Zur Modellfolgeregelung nichtlinearer
Mehrgrofiensysteme

Markus Senger
Forschungsbericht Nr. 1/97

MeB-, Steuer- und Regelungstechnik

Ubersicht: Der vorliegende Bericht behandelt die Fragestellung nach der Existenz einer
Modellfolgeregelung fiir nichtlineare Mehrgroflensysteme sowie die systematische Synthese
der entsprechenden Regelgesetze. Des weiteren wird die Ubertragbarkeit auf eine graphen-

theoretische Vorgehensweise untersucht.

Gerhard-Mercator-Universitat - GH Duisburg
MeB-, Steuer- und Regelungstechnik
Prof. Dr.-Ing. H. Schwarz



Inhaltsverzeichnis I
Inhaltsverzeichnis
Nomenklatur IT
1 Einleitung 1
2 Problemformulierung 3
2.1 Mathematische Grundlagen . . . . . . . ... . L oL 3
2.2 Modellfolgeregelung . . . . . . . . .. . 4
3 Bestimmung des Regelgesetzes 9
4 Graphentheoretische Betrachtung und Anwendungsbeispiele 14
4.1 Graphentheoretische Betrachtung . . . . . .. .. ... ... .. ... .. 14
4.2 Anwendungsbeispiele . . . ..o oL 15
5 Zusammenfassung 22
6 Literatur 23
Anhang 26
A Modell des Hydraulikdifferentialzylinders 26



Nomenklatur

IT

Nomenklatur

Skalare Grofien:

A

Bq

EO],A? E(")l,B
Fe, Fu, Fv
I,

Po, PT
QAv QB

[

Va, VB, Via, ViB -

Kolbenflache

Durchflulkoeffizient

Olelastizitit in Kammer A bzw. B
Reibungskenngréfien

am Kolben angreifende Kraft
Reibkraft

Kolbenhub

Laufindizes

Anzahl der Eingangsgrofien
Kolbenmasse, Gesamtmasse
Ordnung eines Zustandsmodells

Pole einer Ubertragungsfunktion
Anzahl der Ausgangsgrofien
Versorgungsdruck, Tankdruck
Volumenstréome

Stellgrofle, Steuerkolbenposition
Olvolumina

Storeingang

Grad der zeitlichen Ableitung, die zur u-Linksunabhéngigkeit fithrt
Laufindex

Funktion

differentieller Rang

generischer Rang

Dichte des Hydraulikols

Miéchtigkeit der Menge der 6;]6; < oo
Anzahl der Nullstellen im Unendlichen der Ordnung < k
Kolbenflachenverhéltnis

Eigenfrequenz

Matrizen, Vektoren, Korper:

&
f.h

oo

&

y)/k

Vektorraum

Vektorfelder

Grundkoérper

nichtdifferentieller Kérper

Korper der rationalen Funktionen in x;, &;, %, . ..
Korpererweiterung um die rationalen Funktionen in y; und den

Ableitungen von y;



Nomenklatur 111

R Matrix

u Vektor der Eingangsgrofien

u Teilvektor von

v Vektor der neuen Eingangsgrofien

x Vektor der Zustandsvariablen

Y Vektor der Ausgangsgrofien

z Vektor der fiir eine dynamische Zustandsriickfiihrung
benoétigten Zustandsvariablen

a3 . Vektorfelder

S :  Parametervektor

o, . Vektorfelder

Y :  Vektor der u-linksunabhédngigen Ausgangssignalableitungen

Operatoren:

diff. trg :  differentieller Transzendenzgrad

P : Kompositionsoperator

[-]F : Transponierte der Matrix [ - |

Logische Verkniipfungen:

A :  Konjunktion ,und*
\Y% . Disjunktion, Alternative ,oder®
— : Implikation

Mengen und Mengenoperatoren:

card{ - } : Maéchtigkeit der Menge { - }

L, : Menge der u-linksunabhéngigen Ausgangssignalableitungen
span{ - } : von den in { - } enthaltenen Vektoren aufgespannter Vektorraum
R : Menge der reellen Zahlen

C Untermenge

- Untermenge oder Entsprechung

€ Element von

Sonstige Formelzeichen:

g . Graph

P{x} : Polynom in z;, z;, Z;, ...

() . Grofle des vorgegebenen Modells
A . Differenz

a=<b :  Ranking, bei dem b hoher gewertet wird als a



1 FEinleitung 1

1 Einleitung

Viele Problemstellungen der Regelungstechnik verlangen eine nichtlinare Problembeschrei-
bung. Eine wichtige Frage, die sich bei nichtlinearen Systemen stellt, ist die nach der
Méglichkeit, durch eine Zustandsriickfiihrung ein gewiinschtes Modellverhalten zu erzeu-
gen. Dabei soll sowohl der Fall moglich sein, daf} ein lineares Modellverhalten erzwungen
wird als auch der Fall, daf} ein vorgegebener nichtlinearer Zusammenhang erfiillt wird. In
der Literatur wird dabei zwischen asymptotischer und exakter Modellfolgeregelung unter-
schieden (Di Benedetto und Grizzle 1992). In diesem Bericht wird der letztere Fall naher
betrachtet.

Das Problem der Modellfolgeregelung kann, wie bereits bei einigen Autoren vorgeschlagen
(Okutani und Furuta 1984), als Storsignalentkopplung formuliert werden. Dabei wird ein
Gesamtsystem aus urspriinglichem System und gewiinschtem Modell komponiert, dessen
Ausgénge aus den Differenzen der Ausgéinge dieser beiden Teilmodelle bestehen. Wer-
den nun beide Teilsysteme mit den gleichen Stellgrofien beaufschlagt, so soll der Ausgang
zu Null werden. Dies soll durch eine Zustandsgréfenriickfithrung gewéhrleistet werden,
die sowohl die Zustdnde des urspriinglichen Systems als auch die Zustdnde des Modells
umfassen darf (s. Bild 1.1). Werden die Modellzustande fiir die Riickfithrung benétigt,
so bedeutet dieses, dafl das Modell in dem zu verwendenden Regler abgebildet werden
mufB. Der in diesem Bericht betrachtete allgemeine Fall der Modellfolgeregelung umfafit
damit gleichzeitig den Fall der exakten Linearisierung, der gerade einer Modellfolgere-
gelung fiir ein lineares [-Modellsystem der Ordnung n entspricht, wobei n die Ordnung
des urspriinglichen Systems darstellt. Anhand dieses Spezialfalles wird der Nutzen der
Modellfolgeregelung unmittelbar deutlich: Kann ein Systemverhalten erzwungen werden,
fiir das bereits bewahrte Analyse- und Synthesewerkzeuge bekannt sind, so kénnen diese
Werkzeuge problemlos angewendet werden, sofern sich die Modellfolgeregelung als stabil
erweist, d.h. sich auf ein hinreichend genaues Systemmodell stiitzt oder hinreichend ro-
bust gegen Abweichungen vom realen System ist. Solche Werkzeuge existieren z.T. fiir
bilineare (Schwarz 1991) oder quadratische Systeme (Schwarz 1996), ganz gewiff aber fiir

lineare Systeme.

Der vorliegende Bericht gliedert sich wie folgt: Zunéchst werden in Abschnitt 2 eini-
ge mathematische Grundlagen wiedergegeben sowie Bedingungen fiir die Existenz einer
Modellfolgeregelung angegeben. Eine Verbindung zur Storsignalentkopplung, insbeson-
dere der graphentheoretischen Formulierung des Stérentkopplungsproblems, wird darge-
stellt. Der dritte Abschnitt stellt einen Weg zur systematischen Berechnung der Mo-
dellfolgeregelung vor, der auf bereits bekannte differentialalgebraische Kenngroflen fithrt
sowie Parallelen zu Inversionsalgorithmen fiir lineare (Silverman 1969) und nichtlineare
(Hirschorn 1979, Singh 1981) Systeme aufweist. Insbesondere wird mit der Verwendung
des Rankings eine Moglichkeit geschaffen, fiir die Inversion nichtlinearer Differentialglei-

chungen die Methoden der kommutativen Algebra zu nutzen. Besonders hervorzuheben
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sind hierbei die sogenannten Grobner-Basen, die eine Verallgemeinerung der Gauflschen

Elimination darstellen und ein Ranking voraussetzen. Die Grobner-Basen selbst werden

in einem spéteren Bericht ndher behandelt, da sich eine umfangreiche Darstellung die-

ses Werkzeuges empfiehlt. Die Ubertragharkeit der Synthese der Modellfolgeregelung auf

graphentheoretische Methoden wird in Abschnitt 4 ndher erlautert, orientiert sich aber im

wesentlichen an den Ausfithrungen eines fritheren Berichtes (Senger 1996), in dem bereits

auf die restriktiven Bedingungen einer exakten Ubertragbarkeit hingewiesen wurde. Mit

einer Zusammenfassung sowie einem Ausblick im fiinften Abschnitt schlieit der Bericht.

—— Regelgesetz

Strecke

f

M

Modell

i Ayé()

Ym

Abbildung 1.1: Allgemeine Darstellung einer Modellfolgeregelung
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2 Problemformulierung

Fiir die Beschreibung regelungstechnischer Aufgaben wie der Modellfolgeregelung sind ei-
nige mathematische Werkzeuge notwendig. Wie z. B. in Wey (1996) beschrieben, stellt die
Differentialalgebra ein wichtiges Analysewerkzeug dar, das eine prégnante Beweisfithrung
in vielen regelungstechnischen Fragestellungen ermdéglicht. Die Grundlagen der Anwen-
dung der Kérpertheorie auf die Beschreibung dynamischer Systeme finden sich bei Fliess
(1986, 1990), der hier eine Vorreiterrolle einnimmt. An dieser Stelle werden zur Erinne-
rung solche Definitionen und Begriffe wiedergegeben, die im folgenden von unmittelbarer
Bedeutung sind und in die Argumentationen einfliefen. Einige weiterfithrende Grundla-
gen sind z. B. in Wey (1992) und Senger (1996) zusammengefafit.

2.1 Mathematische Grundlagen

Da sie in vielen Beweisfithrungen Verwendung findet, wird zunéchst die Gradformel der

Differentialalgebra angegeben. Die Gradformel besagt, daf folgender Zusammenhang gilt:
diff. trg k{a,b)/k = diff. trg k{a,b)/k(b) + diff. trg k(b)/k : (2.1)

was bedeutet, dafl der differentielle Transzendenzgrad einer Kérpererweiterung sich aus
den differentiellen Transzendenzgraden derjenigen differentiellen Teilkérpererweiterungen
bestimmt, die gerade die Gesamtkorpererweiterung ergeben. Weiterhin ist der differenti-

elle Rang eines Systems definiert zu:

Definition 2.1 (Fliess 1986)
Der differentielle Rang eines Systems mit den Ausgidngen y € R? ist gleich dem differen-
tiellen Transzendenzgrad diff. trg k(y)/k der Korpererweiterung k(y)/k . a

Einige mathematische Begriffe sind im folgenden kurz erklart:

Ideal (Atiyah und Macdonald 1969):

Ein Ideal @ eines Ringes' A ist eine Untermenge von A, die eine additive Untergruppe
von A derart darstellt, dafl gilt A« Ca,d.h. €AV y€a — zy € a.

Hauptideal (Atiyah und Macdonald 1969):
Die Vielfachen eines Elementes © aus A bilden ein Hauptideal, das durch ,,(z)“ gekenn-

zeichnet wird.

Primideal (Atiyah und Macdonald 1969):
Ein Ideal a aus A heifit Primideal, wenn gilt: ¢ # (1) und 2y €a — 2 €a V y € a.

! Wenn nicht besonders erwiithnt, ist mit einem Ring in diesem Bericht immer ein kommutativer Ring
gemeint.
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Modul (Atiyah und Macdonald 1969):

Es sei A ein kommutativer Ring. Dann ist ein A-Modul eine additive Abelsche Gruppe,
in der sich A linear verhélt. Das heifit, ein A-Modul ist ein Paar (M, ) wobei M eine
Abelsche Gruppe ist und p eine Abbildung von A x M in M, so daf}, wenn wir bx fiir
p(b,x) ;b€ A; x € M schreiben, die folgenden Axiome gelten:

blx+y) = bxr+by (2.2)
(b+c)x = br+cx (2.3)
(be)x = b(ex) (2.4)

la = = bce A; xyeM (2.5)

Module stellen eine Verallgemeinerung bekannter Konzepte dar. Es gilt z. B.:
o Ein Ideal ¢ aus A ist ein A-Modul.

o Ist A ein Korper k, so bildet der A-Modul einen k-Vektorraum.

2.2 Modellfolgeregelung

Die Modellfolgeregelung ist in der Vergangenheit bereits vielfach diskutiert worden (Di Be-
nedetto und Isidori 1986, Moog u. a. 1991, Di Benedetto und Grizzle 1992). Das Modell-
folgeregelungsproblem ist durch folgenden Sachverhalt charakterisiert: Es sei ein Prozef
mit m Ein- und p Ausgidngen sowie ein Modell (gekennzeichnet durch Uberstrich) gegeben.
Dann ist ein Kompensator derart gesucht, dafl die Ausgidnge des Prozesses mit Kompen-
sator in gleicher Weise von den Eingangsgrofien abhdngen wie die des Modells bei gleichen
Eingangsgrofen. Diese Eigenschaft soll weiterhin unabhéangig von den Anfangszustdnden
des Prozesses und des Modells sein. Wie bereits eingangs erwahnt, kann das Problem der
Modellfolgeregelung als Storsignalentkopplung formuliert werden. Dafiir betrachtet man
ein System, dessen Ausgidnge durch die paarweisen Differenzen Ay, =y, —y; ;o =1,....p,
zwischen Prozefl und Modell gebildet werden und unabhéngig von den Eingéngen dieses
Systems sein sollen. Bild 2.1 verdeutlicht den Zusammenhang. An dieser Stelle soll eine
differentialalgebraische Formulierung der Bedingungen fiir die Losbarkeit des Modellfol-
geregelungsproblems vorgestellt werden, die weitgehend den Ausfithrungen von Rudolph
(1992) bzw. Rudolph und Delaleau (1993) folgt. Weiterhin werden Parallelen zu weiteren
Formulierungen des gleichen Problems gezeigt. Da die Synthese der Regelgesetze auf Basis
der Differentialalgebra kaum moglich ist, wird aufbauend auf die differentialalgebraischen
Existenzbedingungen der Regelgesetze im nachsten Abschnitt die Synthese auf der Basis
des Rankings dargestellt.

Aus differentialalgebraischer Sicht wird ein System mit m Fingdngen « und p Ausgédngen
y durch eine Korpererweiterung k(w, y)/k(u) beschrieben, die differentiell algebraisch ist,
da angenommen wird, daf} das Ein-/Ausgangsverhalten durch algebraische Differential-

gleichungen dargestellt werden kann. Die Eingdnge u werden als voneinander unabhéngig
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Kompensator System
v=1u uc, u Yy
| K 0)/kv) | k(y, u)/k(u)
Ay
Modell _ S\\S:>
u o _ (]

Abbildung 2.1: Schematische Darstellung der Modellfolgeregelung als Storsignalent-
kopplung

angenommen, so daf} diff. trgk(u)/k = m gilt. Es ist nun ein Kompensator k(u®, v)/k(v)
gesucht, so daff in dem Korper k({u, u®, y°, y) gilt:

diff. trg k(Ay*)/k = 0 (2.6)

wobei der Exponent ¢ das System mit Kompensator kennzeichnet. Fiir die Existenz einer

Modellfolgeregelung kann nun folgender Satz angegeben werden.

Satz 2.1 (Rudolph 1992)
Ein Kompensator zu dem Proze k(w,y)/k(u), der die Modellfolge mit dem Modell
kE{u,y)/k(u) gewahrleistet, existiert, wenn

diff. trg K(Ay)/k = p . (2.7)
Darin stellt p den differentiellen Rang des Prozesses dar. |
Beweis:

Es gilt der Zusammenhang
p = diff. trg k(y, y,u)/k(u)
= diff. trg K(Ay,y,u)/k{u) (2.8)
= diff. trg K(Ay, u)/k{u)
Die erste Zeile in Gl. (2.8) folgt aus der Definition des differentiellen Ranges und der
Tatsache, dafl y differentiell algebraisch tiber k{w) ist. Die zweite Zeile folgt aus der

Definition von Ay und in der dritten Zeile wird wiederum die differentielle Algebraizitét

von y liber k(u) genutzt. Es gilt also nach Voraussetzung in Satz 2.1:
diff. trg K(Ay)/k = p = diff. trg k(Ay, u)/k{u) . (2.9)

Es werden p Prozeleingédnge @ definiert, so daf diff. trg k(w,y)/k(y) = 0 gilt. Somit
stellt w die Fingénge eines invertierbaren Subsystems des Prozesses dar, also auch eines
Teilsystems von k(Ay,u,u)/k(w,u). Damit gilt:

diff. trg k(Ay, w, @) /klw, @) = 0 . (2.10)
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Gl. (2.10) impliziert die Existenz dieser Gleichungen:

Qi{Ay,u,u} = 0 ; i=1,....p : (2.11)
Weiterhin folgt aus Gl. (2.9) die Existenz der Gleichungen

RA{Ay} = 0 ; j=p+1,...,p : (2.12)
Es wird zunéchst gezeigt, dafi die GIn. (2.11) invertierbar bezliglich @ sind:

Lemma 2.1

diff. trg k(w,uw, Ay)/k(u,Ay) =0 (2.13)

Zur Beweisfithrung wird die Kaskade
k(Ay,u) C k(Ay,u,y) C k(Ay, u,y. @) (2.14)
von Korpererweiterungen gebildet, fiir die mit der Gradformel gilt:

diff. trg k(Ay,w,y,w)/k(Ay,u) =
diff. trg k(Ay, w,y,w)/k(Ay,y, u) (2.15)
+ diff. trg k(Ay, y,u)/k(Ay, u)

Der erste Ausdruck auf der rechten Seite von GI. (2.15) ist gleich Null, weil
per Definition w differentiell algebraisch iiber y ist. Weil y = Ay + y ist
und y differentiell algebraisch tiber w ist, verschwindet auch der zweite Term
auf der rechten Seite der Gleichung. Da weiterhin k(w, u, Ay)/k{u, Ay) eine
Teil-Korpererweiterung von k(Ay,u,y,w)/k{(Ay,u) darstellt, ist somit die
Richtigkeit von Gl. (2.13) bewiesen. a

Da die Gln. (2.11) invertierbar beziiglich @ sind, kann nun ein Kompensator durch diese
Beziehungen sowie m — p weiteren Gleichungen S; , 7 = p 4+ 1,...,m , gebildet wer-
den, die eine differentielle Algebraizitdt von w tiber k(w, @) definieren. Das resultierende

Gesamtsystem mit Kompensator ist darstellbar durch die Gleichungen:

PA{Ay°} = 0 ; i1=1,...,p , (2.16)
R{Ay} = 0 5  j=p+1,....p . (2.17)

Die Existenz von Gln. (2.16) folgt aus Gl. (2.10) und der Tatsache, dafl die Gln. (2.11)
t

invertierbar beziiglich @ sind. Gl. (2.17) existiert nach Voraussetzung in Satz 2.1. Es is
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mit Gln. (2.16)—(2.17) die Bedingung aus Gl. (2.6) erfiillt. Der Kompensator wird durch
folgende Gleichungen beschrieben:

Qi{Ay°,u,u} = 0 ; i1=1,...,p , (2.18)
SH{uw,w,u} = 0 ; j=p+1,....p : (2.19)
d

Da die Differenzen Ay® nun differentiell algebraisch iiber dem Grundkérper £ sind, exi-

stiert zudem auch ein Feedforward-Kompensator
E{u,u)/k(u) . (2.20)
Rudolph (1992) zeigt zudem, dafl die in Satz 2.1 angegebene Bedingung nicht nur hinrei-

chend, sondern auch notwendig ist, wenn fiir den differentiellen Rang p des Modells gilt:

p=0p.

Da die hier vorgestellte Beschreibung der Modellfolgeregelung durch eine Darstellung als
Storsignalentkopplung erfolgt, kénnen leicht einige Parallelen zu differentialgeometrischen
und graphentheoretischen Beschreibungsweisen gezogen werden. Die differentialalgebrai-
sche Formulierung geht beispielsweise konform mit der von Huijberts u. a. (1992) auf

differentialgeometrischer Basis gegebenen Bedingung. Diese lautet:

Satz 2.2 (Huijberts u. a. 1992)

Es liege ein analytisches System Y 4¢ vor, das quadratisch (p = m) und differentiell
linksinvertierbar (p = m) sei. Dieses System werde an einem streng reguldren Punkt @
betrachtet. Die dynamische Storsignalentkopplung mit Messung der Stérung ist fiir dieses
System dann und nur dann lokal um @y méglich, wenn das gestérte System ¥, und das

ungestorte System X, die gleiche algebraische Struktur im Unendlichen haben. |

Betrachtet man das Gesamtsystem aus Prozefl und Modell mit den Ausgdngen Ay, =
Yi—Yi, 1 =1,...,p, als gestortes System und den Prozef} als ungestortes System, so sind
die Bedingungen direkt auf das Problem der Modellfolgeregelung anwendbar. Wir rufen
uns dafiir in Erinnerung, dafl die Struktur im Unendlichen gegeben ist durch die Liste
{o1,...,0,}, mit o} als der Anzahl der Nullstellen im Unendlichen der Ordnung kleiner
oder gleich k (Di Benedetto u. a. 1989). Es stimmt o,, aber gerade mit dem von Fliess
(1986) definierten differentiellen Rang p des Systems {iberein. Die in Satz 2.2 angegebene
Bedingung ist allerdings restriktiver als die in Satz 2.1; sie ist nur lokal giiltig und sieht
keine quasistatischen Riickfiihrungen vor. Zudem ist die Bedingung der Linksinvertier-

barkeit nach Satz 2.1 nicht notwendig.

Eine graphentheoretische Bedingung fiir die Losbarkeit des Modellfolgeregelungsproblems
kann ebenfalls aus der Stérentkoppelbarkeit abgeleitet werden. Dafiir kann der von Wey
und Svaricek (1995) angegebene Satz in einer weniger restriktiven Form verwendet wer-

den, die auch quasistatische Riickfithrungen erlaubt:
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Satz 2.3

Es liege ein analytisches System ¥ 45 vor, das differentiell linksinvertierbar (p = m) sei.
Das Modellfolgeregelungsproblem ist l6sbar, wenn der Graph Gy des Prozesses und der
Graph Ga des Differenzsystems aus Prozefl und Modell die folgende Bedingung erfiillen:

Die Anzahlen der knotendisjunkten Pfade von Gy und Ga stimmen iiberein und sind

gleich dem differentiellen Rang p des Prozesses. |

Beweis:
Nach Van der Woude (1991) stimmt die Anzahl der knotendisjunkten Pfade mit dem
generischen Rang p,., eines Systems iiberein. Weiterhin gilt (siehe Wey und Svaricek

(1995)):

P Pyn - (2.21)

Da nun die Anzahl der knotendisjunkten Ein-/Ausgangspfade eines Graphen nach oben
durch die Anzahl m der Eingénge beschrénkt ist, entspricht der generische Rang pgen
gerade dem differentiellen Rang p, denn es gilt bei vorausgesetzter differentieller Linksin-

vertierbarkeit:

m=p < pgen <M : (2.22)

o
Die Bedingung der differentiellen Linksinvertierbarkeit in Satz 2.3 ist hinreichend, aber
nicht notwendig. In der iiberwiegenden Anzahl der Félle wird der strukturelle Rang
peen mit dem differentiellen Rang p iibereinstimmen, was auch auf graphentheoretischem
Wege iiberpriift werden kann (vgl. Wey (1993)). Fiir diese Falle entspricht die Anzahl der
knotendisjunkten Ein-/Ausgangspfade dem differentiellen Rang p und damit stimmen die

Aussagen von Satz 2.1 und Satz 2.3 exakt tiberein.
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3 Bestimmung des Regelgesetzes

In Abschnitt 2 wurden die Bedingungen fiir die Existenz eines Regelgesetzes dargelegt.
Zwar sind die Bedingungen anhand weniger Zahlen zu iiberpriifen, jedoch ist i.allg. die
Bestimmung des entsprechenden Regelgesetzes nicht méglich. Daher wird im folgenden
eine Vorgehensweise zur Bestimmung der Modellfolgeregelung dargestellt. Im weiteren
Verlauf wird zudem eine Moglichkeit angesprochen, wie die Berechnung der Riickfithrung

automatisiert werden kann.

Betrachtet wird ein analytisches System (AS), das hinreichend oft differenzierbar sei:

x = f(xz,u) zrcR"” ., wecR™ |

Yas 3.1
43 y = h(e) y € R? (3-1)

Eine dynamische Riickfithrung herkémmlicher Art sei durch die Darstellung
z = ¢($,Z>+¢($,Z>U 7 veEeR™ (32)

u = a(x,z)+ Bz, 2)v

charakterisiert. Wie bereits angedeutet, soll bei der Modellfolgeregelung die Moglichkeit
bestehen, auf die Zustandsvariablen des Modells zuriickzugreifen, was einer Abbildung
des Modells im Regler entspricht. Bei der exakten Linearisierung, wie auch bei der
Storentkopplung, wird eine Anzahl von Integratoren vor die Fingédnge geschaltet, wodurch
das dynamische Riickfiihrgesetz entsteht (Di Benedetto u. a. 1989, Senger 1996). Das re-
sultierende Gesamtsystem entspricht dann mehreren nichtverzweigten Integratorketten.
Da bei der Modellfolgeregelung die Ausginge des Differenzsystems zu Null werden sollen,
ist eine solche Erweiterung um eine Anzahl von Integratoren nicht notwendig, denn die
Dynamik der Riickfiihrgesetze ergibt sich nicht durch Vorschalten zuséatzlicher Speicher
fiir Energie/Masse vor die Fingange des Systems, sondern lediglich aus dem im Regler
implementierten Modell. Daher ist das Regelgesetz auch nicht, wie eine klassische dynami-
sche Zustandsriickfithrung (Gl. 3.2), mit & als den Zustédnden des Systems darstellbar; es
wird statisch oder quasistatisch ausfallen (vgl. Gl. 2.20). Es geniigt also, das Regelgesetz

als
u = afz)+ Bz, {u}) , u € R™ (3.3)

anzusetzen, wobei {u} = (u,u, u,...) bedeutet. Das Regelgesetz zur Erzielung der exak-
ten Modellfolge ergibt sich auf folgende Weise: Es wird zunéchst das analytische System
des Prozesses gemif} Gl. (3.1) betrachtet. Bildet man sukzessive die zeitlichen Ableitungen

g = b))

n o= AW T, u
Yt D ) (3.4)

y = h(e
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der Systemausgéinge y;, 1 <! < p und anschlieend deren totale Differentiale, so ergibt
sich folgende Darstellung:

" 9hy”
dy, = L da,
Yt 2 B, x
: (3.5)
dy? = 3 £y k>
=1 v=0 j5= 1

Definiert man wie Di Benedetto u. a. (1989) einen (nichtdifferentiellen) Kérper K der
rationalen Funktionen in wu,..., (" mit meromorphen Koeffizienten in & sowie einen
Vektorraum & iiber K, der von dz und du”), 0 < v < n — 1 aufgespannt wird, dann stellt
dyl(k), 0 <k < n einen Vektor in &€ dar. Fiir den Vektorraum & gilt die Zerlegung

E = E.DE, , (3.6)
mit den Unterraumen

E = span,c{dx2|1<i<n} und (3.7)
E, = spang {du |1<]<n AN0<v<n-—1}

Fiir die weitere Beschreibung werden die Elemente dyl(k) bzw. yl(k) angeordnet:
dyr, dya, -y dyp, dgi, dga, .oy dp, o dyt™ g™ dyB (3.9)

y17y27"'7yp7y17y27'"7yp7"'7y§)7y£)7"'7yg(9k)7"' : (310)

Dieses Ranking der Ausgangssignalableitungen bzw. deren Differentiale bedeutet eine
(k1) (k2)

Anordnung, so daf} y; "’ dann und nur dann links von y; =’ steht, wenn k; < Ky oder

[y < ly N ky = ky. Hierfiir wird die Schreibweise yl(lkl) < yl(fz)) verwendet.

Definition 3.1 (Cao und Zheng 1992)

dyl(k) wird als u-linksabhéngig bezeichnet, wenn
dyl(k) € & +span{dy?P |y < yl(k)} . (3.11)

Andernfalls wird dyl(k) als u-linksunabhangiger Vektor in (3.9) bezeichnet. Entsprechend
wird ein Element yl(k) aus (3.10) u-linksabhéngig genannt, wenn GI. (3.11) gilt bzw. u-

linksunabhangig, wenn GI. (3.11) nicht gilt. o
Mit

L, = {yl(k)|yl(k) ist u—linksunabhangig} (3.12)
gilt, dal wenn yl( ) - linksabhangig ist, d. h. yl Q L,, dann existiert eine Funktion ¢, so
daf

y? = oy <y Ay e L) (3.13)
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Da bei realen Systemen Kausalitdt vorausgesetzt werden kann, tritt bei dem Ranking im-
mer mindestens ein u-linksunabhéngiges Element auf. Der Grad der zeitlichen Ableitung,
die zur u-Linksunabhangigkeit fithrt, ist geeignet, das System zu charakterisieren. Wir

bezeichnen ihn mit

5 { 00 ,wennyl(k)QLu, VE>0
l pu—

S d=1,....p. (3.14
min{k|yl(k)€Lu} ,sonst p- (319)

Es gilt:
Lemma 3.1
Wenn §; < oo ist, dann existiert eine eindeutige Funktion ¢;; mit 7 =0,...,m, so daf
u" = (@ Pl <y Ay e L)
£ bl <y Ay e L)y (3.15)
j=1
3

Fiir das Ranking wird eine Permutation der Ausgangssignalindizes [;, + = 1,...,p in der

Art vorgenommen, daf} gilt:

yll_<yl2_<"'_<ylp

A S <, <. <8 <o (3.16)

Mit
o = card{§|f < o0, l=1,...,p} (3.17)

bedeutet dies, daB y(®) € L, nur moglich ist, wenn o < o. Gl (3.15) 14t sich in

Matrixform als

T = ¢Y,+¢Y,u (3.18)

schreiben. Aufgrund der Definition der w-Linksunabhangigkeit entspricht die Kennzif-
fer o gerade dem Rang der Matrix ;, und somit kommt ihr eine besondere Bedeutung
zu. Es existieren namlich genau o differentiell unabhingige Gleichungen verschiedener
Ausgangsgrofien in w tiber dem Grundkorper £ der Zustandsvariablen. Damit bilden die
Elemente yl(k), fiir welche §; < oo gemafB Gl. (3.14) ist, gerade eine Transzendenzbasis der
Korpererweiterung k(y)/k. Somit ist gezeigt, dafl o gerade dem von Fliess (1986) defi-
nierten differentiellen Rang des Systems entspricht. Vor dem Hintergrund des Satzes 2.1
ist damit die weitere Vorgehensweise vorgezeichnet. Wir komponieren ein analytisches

Gesamtsystem
r = f(z,u,u) zxcR" , weR™ |,

3.19
y = h(i]?) = YProzess — YModell RS R™ 9 Y S R? ( )

ZAsi

aus analytischem Prozeimodell und gewiinschtem Modell, indem der Zustandsvektor «

erweitert wird und als Ausgidnge die paarweisen Differenzen zwischen den Prozef- und
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Modellausgéngen gewahlt werden. Zunéchst setzen wir Prozefl- und Modelleingénge ein-

ander gleich:
ﬂ]‘ = Uu; , jzl,...,m . (320)

Verfahrt man mit diesem neuen Gesamtsystem genauso wie zuvor mit dem Prozef, so
ergibt sich eine neue Kenngréfle o*, die dem differentiellen Rang p* des Gesamtsystems

entspricht. Damit kénnen wir festhalten:

Satz 3.1
Es sei ein Prozefl und das gewlinschte Modell durch ein analytisches System nach Gl. (3.1)
darstellbar. Fiir diesen Prozefl und das Modell existiert eine Modellfolgeregelung mit

einem reguldren Regelgesetz nach Gl. (3.3) dann, wenn gilt: o = o*. |

Beweis:

Der Beweis dafiir, dafl die Bedingung in Satz 3.1 hinreichend ist, folgt unmittelbar aus
Satz 2.1 in Abschnitt 2, kann aber auch konstruktiv erbracht werden. Dafiir kann das
Gesamtsystem nach Gl. (3.19) beriicksichtigt werden. Es werden aber nicht Prozef- und
Modelleingéange gleichgesetzt, da nun w bestimmt werden soll. Bildet man die zeitlichen
Ableitungen der Ausgangsgrofien des Gesamtsystems sowie deren totale Differentiale, so

ergibt sich analog zu Gln. (3.4)—(3.5):

wo = h§“§<w>
o= A T, u,u
o= il ) (3.21)
v = (@ wa, . wtD) kD)
und
" 9hy”
dy, = L da,
Yi ; O z
(3.22)
n ah k-1 m a k-1 m ah
ERSD S STRS 3 oi STENS 3) Sii STV ESE
=1 Ly v=0 j5= 1 v=0 j5= 1

Definiert man einen neuen (mchtdlfferentlellen) Korper K der rationalen Funktionen in
w,w, ..., w" Y w1 mit meromorphen Koeffizienten in & sowie einen Vektorraum &
iiber K, der von de, du) und du™, 0 < v < n — 1 aufgespannt wird, dann stellt dyl(k),
0 <k < neinen Vektor in £ dar und es gilt analog zu dem obigen Fall fiir den Vektorraum

& die Zerlegung:

E = EBEDE ) (3.23)
mit den Unterraumen

E = span,c{dxzﬂ <i<n} , (3.24)

E, = spang {du |1<]<n/\0<1/<n—1} und (3.25)

span,c{dugy N<j<n A0<v<n-1} . (3.26)

&P
I
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Fiir die Konstruktion der Riickfiihrung kann man Definition 3.1 modifizieren:

Definition 3.2

dyl(k) wird als u-linksabhéngig bezeichnet, wenn
dy € &+ & +spangc{dyl ) <y} (3.27)

Andernfalls wird dyl(k) als u-linksunabhangiger Vektor in (3.9) bezeichnet.
Entsprechend wird ein Element yl(k) aus (3.10) w-linksabhangig (bzw. u-

linksunabhéngig) genannt. a
(k)

Damit fithrt das Auftreten von u; ,5 = 1,...,m,in y;"’ nicht zur u-Linksunabhéngigkeit.
Ermittelt man nach der Bildungsvorschrift Gl. (3.14) die Invarianten 4;, so erhdlt man

nach Voraussetzung von Satz 3.1 analog zu Lemma 3.1 p = p* Gleichungen der Form

y = (e, {a), y PP <y Ay e L)
3 (e {a) yP? <y AyP e L) wp (3.28)
7=1

oder in Matrixschreibweise:
Y- v (3.29)

Mit einem Ranking gemiafl Bedingung (3.16) kann man nun schreiben:

X _ P P,
l O(m—a)xl ] B l O(m_g)xl ] T l R ]u ’ (3.30)

mit R € R™=7%" R ist so zu wihlen, daf rang[¢y] R']T = m gilt und somit [¢] R]T
eine invertierbare m x m-Matrix darstellt. Dies ist stets moglich, da aufgrund der Defi-
nition der u-Linksunabhéangigkeit ranglt,] = o stets erfiillt ist. Die Modellfolgeregelung
verlangt nun, dafl die paarweisen Differenzen der Ausgénge von Prozefl und Modell, also
die Ausgidnge des Gesamtsystems, unabhéngig von w zu Null werden. Daher werden in
Gl (3.30) T;, j = 1,...,0 und deren Ableitungen gleich Null gesetzt, wodurch sich die

Gleichung stark vereinfacht. Die gewiinschten Stellgroflen ergeben sich zu

(3T

o
Mit den so ermittelten Stellgroflen ist gewéhrleistet, dafl die paarweisen Differenzen der

Ausginge von Prozefl und Modell unabhéngig von den Eingéngen u sind.



4 Graphentheoretische Betrachtung und Anwendungsbeispiele 14

4 Graphentheoretische Betrachtung und Anwendungs-
beispiele

In diesem Abschnitt werden einige Uberlegungen zur Ubertragbarkeit der Ergebnisse aus
Abschnitt 3 auf graphentheoretische Methoden angestellt. Anschlielend werden Beispiele

fiir die Bestimmung des Modellfolgeregelgesetzes prasentiert.

4.1 Graphentheoretische Betrachtung

Die in Satz 2.1 angegebene Bedingung kann ohne wesentliche Finschrénkungen direkt
in eine graphentheoretische Vorgehensweise iibersetzt werden, wie mit Satz 2.3 gezeigt
wurde. Damit ist die Existenz einer Modellfolgeregelung iiberpriifbar. Die Synthese des
Regelgesetzes ist aber nur fiir eine Unterklasse der analytischen Systeme exakt anhand
des Graphen moglich. Um dies zu zeigen, werden die Schritte zur Ermittlung des Regel-
gesetzes nach Abschnitt 3 betrachtet. Es handelt sich dabei um

a) Differentiation und
b) Invertierung der Matrix [¢] R']" aus Gl. (3.30).

Diese Operationen sind i.allg. nicht anschaulich am gewéhnlichen gewichteten Graphen
(Wey 1996) nachzuvollziehen, da dieser nur die ersten partiellen Ableitungen der Zu-
standsvariablen enthélt. Betrachtet man allgemein eine beliebige Ableitung einer Funk-

tion £(@), ® € R”, nach der Zeit:

io) = Y B (4.1)
n 9E(O)
5(6) = Z 86] ®]

nO | 2O) - 9E(©) 90,
= 33| 5600, %%+ e, 56,0
N—_——’

a

(4.2)

so wird deutlich, daf} nur die zeitlichen Ausgangssignalableitungen am Graph direkt ables-
bar sind, bei denen lediglich eine einmalige partielle Ableitung auftritt, die von &, uw, w
abhingt, da der Term « in Gl. (4.2) nicht am Graph ablesbar ist. Geht man namlich von
einer Systemdarstellung in Zustandsmodellform aus, so entspricht £ gerade y und ® gera-
de ®. Das bedeutet, daf} die [-te Ableitung nur dann anschaulich am Graph rekonstruiert
werden kann, wenn in allen Ableitungen niedrigerer Ordnung die partiellen Ableitungen

nur Konstanten ergeben. Ist diese Bedingung erfiillt, so folgt als Verallgemeinerung von
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Gl (4.2)
n & 9@ ' 90,
@) = Y.y [BOI % g | (4.3)
11=1 =1 a('-)Zl k=1 a('-)Zk-l-l
N——’

Diese Ableitung ist nun sehr wohl am Graph ablesbar, da die partiellen Ableitungen « und
bin Gl. (4.3) die Kantengewichte darstellen und die zeitlichen Ableitungen der Parameter
O, fiir ein gegebenes analytisches System bekannt sind. Nur fiir diesen Fall sind die fiir
das Ranking notwendigen Ableitungen aus den Kantengewichten des Graphen bestimm-
bar. Es bleibt aber noch das Problem der Matrixinvertierung. Diese kann nicht mehr
ohne weiteres graphentheoretisch erfolgen, wie auch schon in Senger (1996) dargelegt,
und ist daher mit herkémmlichen Mitteln durchzufithren. Da nun aber die Ausgangs-
signalableitungen, die zur w-Linksunabhéngigkeit fiithren, ein Ranking zugrunde legen,
kann von einem weiteren Hilfsmittel, den sog. Grobner-Basen (Buchberger 1985, Pauer
und Pfeifhofer 1988, Forsman 1991) Gebrauch gemacht werden. Es handelt sich da-
bei um eine Verallgemeinerung des Gaufschen Eliminationsalgorithmus (Bronstein und
Semendjajew 1991), die auch auf nichtlineare Systeme anwendbar ist und als Ergebnis
bei oben definiertem Ranking gerade die gesuchten Stellgréflen liefert. Ein derartiges

Vorgehen wird in diesem Bericht jedoch zunéchst nicht weiter verfolgt.

4.2 Anwendungsbeispiele

Die Vorgehensweise zur Bestimmung der Modellfolgeregelung wird im folgenden anhand
einiger Beispiele verdeutlicht. Zunéchst betrachten wir den naheliegenden Fall, daf} ein

nichtlinearer Prozef} einem linearen Modell folgen soll.

Beispiel 4.1
Der Prozef} sei gegeben zu

0 z3 0
r = :1;%:1;3—:1;2 +1 0 0 |u ,
R 0 1 (B4.1-1)
(10 0
S 0];1:

und das lineare Modell als

4 0 10
iiZM = i’g, == e + 0 0 u 5
| 6 0 0 1 (B4.1-2)

100
= T
Y _010M
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Fiir das Gesamtsystem mit den Ausgingen ¥ = Yp,o,ees — Ynioden €rgibt sich mit
u = u der differentielle Rang zu p* = 2. Dieser stimmt mit dem differentiellen Rang
p des Prozesses tiberein. Nun sei die Bedingung # = w nicht mehr vorausgesetzt.
Fortlaufendes zeitliches Ableiten der Ausgénge des Gesamtsystems unter Beachtung
des Rankings sowie der u-Linksunabhangigkeit als Abbruchbedingung liefert:

Y1 = T3up — U = =1 (B4.1-3)
Yo = XiT3— T9 — Tg (B4.1-4)
G = 2wixauy + i (xh + up) — Uy

= 2:]1;1:11;:2))91;u1 +at(ah ug) — dies b ay —uy = S =2. (B4.1-5)

Eine Permutation der Indizes ist in diesem Beispiel nicht nétig. Setzt man die Aus-
gangssignalableitungen, die zur w-Linksunabhangigkeit fithren sowie deren hohere

Ableitungen gleich Null, so ergibt sich die Darstellung:

—ﬂl T3 0
0 = B B + u B4.1-6
l 2x123Uq + :1;%:1;% — :1;%:1;3 + 29 — Uy ] l 0 :1;% ] ( )

und daraus

- -1
T3 0 ﬂl
= B4.1-7
v | 0 :1;% ] l —2x X307 — :1;%:1;% + :1;%:1;3 — 9 + Uy ] ( )
~ al
T
= 23U 3 ’ To U9 : (B 41_8)
- — Tyt T3 5+

Gl. (B4.1-8) eingesetzt in Gln. (B4.1-3),(B4.1-5) ergibt ¢; = 0 und g = 0.

Ist die Bedingung aus Satz 2.1 verletzt, so kann nicht mehr ohne weiteres eine Modellfolge-
regelung bestimmt werden. Insbesondere wenn Prozefl und Modell den gleichen differenti-
ellen Rang aufweisen, dann ist die Bedingung aus Satz 2.1 notwendig, wie in Abschnitt 2
erwahnt ist. Um zu zeigen, was fiir diesen Fall bei der oben vorgestellten Vorgehensweise
auftritt, wird ein weiteres Beispiel angefiithrt. Prozefl und Modell weisen darin den gleichen
differentiellen Rang p auf, das Gesamtsystem mit den Differenzausgangen jedoch einen
differentiellen Rang p* > p. Damit darf in dem angestrebten Beispiel kein Riickfiithrgesetz

zur Modellfolge existieren.
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Beispiel 4.2
Gegeben sei der Prozef

[ x2 0 0
;i: _ $1—|—$3$4 —|— 0 0 w :
0 T4 0
i 0 0 1 (B4.2-1)
010
= T
Y _1 00
sowie das Modell
[ @ T6 00
iiZM == i}6 == T7 + 0 1 u 5
| 7 0 10 (B 4.2-2)
[0 1 0
= xr 5
YT oo™

die beide den differentiellen Rang p = 1 aufweisen. Das nach obigem Muster gebil-
dete Gesamtsystem weist fiir w = w den differentiellen Rang p* = 2 auf. Ohne die

Bedingung w = u ergeben die Ausgangssignalableitungen:

Ui = 1+ T3T4 — T7 — Uy , (B4.2-3)
U, = x3—x6 (B4.2-4)
U1 = x5+ Tiug + 13Uy — Uy — Uy = 6, =2 , (B4.2-5)
Uo = 2wo(xy + x34) — 27 — Uz , (B4.2-6)
y£3) = 2(x + 51?351?4)2 + 251?2(51?3 + Ilfim + z3uy) — Uy — 1y |y~1:0
= 2@+ x374) + (220 — 1)(Uy + Uz) = ;=00 . (B4.2-7)
Die Aussage §; = oo folgt aus der Tatsache, dal durch weiteres Ableiten von

Gl (B4.2-7) mit @3 = @1 +axs24 und %($1—|—$3$4) = 1y + 1y keine u-Linksunabhingig-
keit erreicht werden kann. Es gilt also ¢ = 1. Damit gilt fiir den Rang der Matrix
rang[Y,] = 1. Es kann also nur erreicht werden, dafl ein Ausgang des Differenzsy-
stems zu Null wird, also nur ein Ausgang des Prozesses dem Modell folgt, denn es
existieren keine weiteren differentiell algebraisch unabhangigen Gleichungen fiir den

zweiten Ausgang.

Als praxisrelevante Anwendung soll ein weiteres Beispielsystem dienen: Fiir einen hy-
draulischen Differentialzylinder sei eine Modellfolgeregelung mit einem linearen Modell
gesucht. Es handelt sich bei dem Prozefl um einen hydraulischen Translationsantrieb des
dreiachsigen elastischen Roboters im Fachgebiet MSRT (Bernzen 1995). Der Antrieb ist in
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-

Abbildung 4.1: Hydraulischer Differentialzylinder

Bild 4.1 dargestellt. Die Beschreibung des Zylinders ist aus physikalischen Betrachtungen
abgeleitet und in den Parametern mit dem realen System abgeglichen (Riege 1995). Die
Systembeschreibung des Prozesses besteht aus zwei Teilmodellen, die vorzeichenabhangig
von der Stellgrofle u geschaltet werden. Dies ist aufgrund der unterschiedlichen Kol-
benflichen des Differentialzylinders notwendig. Die vollstandige Prozeflbeschreibung ist
in Anhang A ausfithrlich dargestellt. Im Gegensatz zu dieser Darstellung soll in dem

nachsten Beispiel eine vereinfachte Beschreibung Verwendung finden.

Beispiel 4.3

Das im Anhang A dargestellte System wird in folgender Weise modifiziert: ks
wird die angreifende Kraft Fj, als (zu entkoppelnder) Eingang z betrachtet. Die
Abhingigkeit der bewegten Olvolumina Vi, Vg von der Kolbenposition wird ebenso
vernachlassigt, wie die Reibkraft Fg, die aus den Zylinderdriicken x5 und x4 an-
gendhert werden kann und der am Kolben angreifenden Kraft zugeschlagen wird.
Weiterhin wird die Dynamik des Ventilsteuerkolbens vernachlassigt. Wie schon
erwahnt, erfolgt die Prozefdarstellung in zwei Teilbeschreibungen. Die Volumen-
strome )5 und () werden wie folgt in Abhéngigkeit vom Vorzeichen der Stellgréfie
dargestellt.

Oa = BQVPO_“‘”“} Vu>0 (B4.3-1)
Qs = —Bqyriu

Qa = Bqyrsu }
Yu<O . B4.3-2
(B = —Bqypo—r4u ! ( )
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(B4.3-3)
Darin stellt Bg den Durchflulkoeffizienten dar. Weiterhin ist gegeniiber der Dar-
stellung in Anhang A der Tankdruck vernachléssigt worden. Mit diesen Vorausset-
zungen ist der Prozefl gegeben durch:
fl = X2
1
mges 2
. EOI,A(x3) .
T3 = T(—sz‘l‘BQ\/po—wg)u) Yu>0 (B4.3-4)
A
‘ Fo (2 A
y = &4
fl = X2
1
mges 2
F-
Iy = M( — sz + BQ‘ /x3u) vV u<0 . (B 43—5)
Va
Eg A
iy = M (—:1?2 — By /po—x4u)
VB 2
y = &4
Es handelt sich um ein kausales System, daher ist p > 1. Weiterhin gilt: p < m =
1 — p = 1. Das Modell wird vorgegeben als ein Pr,-System mit allgemeinen Polen
P1 und PQ.
= 212 o)
M Tg —P1P2 —(P1—|—P2) M 1 ’ (B43—6)

Das Modell hat ebenfalls den differentiellen Rang p = 1. In der dritten zeitlichen
Ableitung des Ausgangs des Differenzsystems aus Prozefl und Modell tritt u auf,
was zur u-Linksunabhéngigkeit fithrt (6; = 1 — o = p* = 1). Es existiert also ein
Modellfolgeregelgesetz. Fiir die beiden Falle u > 0 und « < 0 lauten die Regelgesetze
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dann bei einer Vorgehensweise wie in den ersten Beispielen:

Az F Alzo E :
(y(3)_|_ 2 oLA_I_ 2 oLB_I_ < )

mgesVA mgesS‘QzVB Mges
(AEOLABQWO — @, ABgpba, /_x4) = ( )

mgesVA mgesS‘QVB

((3)_|_ APy B o n Ay By g N z

mgesVA mgesS‘QzVB Mges

= ) Vu<0 ,
‘ (AEC")LABQ\/“'_S n AE(")LBBQVPO - 51/'4) !

mgesVA mgesS‘QVB

(B4.3-8)

mit der Definition der Olelastizititen gemaf Anhang A und der Substitution

Q(S) = P1P2(P1—|—P2)$5—|—((P1—|—P2)2—P1P2)x6
—(Py+ Py)u+u . (B4.3-9)

Es bleibt anzumerken, dafl durch die zweigeteilte Prozebetrachtung nicht das Vor-
zeichen der Stellgrofie, sondern nur die Verstarkung umgeschaltet wird. Dies erkennt
man daran, daf} die Stellgroflen sich fiir unterschiedliche Vorzeichen von u nur durch
den Nenner unterscheiden, der aber in beiden Féllen einen positiven Wert ergibt.

Es kann also nicht zu umschaltbedingtem “Ventilrattern” kommen.

Abbildung 4.2: Graph des Servoantriebs

Fiir das dritte Beispiel kann das Regelgesetz auch am Graphen ermittelt werden. Dazu
betrachten wir den in Bild 4.2 abgebildeten Graphen des Prozesses. Da die partielle Ablei-
tung 0i4/0xy = 1 konstant ist, kann die dritte Ableitung des Ausgangs durch Anwendung
der Gleichung (4.3) als

- " (06(O©) & 00, )
@ _ 6, »
! leZ:l 232231( 00;, kl;[l@@iw : (4.4)

dy Oxy 0z, . dy Oxy 0z, . Jy Ox, % .

0xq 029 8x3x3 0xq 029 8:1;4x4 8—:1;18—:1;2 Jw v

(4.5)



4 Graphentheoretische Betrachtung und Anwendungsbeispiele 21

geschrieben werden. Die partiellen Ableitungen sind bei Kenntnis des Graphen als Kan-
tengewichte ebenso bekannt, wie die Ableitungen der Zustandsvariablen aus dem gegebe-
nen analytischen System des Prozesses. Fiir lineare Systeme sind die partiellen Ableitun-
gen der Zustandsvariablen immer konstant. Daher kénnen fiir lineare Systeme stets alle
Ausgangssignalableitungen durch Anwendung von GI. (4.3) bestimmt werden. Da beim
Differenzieren (y — ) = y® — g gilt, kann somit die dritte Ableitung des Differenz-
systems aus Beispiel 4.3 vollstandig am Graphen bestimmt werden. Durch Umstellen der

Gleichung y®—¢® = 0 nach u ergeben sich die in Beispiel 4.3 angegebenen Regelgesetze.
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5 Zusammenfassung

Der vorliegende Bericht behandelt das Problem der Modellfolgeregelung fiir nichtlineare
analytische Systeme. Zur Problembeschreibung sowie Systemanalyse werden differential-
algebraische Methoden verwendet. Das Problem der Modellfolgeregelung wird in diesem
Bericht auf das Storsignalentkopplungsproblem zuriickgefithrt. Damit ist es ohne weiteres
moglich, Parallelen zu differentialgeometrischen und graphentheoretischen Bedingungen

zu finden, wie in Abschnitt 2 gezeigt ist.

Da die Analyse nicht Selbstzweck ist, sondern das Ziel die Synthese eines Regelgeset-
zes ist, wird eine systematische Vorgehensweise zur Berechnung der Modellfolgeregelung
bendtigt. Diese ist in Abschnitt 3 dargestellt. Sie basiert auf der Anordnung der Aus-
gangssignalableitungen nach vorgegebenen Regeln, dem Ranking. In Abschnitt 3 ist zu-
dem gezeigt, dal der Begriff der u-Linksabhéngigkeit es ermdglicht, eine differentielle
Transzendenzbasis der Ausgangssignalableitungen zu beschreiben und damit unmittelbar
auf den differentiellen Rang des Systems fithrt. Mit diesen Mitteln ist es moglich, das

Modellfolgeregelgesetz zu bestimmen.

Diese Vorgehensweise zur Synthese des Regelgesetzes ist unter bestimmten Vorausset-
zungen auf eine graphentheoretische Vorgehensweise exakt tibertragbar. Die notwendigen
Bedingungen sind in Abschnitt 4 beschrieben. Anhand einiger Beispiele ist die Vorge-
hensweise des Rankings illustriert. Das praktische Beispiel des Differentialzylinders zeigt
zudem die Anwendbarkeit auf den Fall eines hydraulischen Servoantriebs. Anhand des

Differentialzylinders wird auch die graphentheoretische Vorgehensweise erklért.

Ausblick

Da die graphentheoretische Vorgehensweise restriktiven Bedingungen unterliegt, ist in
Zukunft die Moglichkeit und Brauchbarkeit einer graphentheoretischen Néherung fiir die
Modellfolgeregelung zu untersuchen, wie es bereits in dem Fall der ndherungsweisen gra-

phentheoretischen Linearisierung geschehen ist.

Eine besonders interessante Perspektive bietet dariiber hinaus die Anwendung von Groéb-
ner-Basen zur Synthese nichtlinearer Regelungsgesetze. Insbesondere wird in Zukunft die
Moglichkeit untersucht, mit Grébner-Basen eine differentielle Transzendenzbasis nichtli-
nearer Polynomsysteme zu berechnen, indem die Differentialgleichungen auf nichtdiffe-
rentielle Gleichungen zuriickgefithrt werden, und damit die Werkzeuge der kommutativen

Algebra anwendbar sind.
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A Modell des Hydraulikdifferentialzylinders

Das hier dargestellte Systemmodell gibt das Verhalten eines hydraulischen Differential-
zylinders wieder und wurde bereits von Riege (1995) ausfithrlich diskutiert. Es werden

folgende Zustandsvariablen gewé&hlt:

x;  :  Weg des Zylinderkolbens,

xy :  Geschwindigkeit des Zylinderkolbens,

x3 :  Druck in Zylinderkammer A,

x4 :  Druck in Zylinderkammer B,

x5 :  Weg des Steuerkolbens im Servoventil und

re :  Geschwindigkeit des Steuerkolbens im Servoventil.

Zudem wird die Gesamtersatzmasse mges durch Kolbenmasse mg und Olvolumen in den

Zylinderkammern bestimmt:
Mges(v1) = mx + pg(Valer) + Ve(21)) (A1)

Vi und Vi sind die von der Zylinderkolbenposition abhingigen Olvolumina und setzen
sich zusammen aus dem Volumen des Ols in den Zylinderkammern und den Olvolumina

VLa und Vip in den Leitungen und ergeben sich bei einem Kolbenhub H zu

Va(zy) = Via + (g + :z:l) A, (A.2)
Ve(z1) = Ws+ (g — :1?1) 2 . (A.3)

Darin stellt ¢ das Flachenverhéltnis von Kolbenflache A zur Kolbenringflache des Diffe-
rentialzylinders dar. Die Reibkraft Fg im Hydraulikzylinder wird durch die drei Anteile

viskose, coulombsche und Haftreibung modelliert:

CH

Fr(zy) = Fyay+sign(zs) (FC + Fyy exp (_@)) . (A4)

Die Volumenstrome ()5 und () berechnen sich wie folgt:

Qal(zs,xs) = Bq|sg(xs)sign(po — x3) /| po — @3 |

—sg(—as)sign(as = pr)/Tos —pr ||

QB(74,75) = Bq|sg(—xs)sign(po — x4) /| po — 24 |

—sglas)signes—po)yfles—pr | |
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und dem DurchfluBkoeffizient Bg. Die Elastizitdtsmoduln werden folgendermafien be-

rechnet:
Fopa(es) = 0,5Esmslog (mo (0,9 & +o,os)) , (AT
’ ’ pmaX
Es glxd) = 0,5FEs, . log, (100 (0,9 i —|—0,03)) ) (A.8)
’ ’ pmaX

Mit u als normierter Steuerspannung am Servoventil resultiert folgendes Modell aus den

Kréftegleichgewichten fiir Zylinderkolben und Steuerkolben:

fl = X2 5

1
j/’g = [(xB_E)A_FR(xQ)_FL] )

mges S‘Q
. EOI,A(x3)
r3 = m( — Az + QA($37 51?5)) ’
A9

Ty = LOI’B(:M) (éxz + QB(z4 1'5)) ( |

Ve(z1) \» ’ ’
j/’5 = g 5

. , 2D
Teg = WyglU— —Tsg— Ts 5
o

y =



