabei unterschieden
sich H(copt) beziehungsweise )i (¢opt) deutlich von den Werten fiir ¢ # ¢,,+. Bei nichtwohl-
separierten Clustern besal H(c) Randminima an den Intervallgrenzen des untersuchten
Definitionsbereichs von ¢ .

Die vorgestellten Kriterien zur Clustervalidierung kénnen teilweise zur Bestimmung der
Clusteranzahl bei deutlicher Separation der Cluster eingesetzt werden. Mit einer solchen
Charakteristik der Ein— und Ausgangsdaten kann bei technischen Systemen 1. allg. aber
nicht gerechnet werden. In solchen Féllen sind J; ,, J3, sowie J3 , monoton. Uber Betrach-
tungen der Partitionsentropie kann auch keine sinnvolle Aussage bzgl. einer (endlichen)
optimalen Clusteranzahl gemacht werden. Dann kann die Bestimmung von ¢, liber das
zur Modellbewertung verwendete Giitekriterium erfolgen: Sollte letzteres ebenfalls mono-
ton von ¢ abhéngen, so existiert ¢,,; im hier betrachteten Sinne nicht. Es tritt dann nur
ein zum Randminimum des Giitekriteriums korrespondierender Wert auf. Fine Festlegung
der Partitionsanzahl kann dann durch Vorgabe einer gewiinschten Modellgenauigkeit oder
Parameteranzahl erfolgen.

Separationsindizes

? gibt als ein Kriterium zur Uberpriifung einer harten Clusterung die Separationsindizes
an. Diese setzen den minimalen Abstand zwischen Elementen von zwei verschiedenen
Clustern, der tiberhaupt bei allen Daten auftritt, ins Verhéltnis zum Maximum der ma-
ximalen Durchmesser der ¢ Cluster (oder deren konvexer Hiillen). Mit steigenden Werten
dieser Verhéaltnisse steigt auch die Separierung der Cluster an. Es gibt feste Schwellen,
ab denen eine CS— (compact separated) oder CWS— (compact and well separated) Clu-
sterung vorliegt (Bezdek 1981:146). Bei deutlicher Separierung der Cluster liefert der
FCM-Algorithmus gute Approximationen fiir eine Clusterung, deren Strategie auf einer
Maximierung der Separationsindizes beruht. Da bei den betrachteten Aufgabenstellungen
der Modellbildung eine deutliche Separierung i. allg. nicht vorliegt und da die Riickfithrung
der unscharfen auf eine scharfe Clusterung einen Verlust an Aussagekraft bewirkt, wird
dieser Ansatz hier nicht weiterverfolgt.
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6 Orthogonale Partitionierung

Bei der funktionalen Fuzzy—Modellbildung nutzen sehr viele Algorithmen (?, 7, ?), bei
der funktionalen Fuzzy—Regelung die meisten Verfahren (?, ?, ?), trapezoide Zugehorig-
keitsfunktionen. Auch bei relationalen Fuzzy-Modellen iiberfithren beispielsweise 7 die
tiber indirekte Clusterung generierten mehrdimensionalen in eindimensionale orthogonale
Zugehorigkeitsfunktionen (siehe Abschnitt 2).

Eine Motivation fiir die orthogonale Partitionierung liegt darin, dafl bei linearen Schluf-
folgerungspolynomen in den linearen Kernbereichen der Regeln lineare Teilsysteme entste-
hen, die z. B. bei geschlossenen Regelkreisen mit gleichartigen funktionalen Fuzzy—Reglern
eine relativ einfache theoretische Behandlung gestatten. Deshalb soll hier diese Proble-
matik kurz behandelt werden. Dazu ist es zuerst n6tig, den mathematischen Hintergrund

metrischer Clusteralgorithmen zu erlautern.

6.1 Metrische Clusteralgorithmen

? beschreibt mehrere metrische Clusteralgorithmen. Hier soll der mathemathische Hin-

tergrund zu metrischen und normierten Raumen nachgeliefert werden.

Definition 6.1 : Metrik, metrischer Raum (?)
Ist je zwei Elementen a, b einer beliebigen nichtleeren Menge M eine reelle Zahl d(«, b) so
zugeordnet, dafl die Axiome
(M1) d(a,b) > 0 mitd(e,b) =0« a=0>b (Definitheit)
(M2) d(a,b) = d(b,a) (Symmetrie) (6.1)
(M3) d(a,b) < d(a,c¢)+d(c,b) (Dreiecksungleichung)
erfilllt sind, so ist auf Ml die Metrik d eingefithrt und M ist ein metrischer Raum. Die

Elemente eines metrischen Raumes heiflen Punkte, die Zahl d(«a, b) der Abstand zwischen
den Punkten a und b. O

Beispiel (?7): Wird der Abstand d(z,y) zweier Punkte a,b € R™ durch

d(a,b) == (i(ai - w)% (6.2)

=1

definiert, so wird die damit auf R™ definierte Metrik als euklidische bezeichnet. Auch

doo(a,b) := max (Ja; — bif) (6.3)
sowle
dy(a,b) := Z la; — b (6.4)
=1

mit a,b € R™ erklaren jeweils eine Metrik auf R™. a
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Definition 6.2 : Linearer Raum (?)

Eine Menge E von Elementen a,b heifit ein linearer Raum beziiglich der reellen Zahlen,
wenn in E die Operationen Addition und Multiplikation mit reellen Zahlen o, v erklart

sind und folgenden Axiomen geniigen:

1. Fir a,b € E ist die Summe a + b € E eindeutig erklart, und es gilt:

(a+b)+c = a+(b+¢) (Assoziativitat)

a+b = b+a (Kommutativitat) (6.5)

Es existiert ein Nullelement 0 € E mit der Eigenschaft
0+a=a Va€E (neutrales Element bzgl. der Addition) (6.6)

und zu jedem a € E existiert ein Element —a € E mit
a+(—a)=0 (inverses Element bzgl. der Addition). (6.7)

2. Zu jedem a € E und jeder reellen Zahl o gilt - ¢ € E mit
ola+b) = oca+ob Linearitat)

(c+d)a = oca+da Distributivitat) (6.5)

(
(

(c0)a = o(Va) (Assoziativitat)
(

l-a = a Neutrales Element bzgl. der Multiplikation)

Esfolgt 0-a=0 VacEundo-0=0 VoekR.
Beispiel : R ist ein linearer Raum (Heuser 1984:118).
Definition 6.3 : Normierter Raum (?)

Ein linearer Raum E heif}t ein normierter Raum, wenn jedem f € E eine reelle Zahl || f]|,

die Norm von f, so zugeordnet ist, dafl die drei Axiome

(N1) = 0 mit ||| =0& =0
(N2)  lefll = ol lfll YVoeR (6.9)
(N3) [/ +gll < W/ +1lgll g€E

gelten. O

Beispiel : Sei p > 1 eine feste reelle Zahl. R™ wird durch

L

folyi= (S 1o?) o= lareenan (6.10)

=1

ein normierter Raum. Gilt p = 2, so spricht man vom euklidischen Raum. Auch

durch die Maximumnorm
|a]|co := max (|a1], ..., |am]) ,a = [al,...,am]T (6.11)

wird R™ ein normierter Raum. O
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Ein normierter Raum E ist mit der Metrik
d(a,8) = fla — bj| = [Ib— a] (6.12)
ein metrischer Raum. Die Metrik (6.12) besitzt noch die zusitzlichen Eigenschaften

(E1) dla+c¢,b+¢) = d(a,b) (Translationsinvarianz)

A
(E2) d(ca,ob) = |o| d(a,b) (Stauchungsinvarianz) (6.13)

Ist ein metrischer Raum E ein linearer Raum und erfiillt die Metrik (E1) und (E2), dann
ist E mit der Norm

lla|| := d(a,0) (6.14)

ein normierter Raum (7). Anzumerken ist, dafl nicht jede Metrik translations- und stau-
chungsinvariant ist, wie z. B. die ,Metrik des franzésischen Eisenbahnsystems“. Es 1aft
sich also nicht jeder metrische in einen normierten Raum tiberfithren. Andererseits kann

mittels Definition (6.12) jeder normierte Raum in einen metrischen iiberfithrt werden.

Der Datenraum R™ bei einer Clusterung ist z. B. mit der Norm (6.10) oder (6.11) ein
normierter Raum. Mit der Definition des Abstandes tiber die Norm geméfl (6.12) ist
R™ auch ein metrischer Raum. Damit ist offensichtlich, dafl die von ? beschriebenen

Clusteralgorithmen zu den metrischen Clusteralgorithmen gehéren.

6.2 Uberfiithrung in orthogonale Partitionen

? schldgt vor, von zwei a—Schnitten bei g = 0,9 und bei g = 1,2/¢ (empirische Werte)
die maximalen Ausdehnungen in alle Koordinatenrichtungen zu bestimmen und durch
die beiden Punkte, die durch Projektion der maximalen Ausdehnung auf die Koordina-
tenachsen jeweils entstehen, eine Gerade zu legen. Diese definiert dann eine Flanke der
eindimensionalen orthogonalen Fuzzy—Referenzmenge, die andere entsteht entsprechend
durch Umsetzung der minimalen Ausdehnung. Zu beachten ist dabei, dafl der Graph der
mehrdimensionalen Zugehérigkeitsfunktionen nicht in alle Richtungen streng monoton ist
(Abschnitt 4) und fiir ||z|| — oo gegen u = 1/¢ geht. Durch dieses Vorgehen kénnen nicht
abgedeckte Bereiche entstehen, insbesondere in den Randbereichen des Fingangsdaten-
raumes. Abhilfe bietet eine Ausweitung der dufleren Fuzzy—Referenzmengen in Richtung
der Definitionsbereichsgrenzen. Nachteilig ist auflerdem, dafl i. allg. bei der Clusterung
mit dem FCM-Algorithmus die euklidische Abstandsnorm verwendet wird, die zu kon-
zentrischen Kreisen als Equinormalkurven fiihrt. Im Hinblick auf die Umwandlung in
orthogonale Partitionen ist es natiirlicher, bei der Clusterung eine Metrik mit rechtecki-
gen Equinormalkurven zu wéhlen. Die Metrik d., liefert quadratische Equinormalkurven.
Nach der Umwandlung sollte eine Optimierung der Fuzzy—Referenzmengen im Hinblick

auf das bei der Modellbewertung verwendete Giitekriterium erfolgen.

Satz 6.1 : Die Metrik d., ist Translations- und Stauchungsinvariant. O
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Beweis: Translationsinvarianz (E1):

doo(@+e,b4+¢) = max (] (a;i+¢)—(b+c)l|)

1<ism (6.15)

= max (| a;— b |) = du(a,b)

1<e<m

Stauchungsvarianz (E2):

doo(oa,ob) = [max (| ca; —ob; |)
= o | max (] a;—bi|) (6.16)
= |o|dx(a,b)

Die Translations— und Stauchungsinvarianz sind wichtige Figenschaften, da sie Vorau

a

-

setzung fiir die Zuldssigkeit von Verschiebung und Stauchung bei einer Normierung der

Definitionsbereiche sind (z. B. Normierung von Mefidaten auf den Einheitsraum D). D

ie

Bilder 6.1 und 6.2 illustrieren die Wirkung von d, an dem bereits von ? Kroll (1994:17ff)

fiir die euklidische Abstandsnorm gegebenen Beispiel mit den Clusterschwerpunkten

vy = [—0,5:0,5]", wy=[-0,5;0,5]"und ws=[0,5;0]" . (6.17)

220,

0,5

0,5

1 -1 -1 T

Bild 6.1: Zugehorigkeiten gy (@) zum ersten Cluster fiir v=1, 13 und Auswertung mit d

o0



6 Orthogonale Partitionierung

25

/]
/i
A1

fi1 ()

&
<55 7
SIS
555555 l/
S

s

ESSSSNSSS

SIS
<

SIS
SIS
S S S S S S SSSSSISIIELK, o
RS
RREIISSSSSSKSI M 1Y
RS SIS
SRS

] ;/[/ /%
i
I

N
SO
SRS
‘\“\‘\\‘\“
%

Bild 6.2: Zugehorigkeiten pq (@) zum ersten Cluster fiir v = 2 und Auswertung mit de.
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7 Zusammenfassung und Ausblick

Bei der Anwendung von metrischen Clusteralgorithmen sind verschiedene Parameter ge-
eignet zu wéihlen, um eine Datenstrukturanalyse erfolgreich durchzufithren. Im Hin-
blick auf den Finsatz dieser Algorithmen zur Strukturidentifikation bei der Fuzzy—Modell-
bildung ist der Datenraum, in dem die Analyse durchgetithrt wird, geeignet zu wéhlen.

Verschiedene Méglichkeiten hierzu wurden vorgestellt und diskutiert.

Fuzzy—c-Means— sowie Gustafson—und—Kessel-Algorithmus konvergieren nur lokal (?);
deshalb ist besonderes Augenmerk auf die Initialisierung zu richten. Gerade der Gustafson—
und-Kessel-Algorithmus, bei dem auch noch die Wahl der relativen Clustervolumina (?)
das Ergebnis der Clusterung beeinflufit, ist sehr empfindlich gegeniiber der Anfangswert-
wahl (?). Im Gegensatz zur {iblichen aufwendigen Initialisierung der Zugehorigkeitsma-
trix konnen auch die Clusterschwerpunkte initialisiert werden. Deren Bewertung bei den
Terminierungsbedingungen fithrt zu einer Vereinfachung und somit einer Steigerung der

Verarbeitungsgeschwindigkeit.

Zur Bestimmung der optimalen Anzahl der Partitionen, der sog. Clustervalidierung, wur-
den verschiedene Kriterien aus dem Bereich der Mustererkennung vorgestellt. Diese be-
sitzen bei nicht wohlseparierten Datenstrukturen, die bei der Modellidentifikation fiir
technische Systeme vorwiegend auftreten, aber i. allg. nur Randmaxima im Definitionsbe-
reich. Hier sollte eine Wahl der Partitionsanzahl nach dem Giitekriterium fiir das Modell
erfolgen oder, falls dessen Abhéangigkeit von der Partitionsanzahl monoton ist, z. B. nach

der Vorgabe einer gewiinschten Parameteranzahl oder Giite des Modells.

Es wurde ein Verfahren vorgeschlagen, um mehrdimensionale auf eindimensionale ortho-
gonale Referenz—Fuzzy—Mengen abzubilden. Dabei sollte die Clusterung bereits mit einer
Metrik durchgefithrt werden, die der orthogonalen Partitionierung verwandter ist als die
euklidische, wie z. B. die Maximum—Norm. In diesem Zusammenhang wurde gezeigt, dafl
viele der eingesetzten Metriken translations— und stauchungsinvariant sind. Diese bei-
den Figenschaften sind Voraussetzungen fiir die Zulédssigkeit der iiblichen Normierung
der Mefidaten vor der unscharfen Verarbeitung. Allerdings ist gerade wegen der Trans-
lationsinvarianz eine Bereinigung der Mefldaten von Offsets bei der Normierung fiir die
Auswertung der (iiber Abstande zu Referenzpunkten definierten) Zugehorigkeitsfunktio-

nen tiberfliissig.

Durch Ersetzen der iiblichen euklidischen Abstandsnorm durch eine allgemeine p—Norm
ist bei angepafiter Wahl von p eine bessere Anpassung der Cluster an die real vorliegen-
den Datenstrukturen zu erwarten. Hierzu sind weitere Untersuchungen notwendig. Haufig
erfolgt eine Normierung jeder Komponente der Mefidaten auf den jeweils maximal auftre-
tenden Bertrag dieser Komponente in allen den Mefidaten. Das fithrt zu einer willkiirli-
chen Festlegung der Gewichtung der Einzelbewertungen der einzelnen Koordinaten bei
der Berechung der Gesamtkosten der Clusterung, die iiber die Clusteralgorithmen mini-
miert werden. Deshalb kann eine als quadratische Form definierte Norm Verbesserungen

bringen, wenn die Komponenten der zugehérigen Matrix geeignet optimiert werden.
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A Implementierung von Cluster—Algorithmen

Terminierungsbedingung

? vergleicht bei der Terminierungsbedingung die Anderungen der in der Matrix U abge-

legten Zugehorigkeiten aller N Mefiwerte zu jeweils allen ¢ Clustern:
Ut — g0, <ep . (A.1)

? wendet hierzu die erweiterte Holder—Norm

p) T<e, (A.2)

(141)
Hik i

[U gy, = (ZZ

=1 k=1

mit p = 1 an. Dazu sind Ne¢ Summationen vor dem Vergleich auszufithren. Da sich bei
festem Unschérfeparameter v bei FCM- und Gustafson—und-Kessel-Algorithmus die Zu-
gehorigkeiten eines beliebigen Punktes im Datenraum zu allen Clustern eindeutig durch
Gl. (3.1) aus den ¢ Clusterschwerpunkten v; berechnen lassen, kann zur Steigerung der
Rechengeschwindigkeit auch eine mit wesentlich weniger Operationen verbundene Aus-

wertung der Verschiebung der Clusterschwerpunkte erfolgen:
lof ™) — ol e — w0 <6, (A:3)

Eine Anwendung der erweiterten p-Holder—Norm (?) liefert

Ilo{*D — o0, o+ ’HT—(ZZ

=1 j5=1

’UZ l+1 vz(j)(l)‘p) <eg, (A.4)

mit der Dimension m des Datenraumes. Bei p = 1 sind statt N¢ nur noch m ¢ Summatio-
nen noétig. Wegen N > m folgt 1. allg. eine deutliche Reduzierung des Rechenaufwandes

ohne Verlust an Information.

Bei dem von 7 angegebenen Backer—Algorithmus werden keine Clusterschwerpunkte be-
stimmt, sondern die unscharfen Zugehorigkeitsgrade aus iterativ verbesserten harten Clu-
stern abgeleitet. Deshalb kann die oben vorgeschlagene Modifikation der Terminierungs-

bedingung dort nicht angewendet werden.



