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1 Einleitende Ubersicht

In diesem Bericht wird eine analytische Darstellung (Ying, Silver und Buckley 1990, Bert-
ram 1992, Lukas, Rehfeldt und Schone 1992, Wang 1994a, b) von Standard—Fuzzy—Reglern
(Berger 1994a, b) vorgestellt. Die analytische Darstellung hat zum einen den grofien Vor-
teil, im Vergleich zur sequentiellen Abarbeitung des Fuzzy—Algorithmus (Fuzzifizierung,
Regelauswertung und Defuzzifizierung) erheblich an Rechenzeit einzusparen. Zum ande-
ren entzieht sie sich nicht einer systematischen Analyse und Synthese, die auf analytischen
Verfahren der Systemtheorie beruhen (Bertram 1992, Grimm 1992).

Dazu wird, wie im 3. Abschnitt dargelegt, die e-Ae—Ebene in verschiedene Bereiche einge-
teilt (Ying, Silver und Buckley 1990, Lukas, Rehfeldt und Schone 1994, Malki, Li und Chen
1994). Die Einteilung der Bereiche (Fuzzy—Unterraume, Liu (1993), Ben Farhat (1994))
entsteht aufgrund der Partitionierung (Kruse, Gebhardt und Klawonn 1994) der Fuzzy—
Referenzmengen X; und Y; mit ¢ = 1,...,mg und j = 1,...,map der Partialprdmissen.
Innerhalb dieser Fuzzy—Unterrdume kénnen dann die konfektionierten Standard—Fuzzy—

Regler fiir Systemklassen durch eine analytische Gleichung in Form von
w(kT) = Bre(kT) + BaAe(kT)+ Bse(kT) Ae(kT) + By (1.1)

beschrieben werden. Weiterhin werden im 3. Abschnitt Aspekte zur Rechenzeitoptimie-
rung von Fuzzy—Reglern vorgestellt. Es werden nur die Regeln ausgewertet die aktiv
sind, um so die Rechenzeit zur Auswertung des Fuzzy—Algorithmus zu verkiirzen. Dabei
wird zwischen dem konventionellen Fuzzy—Algorithmus (sequentielle Abarbeitung) und

der analytischen Darstellung des Fuzzy—Algorithmus unterschieden.

Aufbauend auf Arbeiten von Lukas, Rehfeldt und Schéne (1992, 1994), welche Gleichung
(1.1) in Abhé&ngigkeit der Anzahl der aktiven Regeln (Frenck 1993, 1994) untersucht
haben, wird im 4. Abschnitt die Abhé&ngigkeit der in den Konklusionen zugewiesenen
Fuzzy—Referenzmengen Uy und AU; mit k& = 1,...,my und [ = 1,...,map (Fuzzy—-
Ausgangsmengen ) im Fuzzy—Unterraum untersucht. Dabei ist entscheidend, wie die Kon-
klusionen im Fuzzy—Unterraum angeordnet sind. Zu diesem Zweck werden die Fuzzy—
Unterrdume in partielle Fuzzy-Unterrdume A, B, C und D unterteilt. Es wird gezeigt,
daf} sich in Abhéngigkeit der Anordnung von den in der Konklusion zugewiesenen Fuzzy—
Referenzmengen Uy und AU; mit £ = 1,....,my und [ = 1,...,mapy in den partiellen
Fuzzy-Unterrdume das Kennfeld im Bereich der Fuzzy—Unterrdume linear beziiglich der
Regelabweichung e(kT'), linear beziiglich der Anderung der Regelabweichung Ae(kT') und
nichtlinear beziiglich der Regelabweichung e(k7T') und deren Anderung Ae(kT') oder kon-

stant verhélt.

Die diskutierten Anordnungsfille der in der Konklusion zugewiesenen Fuzzy—Referenz-
mengen Uy und AU; mit k = 1,...,my und [ = 1,...,map fir die Fuzzy—Unterrdaume
wird ohne Einschrankung auf die Regelbasis—Matrix (Karnaugh—Tafel) {ibertragen. Somit
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kann bei der Erstellung der Regelbasis—Matrix direkt auf die Art des StellgréBenverlau-
fes geschlossen werden. Die aufgestellten Félle konnen als weiteres Entwurfskriterium zur

Erstellung von Fuzzy—Reglern dienen.

Bevor Gleichung (1.1) fiir die Standard—Fuzzy—Regler hergeleitet wird, wird im 2. Ab-
schnitt gezeigt, daBl die Standard-Fuzzy—Regler die Definition der Vollstandigkeit und
der Widerspruchsfreiheit von Leichtfried und Heiss (1993) erfiillen. Durch diese Eigen-
schaft kann die Beschreibung der Stellgrofe u(kT') als Linearkombination der Modalwerte
(Bohme 1993, Pedrycz 1993) der Fuzzy—Referenzmengen Uy und AU; mit k =1,...,my
und [ = 1,...,map der Konklusionen und der Fuzzy—Basisfunktion fbf (Wang 1994a)
in eine Linearkombination der Modalwerte der Fuzzy—Referenzmengen U und AU; mit
k=1,....mypund [ =1,...,may der Konklusionen und der Fuzzy-Basisfunktion F BF
nach Su und Stepanenko (1994) iiberfithrt werden. Durch diese Beschreibung der Stell-
grofe u(kT') lassen sich dann die konfektionierten Standard-Fuzzy—Regler fiir Systemklas-
sen durch Gleichung (1.1) darstellen. Der Bericht schliefit mit einer Zusammenfassung und
einem Ausblick im 5. Abschnitt.
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2 Vollstandigkeit und Widerspruchsfreiheit

Die konfektionierten Standard—Fuzzy—Regler fiir Systemklassen (Berger 1994a, b) werden

durch die relationalen Fuzzy—Regeln

(2.1)

WENN (EIsT X;) UND (AEIsTY;) DANN (U IST U})

bzw.
WENN (£ IsTX;) UND (AFE IsTY;) DANN (AU ISTAU)) (2.2)
mit der linguistischen Beschreibungsweise der Fuzzy—Referenzmengen
X, Y, U, AU e {NG,NM, NP, PM, PG'} (2.3)
beschrieben, wobei gilt
X = {X|Xi—=[0,1 V i=1,...,mg} (2.4
Y = {Y;|Y;—=[0,1] V j=1,....mag} (2.5
sowie
U = {U|U—10,1] V k=1,...,mpy} (2.6)
bzw.
vV oI=1,....mav} . (2.7)

AU = {AU; | AU, — [0,1]
Die Partialpramissen werden iiber das algebraische Produkt (Béhme 1992) verkniipft. Das

Ergebnis ist der Erfiilltheitsgrad (Bertram 1991)
(2.8)

o (e(KT), Me(KT)) = jix, (e(KT)) puy, (Ae(kT)

der Pramisse der z—ten Regel. Der Indez z einer Regel berechnet sich aus
Z:mAEi—mAE—I—j (29)
mit ¢ = 1,....,mg und 5 = 1,...,mag. Die Detuzzifizierung erfolgt nach der Schwer-
punktmethode fiir Fuzzy—Einermengen (Kahlert und Frank 1993, Bertram u.a. 1994)

MEZM:AE a, (e(kT), Ae(kT)) m,
(2.10)

z=1

> . (e(kT), Ae(kT))

z=1
wobei bei Fuzzy—Einermengen der Modalwert m (Béhme 1993) gleich dem Schwerpunkt
der Fuzzy—Referenzmengen Uy, bzw. AUy mit k =1,...,my bzw. [ = 1,...,map ist (Bild

2.1).
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Bild 2.1: Fuzzy—Referenzmengen Uy der Konklusionen

Mit der Definition der Fuzzy—Basisfunktion (Wang 1994a)

fog = e (elRT), AchT)) o)

> o (e(kT), Ae(kT))

z=1

ergibt sich die Stellgrofie

mpMAE

uwkT)= > fof*m. (2.12)
z=1
als eine Linearkombination der Fuzzy—Basisfunktionen und den Modalwerten.

Die Fuzzy—Basistunktion erméglicht eine einfache Darstellung der Zusammenhénge zwi-
schen Regeln, Zugehorigkeiten und Kennfeld und erleichtert somit den Abgleich des
Fuzzy—Reglers (Leichtfried und Heiss 1993). Jeder Regel nach Gleichung (2.1) bzw. (2.2)
ist ein Erftlltheitsgrad . (e(kT'), Ae(kT)) entsprechend Gleichung (2.8) zugeordnet. Der
Wert des Erfillltheitsgrades o, (e(kT'), Ae(kT)) ist ein Maf fiir die Giiltigkeit einer Regel
R. (Frenck 1993, 1994). Aber wie man aus Gleichung (2.10) erkennen kann, ist es kein di-
rektes Maf fiir den Anteil der Fuzzy-Implikation, charakterisiert iiber den Modalwert der
Fuzzy—Referenzmenge Uy bzw. AU; an der StellgroBe u(kT). Aus Gleichung (2.12) ist zu
erkennen, dafl der Wert der Fuzzy—Basisfunktion fbf* den Anteil einer Fuzzy—Implikation
an der Stellgrofie u(kT') beschreibt.

Erfilllen die Standard-Fuzzy-Regler die Definition 1 von Vollstindigkeit und Wider-
spruchfreiheit (Leichtfried und Heiss 1993), so ergibt sich die Stellgrofie

mpMmMAER
ukT)= > FBFm, (2.13)

z=1

FBF* = a. (e(kT), Ae(kT)) (2.14)
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nach Su und Stepanenko (1994). Das heifit, im Falle der Vollstandigkeit und der Wider-
spruchsfreiheit sind die Erfiilltheitsgrade mit den Fuzzy—Basistunktionen identisch.

Definition 1(Leichtfried und Heiss 1993)

Ein Satz von z Regeln R. ist vollstdndig und widerspruchsfrei, wenn

MEZM:AE a. (e(kT), Ae(kT)) =1 i e(kT), Ae(kT) € Dy

z=1

gilt. Ist die Summe der Erfiilltheitsgrade kleiner als 1, sind die Regeln an
der Stelle e(kT), Ae(kT) unvollstindig. Ist die Summe der Erfiilltheitsgrade

a, (e(kT), Ae(kT)) groBer als 1, besteht an der Stelle e(kT'), Ae(kT') ein Wi-
derspruch in den Regeln.

O
Die Fuzzy-Basistunktion
T
n=1 tn,#

mit & = [z, 2®] = [e(kT), Ae(kT))T und Af:)z € {X,,Y,} mit ¢y = 1,...,mg und
t9 = 1,...,mag berechnet sich in diesem Fall aus dem algebraischen Produkt der Partial-
pramissen. Es ergibt sich somit eine allgemeingiiltige Definition fiir die konvektionierten
Standard-Fuzzy—Regler fiir Systemklassen (Berger 1994a, b).

Definition 2

Standard—Fuzzy—Regler mit Fuzzifizierung tiber Fuzzy—Einermengen, algebrai-
schem Produkt als ¢—~Norm und normalisierten, orthogonalen Fuzzy—Referenz-

mengen werden durch eine Funktion der Form

mpg MAE 2 (n)
) =5 (T @)
z=1 n=1 in’

mit @ = [0, 20] = [e(kT), Ac(kT)] und A € {X;,Y;,} mit &4 =

in

1,...,mgund 3 = 1,...,mag beschrieben.
O

Unter der Fuzzifizierung iiber Fuzzy—Einermengen sowie der Fuzzifizierung tiber nicht

Fuzzy-Einermengen wird die Beschreibung von Wang (1994a) verstanden.
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Fuzzifizierung iiber Fuzzy—Einermengen:

(n)

A" st eine Fuzzy-FEinermenge mit den Modalwerten @, dann ist 5, () =1fire==a

(Tz) (z) = 0 fiir alle anderen & € D mit & # @.

und 40

Fuzzifizierung iiber nicht Fuzzy—Einermengen:

ﬂfﬁ)n) (&) =1 und ﬂfﬁ)n) () beschreibt die Zugehorigkeitsfunktion abweichend von 1 wenn

(n) (_ (z=2)"(

@ von & abweicht, z. B. durch pi5:,, = exp — m_i)), wobei % ein charakteristischer

Parameter der Funktion ,ugz)n) ist.

Nach Wang (1994a) wird jedoch fast ausschliefilich die Fuzzifizierung iiber Fuzzy—Einer-
mengen praktiziert. Die Fuzzifizierung tiber nicht Fuzzy—Finermengen koénnte bei ver-
rauschten Eingangsgroffen Anwendung finden. Das heifit, bei den meisten Fuzzy—Reglern
werden die scharfen Mefiwerte direkt bei der Auswertung der Regeln verwendet, so daf3
nach Kruse, Gebhardt und Klawonn (1994) keine ,echte® Fuzzifizierung vorgenommen
wird. Bei ungenauen Mefiwerten ist eine Fuzzifizierung der scharfen Mefiwerte denkbar,
indem anstelle des Mefiwertes eine geeignete Fuzzy—Menge betrachtet wird (etwa eine nor-
mierte Dreiecksfunktion oder eine entsprechende Trapezfunktion). Nach Kiipper (1994)
ergibt sich der Erfiilltheitsgrad der Partialpramisse zu

Ty, 2

ai, .= m(AM]Al) (2.16)

wobei die von Pedrycz (1993) definierte Possibilitat = (Kruse, Gebhardt und Klawonn

1994) des Eingangs A (z) in Bezug auf die Fuzzy Referenzmenge Af:)z(a:)

7 (A[AT)) = sup [min (AW (@), AT (2))] (2.17)

Ty, 2
zeD

verwendet wird.

Da bei den Standard-Fuzzy—Reglern zunachst nur die Fuzzifizierung iiber Fuzzy—FEiner-
mengen durchgefithrt wird, werden zur vereinfachten Darstellung die Erfiilltheitsgrade der

Partialpramissen gleich den Zugehérigkeitsfunktionen der Fuzzy—Referenzmengen X; und

Y, gesetzt
ah: = Nf:g)pz (2.18)
Q. = ”fé)jé | (2.19)
wobel AS}Z = X; und Ag)z =Y, istmitey=1,...,mpund i =1,....mag.

Die Stellgrofie u(kT') berechnet sich wie in Gleichung (2.12) direkt als Linearkombination
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der Fuzzy-Basisfunktion FBF?* (Erfilltheitsgrad o, (e(kT), Ae(kT))), jedoch in verein-
fachter Form, wodurch die Transparenz der Systemeigenschaften wesentlich besser wird.
Die Bedingung der Definition 1 kann so gedeutet werden, dafl ein Satz von Regeln ei-
ne durch den Erfiilltheitsgrad a. (e(kT'), Ae(kT)) begriindete Entscheidung u(kT') trifft
(Leichtfried und Heiss 1993): Ist die Summe der Erfillltheitsgrade o, (e(kT'), Ae(kT))
kleiner als 1, so ist die Entscheidung nicht ausreichend begriindet und somit das Wis-
sen (der Satz von Regeln) unvollstindig. Ist die Summe grofler als 1, dann besteht ein
Widerspruch in den Regeln, denn die Erfiilltheitsgrade o, (e(kT'), Ae(kT')) bestimmen
entsprechend Gleichung (2.12) den Anteil der Konklusion an der Stellgrofie w(kT').

Der Beweis, dafl die verwendeten konfektionierten Standard—Fuzzy—Regler fiir System-
klassen die Definition 1 erfiillen und somit die Defuzzifierung nach Gleichung (2.13) durch-

gefithrt werden kann, wird im folgenden erbracht. Um die Definition 1 zu erfiillen, muf}

mpmMAE MAE

> o (e(kT), Ae(kT)) Z,uX (KT)) > py, (Ae(kT)) =1 (2.20)

z=1 z=1

gelten. Diese Eigenschaft ist gegeben durch die Orthogonalitdt der Fuzzy—Referenzmengen
X; und Y] nach der

Definition 3 (Rommelfanger 1993)

Eine Menge A = {AE: }iz1,...x unscharfer Mengen A {( 7’MA(")( (”))) |
2™ € Dy} heiBt genau dann orthogonal auf Dy, wenn gilt

K

Z/LEI(L)(:I;( =1 v 2™ eDy .

=1 n

O
Fir die Fuzzy—Referenzmengen X; und Y; nach Berger (1994a, b) gilt somit

mE
ZﬂXi (e(kT)) =1 vV e(kT) € Dy (2.21)
MAE
> ouy, (Ae(kT)) =1 vV Ae(kT) €Dy , (2.22)
7=1

womit die Gleichung (2.20) bewiesen ist. Damit sind die konfektionierten Standard-Fuzzy—

Regler vollstandig und widerspruchsfrei, wenn die Regelbasis durch

BTl (2.23)
k=1 'k
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Regeln, mit n der Anzahl der Eingangsgroflen und m ) Anzahl der Fuzzy-Referenz-
mengen pro Eingang beschrieben wird. Dies bedeutet, daB die konfektionierten Standard -
Fuzzy—Regler die Definition 1 erfiillen, wenn die Regelbasis—Tabelle vollstandig ausgefiillt
ist. Dies ist jedoch nur bei den hier vorgestellten konfektionierten Standard—Fuzzy—Reglern
garantiert. Bei der oft verwendeten MAX-MIN-Inferenz (Bertram 1991) reicht die Glei-
chung (2.23) nicht aus, um die Eigenschaften der Vollstandigkeit und der Widerspruchs-

freiheit zu erfiillen.
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3 Analytische Beschreibung der Standard—Fuzzy—Regler

Durch die Orthogonalitit (Rommelfanger 1994) und die einfache Uberlappung (Ying,
Silver und Buckley 1990, Grimm 1994) der Fuzzy—Referenzmengen X; und Y; der Parti-
alpramissen (Bild 3.1) gilt

px, (e(kT)) + px,,, (e(KT)) =1 (3.1)
T
i

A i
M M

Xy Xo |X3 Xy X Iy s Iz Ty Ty

f f f 1 - f f f 1 -

My, “x, G9x, ", %x, ¢ my  Cy, Ciy, My, Cy, Ae

ax, Mx, %2x, °x, "x, Ay, My, %y, fvs My

“x, Mx, ‘22X, “.Y; My, 27,

Bild 3.1: Fuzzy—Referenzmengen der Pramissen X; (links) und Y (rechts) mit den Mo-

dalwerten m und den Begrenzungen der Einflubereiche ¢

Daraus resultiert, dafl nur maximal 4 Regeln pro Abtastschritt &7 aktiv sind, einen
Erfiilltsheitsgrad o, (e(kT'), Ae(kT)) > 0 besitzen und so zur Stellgréflengenerierung bei-
tragen. Somit liegt es nahe, nur die Regeln auszuwerten, welche auch aktiv sind, um so die
Rechenzeit zur Auswertung des Fuzzy—Algorithmus zu verkiirzen. In den folgenden Un-
terabschnitten wird gezeigt, wie dies im Fuzzy—Algorithmus beriicksichtigt werden kann.
Dabei wird zwischen dem konventionellen Fuzzy—Algorithmus (sequentielle Abarbeitung
des Fuzzy—Algorithmus) und der analytischen Darstellung des Fuzzy—Algorithmus unter-

schieden.
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3.1 Konventioneller Fuzzy—Algorithmus

Beim konventionellen Fuzzy—Algorithmus mit der sequentiellen Abarbeitung der Fuzzy—
Regeln gibt es die Moglichkeit in der Abarbeitung der Regelbasis teilweise nur die aktiven
Regeln zu beriicksichtigen. Ausgangspunkt ist hier die allgemeine Beschreibung eines re-

lationalen MISO' Fuzzy-Reglers mit den Regeln (Kruse, Gebhardt und Klawonn 1994)

R, : WENN (X(l) IsT AS}Z) UND (X(Q) IsT Aff)z) UND...
UND (X(”‘l) IsT AEZ;{)Z) UND (X(”) IsT Af:)z)
DANN (U IsT Uy) (3.3)
mit
2™+ scharfe EingangsgroBe,n = 1,... mym
X0 fugzifizierte Eingangsgrofe ™ n = 1,...,mywm ,
Af:)z : 1,—te Fuzzy—Referenzmenge der n—ten Eingangsgrofe der z—ten Regel und

Up : k-te Fuzzy—Referenzmenge der Ausgangsgrofie U .
Jede Regel R, kann als eine Fuzzy-Implikation

AW A s APTY A — (3.4)

11,7 12,2 tn—1,% tn,Z

mit einer Fuzzy—Menge in U x R und einem Erfiilltheitsgrad

o (20,2, 2t 20) = a0 () @ () s

S A ) e

angesehen werden. Bei dieser Betrachtung hier wird der allgemeingiiltige Operator x durch
das algebraische Produkt mit dem Erfiilltheitsgrad

Q. (:1;(1),:1;(2), . .,:1;(”_1),:1;(”)) = H ,uf:()k) (:zj(k)) (3.6)
k=1 k%

oder alternativ iiber den MIN-Operator mit dem Erfilltheitsgrad

a: (¢, 2, 2 ) =

= min (NS()l) (x(l)) 7#5382) (x(z)) R ﬂf;;ﬂ) (x(n_l)) 7#5;)71) (x(n))) (3.7)

11,2 19,2 tp—1,% tn,Z

ersetzt.

Stellt sich bei der Auswertung einer Regel R, heraus, dafl eine Partialpramisse (X(”) IsT

Agn)z) nicht aktiv ist, also einen Zugehorigkeitswert ,u(rz)n) (:1:(”)) = 0 besitzt, dann ist
7 At

tn,Z

! Multi Input Single Qutput
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der Erfilltheitsgrad o. (:1;(1), e@ . gD :1;(”)) der z—ten Regel gleich Null und damit

Y

die gesamte Regel R, nicht aktiv. Alle weiteren Partialpramissen (X(”) IsT A(:?Z) dieser

Regel brauchen dann nicht mehr ausgewertet zu werden und es kann direkt die néchste
Regel bearbeitet werden. Weiterhin kénnen dann die Regeln, die diese nicht aktive Par-
tialpramisse auch besitzen, direkt iibersprungen werden, weil damit die gesamte Regel
nicht aktiv ist. Deshalb ist es sinnvoll, Regeln mit gleicher Partialpramisse hintereinander
im Fuzzy—Algorithmus anzuordnen. Im folgenden ist eine solche Anordnung von Regeln

aufgelistet:

Ry : WENN (X(l) IsT Aﬁ)l) UND (X(Q) IsT Ag)l) UND...
UND (X(”‘l) IsT Aﬁij?l) UND (X(”) IsT Aﬁ?})l)
DANN (U IsT Uy) (3.8)

R, : WENN (X(l) IsT AS)Q) UND (X(Q) IsT Ag)z) UND...
UND (X(”‘l) IsT Aﬁf:ll?z) UND (X(”) IsT Agz)Q)
DANN (U IsT Uy) (3.9)

Ry WENN (XM Ist A7) UnD (X@ Ist AL)) Unp. .
UND (X Ist AP7H) Unp (X0 Ist A(Y,)
DANN (U Ist Uy) (3.10)

)

UND (X(”‘l) IsT Aﬁf:llll) UND (X(”) IsT A§Z)4)
DANN (U IsT Uy) (3.11)

Ry : WENN (X(l) IsT A(Qﬂ) UND (X(Q) IsT Aﬁh) UND...

Ist nun der Zugehorigkeitswert /Lf:(l)l) (:1;(1)) = 0 mit z = 1,2,3 , so brauchen hier die
Regeln Ry, Ry und Rs nicht ausgewg;tet werden, sondern es kann direkt ein Sprung zur
Regel R4 erfolgen. Durch diesen Sprung kann relativ viel Rechenzeit bei der Auswertung
der Regelbasis eingespart werden. Es sollten méoglichst viele Regeln R, mit gleicher Par-
tialpramisse am Anfang in der Regelbasis stehen. Die Optimierungsmafinahme dieser Art
wirkt sich jedoch erst bei groflen Regelbasen stark aus, da dann die Anzahl der nicht
auszuwertenden Partialprdmissen und Regeln steigt. Bei der Anordnung der Regeln der

Standard-Fuzzy—Regler ist dies in Gleichung (2.9) realisiert.
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3.2 Analytische Darstellung des Fuzzy—Algorithmus

Eine andere Moglichkeit zur Beschreibung eines Fuzzy—Algorithmus ist {iber die analyti-
sche Dartstellung eines Fuzzy—Systems gegeben (Ying, Silver und Buckley 1990, Bertram
1992). Da die Standard-Fuzzy—Regler eine mg x mag Regelbasismatrix besitzen, ist es
nicht méglich, das gesamte Regelverhalten der Standard-Fuzzy—Regler durch nur eine ana-
lytische Gleichung zu beschreiben. Zu diesem Zweck wird die e-Ae—Ebene entsprechend
der Partitionierung (Kruse, Gebhardt und Klawonn 1994) der Fuzzy—Referenzmengen X;
und Y, miti =1,...,mgbzw. j =1,...,mag in (mg—1) X (mag — 1) Bereiche eingeteilt
(Fuzzy—Unterrdume, Liu (1993), Ben Farhat (1994)). Innerhalb dieser Fuzzy—Unterraume
lassen sich die Standard—Fuzzy—Regler durch eine analytische Beziehung der Form (Lukas,

Rehfeldt und Schone 1994)
w(kT) = Bre(kT) + BaAe(kT)+ Bse(kT) Ae(kT) + By (3.12)

beschreiben. Die Koeffizienten B, mit n = 1,...,4 erhalten in den verschiedenen Fuzzy—
Unterraumen unterschiedliche konstante Werte. Aus Gleichung (3.12) ist zu erkennen,
daf die Nichtlinearitét des Fuzzy—Regelungsalgorithmus der Standard-Fuzzy—Regler aus
dem Produkt e(kT") Ae(kT') besteht. Wie spater gezeigt wird, werden die Koeffizienten B,
mit n =1,...,4 in Abhéngigkeit der Anordnung der Konklusionen im Fuzzy—Unterraum
gleich oder ungleich Null. Zur Darstellung der Fuzzy-Unterrdaume werden die Erfillt-
heitsgrade o, (e(kT), Ae(kT)) fix z = 1,...,mgmag bzw. die Zugehorigkeitsfunktionen

pex, (e(kT)) und py,(Ae(kT)) (Bild 3.2) weiter unterschieden in
oF (e(KT), AelkT)) = ek (e(KT)) ll (Ae(kT)) | (3.13)
o (e(KT), Ac(kT)) = . (e(KT))  (Ae(kT)) | (3.14)
o (e(KT), Ae(T)) = ul. (e(KT)) uff (Ac(AT)) (3.15)
und
oF ((KT), Ae(T)) = g, (e(KT)) pls (Ac(kT)) | (3.16)

wobei die Indizierung L und R auf den linken bzw. rechten Teil der Fuzzy—Referenzmengen

X; und Y] verweisen.

Im Bild 3.3 ist die Unterteilung der e-Ae—Ebene in Fuzzy—Unterrdume dargestellt. Gréfle
sowie Lage der Fuzzy—Unterrdume sind abhangig von der Partitionierung der Fuzzy—
Referenzmengen X; und Y;. Da bei den Standard-Fuzzy-Reglern orthogonale und einfach—
iiberlappende Fuzzy—Referenzmengen verwendet werden, wird die Gréfie eines Fuzzy—
Unterraumes durch die linke Spannweite oy bzw. rechte Spannweite 34 (Bohme 1993)
mit A € {X;,Y;} den Fuzzy—Referenzmengen X; und Y; bestimmt.

Fir diese Fuzzy—Unterraume lassen sich dann Gleichungen der Form (3.12) herleiten.
Dies wird am Beispiel des Fuzzy-Unterraumes 6 (markiertes Quadrat im Bild 3.3)

gezeigt.
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i
Ae
MYj( ) v
L R
MYj(A @)\ MYj(A e)
Aer
Bild 3.2: Unterscheidung der Zugehorigkeitsfunktion py, (Ae(kT')) in ,u{;ﬂ (Ae(kT)) und

py (Ae(kT))

Im Fuzzy—Unterraum 6 sind nur die Regeln R, Rs, R12 und Ry3 aktiv, es haben somit auch
nur die Erfiilltheitsgrade offt (e(kT), Ac(kT)), ot (e(kT), Ae(kT), olft (e(kT), Ae(kT))
und o (e(kT), Ae(kT)) einen Wert groBer Null. Aus Bild 3.4 ist ersichtlich, welche Re-

...mp) in der Konklusion besitzt. Aufgrund dieser

Zuordnungen ergibt sich die Stellgréfle

MEMAE
uwkT) = > me.o. (e(kT), Ae(kT)) = (oz];R (e(kT), Ae(kT)) +
z=1
+ ol (e(kT), Ac(kT))) mu, + (el (e(kT), Ac(kT)) +
+ ofd (e(kT), Ae(kT)) mu, (3.17)
aus den aktiven Erfiilltheitsgraden «, und den entsprechenden Modalwerten my;, der

Fuzzy—Referenzmengen Uy. Unter Verwendung des algebraischen Produktes (Gleichungen
(3.13) — (3.16)) berechnet sich die Stellgrofie aus

u(kT) = (%, (e(RT)) 3} (Ae(kT)) + ¥, (e(KT)) i3, (Ae(KT))) mus, +
+ (1%, (((RT) g, (Ae(kT)) + ik, (e(KT)) iy, (Ae(kT))) mos, . (3.18)
Die Zugehérigkeitsfunktionen py, (e(A1')) und py, (Ae(kT")) lassen sich durch ihre mathe-

matische Beschreibung (Berger 1994a) ansetzen (zur Vereinfachung der Darstellung wird

A=AM gesetzt):

in

0 fir =™ & Jeya, coul
1k () e — 1. fir (" € [e1a,ma]

2D A = T . 1,4, M4

) () = AT (3.19)
1 fir = = my
_ ()
ph(z™) = % fir =™ € Jmay, eyl
fir Ae{X,Y;}miti=2,....(mg—1)und j =2,..., (mag — 1),

0 fir 2" < cy

(n)/ (n)y _ . (n) _ . .

1 fir 2™ > my
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=

;ﬁv < 16 17 17 18 18 19 19 20

RR RL RR RL RR RL RR RL

&16 &17 &17 0(18 0(18 0(19 0(19 0(20

LR LL LR LL LR LL LR LL

Q{O &2 1 &22 &22 0(23 0(23 0(24 0(24 0(25
/

Bild 3.3: Fuzzy—Unterrdume und Fuzzy—Referenzmengen X; und Y; der Partialpramissen
in der e-Ae—Ebene

fir A € {X,,Y;} mit ¢ = mg und j = mag und

0 fir 2 > ¢y
0 ) = 4 ) = G e a0 € e 321)
1 fir 2™ < my

fir A € {X,,Y;} mit¢=1und j = 1, der Fuzzy—Referenzmengen X; und Y; ersetzen.

Durch Einsetzen der Gleichung (3.19) in die Gleichung (3.18) erhilt man fiir die Stellgrofie
W(kT) = (027)(2 —e(kT) cay, — Ae(kT) S e(kT) y

C2.x, — X, Gy, — My, C2.x, — X,
Ae(kT) — ey, e(kT)—c1x, ¢y, — Ae(kT)
X my, + +
my, — C1,y; mx, — C1,X, Gy, — My,

kET) — Ae(kT) —
_I_e( ) cleS e( ) 617Y3) ng (322)

ng - cl,Xg mYS - clvyi’)
Aufgrund der gleichméfigen Partitionierung der Fuzzy-Referenzmengen X; und Y; iiber

den normierten Definitionsbereich Dy = [—1, 1] ergibt sich fiir die linke Spannweite

OéA:mA—CAZO,5 (323)
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A %Y N
=i

AL
all SR A A A
ol u| 4 | 4 | 4 |
ol | 4 | 4 | 4 |y
S G, 4 | 4| U |G

Bild 3.4: Regelbasis—Matrix und Fuzzy—Referenzmengen X; und Y; der Partialpramissen

in der e-Ae-Ebene mit den Fuzzy—Referenzmengen Uy der Konklusionen

und fiir die rechte Spannweite
Ba=ca—ma=0,5 (3.24)

mit A € {X,,Y;} (Berger 1994a). Unter Verwendung der Gleichungen (3.23) und (3.24)
geniigt die Stellgrofle der Beziehung,
u(hT) = 4[((ca.x, = e(kT)) (coy, = Ae(kT)) + (e2.x, — e(kT)) %
< (Ae(KT) — ) mu, + ((e(BT) — enx) (e, —
— Ae(kT)) + (e(kT)—c1x,) (Ae(kT)—c1y,)) mu,] - (3.25)

Multipliziert man die Linearfaktoren von Gleichung (3.25) aus, so erhdlt man

w(kT) = Bre(kT) + BaAe(kT)+ Bse(kT) Ae(kT) + By (3.26)
mit

Bi = 4(—coy, mu, — c1y, mu, + e2y, mu, + 1y, mo,)

B2 - 0 y

B3 - 0 y

By = 4(cax, oy, Mu, — Ca.xs C1y, MU, + €1y, Cay, MU, + €1.X5 C1Lys MU,) -
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Wie aus Gleichung (3.26) zu erkennen ist, werden bei dieser Zuordnung der Konklusionen
mit den Fuzzy—Referenzmengen U, die Koeffizienten By und Bs gleich Null. Somit ist in
diesem Fuzzy—Unterraum der Stellgrofienverlauf nur linear von der Regelabweichung e(kT')
abhangig. Gleichung (3.12) beschreibt den Standard-Fuzzy—Regler innerhalb eines Fuzzy—
Unterraumes von den ,Abmaflen® —0,5 < e(kT) < 0 und —0,5 < Ae(kT) < 0. Die ,Ab-
mafe” entstehen aufgrund der festgelegten Partitionierung der Fuzzy—Referenzmengen X;
und Y; der konfektionierten Standard-Fuzzy-Regler iiber Dy. Durch diese Art der Be-
schreibung der Standard—Fuzzy—Regler ist es moglich, das Regelungsverhalten innerhalb
des Fuzzy—Unterraumes durch eine Gleichung zu beschreiben und somit erheblich an Re-

chenzeit einzusparen (Bertram 1992).

Im Falle der konfektionierten Standard—Fuzzy—Regler fiir Systemklassen (Berger 1994a,
b) ergeben sich 16 analytische Gleichungen, die in einem einfachen if-else if-Algorithmus
abgelegt sind. Um weitere Rechenzeit einzusparen, sollten die analytischen Gleichungen
(Regeln) anhand ihres Aktivitatsgrades

TM§+1 { I fir oa.(k)>0
PR = 0 fir a.(k)=0
? Ta/T +1

(3.27)

im if—else if~Algorithmus angeordnet werden. Analytische Gleichungen, die hdufig aktiv
sind (also einen hohen Aktivitatsgrad ak, haben), werden am Anfang des Algorithmus ge-
setzt und solche mit einem kleinen Aktivitidtsgrad am Ende des Algorithmus gesetzt. Somit
werden unnotige if~Abfragen im Algorithmus vermieden. Es wird im folgenden Abschnitt
gezeigt, dafl die Art des StellgroBenverlaufes im Fuzzy—Unterraum (also im Teil-Bereich
des Kennfeldes des Fuzzy—Reglers) von der Anordnung der in den Konklusionen zugewie-
senen Fuzzy—Referenzmengen Uy bzw. AU; innerhalb des Fuzzy—Unterraumes abhéngig
ist.



4 Fuzzy—Unterrdume und Anordnung der Konklusionen 17

4 Fuzzy—Unterraume und Anordnung der Konklusio-

nen

In diesem Abschnitt wird die Art des StellgroBenverlaufes im Fuzzy—Unterraum in Abhén-
gigkeit von der Anordnung der Konklusionen diskutiert. s werden verschiedene Fille
aufgezeigt und dargelegt, bei welcher Anordnung der Konklusionen der Stellgréflenver-
lauf linear, konstant, nichtlinear, nur von der Regelabweichung e(k7') abhéngig oder nur
von der Anderung der Regelabweichung Ae(kT) abhdngig ist. Zu diesem Zweck werden
partielle Fuzzy—Unterrdume A, B,C und D eingefiihrt (Tabelle 4.1). Im Bild 3.3 sind die
partiellen Fuzzy-Unterrdume jeweils durch einen Erfiilltheitsgrad, z. B. o, gekennzeich-
net. Das heif}t, ein Fuzzy—Unterraum reprasentiert eine aktive Regel zum Abtastzeitpunkt
kET. Wie gezeigt wurde, sind nur 4 Regeln pro Abtastzeitpunkt kT aktiv, wodurch sich
die Unterteilung des Fuzzy-Unterraumes in 4 partielle Fuzzy-Unterrdume A, B, C und D
erklart.

Al B
C|D

Tabelle 4.1: Fuzzy—Unterraum mit zusatzlicher Unterteilung in partielle Fuzzy—Un-
terrdume A, B,C und D

Ausgangspunkt ist Gleichung (4.1) mit vier unterschiedlichen Konklusionen, das heifit, al-
len vier Regeln werden in der Konklusion unterschiedliche Fuzzy—Referenzmengen (U4, Up,

Uc und Up) zugeordnet (Tabelle 4.2).

Us | Up
Ucs | Up

Tabelle 4.2: Fuzzy—Unterraum mit unterschiedlichen Fuzzy—Referenzmengen

Allgemein gilt dann

u(kT) = 4 [(szXi+1 - e(kT)) (027Y]+1 - Ae(kT)) mu, + (CQ,Xi+1 - e(kT)) X
X(Ae(kT) —c1y,) mu, + (e(kT) —c1x,) (cay,,, — Ae(kT)) x

< my. + (e(kT) = e1x,) (Ae(kT) = ery,) mu,| - (4.1)

Bei Verwendung von Gleichung (4.1) ergibt sich die Stellgrofie

uw(kT) = Bre(kT) 4+ ByAe(kT) + Bse(kT)Ae(kT) + By (4.2)
mit

Bi = 4(= oy mu, + cry, mug + cay,p mo, — ey, mup)

By, = 4 (— C2.Xiy MU, T+ C2.x04, MUy + CLX, MUs — C1x; mUD)

By = A(my, — mu, — mu, + muy)

B, = 4 (027Xi+1 C2,¥,01 MW, — C2,Xi41 CLY, MUL — C1X; C2.v,4, MU, +

+ a1 x, Ly mUD)
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firi=1,...,(mg—1),5=1,...,(mag — 1) und Ua,Up,Uc,Up € U.

1. Fall:
Im ersten Fall, welcher hier untersucht wird, sind alle Konklusionen im Fuzzy—Unterraum

gleich (Tabelle 4.3).

Us | Uy
Us | Uy

Tabelle 4.3: Fuzzy—Unterraum mit vier gleichen in der Konklusion zugeordneten

Fuzzy—Referenzmengen Uy

Das heifit, alle vier aktiven Regeln in diesem Fuzzy—Unterraum besitzen in der Kon-
klusion die gleichen Fuzzy—Referenzmengen Uy = U, (Fuzzy—-Ausgangsmengen, Fuzzy—

Einermengen). Die Koeffizienten B, aus Gleichung (4.2) mit n = 1,...,4 ergeben sich

dann zu
B1 - 0
B2 - 0
B3 — 0
By = 4 mu, (cQ,Xz‘+1 C2Y;11 — C2,Xi41 CLY; — C1.X; C2.Y; 4 + C1.x; CLYJ)
= my, = const. .
Die Stellgréfie
u(kT) = By = my, = const. (4.3)

ist in diesem Fall der Anordnung der Konklusionen konstant und entspricht dem Modal-

wert der Fuzzy—Referenzmenge.

2. Fall:
Im zweiten Fall besitzen die partiellen Fuzzy—Unterrdume A, B bzw. die partiellen Fuzzy—

Unterraume C, D die Konklusionen mit den Fuzzy—Referenzmengen Uy bzw. Ug (Tabelle
4.4).

Us | Us
Ug | Up

Tabelle 4.4: Fuzzy—Unterraum mit zwei gleichen in der Konklusion zugewiesenen

Fuzzy—Referenzmengen Uy und Up
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Fiir die Koeffizienten B, mit n = 1,...,4 erhilt man
B, = 4 [(— C2¥;01 T cz,YJ) my, + (C27yj+1 — Cl,Y]) mUB]
B, =0
By =0
By = 4 [(CQ’XH'l ©2Yj T 2 Xin CLYJ) mu, + (_ C1,X; C2,Y; 41 +

+ c.x; C1,Y]) mUB] .

Die Stellgréfie
u(kT) = Bre(kT)+ By (4.4)

ist in diesem Fall linear von der Regelabweichung e(k7T') abhangig, wobei die Koeffizienten
By und B4 von den Begrenzungen der EinfluBbereiche und den Modalwerten der Fuzzy—
Referenzmengen abhéngig sind.

3. Fall:
Im dritten Fall besitzen die partiellen Fuzzy—Unterrdume A, C bzw. die partiellen Fuzzy—
Unterraume B, D die Konklusionen Uy bzw. Ug (Tabelle 4.5).

Us | Up
Us | Up

Tabelle 4.5: Fuzzy—Unterraum mit zwei gleichen in der Konklusion zugewiesenen
Fuzzy—Reterenzmengen U4 und Ug

Die Koeffizienten B, mit n = 1,...,4 ergeben sich dann zu
B1 - 0
By, = 4 [(— C2.Xiy, T C1,Xi) my, + (Cz,X“r1 — C1,Xi) mUB]
B3 - 0
By = 4 [(cQ,XiH C2Y;41 — CLX; 027Y]+1) mu, + (_ €2, X411 CLY; +

+ ax; C1,Y]) mUB] .

Fiir die StellgroBe erhédlt man
u(kT) = ByAe(kT) + By (4.5)

mit einer linearen Abhéngigkeit der Anderung der Regelabweichung Ae(kT).
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4. Fall:
Im vierten Fall besitzen die partiellen Fuzzy—Unterrdume A, D bzw. die partiellen Fuzzy—

Unterraume B, C die Konklusionen Uy bzw. Ug (Tabelle 4.6).

Us | Up
U | Us

Tabelle 4.6: Fuzzy—Unterraum mit zwei gleichen in der Konklusion zugewiesenen

Fuzzy—Referenzmengen Uy und Up

Die Koeffizienten B, mit n = 1,...,4 ergeben sich dann zu
B, = 4 [(— C2Yj41 — C1,YJ) my, + (cLYJ + cz7yj+1) mUB]
Bz = 4 [(— €2, X411 — C1,X¢) my, + (Cz,Xi_H + CLXi) mUB]
By = 4(2my, —2 my,)
By = 4 [(@,Xm C2Y;41 T C1X; cLyJ) my, + (— €2,Xip1 CLY, T

—CLX, ey ) U] -
Bei dieser Anordnung der Konklusionen ergibt sich die StellgroBe
u(kT) = Bie(kT) + ByAe(kT) + Bae(kT)Ae(kT) + By (4.6)
als nichtlineare Funktion der Regelabweichung e(kT) und der Anderung der Regelabwei-
chung Ae(kT).

5. Fall:
Im fiinften Fall besitzen drei partielle Fuzzy-Unterrdume z. B. A, B,C die gleiche Kon-
klusion Uy und ein partieller Fuzzy—Unterraum z. B. D die Konklusion Ug (Tabelle 4.7).

Us | Uy
Us | Up

Tabelle 4.7:  Fuzzy—Unterraum mit zwei gleichen in der Konklusion zugewiesenen

Fuzzy—Reterenzmengen U4 und Ug
Die Koeffizienten B, mit n = 1,...,4 ergeben sich dann wie folgt

B, = 4 (CLyj my, — Ciy, mUB)
By = 4(ax,mu, — c1.x, muy)
Bs = 4(—my, +muy)

By = 4]

(Cz,X“r1 C2,Y;41 — €2,Xiy1 C1Y; — CLX; C2Y, 14 ) mu, + €1.x, C1y; mUB] .
Die Stellgréfie
w(kT) = Bre(kT) + BaAe(kT)+ Bse(kT)Ae(kT) + By (4.7)
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ergibt sich als nichtlineare Funktion der Regelabweichung e(kT') und der Anderung der
Regelabweichung Ae(kT).

Wie hier zu erkennen ist, ist die Stellgrofe nichtlinear von der Regelabweichung e(kT)
und der Anderung der Regelabweichung Ae(kT) abhéngig, obwohl drei partielle Fuzzy—
Unterrdume die gleiche Konklusion besitzen. Die Art des Stellgréfenverlaufes ist in die-
sem Fall also bei drei gleichen Fuzzy—Referenzmengen unabhéngig von der Anordnung

der Konklusionen im Fuzzy—Unterraum. Dies liegt in der paarweisen Kiirzung der Sum-

manden der Koeffizienten B, fiir n = 1,...,3 begriindet (Gl. (4.4)).

6. Fall:

Im sechsten Fall besitzen die Fuzzy—Unterraume drei unterschiedliche Konklusionen. Dem
partiellen Fuzzy-Unterraum A wird die Fuzzy—Referenzmenge Uy, dem partiellen Fuzzy—
Unterraum B die Fuzzy—Referenzmenge Up und den partiellen Fuzzy—Unterrdaumen C, D

die Fuzzy—Referenzmengen Up zugeordnet (Tabelle 4.8).

Us | Ug
Up | Up

Tabelle 4.8: Fuzzy—Unterraum mit drei unterschiedlichen in der Konklusion

zugewiesenen Fuzzy—Referenzmengen Uy, Ug und Up

Die Koeffizienten B, mit n = 1,...,4 ergeben sich dann zu
By = 4 [— C2.y,4, MU, + Cry, muy + (02,YJ+1 - C1,Y]) mUc]
By = 4 (— C2, X,y MU, T C2.Xi44 mUB)
B3 = 4(mU1 + mUB)
By = 4 [cQ,XiH C2Yipa MU, — C2.Xi41 AY; MUp + (_ C1.X; C2.Y; 1 +

+ C1.x; C1y; )mUD] .

Auch bei einer Zuordnung von drei unterschiedlichen Konklusionen in einem Fuzzy-
Unterraum wird die Stellgrofie nach Gleichung (4.7) beschrieben. Die Art des Stellgrofen-
verlaufs ist auch in diesem Fall unabhéngig von der Anordnung der Konklusionen im
Fuzzy—Unterraum. Dies ist genauso wie im Fall 5 durch die paarweisen Kiirzungen der

Summanden der Koeffizienten B, fir n = 1,...,3 begriindet.

Vorausgesetzt wird jedoch, dafl bei der Zuordnung der Fuzzy—Referenzmengen die Mo-
dalwerte nicht betragsgleich sind. Im Fall 6 wiirde das bedeuten, dafl der Koeffizient
B3 = 0 und somit der Stellgroflenverlauf linear ist. Da jedoch eine solche Zuordnung der
Fuzzy—Referenzmengen zu den partiellen Unterrdumen einen sehr grofien Stellgréfengra-
dienten verursacht und dieses in der Regel nicht erwiinscht ist, kann von einer solchen
Zuordnung der Fuzzy—Referenzmengen der Konklusionen abgesehen werden. Die hier auf-

gestellten Falle zeigen, daB mit der Verwendung des algebraischen Produktes (—Norm)
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fiir die konjunktive Verkniipfung (fuzzy—logisches ,,und“) sich die Standard—Fuzzy—Regler
durch einfache (numerische Verarbeitung) analytische Gleichungen beschreiben lassen.
Zur Auswertung sind maximal vier Multiplikationen und drei Additionen notwendig. Die-
se Anzahl von Multiplikationen und Additionen sind selbst bei einer off line Abarbeitung
der Regelbasis mit linearer Interpolation zwischen den Stiitzstellen (Meyer—Gramann und
Jingst 1993) kaum zu reduzieren, so dafl von einem fast gleich geringen Rechenaufwand

ausgegangen werden kann.

Weiterhin kann festgestellt werden, da das mit dem Erstellen der Regelbasis—Matrix
erwiinschte Regelungsverhalten ,,voll* vom Fuzzy—Regler unter Verwendung des algebrai-
schen Produktes abgebildet wurde (Approximation der relationalen Regeln). Dies zeigt
sich z. B. im Fall 2. Die dabei diskutierte Anordnung der in den Konklusionen zugewie-
senen Fuzzy-Referenzmengen Uy und Ug in den Fuzzy—Unterraum A, B, C und D kann

z. B. durch folgende vier relationale Regeln beschrieben werden:

WENN (EIsT X;) UND (AEISTY]) DANN (UIsTUy4) (4.8)
WENN (EIsT X;) UND (AEISTY;) DANN (UIsTUy,) (4.9)
WENN (EIsT X;) UND (AEISTY]) DANN (U IsT Up) (4.10)
WENN (EIsT X;) UND (AEISTY;) DANN (U IsT Up) (4.11)

Bei den relationalen Regeln ist zu erkennen, dafl unabhéngig davon, mit welchem Zu-
gehérigkeitswert die Anderung der Regelabweichung Ae(k7) auf die FuzzyReferenzmen-
gen Y; und Y3 abgebildet werden, die Konklusion immer (U IST Uy) bzw. (U IsT Up) ist.
Dieses ist jedoch nicht von der fuzzifizierten Anderung der Regelabweichung AE selbst
abhéngig, sondern von der fuzzifizierten Regelabweichung F. Das heifit, die relationalen
Regeln beschreiben das Regelungverhalten unabhingig von der Anderung der Regelab-
weichung Ae(kT'). Dieses Regelungsverhalten kann durch die Gleichung (4.4), welche den
Standard—Fuzzy—Regler innerhalb des Fuzzy—Unterraumes beschreibt, dokumentiert wer-

den.

Als Fazit kann gesagt werden, dafl die in der Fuzzy-Implikation zugewiesenen Fuzzy—
Referenzmengen Uy, bzw. AU; den StellgréBenverlauf und die Anordnung der Konklusio-
nen im Fuzzy—-Unterraum die Art des StellgréBenverlaufes beeinflussen. Die Beeinflussung
des StellgroBenverlaufes geschieht direkt iiber die Verdnderung der Koeffizienten B,, durch
die Modalwerte der Fuzzy—Referenzmengen U bzw. AU; und den Begrenzungen der Fin-
fluBbereiche ¢ der Fuzzy-Referenzmengen X; und Y;. Somit kann z. B. der Gradient des
Stellgréfenverlaufes oder der Grad der Nichtlinearitdt beeinfluflt werden. In der Tabelle
4.9 sind die Abhéngigkeiten der Anordnung der Fuzzy—Ausgangsmengen und der Art des
StellgréBenverlaufes iibersichtlich fiir alle Anordnungen der in den Konklusionen zugewie-

senen Fuzzy—Referenzmengen Uy, bzw. AU; dargestellt.
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Anordnung der Fuzzy—Ausgangsmengen

Art des StellgroBlenverlaufes

Usa | U
Uj Uj konstant
Ua | Ua linear abhingig von der
Ug | Ug
Regelabweichung e
gj gﬁ linear abhingig von der
Anderung der Regelabweichung Ae

Ua | Us nichtlinear abhangig von der
Ug | Uy

Regelabweichung e und deren Anderung Ae
Ua | Ua nichtlinear abhangig von der
Us | Ug

Regelabweichung e und deren Anderung Ae
Ua | Us nichtlinear abhangig von der
Up | Up

Regelabweichung e und deren Anderung Ae

Tabelle 4.9:  Art des Stellgréflenverlaufes in Abhangigkeit der Anordnung der

Fuzzy—Ausgangsmengen Uy, mit £k = 1,...,4 im Fuzzy-Unterraum

Die hier herausgestellten Falle der Anordnungen der in den Konklusionen zugewiesenen

Fuzzy—Referenzmengen Uy, bzw. AU, fiir die partiellen Fuzzy-Unterrdume A, B, C und D

konnen nun auf die Regelbasis—Matrix (Karnaugh—Tafel) iibertragen werden. Zu diesem

Zweck werden vier Regelbasis—Elemente zu einer Regelbasis—Zone zusammengefafit. Fs

werden nur solche Regelbasis—Elemente zu einer Regelbasis—Zone zusammengefaft, die

aufgrund ihrer Lage in der Regelbasis—Matrix einen Regelbasis—Zonenschwerpunkt () er-

geben (Bild 4.1).
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Bild 4.1: Regelbasis—Matrix und Fuzzy—Referenzmengen X; und Y; der Partialpramissen
in der e-Ae—Ebene mit Markierung der Regelbasis—Zone und dem Regelbasis—
Matrixschwerpunkt

Die Art des Stellgrofienverlaufes ist bei den Regelbasis—Zonen genauso wie bei den Fuzzy—
Unterrdumen nicht nur von den in der Konklusion zugewiesenen Fuzzy—Referenzmengen
Ugmitk=1,...,my bzw. AUy mit [ = 1,...,may, sondern auch von der Anordnung der
Konklusionen der Regelbasis—Elemente in der Regelbasis—Zone abhangig. Somit kann bei
der Belegung der Regelbasis—Zone direkt auf die Art des Stellgréfenverlaufes innerhalb
dieser Regelbasis—Zone geschlossen werden. Die ist z. B. mit einem Vergleich der im allge-
meinen beim Erstellen eines Fuzzy—Reglers aufgestellten Karnaugh—Tafel mit der Tabelle
4.9 moéglich. Diese hier aufgestellten Félle kénnen somit als weiteres Entwurfskriterium

zur FErstellung von Fuzzy—Reglern dienen.
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5 Zusammenfassung und Ausblick

In diesem Bericht? wurde eine analytische Darstellung der Standard-Fuzzy—Regler (Berger
1994a, b) hergeleitet. Dazu wurde die e-Ae-Ebene wie von Lukas, Rehfeldt und Schéne
(1994) in verschiedene Bereiche eingeteilt. Die Einteilung in Fuzzy—Unterraume entstand
aufgrund der Partitionierung der Fuzzy—Referenzmengen. Innerhalb dieser Fuzzy—Unter-
rdume wurden die konfektionierten Standard—Fuzzy—Regler durch eine analytische Glei-

chung beschrieben.

Zuvor wurde die StellgroBe u(kT') als Linearkombination der Modalwerte der Fuzzy—
Referenzmengen Uy bzw. AU; (mit k= 1,...,my bzw. [ = 1,...,map) der Konklusionen
und der Fuzzy-Basisfunktion F'BF* hergeleitet, womit sich die Beschreibung der Stell-
grofle u(kT') iiber eine analytische Gleichung im jeweiligen Fuzzy—Unterraum wesentlich
vereinfachen lie. Die Beschreibung der Stellgrofe w(kT') als Linearkombination der Mo-
dalwerte und der Fuzzy—Basisfunktion I'BF'* konnte unter Verwendung der Eigenschaften
der Vollstandigkeit und Widerspruchsfreiheit der konfektionierten Standard-Fuzzy—Regler

fiir Systemklassen erzielt werden.

Weiterhin wurde aufgezeigt, dafl die Art des StellgroBenverlaufes nicht nur von der An-
zahl der aktiven Regeln abhéngt, sondern auch von der Anordnung der Konklusionen im
Fuzzy-Unterraum. Zu diesem Zweck wurden die Fuzzy—Unterrdume in partielle Fuzzy—
Unterrdume A, B,C und D unterteilt. Es wurde gezeigt, dafl sich in Abhangigkeit der
Anordnung von Konklusionen die Kennfelder im Bereich der Fuzzy—Unterrdume linear
beziiglich der Regelabweichung e(k7T'), linear beziiglich der Anderung der Regelabwei-
chung Ae(kT), nichtlinear oder konstant sind.

Die Abhéngigkeit der Anordnung der Konklusionen im Fuzzy—Unterraum wurde auf die
Regelbasis—Matrix bezogen, wo diese diskutierten Félle ohne Einschrankungen angewen-
det werden koénnen. Somit kann man beim Erstellen der Regelbasis—Matrix direkt Riick-
schliisse auf die Art des Stellgréflenverlaufes ziehen. Im weiteren soll nun tiberpriift werden,
ob sich diese vorteilhafte Tranzparenz beim Erstellen der Regelbasis—Matrix sowie die ge-
naue Abbildung der relationalen Regeln auf das Regelungsverhalten (Kennfeld) auch bei
anderen —Normen (Gottwald 1993, Bohme 1993, Kitainik 1993) einstellt.

?Die Ergebnisse dieses Berichtes entstanden im Rahmen des Projektes , Fuzzy-Regler fiir lineare und
bilineare Systeme bei verinderlichen Systemparametern®, das von der DFG Az.: schw 120/53—1 gefordert
wurde.



6 Literaturverzeichnis 26

6 Literaturverzeichnis

Ben Farhat, H. 1994. Selbsteinstellende Funktional-Fuzzy—Regelung. Studienarbeit MSRT.
Universitat -GH— Duisburg.

Berger, M. 1994a. Konfektionierte relationale Fuzzy-Regler fiir Systemklassen. Forschungs-
bericht Nr. 16/94 MSRT. Universitdt ~-GH— Duisburg.

Berger, M. 1994b. Klassifizierung und Reglersynthese fiir Strecken, die sich aus ver-
schiedenen Systemklassen zusammensetzen. Forschungsbericht Nr. 17/94 MSRT.
Universitat -GH— Duisburg.

Bertram, T. 1991. Finfihrung in die Fuzzy—Regelung. Forschungsbericht Nr. 4/91 MSRT.
Universitat -GH— Duisburg.

Bertram, T. 1992. Herleitung einer analytischen Darstellung fir ein Fuzzy—System. For-
schungsbericht Nr. 13/92 MSRT. Universitdt -GH- Duisburg.

Bertram, T., F. Svaricek, T. Bindel, R. B6hm, H. Kiendl, B. Pfeiffer, und M.
Weber. 1994. Fuzzy Control. Zusammenstellung und Beschreibung wichtiger Be-
griffe. Automatisierungstechnik at /2. 322-326.

Bohme, G. 1992. Algebra. Berlin: Springer.
Bohme, G. 1993. Fuzzy-Logik. Berlin: Springer.
Gottwald, S. 1993. Fuzzy Sets and Fuzzy Logic. Braunschweig: Vieweg.

Frenck, C. 1993. Ein Verfahren zur Untersuchung der Vertréglichkeit der Regelbasen
von Fuzzy—Reglern. 3. Workshop Fuzzy Control. Dortmund.

Frenck, C. 1994. Ein Verfahren zur Untersuchung der Konsistenz der Regelbasen von
Fuzzy—Reglern. VDI Bericht 1113. Fuzzy Control, 471-481.

Grimm, W. 1992. Ein— Ausgangsverhalten von Fuzzy Reglern. 2. Workshop Fuzzy Con-

trol. Dortmund.

Grimm, W. 1994. Regelungstechnische Bedeutung von linguistischen Fuzzy—Operatoren.
VDI-Berichte 1113. Fuzzy Control. 483—496.

Kahlert, J und H. Frank. 1993. Fuzzy—Logic und Fuzzy—Control. Braunschweig: View-
eg.

Kitainik, L. 1993. Fuzzy decision procedures with binary relations. Boston: Kluwer Aca-

demic.



6 Literaturverzeichnis 27

Kiipper, K. 1994. Modellbildung mittels eines selbstlernenden Fuzzy—Systems. Forschungs-
bericht Nr. 8/94 MSRT. Universitdt ~GH— Duisburg.

Kruse, R., J. Gebhardt und F. Klawonn. 1994. Foundations of Fuzzy Systems. New
York: John Wiley & Sons.

Leichtfried J. und M. Heiss. 1993. Ein kennfeldorientiertes Konzept fiir Fuzzy-Regler.

Automatisierungstechnik at.(angenommener Beitrag)

Liu, M. 1993. Fuzzy-Modellbildung fiir automatisiertes Roboterentgraten. 3. Workshop
Fuzzy Control. Dortmund.

Lukas, P., K. Rehfeldt und A. Schone. 1992. Vergleich von Fuzzy—Reglern mit kon-
ventionellen digitalen Reglern. 2. Workshop Fuzzy Control. Dortmund.

Lukas, P., K. Rehfeldt und A. Schone. 1994. Verfahren zur Adaption von Fuzzy-
Reglern fiir nichtlineare Regelungssysteme. VDI Bericht 1113. Fuzzy Control, 419-
437.

Malki, H., H. Li und G. Chen. 1994. New Design and Stability Analysis of Fuzzy
Proportional-Derivative Control Systems. IFEE Transactions on Fuzzy Systems,

Vol 2, 285-294.

Meyer—Gramann, K und E. Jiingst. 1994. Fuzzy Control — schnell und kostengiins-
tig implementiert mit Standard—Hardware. Automatisierungstechnik at 41. 166—-172.

Pedrycz, W. 1993. Fuzzy Control and Fuzzy Systems. New York: John Wiley & Sons.
Rommelfanger, H. 1994. Fuzzy Decision Support—Systeme. Berlin: Springer.

Su, C. und Y. Stepanenko. 1994. Adaptive Control of a Class of Nonlinear Systems
with Fuzzy Logic. IEEE Transactions on Fuzzy Systems 2. 285-294.

Wang, L. 1994a. Adaptive Fuzzy Systems and Control: Design and Stability Analysis
Englewood Cliffs N.J.: Prentice Hall.

Wang, L. 1994b. A Supervisory Controller for Fuzzy Control Systems that guarantees
Stability. IEEE Transactions on Automatic Control 39. 1845-1847.

Ying, H., W. Silver und J. Buckley. 1990. Fuzzy Control Theory: A Nonlinear Case.
Automatica 26. 513-520.



