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� Einleitung

Zur Regelung elastischer Roboter ist es vorteilhaft	 ein gutes Modell zu haben� Eine

M�oglichkeit besteht darin	 eine Modellstruktur vorzugeben und deren Parameter zu iden�

ti�zieren �Schwarz 
��
�� Andererseits kann ein elastischer Roboter unter der Annahme

kleiner Deformationen analytisch modelliert werden �Book 
���	 Yuan u� a� 
���	 Artea�

ga P�erez 
���b�� Ein Nachteil besteht allerdings darin	 da� die Eigenformen der elasti�

schen Glieder bekannt sein m�ussen� Um dieses Problem zu l�osen	 wird das sogenannte

assumed mode shapes Verfahren in der Regel eingesetzt	 das die Eigenformen eines �ahn�

lichen Systems benutzt Meirovitch �
���	 
����� Weitere Schwierigkeiten ergeben sich

daraus	 da� sowohl die Eigenfrequenzen der Glieder als auch deren Strukturd�ampfung sich

schwer berechnen lassen� Aus diesen Gr�unden bietet sich eine experimentelle Ermittlung

der Parameter an�

Der vorliegende Bericht besch�aftigt sich mit der Modellbildung des zweiachsigen Roboters

des Fachgebiets� Dieser Roboter besteht aus zwei in der Ebene angeordneten elastischen

Gliedern� Zuerst wird er nach dem Euler
Lagrange Verfahren analytisch modelliert	 so

da� das resultierende Modell eine Funktion unbekannter Parameter ist�

Nach der analytischen Modellbildung werden die unbekannten Parameter experimentell

bestimmt� Um dieses Ziel zu erreichen	 stehen als Ausg�ange des Handhabungssystems

vier durch das dreidimensionale Positionsme�system DynaSight gemessene Punkte und

die Dehnung an der Basis jedes Gliedes zur Verf�ugung�

Eine Beschreibung des zweiachsigen elastischen Roboters und dessen analytische Modell�

bildung ist in Abschnitt � erl�autert� Hierbei wird angenommen	 da� weder Elastizit�at noch

Spiel in den Gelenken auftritt� In Abschnitt � wird eine Methode zur experimentellen Pa�

rameterbestimmung vorgeschlagen und in Abschnitt � werden einige Simulationsergebnis�

se des Modells vorgestellt und mit gemessenen Daten verglichen� Eine Zusammenfassung

und ein Ausblick in Abschnitt � schlie�en den Forschungsbericht ab�



� Mathematische Modellbildung �

� Mathematische Modellbildung

Die Modellbildung des zweiachsigen elastischen Roboters des Fachgebiets �Bild ��
� wird

nach dem Euler
Lagrange
Verfahren durchgef�uhrt �Book 
���	 Yuan u� a� 
���	 Artea�

ga P�erez 
���b�� Eine komplette Beschreibung des Roboters ist in Bai �
���a� zu �nden�

Bild ���� Zweiachsiger elastischer Roboter

Da es sich um einen ebenen Roboter handelt	 ist der Gravitationsvektor g�q� gleich Null�

Im folgenden wird die Berechnung der einzelnen Systemmatrizen und �vektoren f�ur den

speziellen Anwendungsfall vorgenommen�

Das Verfahren zur Modellbildung ist so aufgebaut	 da� prinzipiell nur Glieder ber�ucksich�

tigt werden	 die vollkommen elastisch sind� Im vorliegenden Fall gibt es zwei Glieder	

die jeweils aus zwei starren und einem elastischen Teilst�uck bestehen� Obwohl die Ver�

nachl�assigung der starren Teilst�ucke die Modellbildung deutlich vereinfachen w�urde	 w�are

nicht zu erwarten	 da� sich die Dynamik des Roboters bei dieser Vereinfachung noch

ausreichend gut beschreiben lassen w�urde� Aus diesem Grunde wird der zweiachsige ela�

stische Roboter in vier Glieder aufgeteilt� Diese Aufteilung kann Bild ��� entnommen

werden�

Glied 
 Glied �

Glied �

Glied �

Bild ���� Einteilung des Roboters in vier Glieder
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Hier stellen die Glieder 
 und � die vollkommen elastischen Glieder dar� Die Glieder

� und � sind starr� Obwohl die Glieder 
 und � noch jeweils in einen starren und

einen elastischen Teil aufgeteilt werden k�onnten	 wird diese Kon�guration gew�ahlt	 da

die Glieder als vollst�andig elastisch betrachtet werden k�onnen	 denn der erste Abschnitt

der jeweiligen Eigenform ist Null� Aus Gr�unden der verfahrensbedingten Systematik

�Arteaga P�erez 
���b� werden diese starren Glieder zun�achst wie die beiden anderen be�

handelt und formal mit einer Drehachse und einer zugeh�origen Drehkoordinate versehen	

die sp�ater einfach vernachl�assigt werden k�onnen� Die Vorgehensweise wird an entspre�

chender Stelle weiter unten n�aher erl�autert�

��� Koordinaten und Transformationsmatrizen

Alle vier Glieder werden nun so betrachtet	 als k�onnten sie um ihre Drehachsen rotieren	

was in der Praxis nur auf die beiden elastischen Glieder zutri�t�
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Bild ���� Skizze zur Festlegung der Koordinaten

Bild ��� zeigt die Bezeichnung der Koordinatensysteme� Wie ebenfalls in Bild ��� zu sehen

ist	 werden bei der Modellbildung zun�achst sechs Koordinaten ber�ucksichtigt	 vier starre

und zwei elastische� Der erweiterte Vektor qe der verallgemeinerten Koordinaten ergibt

sich somit zu

qe � �
�� 
�� 
�� 
�� ���� ����
T � ���
�

Es ist zu beachten	 da� der
�
echte� Vektor der verallgemeinerten Koordinaten aus den

oben dargelegten Gr�unden lautet�

q � ���� ��� ���� ����
T
� �����
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wobei gilt�


� � ��� 
� �  � 
� � ��� 
� �  � ��� � ���� ��� � ��� � �����

Um die Kinematik jedes Punktes pi mit dem Ortsvektor ri auf dem Roboter zu be�

stimmen	 m�ussen die Transformationsmatrizen zur Umrechnung ins ortsfeste Koordina�

tensystem bestimmt werden� Die Transformationsmatrix zur Umrechnung vom i�ten ins

ortsfeste Koordinatensystem ergibt sich zu �Arteaga P�erez 
���a��

�Ti
�

�Ti � A�E�A�E� � � �Ai��Ei��Ai
�

� �Ti��Ai �����

�Ti��
�

�Ti��Ei�� �����

T��A�� �����

mit

�ri �
�T i

iri� �����

Um diese Matrizen T i zu bestimmen	 m�ussen die einzelnen Transformationsmatrizen E�

bis E� f�ur die Glieder sowie A� bis A� f�ur die Drehgelenke berechnet werden� Die Trans�

formationsmatrizen f�ur die Glieder ergeben sich nach �Arteaga P�erez 
���a� n�aherungs�

weise zu�

Ei �

�
�����


 ��zi �yi li � �xi
�zi 
 ��xi �yi
��yi �xi 
 �zi
   


�
����� � �����

In dem hier vorliegenden Fall erh�alt man die folgende Transformationsmatrix f�ur das erste

Glied�

E� �

�
�����


 ��z�  l�
�z� 
  �y�
  
  

   


�
����� � �����

wobei angenommen wird	 da� es keine Deformation in x� und z�Richtung und keine Tor�

sion in x� und y�Richtung gibt� Es gilt

�z� �
d����l��

dx�
��� � �����l����� � �����l����� ���
 �

und

�y� � ����l������ ���

�

Die Matrix f�ur das Glied � ist durch

E� �

�
�����
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�
����� ���
��
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gegeben� In Analogie folgen die beiden anderen Matrizen zu

E� �

�
�����


 ��z�  l�
�z� 
  �y�
  
  

   


�
����� � ���
��

mit

�z� �
d����l��

dx�
��� � �����l����� � �����l����� ���
��

und

�y� � ����l������ ���
��

sowie f�ur das vierte Glied�

E� �

�
�����
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�
����� � ���
��

Die Matrizen zur Transformation an den Drehgelenken ergeben sich jeweils unter Zuhil�

fenahme der Drehwinkel zu �Canudas de Wit u� a� 
�����

A��

�
�����

cos 
� � sin
�   

sin
� cos 
�   
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� � sin 
�   

sin
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�   

  
  

   


�
����� �

Daraus folgt die Kenntnis der Koordinaten aller Punkte pi im ortsfesten Koordinatensy�

stem�

��� Bestimmung der Tr�agheitsmatrix H�q�

Nachdem die Kinematik der Punkte auf dem Roboter bekannt ist	 kann die Tr�agheitsma�

trix berechnet werden� Zun�achst wird die Tr�agheitsmatrixB�qe� des erweiterten Systems

bestimmt	 und dann die
�
echte� Tr�agheitsmatrix H�q�	 die sich durch Vernachl�assigung

der beiden
�
Pseudo
Koordinaten� 
� und 
� ergibt	 angegeben� Die erweiterte Tr�agheits�

matrix B�qe� setzt sich aus vier Untermatrizen zusammen�

B�qe� �

�
B���qe� B���qe�

BT
���qe� B���qe�

�
� ���
��
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Diese Matrix hat f�ur vier Drehwinkel �
� bis 
�� und zwei elastische Koordinaten ���� und

���� die Dimension �� �� Sie ist mit ihren einzelnen Elementen in Bild ��� dargestellt�
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� 
� 
� ��� ���
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�


�


�

���

���

b���� b���� b���� b���� b���� b����

b���� b���� b���� b���� b���� b����

b���� b���� b���� b���� b���� b����

b���� b���� b���� b���� b���� b����

b���� b���� b���� b���� b���� b����

b���� b���� b���� b���� b���� b����

Bild ���� Erweiterte Tr�agheitsmatrix B�qe�

Bedingt durch die Tatsache	 da� 
� � 
� �  gilt	 reduziert sich die Dimension der

Tr�agheitsmatrix auf � � �� Die relevanten Elemente von B�qe� sind durch K�astchen

gekennzeichnet� So ergibt sich die
�
echte� Tr�agheitsmatrix H�q��

H�q��

�
H���q� H���q�

HT
���q� H���q�

�
���
��

�

�
�����
h���� h���� h���� h����
h���� h���� h���� h����
h���� h���� h���� h����
h���� h���� h���� h����

�
����� �

�
�����
b���� b���� b���� b����
b���� b���� b���� b����
b���� b���� b���� b����
b���� b���� b���� b����

�
����� �

Die Bedeutung der Indizes ist wie folgt� Der erste Index bezeichnet die Nummer des

Gliedes	 der zweite die Nummer der Koordinate	 wobei starre Koordinaten durch eine

Null gekennzeichnet werden� Entsprechendes gilt f�ur den dritten und vierten Index� So

beschreibt z� B� das Matrixelement h���� die Beziehung zwischen der ersten elastischen

Koordinate des ersten Glieds und der starren �Winkel�� Koordinate des zweiten Gliedes��

Die Berechnung der einzelnen Elemente ist in Arteaga P�erez �
���b� beschrieben� F�ur

die Matrix H ���q� erfolgt die Berechnung der Elemente durch�

b��h��
nX

i�max���h�

sp
	


�T���U�
� �Ti

�
Fi



�Th��Uh

h �Ti

�T�
� ���� �

wobei

hTi

�

� Ah	�Eh	�Ah	�Eh	� � � �Ai��Ei��Ai ����
�

�
h���� anstatt h�� ist als Indizierung geeigneter� wenn verallgemeinerte elastische Koordinaten ver�

wendet werden�
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h �Ti
�

� EhAh	�Eh	� � � �Ai��Ei��Ai ������

Uh
�

�
�Ah

�qh�
������

Fi
�

� Ci �
miX
j��

�ij



�Cij �C

T
ij� �

miX
k��

�ikCikj

�
� F T

i ������

Ci
�

�
Z
Gliedi

�xi� yi� zi� 
�
T�xi� yi� zi� 
�dm ������

Cij
�

�
Z
Gliedi

�xi� yi� zi� 
�
T��xij� �yij � �zij �  �dm ������

Cikj
�

�
Z
Gliedi

��xik� �yik� �zik�  �
T��xij� �yij� �zij �  �dm � CT

ijk ������

gilt� Hierbei sind nur die Elemente der erweiterten Tr�agheitsmatrix zu berechnen	 die

in Gl� ���
�� auftreten� Die Berechnung der Matrizen Ci	 Cij und Cikj wird sp�ater in

diesem Abschnitt durchgef�uhrt� So ergibt sich zum Beispiel das Element b���� zu�

b�����
�X

i��

sp
n
� �T �U �

� �T i�F i� �T �U�
� �T i�

T
o

������

� sp
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� �T �U�
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T
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T
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T
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T
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H���q� l�a�t sich durch

bh��� � �h� �
nX

i�max��	��h�

sp
n


�Th��Uh
h �Ti

�
Fi �T�N��

�Ti�
T
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������

berechnen	 wobei

�h� �
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���
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 � h
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�Th��Uh
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�
D��T
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o
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k��
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�

ist� H���q� ist durch
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zu beschreiben	 wobei

�h� �

����������
���������
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n
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o
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Beim Berechnen der Tr�agheitsmatrix durch Anwendung der Gln� ���� � bis ������ er�

gibt sich diese als Funktion von starren und elastischen Koordinaten� Im vorliegen�

den Forschungsbericht wird die N�aherung H��� �� � H��� angenommen �De Luca und

Siciliano 
�����

F�ur die Bestimmung der Matrizen Ci	 Cij und Cikj m�ussen f�ur jedes der vier Glieder die

Tr�agheitsmomente bez�uglich der jeweiligen Drehachse berechnet werden� Die Matrix Ci

ergibt sich f�ur jedes Glied zu �Fu u� a� 
����

Ci �
Z
Gliedi

�xi� yi� zi� 
�
T�xi� yi� zi� 
�dm ������

�

�
�����

R
x�idm

R
xiyidm

R
xizidm

R
xidmR

xiyidm
R
y�i dm

R
yizidm

R
yidmR

xizidm
R
yizidm

R
z�i dm

R
zidmR

xidm
R
yidm

R
zidm

R
dm

�
�����

�

�
�����

�
�
��Ixx � Iyy � Izz� Ixy Ixz Mixsi

Ixy
�
�
�Ixx � Iyy � Izz� Iyz Miysi

Ixz Iyz
�
�
�Ixx � Iyy � Izz� Mizsi

Mixsi Miysi Mizsi Mi

�
����� �

Die Berechnung der Tr�agheitsmomente f�ur alle vier Glieder erfolgt nach folgendem Sche�

ma�

� Berechnung der Tr�agheitsmomente der einzelnen K�orper jedes Gliedes bezogen auf

ihre Schwerpunkte

� Ermittlung des Schwerpunktes des gesamten K�orpers

� Zusammenfassung zum Gesamttr�agheitsmoment bezogen auf den Gesamtschwer�

punkt

� Ermittlung des Gesamttr�agheitsmomentes bezogen auf die Drehachse

Es ist zu erw�ahnen	 da� immer Symmetrie bez�uglich der L�angsachse des Roboters vor�

ausgesetzt wird� Das erste Glied ist schematisch in Bild ��� dargestellt� Es hat die

Gesamtl�ange

l� � l�� � l�� ������



� Mathematische Modellbildung �


�
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z�

x�
zs�
xs�
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y�

ys�
xs� xb
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a�
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ya

x�

x��
xs�

x��

Bild ���� Zur Berechnung der Tr�agheitsmomente von Glied 


und die Gesamtmasse

M� � M�� �M��� ������

Die Numerierung der beiden Einzelk�orper geht aus Bild ��� hervor� Die Schwerpunktko�

ordinatensysteme dieser Einzelk�orper werden mit den Indizes a bzw� b bezeichnet� Bei

der z�
Achse handelt es sich um die Drehachse� Unter der Annahme	 da� die Dicke des

K�orpers 
�� vernachl�assigt werden kann	 und unter Ber�ucksichtigung der Tatsache	 da�

aus Symmetriegr�unden gilt�

Ixy � Ixz � Iyz �  � ������

ergibt sich die Matrix C� zu

C� �

�
�����

Ic��   M�xs�
 Ic��   

  Ic��  

M�xs�   M�

�
����� � ������

Die einzelnen Parameter der Matrix be�nden sich im Anhang A�

Das zweite Glied besteht aus sieben einzelnen K�orpern �vgl� Bild ����	 von denen drei

zylindrische K�orper identisch sind �K�orper ������� K�orper ����
 bezeichnet den Elektro�

motor� Das Glied � besitzt die Gesamtmasse

M� � M�� �M�� � M�� �M��� � �M��� �M��� �M���� ������

Zun�achst werden die Tr�agheitsmomente Ixa	 Iya und Iza von K�orper ��
 bez�uglich seines

Schwerpunktkoordinatensystems �xa� ya� za� bestimmt� Anschlie�end erfolgt die Berech�

nung der Einzelmomente Ixbi	 Iybi und Izbi der Sechs anderen K�orper	 auch jeweils auf
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z�

x�b�

�����

����


�����

y�

x�

r��

r��

r��

h��

h��

h����

a�

l�� d� f�

e�

�����

a� b�

Bild ��	� Glied � a� Seitenansicht! b� Draufsicht

Ihre Schwerpunkte bezogen� Vernachl�assigt wird dabei die Dicke von K�orper ������ Eine

weitere Besonderheit ergibt sich f�ur die drei mit der Nummer ����� bezeichneten K�orper	

die sich nicht in einer Achse mit den anderen K�orpern be�nden� Ihre Tr�agheitsmomente

werden erst �uber die Abst�ande d�	 e� und f� �s� Bild ��� b�� auf die Motorachse umge�

rechnet�

za

xa
dIII

dI zb dII

dIV

l�a lab

l�

Bild ���� Glied � 
 Zur Lage der Koordinatensysteme

Anschlie�end m�ussen alle Tr�agheitsmomente in das Koordinatensystem �xb	 yb	 zb� trans�

formiert werden� Mit diesem Koordinatensystem ist der Schwerpunkt der Sechs K�orper

�ohne K�orper ��
� bezeichnet� Dies geschieht anhand der vertikalen Abst�ande �dI bis dIV�

ihrer Schwerpunktkoordinatensysteme von diesemKoordinatensystem	 die in Bild ��� ver�

deutlicht sind� Schlie�lich wird das Gesamttr�agheitsmoment des Gliedes � bez�uglich des
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Koordinatensystems �x�� y�� z�� �Drehachse� berechnet� Das Endergebnis lautet�

C� �

�
�����

Ic��   M�xs�
 Ic��   

  Ic��  

M�xs�   M�

�
����� � ���� �

��

���

z�

x�
zs�
xs�

zb

xb

xa

y�

ys�
xs� xb

yb

l�� l��

a�

b�

za

xa

ya

x�

x��
xs�

x��

Bild ��
� Zur Bestimmung der Tr�agheitsmomente f�ur Glied �

Die Vorgehensweise f�ur das dritte Glied	 das in Bild ��� dargestellt ist	 ist �ahnlich wie

bei dem ersten Glied	 so da� sich die Matrix C�	 bezogen auf das Koordinatensystem der

Drehachse �x�� y�� z��	 zu

C� �

�
�����

Ic��   M�xs�
 Ic��   

  Ic��  

M�xs�   M�

�
����� ����
�

ergibt�

Glied � besteht nunmehr aus drei K�orpern	 die in Bild ��� dargestellt sind� Seine Gesamt�

masse ergibt sich zu

M� � M�� �M�� �M��� ������

Nach den Berechnungen der Einzelmomente ergibt sich die Tr�agheitsmatrix C� zu�

C� �

�
�����

Ic��   M�xs�
 Ic��   

  Ic��  

M�xs�   M�

�
����� � ������
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���

��


���

h��

b�

xs�

zac

zab

l��

a�

r�

zc
xc

zaxa

zbxb

z�
x�

b�a�

Bild ���� Glied � a� Seitenansicht! b� Draufsicht

Zur Berechnung von F � nach Gl� ������ bzw� nach

F� � C� � ���


�C�� �C

T
��� � ���C���

�
� F T

� � ������

fehlen weiterhin die Matrizen C�� und C���� Sie ergeben sich zu

C�� �
Z
Glied�

�x�� y�� z�� 
�
T��x��� �y�� � �z�� �  �dm� ������

Durch die Tatsache	 da� die Deformationen in x� und z�Richtung gleich Null sind	 verein�

facht sich Gl� ������ zu

C���
Z
Glied�

�x�� y�� z�� 
�
T� � �y���  �  �dm �

Z
Glied�

�
�����

 x��y��   

 z��y��   

 y��y��   

 �y��   

�
�����dm ������

� C���

�
�����

 
R
Glied� x��y��dm   

    

    

 
R
Glied�

�y��dm   

�
�����

�

�

�
�����
 w��   

    

    

 v��   

�
����� � ������

Die Vereinfachung von Gl� ������ auf Gl� ������ ergibt sich aus Symmetriegr�unden� Die

Matrix C��� berechnet sich �ahnlich zu

C��� �
Z
Glied�

��x��� �y�� � �z���  �
T��x��� �y��� �z�� �  �dm ������

und vereinfacht sich entsprechend�

C����
Z
Glied�

� � �y���  �  �
T� � �y�� �  �  �dm �

Z
Glied�

�
�����

    

 ��y��   

    

    

�
�����dm ������
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� C����

�
�����

    

 
R
Glied� �

�
y��

dm   

    

    

�
�����

�

�

�
�����

    

 z���   

    

    

�
����� �

Ganz analog ergeben sich die Matrizen C�� und C���	 die f�ur die Gleichung

F � � C� � ���


�C�� �C

T
��� � ���C���

�
� F T

� ���� �

ben�otigt werden	 zu�

C�� �

�
�����

 
R
Glied�

x��y��dm   

    

    

 
R
Glied�

�y��dm   

�
�����

�

�

�
�����
 w��   

    

    

 v��   

�
����� ����
�

und

C��� �

�
�����

    

 
R
Glied� �

�
y��

dm   

    

    

�
�����

�

�

�
�����

    

 z���   

    

    

�
����� � ������

Die Berechnung der Parameter wi�	 vi� und zi�� wird experimentell durchgef�uhrt und ist

in Abschnitt � beschrieben�

��� Berechnung der Stei�gkeitsmatrix K

Die Stei�gkeitsmatrixK berechnet sich zu�

K �

�
k��  

 k��

�
� ������

mit den Elementen �Arteaga P�erez 
���b��

k�� �
Z
Glied�

EIy�
d��y��

dx��

d��y��

dx��
dx�� ������

sowie

k�� �
Z
Glied�

EIy�
d��y��

dx��

d��y��

dx��
dx�� ������

Aus den Gln� ������ und ������ zusammen mit den Gln� ������	 ������	 ����
� und ������

ergeben sich die folgenden Parameter�

wi�� �i

Z li

�
xi�yi��xi�dxi ������

vi�� �i

Z li

�
�yi��xi�dxi ������

zi�� �i

Z li

�
��yi��xi�dxi ������

ki��
Z li

�
EIyi

d��yi�

dx�i

d��yi�

dx�i
dxi� ������
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wobei dmi � �idxi gilt� Die Massenverteilung des ganzen Gliedes kann als einheitlich

angenommen werden	 da der erste Teil der zugeh�origen Eigenform Null ist �starrer Teil��

In der Regel wird der Parameter zi� als Normalisierungskriterium benutzt	 d� h� es kann

angenommen werden	 da�

zi� � 
�
i�� ���� �

mit der Konstante 
i�� Daraus ergibt sich

ki� � 
�
i�	

�
i�� ����
�

Zwei g�angige Normalisierungskriterien lauten zi � 
 �Meirovitch 
���� oder zi � Mi

�De Luca und Siciliano 
��
��

��� Bestimmung des Coriolis� und Zentrifugalkraftvektors

Der Coriolis� und Zentrifugalkraftvektor ist durch

hc � C�q� �q� �q ������

gegeben� Die Elemente der MatrixC�q� �q� werden aus den Elementen der Tr�agheitsmatrix

H�q� durch partielles Ableiten nach den verallgemeinerten Koordinaten berechnet� So

ergibt sich ein Element dieser Matrix zu �Arteaga P�erez 
���b��

crs�� �
nX

i��

miX
j��

cij��rs �qij ������

cij��rs
�

�



�

�
�hrs��
�qij

�
�hrsij
�q��

� �hij��
�qrs

�
� ������

Die einzelnen Parameter sind im Anhang A aufgef�uhrt�

��	 Motordynamik

In diesem Abschnitt erfolgt die Berechnung der Dynamik der beiden Gleichstrommo�

toren� Das von einem Einzelmotor ausge�ubte Moment � ergibt sich in Abh�angigkeit

vom Motorwinkel � und von der Eingangsspannung U nach �Fu u� a� 
���	 Spong und

Vidyasagar 
���� f�ur den i�ten Motor zu�

�i�t� �
riKmi

Ri

Ui�t�� r�i Jmi
��i�t�� r�i

Kmi
Kbi

Ri

��i�t�� ������

mit den im Anhang aufgef�uhrten Konstanten� Werden diese Gleichungen f�ur die bei�

den Motoren zusammengefa�t und entsprechend erweitert	 so ergeben sich die folgenden
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Matrizen J 	 D und Km zu�

J �

�
�����
r��Jm�

   

 r��Jm�
  

    

    

�
����� Km �

�
�������

r�Km�

R�
 

 
r�Km�

R�

  

  

�
�������

������

D�

�
��������

r��Km�
Kb�

R�
   

 
r��Km�

Kb�
R�

  

  D��  

   D��

�
��������
�

wobei D�� und D�� die Strukturd�ampfung der Glieder beschreiben	 die experimentell zu

bestimmen sind� Anzumerken bleibt	 da� auch die viskose Gelenkreibung experimentell

bestimmt werden sollte	 da eine Reibungerh�ohung wegen des Streifens mit der Tisch"�ache

zu erwarten ist�

Am Ende der mathematischen Modellbildung lautet das Gesamtmodell�

�H�q� � J� �q � hc�q� �q� �Keq �D �q �KmU � u ������

Ke�

�
� �

� K

�
U �

�
U�

U�

�

Das Blockschaltbild des Systems ist in Bild ��
 dargestellt�
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U

KmU

u
�H�q��J ���

R R

D

C�q� �q� �q

Ke

�q �q q

�

Bild ����� Blockschaltbild des Modells des zweiachsigen elastischen Roboters
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� Experimentelle Parameterbestimmung

In dem vorherigen Abschnitt ist die mathematische Modellbildung des zweiachsigen Ro�

boters des Fachgebiets durchgef�uhrt worden� Obwohl es theoretisch m�oglich ist	 die Pa�

rameter des resultierenden Modells zu berechnen	 ist es nicht zu erwarten	 da� sich diese

genau ergeben� Der Grund daf�ur ist	 da� viele Vereinfachungen bei der Modellbildung

getro�en worden sind� Abgesehen davon ist es anspruchsvoll	 die Eigenfrequenzen und

die Eigenformen der elastischen Glieder zu bestimmen� Andererseits ist aus dem Mo�

dellbildungsverfahren zu erkennen	 da� deren Kenntnis	 zusammen mit der Kenntnis der

Elemente der Matrix der viskosen Gelenkreibung und der Strukturd�ampfung der Glieder

erlauben	 den Roboter zu modellieren� Im vorliegenden Abschnitt wird ein Verfahren

zur experimentellen Bestimmung dieser Parameter vorgestellt	 das im Blockschaltbild ��


schematisch gezeigt ist�

Anfang

Eigenfrequenzbestimmung

D�ampfungsbestimmung

Reibungsbestimmung

Eigenformbestimmung

Ende

Bild ���� Reihenfolge der Parameterbestimmung des elastichen Roboters

Der erste Schritt soll die Ermittlung der Eigenfrequenzen sein	 da sich diese relativ genau

und einfach erl�autern lassen� Um die erste Eigenfrequenz des ersten Gliedes zu sch�atzen	

mu� der Winkel �� Sinussignalen mit gleichen Amplituden und verschiedenen Frequenzen

folgen	 w�ahrend der Winkel �� m�oglichst bei Null bleibt	 um den Ein"u� der Coriolis


und Zentrifugalkr�afte und der Dynamik des zweiten Motors zu verringern� Um dieses Ziel

zu erreichen	 wird ein PD
Regler f�ur jeden Motor in der Form

Ui � Kpi��di � �i� �Kdi� ��di � ��i� ���
�
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implementiert	 wobei

Kp� � 
  
V

rad
Kp� � 
  

V

rad
Kd� � �� �

Vs

rad
Kd� �  � �

Vs

rad
�����

ist� Da keine Tachometer zur Messung der Winkelgeschwindigkeit vorhanden sind	 wird

diese durch

��i�k� �
�i�k�� �i�k � 
�

T
�����

gesch�atzt	 mit T �  �  
s� Als Ausgang wird die durch einen DMS
Sensor gemessene

Spannung betrachtet� Um den E�ekt h�oherer Frequenzen zu verkleinern	 wird ein digi�

taler Tschebysche�
Filter zweiter Ordnung mit der Eckfrequenz 	� � 
��rad�s �� Hz�

ausgelegt�

F �z� �
 � 
���z� �  �   ��z �  � 
���

z� � 
� 
� �z �  � ����
� �����

Das erste Glied des Roboters hat eine doppelt so gro�e Massenverteilung wie das in

Bai �
���a	 
���b� modellierte	 dessen erste Eigenfrequenz 	�� � �	�
rad�s � 	��Hz�

betr�agt� Dem zufolge ist eine h�ohere Eigenfrequenz zu erwarten� In einem ersten Versuch

werden die Frequenzen zwischen �rad�s und �	�rad�s mit einer Schrittweite von  	�
�rad�s

untersucht� Als maximale Amplitude des Sinussignals ist �� ausgew�ahlt worden�� Das

Ergebnis ist in Bild ��� zu sehen	 in welchem zu erkennen ist	 da� 	�� �uber �	�rad�s

liegt� Das Experiment wird nun zwischen �	�rad�s und �	�rad�s mit einer Schrittweite

von  	 ��rad�s wiederholt� Das Ergebnis ist in Bild ��� dargestellt� Es ist zu erkennen	

da� 	�� � �� ��rad�s �
	��Hz� betr�agt�

�

�

�

�



� � � � �

�v���V

	�rad�s

Bild ���� Bestimmung der Eigenfrequenz des ersten elastischen Gliedes

�grobe Schrittweite�

� Zur Verdeutlichung der Erkl�arungen werden � als Winkeleinheiten gegeben� aber in der Implemen�

tierung werden rad benutzt� Insbesondere bei der Ber�ucksichtigung der Reglerparameter und bei der

Reibungsbestimmung soll letzteres in Betracht gezogen werden�
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�� �

�

�� �

�

�� �
�� � � �� � � �� � �

�v���V

	�rad�s

Bild ���� Bestimmung der Eigenfrequenz des ersten elastischen Gliedes

�feine Schrittweite�

Um 	�� zu bestimmen	 mu� der Winkel �� einem Sinussignal folgen	 w�ahrend �� m�oglichst

bei Null bleibt	 so da� der Ein"u� der Dynamik des ersten Motors verringert wird� Die

Frequenzen zwischen �	�rad�s und ��	�rad�s mit einer Schrittweite von  	��rad�s und

einer Sinusamplitude von �� werden untersucht� Bild ��� zeigt das Ergebnis der Untersu�

chung	 das verdeuchtlicht	 da� 	�� zwischen � rad�s und � rad�s liegt� Das Experiment

wird zwischen diesen beiden Frequenzen mit einer Schrittweite von  	
��rad�s wiederholt�

Aus Bild ��� ist zu ersehen	 da� 	�� � ��� ��rad�s ��	�
Hz� betr�agt�

�

�

�

�

�

�




 

 
� � �� � ��

�v���V

	�rad�s

Bild ���� Bestimmung der Eigenfrequenz des zweiten elastischen Gliedes

�grobe Schrittweite�

Der n�achste Schritt ist	 die D�ampfung der Glieder zu bestimmen� Daf�ur wird als Soll


Winkel des Motors an dem das Glied	 dessen D�ampfung zu bestimmen ist	 befestigt ist	

ein Sinussignal mit der Eigenfrequenz vorgegeben� Der andere Motorwinkel soll wiederum

m�oglichst bei Null bleiben� Wenn die Schwingungen ein Maximum erreicht haben	 wird

der Soll
Wert des Winkels zu Null gesetz	 so da� die Schwingungen von selbst abklingen�
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�

�
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� �� �� �� �� � 

	�rad�s

�v���V

Bild ���� Bestimmung der Eigenfrequenz des zweiten elastischen Gliedes

�feine Schrittweite�

Die Strukturd�ampfung der Glieder kann durch �Stanway u� a� 
����

D �
�p

��� � ��
� �




n� 

ln
�
x�
xn

�
�����

berechnen werden	 wobei xn der Spitzewert des n
ten Zyklus ist� F�ur das erste Glied

wird ein Sinus mit einer Amplitude von �� eingestellt� Nach 
�s wird der Soll
Wert zu

Null ge�andert� Das Ergebnis ist in Bild ��� zu sehen	 woraus sich D �  � ��� und da�

mit D�� � �D
p
k�� ergibt� Es ist zu erw�ahnen	 da� die Strukturd�ampfung der Glieder

eine Linearkombination der Elemente der Tr�agheitsmatrix und der Stei�gkeitsmatrix ist

�Meirovitch 
����	 so da� deren Berechnung etwas vereinfacht wird�

�

�

 

��

��


� 
� 
� 
� � 
t�s

�v���V

Bild ��	� Bestimmung der D�ampfung des ersten elastischen Glieds

Im Fall des zweiten Gliedes wird ebenfalls ein Sinussignal mit einer Amplitude von ��

gew�ahlt� Nach �	

s wird der Soll
Wert zu Null eingestellt� Das Ergebnis ist in Bild ��� zu

sehen� Durch Anwendung von Gl� ����� ergibt sichD �  � 
��� und damitD�� � �D
p
k���
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��
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� �� � � �� � �

�v���V

t�s

�

Bild ���� Bestimmung der D�ampfung des zweiten elastischen Gliedes

In diesem Forschungsbericht wird nur viskose Gelenkreibung ber�ucksichtigt� Obwohl man

die Sprungantwort f�ur beide Motoren analysieren kann	 l�a�t sich der Ein"u� der Elasti�

zit�at nicht vernachl�assigen� Deswegen wird das folgende Experiment durchgef�uhrt� Zuerst

f�ahrt der Motor des Gelenks	 dessen viskose Reibung zu sch�atzen ist	 einen bestimmten

Winkel �di an� Dann wird die Verst�arkung Kdi des durch Gl� ���
� gegebenen PD
Reglers

auf einen kleinen negativen Wert eingestellt und ein Motorwinkel von Null angefahren�

Das Experiment wird mit gr�o�eren negativen Verst�arkungen wiederholt	 bis der Motor

anf�angt zu schwingen� In diesem Fall entspricht �KdiriKmi�Ri der viskosen Gelenkrei�

bung Di�� Um bessere Ergebnisse zu erzielen	 sollten Kpi und �di m�oglichst klein sein�

F�ur den ersten Motor wird ein Winkel von �� angefahren und Kp� � �V�rad ausgew�ahlt�

Nach verschiedenen Versuchen schwingt der erste Motor f�ur Kd� � ��� ��Vs�rad	 so da�

D�� � �� � ��Nms�rad ist� Im Vergleich betr�agt der vom Hersteller angegebene Wert

D�� � ��   ��Nms�rad� Der h�ohere Wert resultiert aus der Reibung an das Au"age"�ache�

Bild ��� zeigt ��	 wobei zu erkennen ist	 da� sich ein Grenzzyklus einstellt�

��

��

 �

���

���

���

��

t�s
 
 � � �

Bild ��
� Bestimmung der Reibung des ersten Motors
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Das gleiche Experiment wird bei dem zweiten Motor ausgef�uhrt� In diesem Fall wird �� zu

�� eingestellt und Kp� � �V�rad gew�ahlt� Bei demAuftreten der Schwingungen lautet der

Wert von Kd� � �
� 
Vs�rad	 was D�� �  � 
 
Nms�rad bedeutet� Der vom Hersteller

angegebene Wert lautet D�� �  � 
�� Nms�rad� Da nicht zu erwarten ist	 da� die viskose

Reibung sich verkleinert hat	 ergibt sich	 da� das vorgeschlagene Verfahren zur Bestim�

mung der viskosen Reibung f�ur kleine Werte nicht genau genug ist� In diesem Fall wird

der nominale Wert vonD�� angenommen� Das Bild ��� zeigt die Oszillationen des Motors�

� �
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 �

�
 �

�� �

 � � 
 
� � � �� � �
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Bild ���� Bestimmung der Reibung des zweiten Motors

Der letzte Schritt besteht darin	 die Eigenformen der Glieder zu bestimmen� Insbesondere

sind die Parameter ����l��	 ����l��	 �����l�� und �����l�� aus den Gln� �����
���
��	 sowie

v��	 v��	 w�� und w�� aus den Gln� ������ und ������ zu berechnen�

Um die erste Eigenform zu sch�atzen	 soll ein Sinussignal f�ur den ersten Motorwinkel

gew�ahlt werden� Dieses Experiment wird mit einer Amplitude von �� und Frequenzen

von  	�	 
 und 
	��Hz wiederholt� Um ����x�� zu bestimmen	 wird das dreidimensionale

Me�system DynaSight verwendet� Es werden vier Leuchtdioden jeweils im Abstand von


 cm in Richtung des Gliedes geklebt� Ein weiterer zu ber�ucksichtigender Faktor ist	 da�

die Eigenform bez�uglich des Kordinatensystems �x�	 y�� ermittelt werden mu� �siehe Bild

����� Letzteres ist recht einfach durchzuf�uhren	 da ein durch DynaSight in dem ortsfesten

Koordinatensystem gemessener Punkt pi sich mittels der Gleichung

�pi �

�
cos���� sin����

� sin���� cos����

�
pi �����

im Koordinatensystem �x�	 y�� ausdr�ucken l�a�t� Ferner mu� eine Normalisierung bez�u�

glich

z�� � ��

Z l�

�
�����x��dx� �����
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statt�nden	 wobei z�� � 
kg ausgew�ahlt ist �Meirovitch 
����� Da die Anzahl der Dioden

gerade ist	 bietet sich die numerische Integration nach der Simpsonschen Regel an �G�ohler


�����

xnZ
x�

y�x�dx � h

�
�y�x�� � y�xn�� ��y�x�� � � � � � y�xn���� �����

� ��y�x�� � � � � � y�xn�����

Um die Ergebnisse zu verbessern	 werden die umgerechneten Positionen der Dioden mit ei�

nem digitalen Tschebysche�
Filter zweiter Ordnung mit der Eckfrequenz 	� � ��� �rad�s

�
 Hz� ge�ltert�

F �z� �
 �  ���z� �  � 
���z �  �  ���

z� � 
� � ��z �  � ����
� �����

wobei T �  �  
s ist� Um die Eigenschwingform zu bestimmen	 wird ein Mittelwert der

maximalen Amplituden berechnet und die Normalisierung nach Gl� ����� durchgef�uhrt�

Bild ��
 zeigt einen typischen Verlauf einer berechneten normalisierten Eigenform	 wobei

f�ur x� 	  �  �m ����x�� �  gilt	 da es um den starren Teil des Gliedes geht� w�� und v��
wurden nach Gln� ������ und ������ nach der Normalisierung berechnet�

�

�

�




 
  � 
  � �  � �  � �

����x��

x��m

Bild ����� Erste Eigenschwingform des ersten elastischen Gliedes

Der Parameter �����l�� wird durch die Steigung

�����l�� �
���� � ��� � ���� � ���

 � 

���
 �

gesch�atzt�

Die Bestimmung der zweiten Eigenform ist anspruchsvoller	 da diese im Koordinatensy�

stem �x�	 y�� angegeben werden mu� �siehe Bild ����� Um das Problem zu l�osen	 gibt
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es prinzipiell zwei M�oglichkeiten� 
� man klebt eine Diode in den Ursprung des Koordi�

natensystems und eine weitere in Richtung der x�
Achse �Bild ��

�	 so da� man in der

Lage ist	 die Position eines Punktes vom ortsfesten Koordinatensystem ins dritte Koordi�

natensystem umzurechen� �� man benutzt Gl� �����	 um die Beziehung zwischen Punkten

im dritten und ortsfesten Koordinatensystem zu erl�autern� Beide M�oglichkeiten werden

ausprobiert�

Motor �

Dioden

Scheibe

y�
Achse

x�
Achse

Bild ����� Diodenpositionierung zur Bestimmung von ����x��

Da ����l�� und �����l�� bekannt sind	 kann jeder Punkt

�r� �

�
�����
x��
y��
 




�
����� ���

�

im Koordinatensystem �x�	 y�� im ortsfesten Koordinatensystem als

r� � A�E�A�E�A�
�r� ���
��

ausgedr�uckt werden� Um die Genaugigkeit der Positionsbestimmung zu erh�ohen	 wird die

folgende �Anderung in die Matrix E� �vgl� Gl� ������ eingef�ugt�

E� �

�
�����
cz� ��z�  l�
�z� cz�  �y�
  
  

   


�
����� �

�
�����

cz� ������l�����  l�
�����l����� cz�  ��l�����

  
  

   


�
����� � ���
��

wobei cz�
�

�
q

� ��z� ist� Aus Gl� ���
�� ist erkennbar	 da� �z� und somit ��� �also die erste

verallgemeinerte elastische Koordinate� und die Deformation �y� notwendig sind� ��� kann

indirekt �uber die durch den DMS
Sensor gemessene Spanung �v�� bestimmt werden	 da

die Deformation �y� direkt proportional zu �v�� ist �unter der Annahme	 da� die h�oheren

verallgemeinerten elastischen Koordinaten vernachl�assigbar sind�� Das hei�t	 es gibt eine

Konstante K���	 so da�

�y� � K����v�� ���
��
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gilt� �y� ist wie bei der Bestimmung der ersten Eigenform zu berechnen� Wenn man

mehrere Messungen durchf�uhrt	 kann die Methode der kleinsten Fehlerquadrate in der

Form

p �
aTb

aTa
���
��

angewendet werden �Isermann 
����	 wobei p der zu bestimmende Parameter	 a der

Eingangsvektor und b der Ausgangsvektor ist� Daraus ergibt sich

K��� �  �  
 �
m

V
� ���
��

Das Bild ��
� zeigt einen typischen Verlauf der durch DynaSight bestimmten Deformation

und der durch den DMS
Sensor gesch�atzten Deformation	 wobei die aus der Filteran�

wendung resultirende Phasenverschiebung bei der Berechnung von K��� bereits korrigiert

wurde�

 � 
 
� � 

 �  �

 �  �

 �  


 

� �  

� �  �
� �  �

�y��K����v���m

t�s

Bild ����� Berechnung des Verst�arkungsfaktors K����

Durch DynaSight bestimmte Deformation �#
� und K����v�� �� � ��

Da der Wert von ����l�� bekannt ist	 l�a�t sich ��� mit

��� �
�y�

����l��
�

K���

����l��
�v�� ���
��

berechnen� Obwohl man in der Lage ist	 die Position von bis zu vier Punkten in Richtung

der x�
Achse zu messen und damit die zweite Eigenform wie die erste zu bestimmen	

werden nur zwei Dioden geklebt	 um einen fairen Vergleich mit der anderen zur Defor�

mationbestimmung des Gliedes vorgeschlagenen Methode durchzuf�uhren� Als Soll
Wert

f�ur �� wird ein Sinussignal mit Frequenzen von 
	 �	 � und �	��Hz und Amplitude ��

vorgegeben� Wiederholt man das Experiment wie beim ersten Glied	 ergibt sich die in

Bild ��
� gezeigte normierte Eigenform �z�� � 
kg��
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Bild ����� Erste Eigenschwingform des zweiten elastischen Gliedes

Der Parameter �����l�� l�a�t sich durch die Steigung

�����l�� �
���� � ��� � ���� � ���

 � �
���
��

ann�ahern� Sch�atzt man die Eigenform mit zwei Dioden zur Umrechnung der Deforma�

tion ins ortsfeste Koordinatensystem	 ergeben sich die gleichen Werte	 so da� kaum ein

Unterschied zwischen beiden Methoden erkennbar ist�

Damit sind alle unbekannten Parameter der Bewegungsgleichung ���
� bestimmt� Tabelle

B�
 in Anhang �� fa�t die Ergebnisse zusammen�
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� Simulationsergebnisse

Das in den beiden letzten Abschnitten beschriebene analytische Modell des elastischen

Arms wird in diesem Abschnitt mit den am Versuchstr�ager aufgenommenen Daten ver�

glichen� Dabei werden zun�achst sprungf�ormige Signale und anschlie�end sinusf�ormige

Signale untersucht�

Zun�achst werden Modell und Versuchstr�ager mit einem Sollwertsprung von  � f�ur den

ersten Winkel und von 
 � f�ur den zweiten Winkel beaufschlagt� Beide Motoren sind

mit dem nach Gl� ���
� gegebenen PD�Gelenkwinkelregler ausgestattet� Bild ��
 zeigt

den Vergleich der Winkel und der Deformationen	 wobei die Messung durch die durch�

gezogene Linie und die Simulation durch die gestrichelte Linie verdeutlicht werden� Die

Deformationen werden f�ur den Versuchstr�ager direkt aus den gemessenen DMS
Signalen	

multipliziert mit dem Faktor K�i� �siehe Gl� ��
��	 ermittelt�
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Bild ���� Winkel und Deformationen f�ur die Sollwerte �d� �  � und �d� � 
 �	 Messung

�#
� und Simulation �� � ��

Es ist deutlich zu erkennen	 da� die Schwingungsneigung des Modells viel h�oher ist als

in der Realit�at� Dies kann teilweise auf eine schlechte Wahl der Normierung der Eigen�

formen zur�uckgef�uhrt werden	 denn je gr�o�er der Betrag der Eigenschwingform ist	 desto

kleiner ergibt sich der Betrag der elastischen Koordinate	 so da� man an die Grenzen

der Rechnergenauigkeit st�o�t� Durch eine geeignetere Wahl der Faktoren 
�� und 
��
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�s� Gl� ���� �� gelingt es	 die Schwingungen des Modells zu reduzieren� Ferner gibt das

modi�zierte Modell den Verlauf vor allem der ersten elastischen Koordinate viel besser

wieder� Die Ergebnisse f�ur eine Wahl von


� �  �  
� und 
� �  �  
 ���
�

sind in Bild ��� dargestellt� Wie oben erw�ahnt	 sind diese Faktoren klein gew�ahlt worden	

um zu erzwingen	 da� sich die simulierte elastische Koordinate vergr�o�ert� Die Parameter

des modi�zierten Modells be�nden sich in Tabelle B�
 im Anhang B�
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Bild ���� Winkel und Deformationen f�ur die Sollwerte �d� �  � und �d� � 
 � mit Modi�

�kation	 Messung �#
� und Simulation �� � ��

Bild ��� zeigt den Vergleich von Messung und Simulation f�ur die gleichen Sollwerte wie

in Bild ��
� Die Winkelverl�aufe sind bis auf einen O�set bei ��	 der auf das Spiel in den

Motoren zur�uckzuf�uhren ist	 gut wiedergegeben� Der Winkelverlauf von �� wird deutlich

von der Reibung auf der Tisch"�ache und dem Spiel beein"u�t	 aber die Schwingungen

von Me�� und Simulationsdaten klingen gleichzeitig ab� Auch die Deformationen zeigen

qualitativ den gleichen Verlauf� Inbesondere der Verlauf von �y� wird ausgezeichnet wie�

dergegeben� Es mu� erw�ahnt werden	 da� der elastische Roboter des Fachgebiets sehr

"exibel ist	 so da� der Ein"u� h�oherer Eigenfrequenzen von Bedeutung ist� Um dies zu

zeigen	 f�ahrt der erste Motor einen Winkel von 
 � an	 w�ahrend der zweite Winkel auf

�
 � eingestellt wird� Das Ergebnis ist in Bild ��� zu sehen�
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Bild ���� Winkel und Deformationen f�ur die Sollwerte �d� � 
 � und �d� � �
 �	 Mes�

sung �#
� und Simulation �� � ��
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Bild ���� Winkel �� und �� sowie Ende�ektorposition xE	 yE f�ur die Sollwerte �d� � ��

und �d� �  �	 Messung �#
� und Simulation �� � ��
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O�ensichtlich sind in der Simulation weniger Schwingungen als bei den gemessenen Da�

ten zu beobachten	 was den Ein"u� der h�oheren Eigenfrequenzen zeigt� Abgesehen davon

ist zu erw�ahnen	 da� sich die Randbedingungen f�ur das erste Glied bei einem solchen

Verlauf stark ge�andert haben m�u�ten� Bessere Ergebnisse zeigen sich	 wenn zwei elasti�

sche Koordinaten pro Glied ber�ucksichtigt werden �De Luca und Siciliano 
��
�� F�ur

einen Sollwertvektor von ��d�� �d��T � ����  ��T sind in Bild ��� die Winkelverl�aufe sowie

die absolute Position des Ende�ektors gezeigt� Der zweite Motorwinkel weist eine h�ohere

Dynamik auf als in der Realit�at	 aber qualitativ passen die beiden gut� Die Position

in x
Richtung wird im Modell bis auf eine station�are Abweichung von � mm genau be�

rechnet	 in y
Richtung betr�agt die Abweichung auch nur wenige Millimeter	 was bei der

geringen Genauigkeit der optischen Positionsmessung als sehr gut bezeichnet werden kann�
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Bild ���� Deformationen �y� und �y� sowie Position des zweiten Motors xm�	 ym� f�ur die

Sollwerte �d� �  � und �d� � �
 �	 Messung �#
� und Simulation �� � ��

Das Ergebnis der Validierung mit dem �� Sprungsignal ��d� �  �� �d� � �
 �� zeigt Bild

���� Dargestellt sind die Deformationen sowie die Position des zweiten Motors� Es ist zu

erkennen	 da� gemessene und simulierte Daten gut �ubereinstimmen� Anzumerken bleibt	

da� die gemessene Deformation des ersten Gliedes nicht verschwindet	 was teilweise auf

die Reibung auf der Tisch"�ache und teilweise auf die Ungenauigkeit der DMS
Sensoren

zur�uckzuf�uhren ist�

Allgemein l�a�t sich zu der Validierung mit Sprungsignalen sagen	 da� die noch deutlich
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sichtbaren Abweichungen zwischen den Ausg�angen des Modells und den Messungen am

Versuchstr�ager auf die Tatsache zur�uckzuf�uhren sind	 da� ein Sprung eher die h�oheren

Eigenfrequenzen des Systems anregt	 und die nicht modellierte Dynamik zu den vorhan�

denen Di�erenzen f�uhrt�
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Bild ��	� Deformationen �y� und �y� f�ur die Sollwerte �d� � �� sin��� � � t� und �d� �

�� sin��� � � t�	 Messung �#
� und Simulation �� � ��

Als n�achstes werden zwei Sinussignale als Sollwerte f�ur die Winkel mit den Frequenzen

f� �  � � Hz und f� �  � � Hz und den Amplituden A� � A� � �� betrachtet� Bild ���

zeigt die Deformationen im Vergleich� Eine deutliche �Ubereinstimmung ist zu erkennen�
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Bild ���� Position des zweiten Motors xm�	 ym� sowie des Ende�ektors xE	 yE f�ur die

Sollwerte �d� � �� sin��� � � t� und �d� � �� sin��� � � t�	 Messung �#
� und

Simulation �� � ��



� Simulationsergebnisse ��

F�ur die gleichen Sollwerte sind in Bild ��� die Positionen in x� und y�Richtung des zwei�

ten Motors sowie des Ende�ektors gezeigt� Auch hier sind die Modellausg�ange qualitativ

korrekt	 bis auf konstante O�sets zu den gemessenen Gr�o�en� Diese konstanten O�sets

sind teilweise auf die in der Realit�at vorhandene Reibung des Motors und des Endef�

fektors auf dem Tisch zur�uckzuf�uhren	 die im Modell nicht ber�ucksichtigt wurde� Der

Vergleich der Systemantworten auf das letzte Eingangssignal	 ein sinusf�ormiger Sollwert

mit der Frequenz f� � 
 Hz und der Amplitude A� � �� f�ur den zweiten Motorwinkel	

w�ahrend der erste bei Null bleibt	 ist in Bild ��� dargestellt� Der zweite Winkel ist durch

die Regelung fast genau �ubereinstimmend	 w�ahrend der E�ekt des Spiels im Getriebe bei

dem ersten Winkel deutlich zu erkennen ist� Die Deformationen stimmen auch sehr gut

�uberein� Obwohl zu erwarten war	 da� f�ur ein einziges Sinussignal beide elastische Koor�

dinaten in Simulation und Messung die gleiche Frequenz besitzen	 bleibt anzumerken	 da�

die Phase der gemessenen und der simulierten Daten die gleiche ist	 was die Ergebnisse

als gut bezeichnen l�a�t�
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Bild ��
� Winkel und Deformationen f�ur die Sollwerte �d� �  � und �d� � �� sin���t�	

Messung �#
� und Simulation �� � ��

Zusammenfassend l�a�t sich sagen	 da� das Modell mit den oben schon erw�ahnten Ein�

schr�ankungen durch die nichtmodellierte h�ohere Dynamik und die ebenfalls nicht model�

lierten Reibungse�ekte sowie bei der beschr�ankten Verl�a�lichkeit der zur Parameterbe�

stimmung verwendeten absoluten Positionsmessung das Verhalten des realen Systems mit

hinreichender G�ute wiederspiegelt�
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� Zusammenfassung und Ausblick

Im vorliegenden Forschungsbericht wird ein Verfahren zur experimentellen Modellbildung

eines zweiachsigen elastischen Roboters vorgeschlagen� In einem ersten Schritt wird der

Roboter analytisch modelliert� Obwohl der Roboter aus nur zwei elastischen Gliedern

besteht	 wird er in vier Glieder aufgeteilt	 so da� der Ein"u� der starren und elastischen

Teile des Handhabungssystems besser voneinander getrennt modelliert werden kann� Um

die Tr�agheitsmomente der Glieder zu berechnen	 werden verschiedene Vereinfachungen

angenommen� Zum Beispiel wird jedes Glied als symmetrisch betrachtet� Die Massen der

Elemente sind gewogen worden	 w�ahrend die L�angen der Glieder genau bekannt sind�

In der analytischen Modellbildung treten viele Parameter explizit auf	 die sich experimen�

tell bestimmen lassen� Insbesondere kann man die Eigenfrequenzen und Eigenschwingfor�

men der elastischen Glieder relativ einfach ermitteln	 wenn nur eine elastische Koordinate

pro Glied in Betracht gezogen wird� Ausg�ange des Systems sind die durch DMS
Sensoren

gemessene zur Dehnung der Glieder proportionale Spannung	 die Winkel der Motoren und

die durch das dreidimensionale Me�system DynaSight berechneten Positionen von an den

Gliedern befestigten Dioden�

Versucht man	 das Modell mit den berechneten Parametern zu simulieren	 ergibt sich die

Bedeutung der Normalisierung der Eigenformen	 da die Simulationsergebnisse in einem er�

sten Versuch als schlecht zu bezeichnen sind� �Andert man das Normalisierungskriterium	

verbessern sich die Simulationsergebnisse deutlich� Der Grund daf�ur liegt in der Rech�

nergenauigkeit	 da aus einer rein theoretischen Perspektive das Normalisierungskriterium

keine Rolle spielt� Letzteres bedeutet	 da� eine geeignete Normalisierung der Eigenformen

das Modell des Roboters weniger emp�ndlich gegen numerische Ungenauigkeiten macht�

Obwohl sich die Simulationsergebnisse f�ur viele Testsignale als gut erwiesen haben	 ist

deutlich zu erkennen	 da� mindestens eine weitere elastische Koordinate pro Glied mo�

delliert werden sollte	 um die G�ute des Modells zu verbessern� Es ist auch zu erw�ahnen	

da� sich der Ein"u� komplexerer und schwierig zu modellierender Nichtlinearit�aten wie

Reibung und Spiel in den Getrieben und St�orungen wie der Zug an den Gliedern durch die

Netzkabel verkleinern l�a�t	 wenn das Verfahren von Euler
Lagrange zur Modellbildung

elastischer Roboter verwendet wird�

Als zuk�unftige Arbeit bleibt die Implementierung eines nichtlinearen Reglers	 der die hier

vorgestellte Modellstruktur ausnutzt� Der erste Verfasser dankt dem DAAD f�ur seine
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In vorliegendem Anhang wird das im Abschnitt � berechnete Modell angegeben	 das in

Matrixform durch

�H�q� � J ��q � hc�q� �q� �Ke �D �KmU

beschrieben wird	 wobei hc�q� �q� � C�q� �q� �q ist� Die Matrizen J 	 D und Km sind in Gl�

������ gegeben� Die Elemente der Tr�agheitsmatrix H�q� lauten

h����� p� � p�c�

h����� p� � p�c�

h����� p
 � p�c�

h����� p� � p
c�

h����� p�

h����� p�� � p��c�

h����� p��

h����� p�
 � p��c�

h����� p�� � p�
c�

h����� p���

Die Elemente der Matrix C�q� �q� sind

c������p�s� �����
c������s��p� ��� � p� ���� � �p� ��� � p
 �������

c������p�s� �����
c������p
s� �����

c����� s��p� ��� � p� ���� � p
 �������

c����� 

c����� s��p� ��� � p�� ���� � p�
 �������

c����� s��p
 ��� � p�
 �������

c������p�s� �����
c������s��p� ��� � p�� ���� � �p�� ��� � p�
 �������

c������p��s� �����
c������p�
s� �����

c������p
s� �����
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c������s��p
 ��� � p�
 �������

c������p�
s� �����
c����� �

Die Parameter pi de�nieren sich als

p�� Ic�� � Ic�� � Ic�� � �l�M�xs� � Ic�� � l��M� � �M�l�l� � Ic�� � Ic�� �M�l
�
�

�M�l
�
� �M�l

�
� �M�l

�
� � Ic�� � Ic�� � �M�l�l� �M�l

�
� � �M�xs�l�
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p�
� z�� � �����l��
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Die L�angen �in m�	 Massen �in kg� und Tr�agheitsmomente �in kgm�� des ersten Gliedes

sind durch

l�� � ��

l��� �  �

l��� � �

a�� �  �

b�� �  �

M��� �  �

M��� � ���

M��M�� �M��
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Ic���M��a
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Ic���M�b
�
��
�

gegeben� Die L�angen �in m�	 Massen �in kg� und Tr�agheitsmomente �in kgm�� des zweiten

Gliedes sind durch

l�� �  ��
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gegeben� Die L�angen �in m�	 Massen �in kg� und Tr�agheitsmomente �in kgm�� des dritten

Gliedes sind durch
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gegeben� Die L�angen �in m�	 Massen �in kg� und Tr�agheitsmomente �in kgm�� des vierten

Gliedes sind durch
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gegeben� Die gleichm�a�ig verteilte Masse der Glieder betr�agt
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Die Motorkostanten sind
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B Experimentell bestimmte Parameter

Tabelle B�
 fa�t die Parameter zusammen	 die in Kapitel � experimentell bestimmt wor�

den sind und sich nach der imKapitel � eingef�ugten neuen Normalisierung ge�andert haben�

Tabelle B��� Experimentell bestimmte Parameter des Robotersmodells

Parameter Ermittelter Wert Ermittelter Wert

�z�� � 
 kg	 z�� � 
 kg� �z�� �  �  
�� kg	 z�� �  �  
� kg�

	�� �	�� rad�s �	�� rad�s

	�� ��	�� rad�s ��	�� rad�s

D�� �	� �� Nms�rad �	� �� Nms�rad

D��  	
�� Nms�rad  	
�� Nms�rad

D�� �	
� 
 Ns�m  	 ��� Ns�m

D�� �	
��� Ns�m  	 �
� Ns�m

v��  	��� kg  	  �� kg

w��  	
 �
 kgm  	  
� kgm

v��  	��� kg  	  ��� kg

w��  	 ��� kgm  	   ��� kgm

����l�� �	 ��  	 � �

�����l�� 
�	
��� m��  	
��� m��

����l�� �	
���  	 �
���

�����l�� 
�	��� m��  	
���� m��


