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1 Einleitung

Zur Regelung elastischer Roboter ist es vorteilhaft, ein gutes Modell zu haben. FEine
Moéglichkeit besteht darin, eine Modellstruktur vorzugeben und deren Parameter zu iden-
tifizieren (Schwarz 1991). Andererseits kann ein elastischer Roboter unter der Annahme
kleiner Deformationen analytisch modelliert werden (Book 1984, Yuan u. a. 1993, Artea-
ga Pérez 1995b). Ein Nachteil besteht allerdings darin, dafl die Eigenformen der elasti-
schen Glieder bekannt sein miissen. Um dieses Problem zu 16sen, wird das sogenannte
assumed mode shapes Verfahren in der Regel eingesetzt, das die Eigenformen eines dhn-
lichen Systems benutzt Meirovitch (1967, 1975).  Weitere Schwierigkeiten ergeben sich
daraus, daf} sowohl die Eigenfrequenzen der Glieder als auch deren Strukturdampfung sich
schwer berechnen lassen. Aus diesen Griinden bietet sich eine experimentelle Ermittlung

der Parameter an.

Der vorliegende Bericht beschéftigt sich mit der Modellbildung des zweiachsigen Roboters
des Fachgebiets. Dieser Roboter besteht aus zwei in der Ebene angeordneten elastischen
Gliedern. Zuerst wird er nach dem Fuler-Lagrange Verfahren analytisch modelliert, so

dall das resultierende Modell eine Funktion unbekannter Parameter ist.

Nach der analytischen Modellbildung werden die unbekannten Parameter experimentell
bestimmt. Um dieses Ziel zu erreichen, stehen als Ausgidnge des Handhabungssystems
vier durch das dreidimensionale Positionsmefisystem DynaSight gemessene Punkte und

die Dehnung an der Basis jedes Gliedes zur Verfiigung.

Eine Beschreibung des zweiachsigen elastischen Roboters und dessen analytische Modell-
bildung ist in Abschnitt 2 erlautert. Hierbei wird angenommen, dafl weder Elastizitat noch
Spiel in den Gelenken auftritt. In Abschnitt 3 wird eine Methode zur experimentellen Pa-
rameterbestimmung vorgeschlagen und in Abschnitt 4 werden einige Simulationsergebnis-
se des Modells vorgestellt und mit gemessenen Daten verglichen. Eine Zusammenfassung
und ein Ausblick in Abschnitt 5 schlieffen den Forschungsbericht ab.
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2 Mathematische Modellbildung

Die Modellbildung des zweiachsigen elastischen Roboters des Fachgebiets (Bild 2.1) wird
nach dem Euler-Lagrange—Verfahren durchgefithrt (Book 1984, Yuan u. a. 1993, Artea-
ga Pérez 1995b). Eine komplette Beschreibung des Roboters ist in Bai (1996a) zu finden.

Bild 2.1: Zweiachsiger elastischer Roboter

Da es sich um einen ebenen Roboter handelt, ist der Gravitationsvektor g(g) gleich Null.
Im folgenden wird die Berechnung der einzelnen Systemmatrizen und -vektoren fiir den

speziellen Anwendungsfall vorgenommen.

Das Verfahren zur Modellbildung ist so aufgebaut, dafl prinzipiell nur Glieder beriicksich-
tigt werden, die vollkommen elastisch sind. Im vorliegenden Fall gibt es zwei Glieder,
die jeweils aus zwei starren und einem elastischen Teilstiick bestehen. Obwohl die Ver-
nachléssigung der starren Teilstiicke die Modellbildung deutlich vereinfachen wiirde, wére
nicht zu erwarten, dafl sich die Dynamik des Roboters bei dieser Vereinfachung noch
ausreichend gut beschreiben lassen wiirde. Aus diesem Grunde wird der zweiachsige ela-
stische Roboter in vier Glieder aufgeteilt. Diese Aufteilung kann Bild 2.2 entnommen

werden.

Clied 1 Clied 2 Clied 4
|

L]

Glied 3
Bild 2.2: Finteilung des Roboters in vier Glieder
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Hier stellen die Glieder 1 und 3 die vollkommen elastischen Glieder dar. Die Glieder
2 und 4 sind starr. Obwohl die Glieder 1 und 3 noch jeweils in einen starren und
einen elastischen Teil aufgeteilt werden kénnten, wird diese Konfiguration gewahlt, da
die Glieder als vollsténdig elastisch betrachtet werden koénnen, denn der erste Abschnitt
der jeweiligen Eigenform ist Null. Aus Griinden der verfahrensbedingten Systematik
(Arteaga Pérez 1995b) werden diese starren Glieder zunédchst wie die beiden anderen be-
handelt und formal mit einer Drehachse und einer zugehérigen Drehkoordinate versehen,
die spater einfach vernachldssigt werden kénnen. Die Vorgehensweise wird an entspre-

chender Stelle weiter unten naher erlautert.

2.1 Koordinaten und Transformationsmatrizen

Alle vier Glieder werden nun so betrachtet, als kénnten sie um ihre Drehachsen rotieren,

was in der Praxis nur auf die beiden elastischen Glieder zutrifft.

Iy
?)3 y4 . ?)4
51?3—54
-
1, T4 .
Iy
?)1 Y2 Y3 @2 T3 /
T
/1 \ 53 gs1
1}2 :%2 13
— 2
Y1 Yo /
L 5 011
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Bild 2.3: Skizze zur Festlegung der Koordinaten

Bild 2.3 zeigt die Bezeichnung der Koordinatensysteme. Wie ebenfalls in Bild 2.3 zu sehen
ist, werden bei der Modellbildung zunéchst sechs Koordinaten beriicksichtigt, vier starre
und zwei elastische. Der erweiterte Vektor g, der verallgemeinerten Koordinaten ergibt

sich somit zu

q. = [B1. Ba. B3, B 011, 03] (2.1)

Es ist zu beachten, daf} der ,echte* Vektor der verallgemeinerten Koordinaten aus den

oben dargelegten Griinden lautet:

q = [01,05,611.621]" (2.2)
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wobei gilt:
pr="01, fa =0, Bz=10y, B4=0, o131 =611, 031 = 621 . (2-3)

Um die Kinematik jedes Punktes p, mit dem Ortsvektor r; aut dem Roboter zu be-
stimmen, miissen die Transformationsmatrizen zur Umrechnung ins ortsfeste Koordina-
tensystem bestimmt werden. Die Transformationsmatrix zur Umrechnung vom ¢-ten ins

ortsfeste Koordinatensystem ergibt sich zu (Arteaga Pérez 1995a):

12T = A\F\ALE, ... A, Ei_ A, 2 Ti_| A, (2.4)
T, 2T._,E._, (2.5)
T, = A,
mit
Op; = Ty, (2.7)

Um diese Matrizen T'; zu bestimmen, miissen die einzelnen Transformationsmatrizen F,
bis F, fiir die Glieder sowie Ay bis A, fiir die Drehgelenke berechnet werden. Die Trans-
formationsmatrizen fiir die Glieder ergeben sich nach (Arteaga Pérez 1995a) ndherungs-

weise zZU:

co . (2.8)

In dem hier vorliegenden Fall erhdlt man die folgende Transformationsmatrix fiir das erste

Glied:

1 -6, 0 4
0 1 0 6

E — 21 Y1 2
0 0 0 1

wobei angenommen wird, daf} es keine Deformation in - und z-Richtung und keine Tor-

sion in z- und y-Richtung gibt. Es gilt
_ déu(h)

0., = Qe O1 = Pru(h)on = ¢y (h)on (2.10)
und
51/1 = ¢11(11)0'11. (211)
Die Matrix fir das Glied 2 ist durch
1 0 0 I
01 0 0
E, = 2.12
? 001 0 (2.12)
0 0 0 1
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gegeben. In Analogie folgen die beiden anderen Matrizen zu

1 -0, 0 I3
0 1 0 ¢
E;= = vs 2.1
0 0 0 1
mit
d [
0, =) o = (L) (2.14)
T3
und
51/3 = ¢31(13)0'31, (215)
sowie fir das vierte Glied:
1 0 0 I
01 0 0
E,= 2.1
* 001 0 (2.16)
0 0 0 1

Die Matrizen zur Transformation an den Drehgelenken ergeben sich jeweils unter Zuhil-

fenahme der Drehwinkel zu (Canudas de Wit u. a. 1996):

[ cos By —sinfBy 0 0 [ cosfBy —sinfy 0 0
A, = sinfly cosfy 0 0 A, = sinfl cosfy 0 0
0 0 10 0 0 10

0 0 0 1 | 0 0 0 1 |

(2.17)

[ cosf#3 —sinffis 0 0] [ cos By —sinfy 0 0]
A= sinff3 cosfls 0 0 A, = sinfy cosfy 0 0
0 0 10 0 0 10

0 0 0 1 | | 0 0 0 1 |

Daraus folgt die Kenntnis der Koordinaten aller Punkte p; im ortsfesten Koordinatensy-

stem.

2.2 Bestimmung der Triagheitsmatrix H(q)

Nachdem die Kinematik der Punkte auf dem Roboter bekannt ist, kann die Tragheitsma-
trix berechnet werden. Zunéachst wird die Tragheitsmatrix B(q.) des erweiterten Systems
bestimmt, und dann die ,echte* Tragheitsmatrix H(q), die sich durch Vernachlassigung
der beiden ,,Pseudo—Koordinaten“ 35 und 4 ergibt, angegeben. Die erweiterte Tragheits-

matrix B(q,.) setzt sich aus vier Untermatrizen zusammen:

Byi(qe) Byo(qe)

BlL(g.) Bro(q.) | (2.18)

B(q.) =
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Diese Matrix hat fiir vier Drehwinkel (3; bis 1) und zwei elastische Koordinaten (o7 und

0s1) die Dimension 6 x 6. Sie ist mit ihren einzelnen Elementen in Bild 2.4 dargestellt.

Bi | B2 | Bz | By | 011 | O3

61 blOlO 61020 61030 61040 blOll 61031

ﬂ? 62010 62020 62030 62040 62011 62031

ﬂ?) 63010 63020 63030 63040 63011 63031

ﬂ4 b4010 b4020 b4030 b4040 b4011 b4031

J11 51110 51120 51130 51140 51111 51131

931 | bs110 | b3120 || b330 | 03140 | D3111 | b3131]

Bild 2.4: Erweiterte Tragheitsmatrix B(q.)

Bedingt durch die Tatsache, dal 5, = [y = 0 gilt, reduziert sich die Dimension der
Tragheitsmatrix auf 4 x 4. Die relevanten Elemente von B(q.) sind durch Kéastchen

gekennzeichnet. So ergibt sich die ,echte* Tragheitsmatrix H(q):

| Hys(q) Hos(q)

H — 2.19
D=1 Hl(q) Hulg) (2.19)
thlO h1020 h1011 h1021 blOlO 61030 61011 61031
h2010 h2020 h2011 h2021 — b3010 b3030 63011 63031
h1110 h1120 hllll h1121 61110 61130 bllll 61131
h2110 h2120 h2111 h2121 b3110 b3130 b3111 b3131

Die Bedeutung der Indizes ist wie folgt: Der erste Index bezeichnet die Nummer des
Gliedes, der zweite die Nummer der Koordinate, wobei starre Koordinaten durch eine
Null gekennzeichnet werden. Entsprechendes gilt fiir den dritten und vierten Index. So
beschreibt z. B. das Matrixelement hy159 die Beziehung zwischen der ersten elastischen
Koordinate des ersten Glieds und der starren (Winkel-) Koordinate des zweiten Gliedes'.
Die Berechnung der einzelnen Elemente ist in Arteaga Pérez (1995b) beschrieben: Fiir

die Matrix Hg4(q) erfolgt die Berechnung der Elemente durch:

baono = Zn: Sp { (Ta—anaTi) F; (Th—l UhhTi)T} s (2-20)

t=max(c,h)

wobei

11>

"T A By Ao By VA B A (2.21)

U haogo anstatt hep ist als Indizierung geeigneter, wenn verallgemeinerte elastische Koordinaten ver-
wendet werden.
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"y £ EyApnEngr ... Ao Ei A, (2.22)
0A
U, & h (2.23)
Iqno
F 2 C+ D6 ((Cij + Cg) +> 5ikCikj) =F' (2.24)
7=1 k=1
Ci é / [xivyivziv1]T[xi7yi7zi71]dm (225)
Glied;
A
Ci; = /Gl, . [0 95 i 1] [Grigs byijs b2, 0)dm (2.26)
L. & b b 01 s b o Oldm = CL
Clk] N /G]~ d [¢1’2k7 ¢y2k7 ¢sz7 0] [¢x217 ¢ywv ¢ZZJ7 O]dm - Ciﬂf (2'27)

gilt. Hierbei sind nur die Elemente der erweiterten Tragheitsmatrix zu berechnen, die
in Gl (2.19) auftreten. Die Berechnung der Matrizen C;, C;; und Cj; wird spater in
diesem Abschnitt durchgefithrt. So ergibt sich zum Beispiel das Element b1919 zu:

4
blmozzsp{(TOUllTi)Fi(TOUllTi)T} (2.28)

=1
—Ssp {(T0U11T1)F1(T0U11T1)T} + sp {(T0U11T2)F2(T0U11T2)T}
+ sp {(T0U11T3)F3(T0U11T3)T} + sp {(T0U11T4)F4(T0U11T4)T}
Hys(q) 148t sich durch
broas = Yha + > sp {(Th—thhﬁ) F; (TaNaﬁaTi)T} (2.29)
t=max(a+1,h)

berechnen, wobei

0 wenn o < h
Yha = . ~
sp {(Th_thhTa) DagTaT} wenn o > h
0 _ezaﬁ eyozﬁ ¢1’o¢ﬁ
ezoz _eacoz el
N, 2 s 0 5 Dyap (2.30)
_eyozﬁ exozﬁ 0 ¢zo¢ﬁ
0 0 0 0
D.s £ Cus+ > 0arCargs (2.31)
k=1
ist. Hss(q) ist durch
Ohkas = Mha + D, 5P {(ThNhkhTi) F; (TaNaﬁaTi)T} (2.32)

t=max(h,a)+1
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zu beschreiben, wobei

sp {ThChkgThT} wenn h = «
Nha = sp{(ThNhkhTa) DagTaT} wenn h < a . (2.33)
sp {(TaNagaTh) thThT} wenn h > «

Beim Berechnen der Tragheitsmatrix durch Anwendung der Gln. (2.20) bis (2.33) er-
gibt sich diese als Funktion von starren und elastischen Koordinaten. Im vorliegen-
den Forschungsbericht wird die Ndherung H(8,6) ~ H(0) angenommen (De Luca und
Siciliano 1993).

Fiir die Bestimmung der Matrizen C;, C;; und Cj;; miissen fiir jedes der vier Glieder die
Tragheitsmomente beziiglich der jeweiligen Drehachse berechnet werden. Die Matrix C;

ergibt sich fiir jedes Glied zu (Fu u. a. 1989)

Cz':/ i iy 2o e, e, 21, 1]d 2.34
Gliedi[xyz [ lei yi, 20, 1]dm (2.34)

[a2dm  [z;y.dm [aizdm [zdm
Jaiyidm  [yidm  [yizidm  [yidm
[xizdm  [yizedm  [22dm [ zdm
fxdm  [ydm  [zdm  [dm

%(_]acx + ]yy + ]zz) ]xy ]xz Mixsi
_ ]xy %(]xx - ]yy + ]zz) ]yz szsz
]xz ]yz %(]xx + ]yy - ]zz) MiZsi

Mz My, Mz M;

Die Berechnung der Tragheitsmomente fiir alle vier Glieder erfolgt nach folgendem Sche-

ma:

o Berechnung der Trigheitsmomente der einzelnen Kérper jedes Gliedes bezogen auf

ihre Schwerpunkte
o Ermittlung des Schwerpunktes des gesamten Korpers

e Zusammenfassung zum Gesamttrigheitsmoment bezogen auf den Gesamtschwer-

punkt

o Ermittlung des Gesamttragheitsmomentes bezogen auf die Drehachse

Es ist zu erwdhnen, dafl immer Symmetrie beziiglich der Langsachse des Roboters vor-
ausgesetzt wird. Das erste Glied ist schematisch in Bild 2.5 dargestellt. Es hat die

Gesamtlénge

ll — 111 —|— 112 (235)
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Bild 2.5: Zur Berechnung der Tragheitsmomente von Glied 1

und die Gesamtmasse
My = My + Mis. (2.36)

Die Numerierung der beiden Einzelkoérper geht aus Bild 2.5 hervor. Die Schwerpunktko-
ordinatensysteme dieser Einzelkérper werden mit den Indizes a bzw. b bezeichnet. Bei
der z;—Achse handelt es sich um die Drehachse. Unter der Annahme, dafl die Dicke des
Korpers 1.2 vernachlassigt werden kann, und unter Beriicksichtigung der Tatsache, daf
aus Symmetriegriinden gilt:

Lyy=1,.=1,,=0, (2.37)
ergibt sich die Matrix C; zu

]C11 0 0 Mlxsl
0 I, O 0
C, = 2 . 2.38
! 0 0 I, O (2.38)

Mlxsl 0 0 Ml

Die einzelnen Parameter der Matrix befinden sich im Anhang A.

Das zweite Glied besteht aus sieben einzelnen Korpern (vgl. Bild 2.6), von denen drei
zylindrische Kérper identisch sind (Korper 2.2.2). Korper 2.2.1 bezeichnet den Elektro-
motor. Das Glied 2 besitzt die Gesamtmasse

My = Moy + May = My + Mooy + 3 Moz + Mags + Maay. (2.39)

Zunéchst werden die Tragheitsmomente [,,, Iy, und I, von Koérper 2.1 beziiglich seines
Schwerpunktkoordinatensystems (,, ¥a, za) bestimmt. AnschlieBend erfolgt die Berech-

nung der Einzelmomente [, Iy und Ly, der Sechs anderen Koérper, auch jeweils auf
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23

T
by| P

a9 t
h22 T2

2.2.2

724
a) b) ‘
Bild 2.6: Glied 2 a) Seitenansicht; b) Draufsicht

€9

Ihre Schwerpunkte bezogen. Vernachldssigt wird dabei die Dicke von Koérper 2.2.2. Eine
weitere Besonderheit ergibt sich fiir die drei mit der Nummer 2.2.2 bezeichneten Kérper,
die sich nicht in einer Achse mit den anderen Kérpern befinden. Thre Tragheitsmomente
werden erst iiber die Abstande ds, €5 und f; (s. Bild 2.6 b)) auf die Motorachse umge-

rechnet.

Zai

La

! g

dIV

Bild 2.7: Glied 2 — Zur Lage der Koordinatensysteme

Anschliefend miissen alle Tragheitsmomente in das Koordinatensystem (a, 1, 2p) trans-
formiert werden. Mit diesem Koordinatensystem ist der Schwerpunkt der Sechs Koérper
(ohne Kérper 2.1) bezeichnet. Dies geschieht anhand der vertikalen Abstande (dp bis dyv)
ihrer Schwerpunktkoordinatensysteme von diesem Koordinatensystem, die in Bild 2.7 ver-
deutlicht sind. Schlielich wird das Gesamttrigheitsmoment des Gliedes 2 beziiglich des
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Koordinatensystems (&2, y2, 22) (Drehachse) berechnet. Das Endergebnis lautet:

]c21 0 0 M2x52

c,=| ¥ = 001 (2.40)

| 32
)
| g3
T
1 31
23: Za Zb
) 3.1 o .
3 | X3 Ta g3 Ih '
|
l
313‘ Ya b
3 T3 Ys3
r,  Ts3 Tp
Is1 l32

Bild 2.8: Zur Bestimmung der Tragheitsmomente fiir Glied 3

Die Vorgehensweise fiir das dritte Glied, das in Bild 2.8 dargestellt ist, ist dhnlich wie
bei dem ersten Glied, so daf sich die Matrix C'3, bezogen auf das Koordinatensystem der

Drehachse (23, ys, 23), zu

1031 0 0 MSxSS

0 I, 0 0
C; = 2.41
’ 0 0 I, O (241)

Mgl’sg 0 0 M3

ergibt.

Glied 4 besteht nunmehr aus drei Kérpern, die in Bild 2.9 dargestellt sind. Seine Gesamt-

masse ergibt sich zu
My = My + Mg + Mys. (2.42)
Nach den Berechnungen der Einzelmomente ergibt sich die Trigheitsmatrix Cy4 zu:

]c41 0 0 M4$S4

0 I, 0 0
C, = . 2.43
! 0 0 I, O (243)

M4$S4 0 0 M4
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[41
Tsq ‘
b3
z
“7d has
Z4T_, 4
Zac T4 - a4
Zax—— 4.1 b4
Zab ya
1 Zb = 4.2
\
a) b) |
T4
Bild 2.9: Glied 4 a) Seitenansicht; b) Draufsicht
Zur Berechnung von Fy nach Gl. (2.24) bzw. nach
Fy=C,+o0yy ((Cn + ClTl) + 011C111) = FlT, (2.44)
fehlen weiterhin die Matrizen Cy; und Cy4. Sie ergeben sich zu
Cn = /Gl' 4 [1}1, Y1, %1, 1]T[¢1’117 ¢y11 ) ¢Z11 ) O]dm (2'45)

Durch die Tatsache, daf} die Deformationen in 2- und z-Richtung gleich Null sind, verein-

facht sich Gl. (2.45) zu

0 210y, 0 0
0 26, 0 0
C =/ 291521, 1110, 44,0, 0)d :/ o dm (2.46
"7 Jatiedy (1 y1, 21, 11710, G |dm Glied; | 0 9160,,, 0 0O m (246)
0 ¢y, 00
0 thedl $1¢y11dm 0 0 0 wll 0 0
0 0 0 0fa]0 0O 0O
C, = = 2.47
TEnT 0 0 0 0 0 00 (2.47)
0 thedl ¢y11dm 0 0 0 1)11 0 0
Die Vereinfachung von Gl. (2.46) auf Gl. (2.47) ergibt sich aus Symmetriegriinden. Die

Matrix C1; berechnet sich ahnlich zu
Clll = /Gl' q [¢1’117 ¢y11 ) ¢Z11 ) O]T[¢w117 ¢y117 ¢Z11 ) O]dm (248)

und vereinfacht sich entsprechend:

2
Y11

Clll :/ [07¢y117070]T[07¢y117070]dm = / dm (249)
Glied; Glied;

jeniiN en N e BN en
jeniiN en N e BN en
jeniiN en N e BN en
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0 0 0 0 0O 0 00
0 f : 2 dm 0 0 A 0 2111 0 0
= C — Glied; *y11 =
LR 0 00 0 00
0 0 0 0 0O 0 00
Ganz analog ergeben sich die Matrizen C3; und Clsyq, die fiir die Gleichung
Fs=0C5+ 05 ((031 + Cgl) + 0310311) = Fg (2.50)
benétigt werden, zu:
0 0 0 0|A~|l0O O 00
Ca = = 2.51
o 0 0 00 0 0 00 (251)
0 Jatieds Pverdm 0 0 0 vy 00
und
0 0 0 0 0 0 00
0 f : ¢2 dm 0 0 A 0 Z311 0 0
C — Glieds *ya1 = 9 59
ot 0 0 00 0 0 0 0 (2:52)
0 0 0 0 0 0 00

Die Berechnung der Parameter w;;, v;; und z;1; wird experimentell durchgefiithrt und ist
in Abschnitt 3 beschrieben.

2.3 Berechnung der Steifigkeitsmatrix K

Die Steifigkeitsmatrix K berechnet sich zu:

kll 0
K = 2.53
el (2.5%)
mit den Elementen (Arteaga Pérez 1995b):
d*¢,,, d*6
b= [ BL S Sg 2.5
U Jatiear Y da? da? o (2:54)

sowie

d2q§ d2q§
k :/ El ¥o1 — TV g 2.55
o Glieas ¥ dx > da? - ( )

Aus den Gln. (2.54) und (2.55) zusammen mit den Gln. (2.46), (2.49), (2.51) und (2.52)

ergeben sich die folgenden Parameter:

L
wnzpi/ Tidy,, (x;)da; (2.56)
0
L
Uﬂ:/)i/ Gy (@)d; (2.57)
251 —pz/ ¢ dxz (258)

d2¢ 426
fy = / Jof R Y 9.59
! 0 Y de 2 d:z; ( )
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wobei dm; = p;da; gilt. Die Massenverteilung des ganzen Gliedes kann als einheitlich
angenommen werden, da der erste Teil der zugehorigen Eigenform Null ist (starrer Teil).
In der Regel wird der Parameter z;; als Normalisierungskriterium benutzt, d. h. es kann

angenommen werden, daf}

s (2.60)
mit der Konstante «;;. Daraus ergibt sich

ki = oW, (2.61)

Zwei gangige Normalisierungskriterien lauten z; = 1 (Meirovitch 1967) oder z; = M;

(De Luca und Siciliano 1991).

2.4 Bestimmung des Coriolis- und Zentrifugalkraftvektors

Der Coriolis- und Zentrifugalkraftvektor ist durch
he = Cl(q,q)q (2.62)

gegeben. Die Elemente der Matrix C(q, ¢) werden aus den Elementen der Tragheitsmatrix
H (q) durch partielles Ableiten nach den verallgemeinerten Koordinaten berechnet. So
ergibt sich ein Element dieser Matrix zu (Arteaga Pérez 1995b):

Crsaf = Z Z cijaﬁrsq‘ij (263)

=1 5=0

Al {ahmﬁ L e 8hma}‘

Cijaprs 9

2.64
a%’j aQaﬁ 0y ( )

Die einzelnen Parameter sind im Anhang A aufgefiihrt.

2.5 Motordynamik

In diesem Abschnitt erfolgt die Berechnung der Dynamik der beiden Gleichstrommo-
toren. Das von einem Einzelmotor ausgeiibte Moment 7 ergibt sich in Abhingigkeit
vom Motorwinkel § und von der Eingangsspannung U nach (Fu u. a. 1989, Spong und
Vidyasagar 1989) fiir den ¢-ten Motor zu:

riKm o K, Ky, ;

(1) = S = I i) - AR ), (2.65)

mit den im Anhang aufgefiihrten Konstanten. Werden diese Gleichungen fiir die bei-

den Motoren zusammengefafit und entsprechend erweitert, so ergeben sich die folgenden



2 Mathematische Modellbildung 15
Matrizen J, D und K, zu:
_ r1 K,
P2 e, 0 00 I 0
2 7oK,
g=| O w001 U (2.66)
0 0 00 0 0
0 0 00 0 0
o -
i Ko, K,
—h 2 0 0 0
D= 0 % 0 0 :
0 0 Dy 0
i 0 0 0 D3 |

wobei Dy und D3y die Strukturddmpfung der Glieder beschreiben, die experimentell zu

bestimmen sind. Anzumerken bleibt, dal auch die viskose Gelenkreibung experimentell

bestimmt werden sollte, da eine Reibungerhéhung wegen des Streifens mit der Tischflache

zu erwarten ist.

Am Ende der mathematischen Modellbildung lautet das Gesamtmodell:

(H(q)—I_J)q—l_hC(qvq)—l_Keq‘l’Dq:KmU:’U,

||

Kezlo 0

0 K

Ux
Uy

(2.67)

Das Blockschaltbild des Systems ist in Bild 2.10 dargestellt.
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| ; >
\
\
U q q 7 |
-1
Hgrn™ |

C(q,9)q

—4 K, U
\
\
\
\
\
\
|
\
\
\
\
\
\
\
\
\
|
\
\
\

Bild 2.10: Blockschaltbild des Modells des zweiachsigen elastischen Roboters
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3 Experimentelle Parameterbestimmung

In dem vorherigen Abschnitt ist die mathematische Modellbildung des zweiachsigen Ro-
boters des Fachgebiets durchgefithrt worden. Obwohl es theoretisch moglich ist, die Pa-
rameter des resultierenden Modells zu berechnen, ist es nicht zu erwarten, daf} sich diese
genau ergeben. Der Grund dafiir ist, dafl viele Vereinfachungen bei der Modellbildung
getroffen worden sind. Abgesehen davon ist es anspruchsvoll, die Eigenfrequenzen und
die Eigenformen der elastischen Glieder zu bestimmen. Andererseits ist aus dem Mo-
dellbildungsverfahren zu erkennen, daf§ deren Kenntnis, zusammen mit der Kenntnis der
Elemente der Matrix der viskosen Gelenkreibung und der Strukturddmpfung der Glieder
erlauben, den Roboter zu modellieren. Im vorliegenden Abschnitt wird ein Verfahren

zur experimentellen Bestimmung dieser Parameter vorgestellt, das im Blockschaltbild 3.1

Eigenfrequenzbestimmung

schematisch gezeigt ist.

Y

Dampfungsbestimmung

/

Reibungsbestimmung

/

Eigenformbestimmung

Bild 3.1: Reihenfolge der Parameterbestimmung des elastichen Roboters

Der erste Schritt soll die Ermittlung der Eigenfrequenzen sein, da sich diese relativ genau
und einfach erldutern lassen. Um die erste Figenfrequenz des ersten Gliedes zu schatzen,
muf} der Winkel 6, Sinussignalen mit gleichen Amplituden und verschiedenen Frequenzen
folgen, wahrend der Winkel §; moglichst bei Null bleibt, um den Einflufl der Coriolis—
und Zentrifugalkrafte und der Dynamik des zweiten Motors zu verringern. Um dieses Ziel

zu erreichen, wird ein PD—-Regler fiir jeden Motor in der Form

U = Kpi(Oai — 0;) + Kai(0ai — 0) (3.1)
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implementiert, wobei

, \Y ; \Y ; Vs ; Vs
[Xpl = 100_(1 [XPQ = 100@ [Xdl = 2,5—(1 [ng = 0,5— (32)

ra ra rad

ist. Da keine Tachometer zur Messung der Winkelgeschwindigkeit vorhanden sind, wird

diese durch

0;(k)—0;(k—1)
T

geschatzt, mit T' = 0,01s. Als Ausgang wird die durch einen DMS—Sensor gemessene

0i(k) ~ (3.3)

Spannung betrachtet. Um den Effekt hoherer Frequenzen zu verkleinern, wird ein digi-
taler Tschebyscheff-Filter zweiter Ordnung mit der Eckfrequenz wy = 125rad/s (20Hz)
ausgelegt:

_0,13342* 40,0072z 40,1334

P
(2) 22 1,16052 40,4344

(3.4)

Das erste Glied des Roboters hat eine doppelt so grole Massenverteilung wie das in
Bai (1996a, 1996b) modellierte, dessen erste Eigenfrequenz wyy ~ 3.,51rad/s (0,56Hz)
betrégt. Dem zufolge ist eine hohere Eigenfrequenz zu erwarten. In einem ersten Versuch
werden die Frequenzen zwischen 5rad/s und 9,4rad/s mit einer Schrittweite von 0,315rad/s
untersucht. Als maximale Amplitude des Sinussignals ist 5° ausgewihlt worden®. Das
Ergebnis ist in Bild 3.2 zu sehen, in welchem zu erkennen ist, da} wy; {iber 6,3rad/s
liegt. Das Experiment wird nun zwischen 6,3rad/s und 9,4rad/s mit einer Schrittweite
von 0,063rad/s wiederholt. Das Ergebnis ist in Bild 3.3 dargestellt. Es ist zu erkennen,
daB wy1 &~ 7,86rad/s (1,25Hz) betragt.

ﬁull/v

3 6 7 8 9
—» w/rad/s

Bild 3.2: Bestimmung der Eigenfrequenz des ersten elastischen Gliedes
(grobe Schrittweite)

° als Winkeleinheiten gegeben, aber in der Implemen-

2 Zur Verdeutlichung der Erkldrungen werden
tierung werden rad benutzt. Insbesondere bei der Beriicksichtigung der Reglerparameter und bei der

Reibungsbestimmung soll letzteres in Betracht gezogen werden.
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ﬁull/v

I _

4,5

6,5 7 7,5 8 8,5 9
— » w/rad/s
Bild 3.3: Bestimmung der Eigenfrequenz des ersten elastischen Gliedes
(feine Schrittweite)

Um wqq zu bestimmen, mufl der Winkel 8, einem Sinussignal folgen, wahrend ¢; moglichst
bei Null bleibt, so dafl der Einflul der Dynamik des ersten Motors verringert wird. Die
Frequenzen zwischen 6,3rad/s und 37,7rad/s mit einer Schrittweite von 0,63rad/s und
einer Sinusamplitude von 5° werden untersucht. Bild 3.4 zeigt das Ergebnis der Untersu-
chung, das verdeuchtlicht, daf ws; zwischen 20rad/s und 30rad/s liegt. Das Experiment
wird zwischen diesen beiden Frequenzen mit einer Schrittweite von 0,126rad/s wiederholt.

Aus Bild 3.5 ist zu ersehen, dafl ws; &~ 24, 59rad/s (3,91Hz) betrigt.

ﬁuzl/v

T

S =N W e OOy~

10 15 20 25 30 35
o w/rad/s
Bild 3.4: Bestimmung der Eigenfrequenz des zweiten elastischen Gliedes
(grobe Schrittweite)

Der néachste Schritt ist, die Dampfung der Glieder zu bestimmen. Dafiir wird als Soll-
Winkel des Motors an dem das Glied, dessen Dampfung zu bestimmen ist, befestigt ist,
ein Sinussignal mit der Eigenfrequenz vorgegeben. Der andere Motorwinkel soll wiederum
moglichst bei Null bleiben. Wenn die Schwingungen ein Maximum erreicht haben, wird
der Soll-Wert des Winkels zu Null gesetz, so daf} die Schwingungen von selbst abklingen.
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ﬁuzl/v

!

5

S =N W

20 22 24 26 28 30
_ 5y w/rad/s
Bild 3.5: Bestimmung der Eigenfrequenz des zweiten elastischen Gliedes
(feine Schrittweite)

Die Strukturddmpfung der Glieder kann durch (Stanway u. a. 1996)
£ 1 L1
D= s 5:n_11n(g) (3.5)
berechnen werden, wobei z, der Spitzewert des n—ten Zyklus ist. Fiir das erste Glied
wird ein Sinus mit einer Amplitude von 5° eingestellt. Nach 16s wird der Soll-Wert zu
Null gedndert. Das Frgebnis ist in Bild 3.6 zu sehen, woraus sich D ~ 0,264 und da-
mit Dy; = 2Dv/kyy ergibt. Es ist zu erwihnen, daB die Strukturdimpfung der Glieder

eine Linearkombination der Elemente der Trigheitsmatrix und der Steifigkeitsmatrix ist

(Meirovitch 1967), so dafl deren Berechnung etwas vereinfacht wird.

ﬁull/v

LI
A1

Ny

16 17 18 19 20
> t/S

Bild 3.6: Bestimmung der Dampfung des ersten elastischen Glieds

Im Fall des zweiten Gliedes wird ebenfalls ein Sinussignal mit einer Amplitude von 5°
gewahlt. Nach 5,11s wird der Soll-Wert zu Null eingestellt. Das Ergebnis ist in Bild 3.7 zu
sehen. Durch Anwendung von Gl. (3.5) ergibt sich D a0, 1859 und damit Ds; = 2D/ ks;.
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ﬁuzl/v
6 I\

ton

5 5,5 6 6,5 7
S t/s
Bild 3.7: Bestimmung der Dampfung des zweiten elastischen Gliedes

In diesem Forschungsbericht wird nur viskose Gelenkreibung beriicksichtigt. Obwohl man
die Sprungantwort fiir beide Motoren analysieren kann, 14t sich der Einflul der Elasti-
zitat nicht vernachléssigen. Deswegen wird das folgende Experiment durchgetfiihrt: Zuerst
fahrt der Motor des Gelenks, dessen viskose Reibung zu schétzen ist, einen bestimmten
Winkel 64; an. Dann wird die Verstarkung Kq; des durch Gl. (3.1) gegebenen PD—Reglers
auf einen kleinen negativen Wert eingestellt und ein Motorwinkel von Null angefahren.
Das Experiment wird mit gréfleren negativen Verstarkungen wiederholt, bis der Motor
anfangt zu schwingen. In diesem Fall entspricht — Kg;r; K/ R; der viskosen Gelenkrei-

bung D;o. Um bessere Ergebnisse zu erzielen, sollten K; und 04; moglichst klein sein.

Fiir den ersten Motor wird ein Winkel von 5° angefahren und K,; = 5V /rad ausgew&hlt.
Nach verschiedenen Versuchen schwingt der erste Motor fir K43 = —4,67Vs/rad, so daf
Dyg = 6,6082Nms/rad ist. Im Vergleich betrigt der vom Hersteller angegebene Wert
D1g ~ 4,0052Nms/rad. Der hohere Wert resultiert aus der Reibung an das Auflageflache.
Bild 3.8 zeigt 6, wobei zu erkennen ist, daf} sich ein Grenzzyklus einstellt.

01

| e e e
oo | L L
A laten
el LU

—6°

0 1 2 3 4
— » t/S
Bild 3.8: Bestimmung der Reibung des ersten Motors
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Das gleiche Experiment wird bei dem zweiten Motor ausgefiihrt. In diesem Fall wird 65 zu
5 eingestellt und Ko = 5V /rad gewdhlt. Bei dem Auftreten der Schwingungen lautet der
Wert von K43 = —1,1Vs/rad, was Dy &~ 0,101Nms/rad bedeutet. Der vom Hersteller
angegebene Wert lautet Dy &~ 0, 1770Nms/rad. Da nicht zu erwarten ist, daf} die viskose
Reibung sich verkleinert hat, ergibt sich, dafl das vorgeschlagene Verfahren zur Bestim-
mung der viskosen Reibung fiir kleine Werte nicht genau genug ist. In diesem Fall wird

der nominale Wert von Dy angenommen. Das Bild 3.9 zeigt die Oszillationen des Motors.

02
20°

o Iy
Lo A AU

A THER TN AT
LU

0 0,5 1 L5 2 2,5

Bild 3.9: Bestimmung der Reibung des zweiten Motors

Der letzte Schritt besteht darin, die Figenformen der Glieder zu bestimmen. Insbesondere
sind die Parameter ¢11(l1), ¢s1(l3), #11(l1) und ¢4 (l3) aus den Gln. (2.9)—(2.15), sowie

V11, V31, wip und ws; aus den Gln. (2.56) und (2.57) zu berechnen.

Um die erste Eigenform zu schétzen, soll ein Sinussignal fiir den ersten Motorwinkel
gewahlt werden. Dieses Experiment wird mit einer Amplitude von 5° und Frequenzen
von 0,5, 1 und 1,25Hz wiederholt. Um ¢11(x1) zu bestimmen, wird das dreidimensionale
Mefsystem DynaSight verwendet. Es werden vier Leuchtdioden jeweils im Abstand von
10cm in Richtung des Gliedes geklebt. Ein weiterer zu berticksichtigender Faktor ist, daf
die Figenform beziiglich des Kordinatensystems (x4, y1) ermittelt werden muf (siehe Bild
2.3). Letzteres ist recht einfach durchzufiihren, da ein durch DynaSight in dem ortsfesten

Koordinatensystem gemessener Punkt p; sich mittels der Gleichung

L cos(fy) sin(6q) '
P = l —sin(fy) cos(6y) ]pZ (36)

im Koordinatensystem (a1, y1) ausdriicken 148t. Ferner muf eine Normalisierung bezii-

glich

I
211 = Pl/o ¢11(21)day (3.7)
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stattfinden, wobei z1; = 1kg ausgewéahlt ist (Meirovitch 1967). Da die Anzahl der Dioden
gerade ist, bietet sich die numerische Integration nach der Simpsonschen Regel an (Gohler

1987):

Tn

/y(:z;)d:z; ~

Zo

| =

(y(zo) +y(xn) +4(y(z1) + -+ y(2n-1)) (3.8)

+2(y(22) + -+ y(Tn-2)).

Um die Ergebnisse zu verbessern, werden die umgerechneten Positionen der Dioden mit ei-
nem digitalen Tschebyscheff-Filter zweiter Ordnung mit der Eckfrequenz wy = 62, 8rad/s
(10Hz) gefiltert:

10,0996z — 0,129z + 0,0996

P
(2) 22— 1,6099z +0,6794

(3.9)

wobei T' = 0,01s ist. Um die Eigenschwingform zu bestimmen, wird ein Mittelwert der
maximalen Amplituden berechnet und die Normalisierung nach Gl. (3.7) durchgefiihrt.
Bild 3.10 zeigt einen typischen Verlauf einer berechneten normalisierten Eigenform, wobei
fir 1 <0,03m ¢11(x1) = 0 gilt, da es um den starren Teil des Gliedes geht. wqy und vqy
wurden nach Gln. (2.56) und (2.57) nach der Normalisierung berechnet.

</511(51?1) A

0
0 0,1 0,2 0,3 04 ©

— $1/m

Bild 3.10: Erste Eigenschwingform des ersten elastischen Gliedes

Der Parameter ¢,(l;) wird durch die Steigung

11(0,43) — ¢11(0,33
¢’u(h)~¢ ( )0 1¢ (0,33) (3.10)

geschétzt.

Die Bestimmung der zweiten Figenform ist anspruchsvoller, da diese im Koordinatensy-
stem (w3, y3) angegeben werden mufl (siehe Bild 2.3). Um das Problem zu losen, gibt



3 Experimentelle Parameterbestimmung 24

es prinzipiell zwei Moglichkeiten: 1. man klebt eine Diode in den Ursprung des Koordi-
natensystems und eine weitere in Richtung der xz3—Achse (Bild 3.11), so da man in der
Lage ist, die Position eines Punktes vom ortsfesten Koordinatensystem ins dritte Koordi-
natensystem umzurechen. 2. man benutzt Gl. (2.4), um die Beziehung zwischen Punkten
im dritten und ortsfesten Koordinatensystem zu erldutern. Beide Méglichkeiten werden
ausprobiert.

y3—Achse

Dioden

ra—Achse

Motor 2
Scheibe

Bild 3.11: Diodenpositionierung zur Bestimmung von ¢s;(x3)

Da ¢11(l1) und ¢/, (/1) bekannt sind, kann jeder Punkt

s = (3.11)

im Koordinatensystem (23, y3) im ortsfesten Koordinatensystem als
T3 = A1E1A2E2A33T‘3 (312)

ausgedriickt werden. Um die Genaugigkeit der Positionsbestimmung zu erhéhen, wird die

folgende Anderung in die Matrix E; (vgl. Gl. (2.9)) eingefiigt:

CZ1 —021 0 ll CZ1 —¢/11(11)511 0 ll

g o= | fa a0 b |} dull)on €z 0 o(l)dn | (3.13)
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

wobei ¢, = /1 — 02 ist. Aus Gl (3.13) ist erkennbar, dafl 6., und somit 61, (also die erste

verallgemeinerte elastische Koordinate) und die Deformation é,, notwendig sind. 611 kann
indirekt iiber die durch den DMS—Sensor gemessene Spanung €,11; bestimmt werden, da
die Deformation é,, direkt proportional zu €,11 ist (unter der Annahme, daf§ die hoheren
verallgemeinerten elastischen Koordinaten vernachlassigbar sind). Das heifit, es gibt eine
Konstante K i1, so daf3

51/1 = [(51161]11 (314)
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gilt. ¢6,, ist wie bei der Bestimmung der ersten Eigenform zu berechnen. Wenn man
mehrere Messungen durchfithrt, kann die Methode der kleinsten Fehlerquadrate in der

Form
ald

ala

- (3.15)

angewendet werden (Isermann 1992), wobei p der zu bestimmende Parameter, a der

Eingangsvektor und b der Ausgangsvektor ist. Daraus ergibt sich
Koy ~ 0,0108%. (3.16)

Das Bild 3.12 zeigt einen typischen Verlauf der durch DynaSight bestimmten Deformation
und der durch den DMS—Sensor geschidtzten Deformation, wobei die aus der Filteran-
wendung resultirende Phasenverschiebung bei der Berechnung von K47 bereits korrigiert
wurde.

5y17 Aenﬁun/m

Y f T f f
T T T g
A N S S N N SO S S N SR |
j 0o hooh
i (I ! o j i i i j fi | i
0.02 | N | I O i
| (R i
R N ] |
]

0,01 f\
0 I
—0,01 ff | ‘
—0,02] | | \/ RN
—0,03 I A

0

5 10 15 20
— t/S
Bild 3.12: Berechnung des Verstarkungsfaktors K.

Durch DynaSight bestimmte Deformation (—) und Keai€,11 (- - -)

Da der Wert von ¢11(l1) bekannt ist, 1a8t sich 611 mit

o [(511
o011 = uo_— € 3.17
A R (3:17)

berechnen. Obwohl man in der Lage ist, die Position von bis zu vier Punkten in Richtung

der x3—Achse zu messen und damit die zweite Eigenform wie die erste zu bestimmen,
werden nur zwei Dioden geklebt, um einen fairen Vergleich mit der anderen zur Defor-
mationbestimmung des Gliedes vorgeschlagenen Methode durchzufithren. Als Soll-Wert
fiir 6 wird ein Sinussignal mit Frequenzen von 1, 2, 3 und 3,25Hz und Amplitude 5°
vorgegeben. Wiederholt man das Experiment wie beim ersten Glied, ergibt sich die in

Bild 3.13 gezeigte normierte Eigenform (z3; = 1kg).
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¢31($3) A

¥

e S I GU RN

0 0,1 0,2 0,3 04 ©
— :1;3/m

Bild 3.13: Erste Eigenschwingform des zweiten elastischen Gliedes

Der Parameter ¢4, (l3) 148t sich durch die Steigung

21(0,43) — ¢31(0,23
¢51(13)~¢ ( )0 2¢ (6,23) (3.18)

anndhern. Schétzt man die Eigenform mit zwei Dioden zur Umrechnung der Deforma-
tion ins ortsfeste Koordinatensystem, ergeben sich die gleichen Werte, so dafl kaum ein
Unterschied zwischen beiden Methoden erkennbar ist.

Damit sind alle unbekannten Parameter der Bewegungsgleichung (2.1) bestimmt. Tabelle

B.1 in Anhang ?? fafit die Ergebnisse zusammen.
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Das in den beiden letzten Abschnitten beschriebene analytische Modell des elastischen
Arms wird in diesem Abschnitt mit den am Versuchstriger aufgenommenen Daten ver-

glichen. Dabei werden zunichst sprungférmige Signale und anschliefend sinusférmige

Signale untersucht.

Zunichst werden Modell und Versuchstrager mit einem Sollwertsprung von 0° fiir den
ersten Winkel und von 10° fiir den zweiten Winkel beaufschlagt. Beide Motoren sind
mit dem nach Gl. (3.1) gegebenen PD-Gelenkwinkelregler ausgestattet. Bild 4.1 zeigt
den Vergleich der Winkel und der Deformationen, wobei die Messung durch die durch-
gezogene Linie und die Simulation durch die gestrichelte Linie verdeutlicht werden. Die
Deformationen werden fiir den Versuchstrager direkt aus den gemessenen DMS—Signalen,

multipliziert mit dem Faktor K. (siehe Gl. 3.14), ermittelt.

01 07 20 02 120

o S — = g || N
T || T f
o || e

—0,6° 0°
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7 I
0 01 /£ .
/ \
’ ’ S [ ~
/ / \ Fi
/ ! \ 2 /N
0 ! \ Y /AN ~
N \
/ ~ 0 | \ ! \ ! \\ ,/ \ 7

\\\ / /r \\ // \\f - 1 \ 7 \\ // N
— 07 01 \ I\ / \ i \ / \ // .
0,02

—0,05|/
—0,03 Pl
0 1 2 3 0 1 2 3

Bild 4.1: Winkel und Deformationen fiir die Sollwerte 64; = 0° und 6,5 = 10°, Messung

(—) und Simulation (- - -)

Es ist deutlich zu erkennen, dafl die Schwingungsneigung des Modells viel héher ist als
in der Realitat. Dies kann teilweise auf eine schlechte Wahl der Normierung der Eigen-
formen zuriickgefiihrt werden, denn je gréfier der Betrag der Eigenschwingform ist, desto
kleiner ergibt sich der Betrag der elastischen Koordinate, so daff man an die Grenzen
der Rechnergenauigkeit st6ft. Durch eine geeignetere Wahl der Faktoren «q; und asy
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(s. Gl. (2.60)) gelingt es, die Schwingungen des Modells zu reduzieren. Ferner gibt das
modifizierte Modell den Verlauf vor allem der ersten elastischen Koordinate viel besser

wieder. Die Ergebnisse fiir eine Wahl von
a; = 0,015 und «ay =0,01 (4.1)

sind in Bild 4.2 dargestellt. Wie oben erwédhnt, sind diese Faktoren klein gewéhlt worden,
um zu erzwingen, daf} sich die simulierte elastische Koordinate vergrofiert. Die Parameter

des modifizierten Modells befinden sich in Tabelle B.1 im Anhang B.

01 1 : 02
o ‘ T
10°
—0,2° | |
—0,4° 5° ’ ”””””””””” 7
—0,6° 0° 1‘
0 1 2 3
— t/S
8,1/ m by3/m 5 |
—0,005 —0,005 M i
—0,01 —0,01 ————————————————————— —————————————————— e
—0,015 3 3 —0,015 ﬂ i
0 1 2 3 0 1 2
— /s — /3

Bild 4.2: Winkel und Deformationen fiir die Sollwerte 845 = 0° und 04, = 10° mit Modi-
fikation, Messung (—) und Simulation (- - -)

Bild 4.2 zeigt den Vergleich von Messung und Simulation fiir die gleichen Sollwerte wie
in Bild 4.1. Die Winkelverldufe sind bis auf einen Offset bei #;, der aut das Spiel in den
Motoren zuriickzufiihren ist, gut wiedergegeben. Der Winkelverlauf von 0, wird deutlich
von der Reibung auf der Tischfliche und dem Spiel beeinflufit, aber die Schwingungen
von Mef}- und Simulationsdaten klingen gleichzeitig ab. Auch die Deformationen zeigen
qualitativ den gleichen Verlauf. Inbesondere der Verlauf von ¢,; wird ausgezeichnet wie-
dergegeben. Es mufl erwdhnt werden, dafl der elastische Roboter des Fachgebiets sehr
flexibel ist, so dafl der EinfluB héherer Eigenfrequenzen von Bedeutung ist. Um dies zu
zeigen, fahrt der erste Motor einen Winkel von 10° an, wihrend der zweite Winkel auf
—10° eingestellt wird. Das Ergebnis ist in Bild 4.3 zu sehen.
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6y 12° 6y 0°
T 8° W T )
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\ 0
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Bild 4.3: Winkel und Deformationen fiir die Sollwerte 05 = 10° und 04 = —10°, Mes-

sung (—) und Simulation (- - -)
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Bild 4.4: Winkel 6, und 0, sowie Endeffektorposition g, yg fir die Sollwerte 05 = 5°
und 645 = 0°, Messung (—) und Simulation (- - -)
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Offensichtlich sind in der Simulation weniger Schwingungen als bei den gemessenen Da-
ten zu beobachten, was den Einfluf} der héheren Figenfrequenzen zeigt. Abgesehen davon
ist zu erwdhnen, daf} sich die Randbedingungen fiir das erste Glied bei einem solchen
Verlauf stark gedndert haben miifiten. Bessere Ergebnisse zeigen sich, wenn zwei elasti-
sche Koordinaten pro Glied beriicksichtigt werden (De Luca und Siciliano 1991). Fiir
einen Sollwertvektor von [01,04]7 = [5°,0°]7 sind in Bild 4.4 die Winkelverldufe sowie
die absolute Position des FEndeffektors gezeigt. Der zweite Motorwinkel weist eine héhere
Dynamik auf als in der Realitdt, aber qualitativ passen die beiden gut. Die Position
in x—Richtung wird im Modell bis auf eine stationdre Abweichung von 4 mm genau be-
rechnet, in y—Richtung betridgt die Abweichung auch nur wenige Millimeter, was bei der

geringen Genauigkeit der optischen Positionsmessung als sehr gut bezeichnet werden kann.

51/1 /m | } 51/3/m
T0,015 : |
0,01

0,005
0
—0,005 | | 3 3
—0,01 i i —0,01 |
0 0

T0,005 ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,, I |

Tm2/cm
51,85
51,80
51,75 |F
51,70
51,65 |- 3
51,60 i %

0

— /s —= /3
Bild 4.5: Deformationen é,; und 6,5 sowie Position des zweiten Motors @2, yme fiir die
Sollwerte 64 = 0° und 642 = —10°, Messung (—) und Simulation (- - -)

Das Ergebnis der Validierung mit dem 4. Sprungsignal (64 = 0°,60, = —10°) zeigt Bild
4.5. Dargestellt sind die Deformationen sowie die Position des zweiten Motors. Es ist zu
erkennen, dafl gemessene und simulierte Daten gut {ibereinstimmen. Anzumerken bleibt,
daBl die gemessene Deformation des ersten Gliedes nicht verschwindet, was teilweise auf
die Reibung auf der Tischfliche und teilweise auf die Ungenauigkeit der DMS—Sensoren

zuriickzufiihren ist.

Allgemein 148t sich zu der Validierung mit Sprungsignalen sagen, dafl die noch deutlich
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sichtbaren Abweichungen zwischen den Ausgéngen des Modells und den Messungen am
Versuchstriger auf die Tatsache zuriickzufithren sind, dafl ein Sprung eher die héheren

Eigenfrequenzen des Systems anregt, und die nicht modellierte Dynamik zu den vorhan-
denen Differenzen fiihrt.

oy1/m 3 dy3/m

T

0,02 0,005
0 0 %0
—»t/s —w1/s
Bild 4.6: Deformationen é,; und d,3 fiir die Sollwerte 64 = 5°sin(270,2¢) und 64 =
5°sin(270,51), Messung (—) und Simulation (- - -)

Als néchstes werden zwei Sinussignale als Sollwerte fiir die Winkel mit den Frequenzen
fi=0,2 Hz und f; = 0,5 Hz und den Amplituden A; = A, = 5° betrachtet. Bild 4.6

zeigt die Deformationen im Vergleich. Eine deutliche Ubereinstimmung ist zu erkennen.
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| —10 J |
96, 5 i —15 a
0 10 20 0 10 70
—=1/s —1

Bild 4.7: Position des zweiten Motors a2, yme sowie des Endeffektors xg, yg fir die
Sollwerte 851 = 5°sin(270,2¢) und 042 = 5°sin(270,5¢), Messung (—) und
Simulation (- - -)
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Fir die gleichen Sollwerte sind in Bild 4.7 die Positionen in x- und y-Richtung des zwei-
ten Motors sowie des Endeffektors gezeigt. Auch hier sind die Modellausgénge qualitativ
korrekt, bis auf konstante Offsets zu den gemessenen Groflen. Diese konstanten Offsets
sind teilweise auf die in der Realitit vorhandene Reibung des Motors und des Endef-
fektors auf dem Tisch zuriickzufithren, die im Modell nicht berticksichtigt wurde. Der
Vergleich der Systemantworten auf das letzte Eingangssignal, ein sinusférmiger Sollwert
mit der Frequenz f; = 1 Hz und der Amplitude Ay = 5° fiir den zweiten Motorwinkel,
wahrend der erste bei Null bleibt, ist in Bild 4.8 dargestellt. Der zweite Winkel ist durch
die Regelung fast genau iibereinstimmend, wihrend der Effekt des Spiels im Getriebe bei
dem ersten Winkel deutlich zu erkennen ist. Die Deformationen stimmen auch sehr gut
iiberein. Obwohl zu erwarten war, daf} fiir ein einziges Sinussignal beide elastische Koor-
dinaten in Simulation und Messung die gleiche Frequenz besitzen, bleibt anzumerken, daf}

die Phase der gemessenen und der simulierten Daten die gleiche ist, was die Ergebnisse
als gut bezeichnen 14ft.
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Bild 4.8: Winkel und Deformationen fiir die Sollwerte 63 = 0° und 042 = 5°sin(2xt),
Messung (—) und Simulation (- - -)

Zusammenfassend 148t sich sagen, dafli das Modell mit den oben schon erwédhnten Ein-
schrankungen durch die nichtmodellierte hohere Dynamik und die ebenfalls nicht model-
lierten Reibungseffekte sowie bei der beschrankten Verlafilichkeit der zur Parameterbe-
stimmung verwendeten absoluten Positionsmessung das Verhalten des realen Systems mit
hinreichender Giite wiederspiegelt.
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5 Zusammenfassung und Ausblick

Im vorliegenden Forschungsbericht wird ein Verfahren zur experimentellen Modellbildung
eines zweiachsigen elastischen Roboters vorgeschlagen. In einem ersten Schritt wird der
Roboter analytisch modelliert. Obwohl der Roboter aus nur zwei elastischen Gliedern
besteht, wird er in vier Glieder aufgeteilt, so dafl der Einflufl der starren und elastischen
Teile des Handhabungssystems besser voneinander getrennt modelliert werden kann. Um
die Tragheitsmomente der Glieder zu berechnen, werden verschiedene Vereinfachungen
angenommen. Zum Beispiel wird jedes Glied als symmetrisch betrachtet. Die Massen der

Elemente sind gewogen worden, wahrend die Langen der Glieder genau bekannt sind.

In der analytischen Modellbildung treten viele Parameter explizit auf, die sich experimen-
tell bestimmen lassen. Insbesondere kann man die Eigenfrequenzen und Eigenschwingfor-
men der elastischen Glieder relativ einfach ermitteln, wenn nur eine elastische Koordinate
pro Glied in Betracht gezogen wird. Ausgédnge des Systems sind die durch DMS—Sensoren
gemessene zur Dehnung der Glieder proportionale Spannung, die Winkel der Motoren und
die durch das dreidimensionale Mefisystem DynaSight berechneten Positionen von an den
Gliedern befestigten Dioden.

Versucht man, das Modell mit den berechneten Parametern zu simulieren, ergibt sich die
Bedeutung der Normalisierung der Eigenformen, da die Simulationsergebnisse in einem er-
sten Versuch als schlecht zu bezeichnen sind. Andert man das Normalisierungskriterium,
verbessern sich die Simulationsergebnisse deutlich. Der Grund dafiir liegt in der Rech-
nergenauigkeit, da aus einer rein theoretischen Perspektive das Normalisierungskriterium
keine Rolle spielt. Letzteres bedeutet, daf} eine geeignete Normalisierung der Eigenformen

das Modell des Roboters weniger empfindlich gegen numerische Ungenauigkeiten macht.

Obwohl sich die Simulationsergebnisse fiir viele Testsignale als gut erwiesen haben, ist
deutlich zu erkennen, daff mindestens eine weitere elastische Koordinate pro Glied mo-
delliert werden sollte, um die Giite des Modells zu verbessern. Es ist auch zu erwdhnen,
daf sich der Finflul komplexerer und schwierig zu modellierender Nichtlinearitédten wie
Reibung und Spiel in den Getrieben und Stérungen wie der Zug an den Gliedern durch die
Netzkabel verkleinern 148t, wenn das Verfahren von Euler—Lagrange zur Modellbildung

elastischer Roboter verwendet wird.

Als zukiinftige Arbeit bleibt die Implementierung eines nichtlinearen Reglers, der die hier
vorgestellte Modellstruktur ausnutzt. Der erste Verfasser dankt dem DAAD fiir seine

Unterstiitzung.
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A Analytisches Modell

In vorliegendem Anhang wird das im Abschnitt 2 berechnete Modell angegeben, das in
Matrixform durch

(H(g)+J)§g+hc(q.9)+ K.+ D = K,,U

beschrieben wird, wobei h.(q,q) = C(q, q)q ist. Die Matrizen J, D und K, sind in GL.
(2.66) gegeben. Die Elemente der Tragheitsmatrix H(q) lauten

hioi0=p1 + p2c2
hio20 = ps + pacz
hio11 = ps + pscz
hio21 = pr + psca
h2020 = P

ha011 = p11 + pr2ca
h2021 = p13

hitin = p1s + preca
hi121 = pi7 + p1sea

ha121 = P1o-

Die Elemente der Matrix C(q,¢q) sind

C1010 = —p25292/2
1020 = —S2(p201 + pedi1 + 2pafz + psdar) /2
Clo11 = —p65292/2

C1021 = —p85292/2

C2010 = 32(p291 + p6511 + p8521)/2
2020 =0

C2011 = 32(p691 + p16511 + p18521)/2
C2021 = 32(p891 + }718('511)/2

C1110 = _p65292/2
c1120 = —S2(pef1 + pr6d11 + 2p126s + p1sdar)/2
C1111 = —}71632(92/2

C1121 = —p188292/2

C2110 = —p85292/2
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C2120 = —32(p891 + }718511)/2
C2111 = —p188292/2

2121 =0.
Die Parameter p; definieren sich als

pr=1lcii 4+ Teio+ e + 2L Moy + Iegp + l%Mz + 2M3loly + Tesy + Tese + M:J%
-I-M:al% + Md% + Md% + lcan + Leag + 2Myloly + M4l§ + 2Myxa4ls

p2 = 2Mswsly + 2Msxgsly + 2Myxaaly + 2Mylsly + 2Mylsly + 2Myxul,

ps=1cs1 + Lcsg + Teqn + Leqo + M4l§ + 2Myxals

pa=p2/2

ps = d11(l) i My + d11 (L) Moz + ¢4 (1) i Moz + 2Myxaalsd (1) + Mali ¢y (1)1
+Myl5¢5 (h) + Maly g () + Maladni () + Mal3é4, (h) + Ten iy (I)
-I-]C42¢/11(11) + w11 + 103245/11(11) + M311¢11(11) + M3ll¢/11(11)12 + M312¢11(11)

+ M54, (1) 4 Tesidyy (1) + Teaadly (1) + ¢4 (1) e

Pe = M451?s411</5/11(11) + 2M451?s412¢/11(11) + M411¢/11(11)13 + 2M413¢/11(11)l2 + M4l3¢11(l1)
+Myzaadii(l) + Mazadin(ly) + 2Mszaalady, (1) + Maxalidy (1)

pr=ws1 + ¢a1(ls) Myzes + Lcazdyy (Is) + ¢4 (Is) Myzaals + ¢4, (Is) L eqy + ¢31(ls) Myls
ps = vs1ly + varl + @a1(ls) Myly + 45%1([3)M4$s4l1 + ¢31(Z3)M4$s412 + &s1(13) Myls
Po=ps3

pi1 = Tesadh (1) + Tesi @y (1) + 2Mazaalsdy (1) + Ml ¢, (1)
+leadhy (L) + Leawdyy(h)

P12 = M351?s3¢11(11) + M351?s312¢/11(11) + M451?s412¢/11(11)
+Mylsdyy (l)la + Mylsdri(h) + Mazaadni (1)

P13 =pr
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Pis=z11 + 45/11(11)21021 + 2¢71, (1) p11 (1) My + ¢/11(11)21022 + ¢11(11)2M2
FMagii (10)? + 2M3¢, (L) ladi(h) + Magly ()25 + Teaadyy (1) 4 Teardhy (1)
F2My2a0y (1)%ls + Mydra(l)? + Madyy (1)1 4 Tear ¢y (h)? + Teasdly (h)°
+ My (1) + 2Ma 67, (L) g (1)

Pie = 2M3$s3¢11(11)¢/11(11) + 2M3$s3¢/11(11)212 + 2M451?s4¢/11(11)212 + 2M4¢/11(11)Z3¢11(11)
+2M4$s4¢11(11)¢/11(11) + 2M4¢/11(11)21312

P17 = w31¢/11(11) + %1(13)]041?5/11(11) + ¢31(13)M4¢/11(11)13 + ¢/11(ll)]c42¢é1(13)
+¢31(Z3)M4$s4¢/11(11) + ¢é1(13)M4$s4¢/11(11)13

p1s = 0310, (11)la + v31011 (1) + @31(l3) Madr1(lh) + ¢a1(l3)Magy (1112
+ 651 (13) Mazaadra (h) + 65 (1a) Mazaa gy (1)1

P19 =231 + 4%1([3)2]041 + 2¢5,(13) pa1(I3) Mywss + 4%1(13)2]042 + ¢31(l3)2M4

Die Langen (in m), Massen (in kg) und Tragheitsmomente (in kgm?) des ersten Gliedes

sind durch

[1=0,43
l11=0,04
l12=0,4
a;=0,02
by =0,04

My =0,07

My, =0,228

My = My + My
x11=0,01
x12=0,23

tg = (Myyz11 + Mygaa) /M,y
Tey = My l3, /12 + Myyli, /12 + My a?, + Migad,
Ty = Myyai/12
Teys= Mb /12

gegeben. Die Langen (in m), Massen (in kg) und Tragheitsmomente (in kgm?) des zweiten

Gliedes sind durch

l,=0,087
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[ =0,057
l5.=0,03
l51=0,06
ay=0,02
by =0,04
d, =0,044
es=0,022
f2=0,038
ro1 =0,015
ros =0,05
roqa =0,075
ho1=0,11
hes =0,08
dr=0,035
dip=-0,02
dir=0,015
drv = —0,062
My =0,1296
Mss1 =0,250
Mss=0,014
M323=0,2
Mss4=0,185
Moy = My + 3Maas + Mooz + Moy
M2 = My + My,
= My (a3 + b3)/12
= My (b3 + 13,)/12
= Moy (a3 + 15,)/12
]xbl M221(37“21 -I-h 1)/12
Iy = M221(3T21 + h21)/12
L :Mzzlr§1/2
Lo = Mazs(hiy /4 + 23)
Lo = Masa(h3y /4 + di + 2€3)
Lz =3Mys2ds
Lz = M2237“§3/4
]yb?) = M2237“§3/4
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Lps= M2237“§3/2
Lha = M2247“§4/4
]yb4 = M2247“§4/4
Lpa= M2247“§4/2

zb = (Magrdy + 3Maaadir + Maasdinn + Magadiy )/ Moz

Ty :MZZZab/MZ

2e = Moz 21,/ My

d,= M221d% + 3M222d%1 + M223d%11 + M224d%\,

lps =10 + lezf + Lobr + Lobe + Lobs + Loba + Moo (2 — 25)2 — M22212) +d,

Ly =1y + ]\421(2752 + :L’z) + Lyp1r + Lyp2 + Lyps + Lyba + Mao((lan, — $s)2 + (2 — Zs)z)

—Mzzzg +d,

Ls=1.+ leflfz + Lb1 + Lz + Lbs + Lba + Moo (lap, — 51?5)2

Toy = loa + 74
Lovy = I
Ly =Iys + le‘fz
L.o=1.+ le’zz
Teoy =(—lppa + Lyyo + 1.22) /2
Teyy=(Lppo — Lyya + 1.22) /2
Teys=(Lppo + Ly — 1.22) /2

gegeben. Die Langen (in m), Massen (in kg) und Triagheitsmomente (in kgm?) des dritten
Gliedes sind durch

[3=0,43
[31=0,04
[30=0,4
az=0,015
b3=0,03

M3 =0,05

M3, =0,11
M3z = M3y + M3,
x31=0,01
x32=0,23

Ts3 = (Msy1a31 + Magss)/Ms
Tesy = M 15, /12 + Msyl3, /12 4+ Maya3, + Mayas,
Tezy= Msyaz/12
Tegs = Msb2/12
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gegeben. Die Langen (in m), Massen (in kg) und Trigheitsmomente (in kgm?) des vierten

Gliedes sind durch

[4=0,035
l41=0,07
ay=0,015
by=0,03
ry=0,075
My =0,05
M, =0,185
M,y3=0,02

My=My + Mgy + My
hys=0,066

Zap = —0,025
Zac = 0,048

re4=0,035

Ipa= M41(ai + bi)/l?
Lya= My (b3 + 13,)/12
L= My (a3 +13)/12
Ly = Myri /4
Ly, = Myri /4
Ly =Mqyri /2
Lo = My3h3,/12
L= Myzh2,/12
1..=0
2 = (Myazap + Muszac) /My
Los=1pa+ Loy + Loc + ]\441252 + Myo(zs — Zab)2 + My3(2ac — 25)2
Lys=1ya+ Ly + Lye + ]\441252 + Mys(zs — Zab)2 + My3(zac — 25)2
Li=L.+ Ly + L.
Lova=Ips
Tyya=1Iys + M4$z4
L.a=1.+ M451?§4
Teqy=(—Topa+ Tyys + 1.24)/2
Teso=(Tppa — Tyya + 1.24)/2
Tess=(Tppa+ Lyys — 1.24)/2
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gegeben. Die gleichméafig verteilte Masse der Glieder betragt

p1=0,57kg
p2=0,214kg.

Die Motorkostanten sind

ry =66

ro =43
Jm1 = 6,437 x 10 kgm?
Jm2=1,25 x 10~ %kgm”®

Ry =20

Ry =210
K1 =0,04288Nm/A
K2 =0,04484Nm/A
K1 =0,0423Vs/rad
Ky =0,0448Vs/rad.
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B Experimentell bestimmte Parameter

Tabelle B.1 fafit die Parameter zusammen, die in Kapitel 3 experimentell bestimmt wor-

den sind und sich nach der im Kapitel 4 eingefiigten neuen Normalisierung gedndert haben.

Tabelle B.1: Experimentell bestimmte Parameter des Robotersmodells

Parameter | Ermittelter Wert Ermittelter Wert
(211 = 1 kg, 231 = 1 kg) | (211 = 0,015% kg, 231 = 0,01* kg)

Wiy 7,86 rad/s 7,86 rad/s
w31 24,59 rad/s 24,59 rad/s
Dyo 6,6082 Nms/rad 6,6082 Nms/rad
Dy 0,1770 Nms/rad 0,1770 Nms/rad
Dyy 4,1501 Ns/m 0,0623 Ns/m
D3y 9,1426 Ns/m 0,0914 Ns/m
- 0,388 ke 0,0058 ke
Wiy 0,1091 kgm 0,0016 kgm
Vst 0,249 ke 0,00249 kg
sy 0,0675 kem 0,000675 kegm
éu1(1h) 1,057 0,0609

' (L) 13,1485 m™" 0,1972 m !
6e1 (1) 6,1854 0,061854

() | 16,834 m™! 0,16834 m~"




