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� Einleitung �

� Einleitung

In der Literatur werden zahlreiche Berichte zum Thema Regelung elastischer Roboter

ver�o�entlicht� Die meisten Arbeiten befassen sich mit der Regelung einachsiger ela�

stischer Handhabungssysteme �Cannon und Schmitz ����	 Bayo ����	 De Luca und

Siciliano ����	 Aoustin u� a� ����	 Bai ����	 Kwon und Book ����	 Bai ����	 Chang

und Jayasuriya ����	 Milford und Asokanthan ����
� Die Anzahl der Ver�o�entlichungen

nimmt jedoch mit der Anzahl der Freiheitsgrade ab �Singh und Schy ����	 Cordes ����	 Si�

ciliano u� a� ����	 Carusone und D�Eleuterio ����	 Yim und Singh ����
� Einige Unter�

suchungen zur Regelung von zweiachsigen elastischen Handhabungssystemen sind expe�

rimentell durchgef�uhrt worden �Oakley und Cannon ����	 Carusone u� a� ����	 Khorra�

mi u� a� ����
� Ein PID
Regler zur Positionierung der Gelenke wurde in �Oakley und

Cannon ����
 entwickelt� F�ur die Bahnverfolgungsregelung des Ende�ektors stellten Ca�

rusone u� a� �����
 ein Regelungskonzept mit Hilfe einer Zustandsr�uckf�uhrung samt gain

scheduling vor� Die Input
Preshaping
Methode wurde in �Khorrami u� a� ����
 zur Re�

gelung der Gelenke verwendet�

Um einen Regler zu entwerfen	 sind exakte Modelle der elastischen Handhabungssysteme

gefordert� Bei der praktischen Anwendung kann jedoch kaum ein exaktes Modell ge�

funden werden	 da sich einige dynamische Eigenschaften	 wie z� B� Reibungskr�afte und

die Zusatzmassenschwankungen	 schwer modellieren lassen� Es sollte ein robuster Reg�

ler oder ein adaptiver Regler gew�ahlt werden	 um die wegen der Parameter�anderungen

und der nicht modellierten Dynamik auftretenden unerw�unschten Schwingungen zu un�

terdr�ucken� F�ur einachsige elastische Handhabungssysteme sind einige Untersuchungen

hinsichtlich adaptiver Regelungen durchgef�uhrt worden �Rovner und Cannon ����	 Rov�

ner und Franklin ����	 Bai ����	 Milford und Asokanthan ����
� Im Falle der mehr�

achsigen elastischen Handhabungssysteme wurde dieses Problem in der Literatur bisher

wenig diskutiert� Lammerts u� a� �����
 stellten eine adaptive CRCTC �Computed Re�

ference Computed Torque Control
 Regelung f�ur mehrachsige Handhabungssysteme vor	

die sowohl elastische Glieder als auch elastische Gelenke besitzen� Im Rahmen dieses

Regelungskonzepts wird angenommen	 da� sich das Systemmodell dem realen Systemver�

halten anpa�t	 solange alle unbekannten Parameter sich bez�uglich der Systemdynamik nur

langsam �andern oder konstant sind� Ein anderer nichtlinearer adaptiver Regler	 der die

Parameterungenauigkeit korrigiert	 wurde in �Yang u� a� ����
 entworfen� Die praktische

Anwendbarkeit dieses Regelungskonzeptes ist allerdings sehr stark eingeschr�ankt	 da die

Sollbahn der Gelenke nicht beliebig gew�ahlt werden darf�

Dieser Forschungsbericht stellt die adaptive Regelung des im Fachgebiet vorhandenen

zweiachsigen elastischen Handhabungssystems DFM�� vor� Zuerst wird ein PD
Regler

mit einer adaptiven Vorsteuerung zur Positionierung der Gelenke entwickelt	 wobei die

elastischen Deformationen nicht aktiv ged�ampft werden� Um die unerw�unschten Schwin�

gungen zu unterdr�ucken	 wird dann ein neues Regelungskonzept	 die Adaptive Erweiterte

Zustandsregelung �AEZR
 vorgestellt	 wobei der Regler aus einem LQR
Regler und ei�



� Einleitung �

nem adaptiven Kompensator besteht� Alle Zust�ande und die St�orgr�o�en	 die die nicht

modellierte Dynamik des Systems repr�asentieren	 werden mit Hilfe des Strong
Tracking


Filters �STF
 online gesch�atzt �Bai ����	 Bai und Schwarz ����
� Die AEZR wird zur

Positionierung und Bahnverfolgung der Gelenke sowie des Ende�ektors verwendet� F�ur

die Bahnverfolgungsregelung des Ende�ektors werden Untersuchungen mit unterschied�

lichen Zusatzmassen durchgef�uhrt� Das Problem der zeitlichen Verz�ogerung wird durch

eine Sollbahnvorsteuerung gel�ost�

Im einzelnen umfa�t dieser Forschungsbericht die folgenden Abschnitte� In Abschnitt �

erfolgt die konventionelle Regelung �PD
Regler
 mit einer adaptiven Vorsteuerung� Das

neue Regelungskonzept	 die Adaptive Erweiterte Zustandsregelung �AEZR
	 wird in Ab�

schnitt � vorgestellt� Abschnitt � stellt die experimentellen Ergebnisse dar� Eine Zusam�

menfassung schlie�t diesen Bericht ab�



� Konventionelle Regelung mit einer adaptiven Vorsteuerung �

� Konventionelle Regelung mit einer adaptiven Vor�

steuerung

Die ausf�uhrliche Beschreibung des im Fachgebiet MSRT vorhandenen zweiachsigen ela�

stischen Handhabungssystems DFM�� �siehe Bild ���
 und die neue Methode zur Mo�

dellmodi�kation und Zustandssch�atzung sind in �Bai ����
 zu �nden	 wobei die nicht

modellierte Dynamik des DFM�� als St�orgr�o�e betrachtet wird�

Bild ���� Zweiachsiges elastisches Handhabungssystem DFM��

��� Reglersynthese

Zur Positionierung der Gelenke wird zuerst ein konventioneller PD
Regler	 verwendet	

wobei die elastischen Deformationen nicht ber�ucksichtigt werden� Ein PD
Regler u�k


kann in zeitdiskreter Form durch

u�k
 �KPe�k
 �
KD

Ts
�e�k
� e�k � �

 ����


beschrieben werden �Tzafestas ����
	 wobei e�k
 � �d�k
���k
� �d�k
 ist der vorgegebe�

ne Vektor des Sollwinkels	KP undKD die konstanten	 diagonalen Matrizen� Ts entspricht

der Abtastzeit� Gl� ����
 kann umgeschrieben werden zu

u�k
 �KP��
d�k
� ��k

 �KD� ��

d

�k
� ���k

 � ����


mit

��
d

�k
 �
�d�k
� �d�k � �


Ts
����


���k
 �
��k
� ��k � �


Ts
����




� Konventionelle Regelung mit einer adaptiven Vorsteuerung �

Tabelle ��� Parameter des DFM��

Arm � Arm �

L�ange l� � �	�� m l� � �	�� m

gleichm�a�ig verteilte Masse �� � �	��� kg�m �� � �	��� kg�m

Biegestei�gkeit EI� � �	��� Nm� EI� � �	��� Nm�

Tr�agheitsmoment der Welle i Iw� � �	���� kgm� Iw� � �	����� kgm�

Zusatzmasse des i
ten Armes me � �	�� kg mt � �	��� kg

Tr�agheitsmoment der Zusatzmasse Ie � �	������ kgm� It � �	������ kgm�

Der in Gl� ����
 dargestellte PD
Regler wird nun durch eine adaptive Vorsteuerung

KVz�k
 modi�ziert	 wobei z�k
 � �z��k
� z��k
�
T dem St�orgr�o�envektor entspricht �Bai

����
� Die konstante diagonale Matrix KV ist die Verst�arkung der adaptiven Vorsteue�

rung�

u�k
 �KP��
d�k
� ��k

 �KD� ��

d

�k
� ���k

�KVz�k
 ����


Da der St�orgr�o�enverktor z�k
 mit Hilfe des Strong
Tracking
Filters �STF
 online ad�

STF

KD

KV

θ
u

z

d

^
^

(k)

(k)

(k) -
DFM01

KP

θd(k)

θ (k)

-

-

θ (k)

qE(k)

Bild ���� Blockschaltbild des geschlossenen Systems

aptiv gesch�atzt werden kann �Bai ����
	 lassen sich einige nicht modellierte dynamische

Eigenschaften	 wie z� B� die Reibungskr�afe und die Kabelst�orung durch KVz�k
 adap�

tiv kompensieren� Bild ��� zeigt das Blockschaltbild des geschlossenen Systems	 wobei

qE�k
 den elastischen verallgemeinerten Koordinaten entspricht� Die Sch�atzung der nicht

me�baren Winkelgeschwindigkeiten ���k
 erfolgt auch mit Hilfe des STF�

��� Experimentelle Ergebnisse

Der in Gl� ����
 bzw� Gl� ����
 dargestellte Regler wird zur Positionierung der Gelenke

verwendet� Der Sollwinkelvektor ist �d�k
 � ����� �����T� Die Parameter des DFM��	 die

in dieser Arbeit verwendet werden	 sind in Tabelle ��� aufgef�uhrt� Die Diagonalmatrizen

KP und KD werden als KP � diagf��� ��� �� ��g bzw� KD � diagf�� ��� �� ��g gew�ahlt�



� Konventionelle Regelung mit einer adaptiven Vorsteuerung �

Bild ��� zeigt die Sprungantworten der geregelten Winkel �i und der entsprechenden Stell�

spannungen ui ohne Vorsteuerung� Die bleibende Regelabweichung �ca� �� �
�
 erkl�art sich
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Bild ���� Sprungantworten des Systems mit PD
Regler ohne adaptive Vorsteuerung�

�a
	 �b
 Zeitverl�aufe der geregelten Winkel ������ Sollwert	 ��� Istwert
� �c
	

�d
 Zeitverl�aufe der Stellspannungen

�uber die Haftreibungskr�afte	 die ein zeitvariantes Verhalten besitzen und sich kaum durch

eine konstante Vorsteuerung kompensieren lassen�

Bild ��� stellt das Regelverhalten des mit dem Regler nach Gl� ����
 geregelten Systems

vor	 mit der Parametrierung von KV � diagf�� ��� �� ��g� Die sich mit dem Regler ����


einstellende station�are Genauigkeit �siehe Bilder ��� �a
 und �b

 ist im Vergleich zu

den in den Bildern ��� �a
 und �b
 dargestellten Ergebnissen deutlich besser� Eine Er�

kl�arung f�ur die kleine Regelabweichung von �� �ca� �� ��	 siehe Bild ��� �a

 ergibt sich

aus der nicht modellierten Dynamik des DFM��	 die durch die adaptive Vorsteuerung

nicht komplett kompensiert wird� Es ist anzumerken	 da� der geregelte Winkel �� ei�

ne gro�e �Uberschwingweite besitzt� Die experimentellen Studien zeigen	 da� sich diese
�Uberschwingweite durch den Regler ����
 schwer beseitigen l�a�t� Die Bilder ��� �e
 und �f


stellen die Zeitverl�aufe der elastischen verallgemeinerten Koordinaten dar	 die durch DMS
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Bild ��	� PD
Regler mit adaptiver Vorsteuerung� �a
	 �b
 Zeitverl�aufe der geregelten

Winkel ������ Sollwert	 ��� Istwert
� �c
	 �d
 Zeitverl�aufe der Stellspannungen�

�e
	 �f
 Zeitverl�aufe der elastischen verallgemeinerten Koordinaten

ermittelt werden� Ohne Ber�ucksichtigung der ersten elastischen Eigenfunktionen zeigen

die experimentellen Ergebnisse deutlich	 da� das Regelverhalten des DFM�� schlecht ist�



� Adaptive Erweiterte Zustandsregelung �AEZR� �

� Adaptive Erweiterte Zustandsregelung �AEZR�

In diesem Abschnitt wird zuerst ein neues Regelungskonzept	 die Adaptive Erweiterte

Zustandsregelung �AEZR
	 vorgestellt	 wobei der Regler aus einem LQR
Regler und ei�

nem adaptiven Kompensator besteht� Alle Zust�ande und die St�orgr�o�en z�k
	 die die

nicht modellierte Dynamik des DFM�� repr�asentieren	 werden mit Hilfe des STF online

gesch�atzt �Bai ����
� Die AEZR wird dann zur Positionierung und Bahnverfolgung der

Gelenke sowie des Ende�ektors verwendet�

��� Regelung der Gelenkwinkel

Das modi�zierte linearisierte zeitdiskrete Systemmodell des DFM�� ist in �Bai ����


gegeben und wird durch

xm�k � �
 � Adxm�k
 �Bd�u�k
 � z�k

 ����


ym�k
 � Cdxm�k
 ����


mit

xm�k
 � ��q�k
� � �q�k
�T

�q�k
 � q�k
� q�

q�k
 � ����k
� ���k
� q���k
� q���k
�
T

u�k
 � �u��k
� u��k
�
T

beschrieben	 wobei q� einem Arbeitspunkt entspricht� q�k
 enth�alt den verallgemeinerten

Koordinaten des DFM��	 die aus starren und elastischen Koordinaten �i�k
	 qi��k
 beste�

hen� ui ist die Eingangsspannung des i
ten Motors� Die konstanten Matrizen Ad und Bd

sowie Cd sind in �Bai ����
 zu �nden� Da z�k
 mit Hilfe des STF gesch�atzt werden kann	

wird der Reglerentwurf durch eine Kompensation des St�orvektors z�k
 stark vereinfacht�

Der Stellvektor u��k
 wird nun de�niert als

u��k

�

� u�k
 � z�k
 � ����


Aus den Gln� ����
 und ����
 erh�alt man

xm�k � �
 � Adxm�k
 �Bdu
��k
 ����


ym�k
 � Cdxm�k
 � ����


Um einen Regler zu entwerfen	 k�onnen alle Regelungskonzepte	 die f�ur lineare zeitin�

variante Systeme geeignet sind	 verwendet werden� Da alle Zustandsgr�o�en des durch

Gln� ����
 und ����
 bezeichneten Modells vollst�andig steuerbar und beobachtbar sind	

ist der Reglerentwurf mit Hilfe der Zustandsregelung m�oglich� Der Stellvektor u�k
 des

DFM�� kann aus Gl� ����
 bestimmt werden

u�k
 � u��k
� z�k
 � ����




� Adaptive Erweiterte Zustandsregelung �AEZR� �

Um eine vorgegebene Bahn �d�k
 � ��d
�
�k
� �d

�
�k
�T zu verfolgen und gleichzeitig die

elastischen Deformationen aktiv zu d�ampfen	 wird folgender Regler vorgeschlagen�

u�k

�
� �Kf

�
xm�k
� x

d�k

�
�Kcz�k
 � ����


wobeiKf der R�uckf�uhrungsmatrix entspricht� Kc ist die Verst�arkung des Kompensators�

xd�k
 � ��d
�
�k
� �d

�
�k
� �� �� ��d

�
�k
� ��d

�
�k
� �� ��T bezeichnet den Sollvektor� Kf � R��

u
Bd PR

kann durch Minimierung der quadratischen G�utefunktion

J �
�X
k��

�
yTm�k
Qyym�k
 � u

�T�k
Ruu
��k


�
����


bestimmt werden� Die Matrizen Qy und Ru sind nicht negativ bzw� positiv de�nit� Die

symmetrische	 positiv de�nite Matrix PR entspricht der station�aren L�osung der zeitdis�

kreten Riccati
Gleichung �Schwarz ����
� xm�k
 und z�k
 werden mit Hilfe des STF

online gesch�atzt�

��� Regelung des Ende�ektors

Die AEZR kann auch zur Regelung des Ende�ektors verwendet werden� Das Ziel dieser

Regelung liegt in der Positionierung und Bahnverfolgung des Ende�ektors und gleichzeitig

der aktiven D�ampfung der elastischen Deformationen� Bei der Anwendung der AEZR

mu� zuerst die Ausgangsgleichung ����
 ge�andert werden� Die absolute Verschiebung des

Ende�ektors pe�q
	 eine nichtlineare Funktion der verallgemeinerten Koordinaten q sowie

die ersten elastischen verallgemeinerten Koordinaten werden hier als Ausg�ange betrachtet�

Durch die Linearisierung von pe�q
 ergibt sich

pe�q
 � pe�q�
 �
�pe�q


�q

����
q�

�q � q�
 � ����


Das f�uhrt auf die folgende Gleichung�

�pe�q

�
� pe�q
� pe�q�
 �

�pe�q


�q

����
q�

�q

�
� Ce�q � ��xe��ye�

T� �����


Der Ausgangsvektor wird nun de�niert als

y�m
�
� ��xe��ye��q����q���

T � C�xm � �����


Die Matrix C� kann unter Anwendung der Gl� �����
 bestimmt werden� Da die Soll�

bahn des Ende�ektors vorgegeben ist	 kann xd�k
 durch die Au �osung der inversen Ki�

nematik ermittelt werden	 unter der Annahme	 da� keine Elastizit�aten existieren� Das

Prinzip des Reglerentwurfs gleicht dem in Abschnitt ��� vorgestellten� Bild ��� zeigt das

Blockschaltbild des mit Hilfe der AEZR geregelten DFM��� Es ist anzumerken	 da� die

R�uckf�uhrungsmatrix Kf vom Arbeitspunkt abh�angig sein sollte� Da die Ungenauigkei�

ten des linearisierten Modells ����
 und ����
 durch Kcz�k
 adaptiv kompensiert werden

k�onnen	 ist Kf hier jedoch als konstante Matrix gew�ahlt worden�
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Bild ���� Blockschaltbild des geregelten DFM��
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� Experimentelle Ergebnisse

Die im Abschnitt � vorgestellte AEZR wurde am DFM�� zur Positionierung und Bahnver�

folgung der Gelenke sowie des Ende�ektors getestet� Die Programme wurden in der Pro�

grammiersprache C erstellt� Da die am Versuchstr�agers DFM�� aufgenommenen Signale

nur geringf�ugig verrauscht sind	 wird kein Proze�rauschen angenommen und die Kovari�

anzmatrix der Me�rauschsignale zu R�k
 � diagf�� ������ �� ������ �� ������ �� �����g

gesetzt� Die Versuchsdauer betr�agt �� s mit der Abtastzeit Ts � �� ms�

��� Regelung der Gelenkwinkel

Der Arbeitspunkt und der Anfangsvektor werden durch q� � �q� � 
 und xm��
 � 
 sowie

z��
 � 
 bestimmt� Die Positionierung der Gelenke wurde zuerst mit der Vorgabe

�d� � ���� und �d� � ��� ����


durchgef�uhrt� W�ahlt man nun
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Qy � diagf�� �� �� �� �� �g� sowie Ru � diagf�� ��� �� ��g �

dann ergibt sich

Kf �

�
�� ��� �� ��� �� ���� � �� ��� �� ��� �� ��� �� ���

��� ��� �� ��� �� ���� �� ��� ��� ��� �� ��� �� ��� �� ���

�
� ����


Die Kompensationsmatrix Kc berechnet sich zu Kc � diagf�� �� ��g� Um das Regel�

verhalten zu verbessern	 wird Kf��� �
 und Kf��� �
 zu �	� bzw� �	� gesetzt� Bild ���

zeigt die am DFM�� gemessenen Antworten auf die in ����
 gegebenen F�uhrungsspr�unge�

Die Winkelverl�aufe sind durch eine hohe station�are Genauigkeit charakterisiert� Die on�

line gesch�atzten und gemessenen Ausg�ange des DFM�� werden in Bild ��� illustriert� Sie

stimmen sehr gut �uberein	 obwohl beide Winkel weit vom Arbeitspunkt entfernt sind� Die

station�aren Abweichungen der elastischen verallgemeinerten Koordinaten �ungleich Null


erkl�aren sich durch die Ungenauigkeit der Dehnungsme�streifen �DMS
 �siehe ��� �c
 und

�d

� Bild ��� zeigt die gesch�atzten Geschwindigkeiten der verallgemeinerten Koordinaten
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	 �b
� gesch�atzte Winkelgeschwindigkeiten� �c
	

�d
� gesch�atzte Geschwindigkeiten der elastischen verallgemeinerten Koordina�

ten� �e
	 �f
� gesch�atzte St�orgr�o�en

und die St�orgr�o�en	 die am DFM�� nicht messbar sind�

Als n�achstes soll eine Bahnverfolgungsregelung erprobt werden mit der vorgegebenen Bahn

�d
�
�k
 � �� ���� sin��� �k
 ����


�d��k
 � ��� ���� cos��� �k
 � ����


Die experimentellen Ergebnisse der Bahnfolgeregelung der Winkel sind in Bild ��� dar�

gestellt� Die Abweichungen an den Spitzen �ca� ��
 erkl�aren sich aus dem Getriebespiel

bzw� der nicht modellierten Dynamik	 die durch Kcz�k
 nicht komplett kompensiert

werden� Es ist anzumerken	 da� das Folgeverhalten eine kleine zeitliche Verz�ogerung

besitzt� Ein wesentlicher Grund daf�ur ergibt sich aus dem LQR
Regler	 der die Winkel�

geschwindigkeiten minimiert� Diese zeitliche Verz�ogerung kann durch die Vergr�o�erung

der Verst�arkungsmatrix Kf verringert werden� Die in Bild ��� dargestellten Ergebnisse
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� Zeitverl�aufe der Winkel ������ Sollbahn	

�
� Istbahn� �c
	 �d
� Zeitverl�aufe der Stellspannungen

wurden mit den Zahlenwerten

Kf �

�
�� ��� �� ��� �� ���� � �� ��� �� ��� �� ��� �� ���

��� ��� �� ��� �� ���� �� ��� ��� ��� �� ��� �� ��� �� ���

�
����


realisiert	 wobei

Qy � diagf�� �� �� �g sowie Ru � diagf�� ��� �� ��g

erf�ullen� Die entsprechende Kompensationsmatrix ergibt sich zu Kc � diagf�� �� �g�

Die am DFM�� gemessenen und gesch�atzten Ausg�ange werden in Bild ��� dargestellt�

Auch hier ist die �Ubereinstimmung zwischen den gesch�atzten und gemessenen Ausg�angen

des DFM�� sehr gut �siehe Bild ���
� Dies best�atigt	 da� das STF die Zust�ande des

DFM�� im Arbeitsraum adaptiv und genau sch�atzen kann� Bild ��� zeigt die gesch�atzten

Geschwindigkeiten der verallgemeinerten Koordinaten und die St�orgr�o�en�
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� gemessen� �� ��
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��� Regelung des Ende�ektors

Das Augenmerk der Regelung elastischer Handhabungssysteme liegt in der Positionierung

und Bahnverfolgung des Ende�ektors unter gro�er Variation der Zusatzmassen� Der in

Abschnitt ��� entwickelte Regler wird zur Positionierung bzw� Bahnverfolgung des End�

e�ektors des DFM�� verwendet� F�ur die Bahnverfolgung des Ende�ektors werden Unter�

suchungen mit unterschiedlichen Zusatzmassen durchgef�uhrt� Das Problem der zeitlichen

Verz�ogerung wird durch eine Sollbahnvorsteuerung gel�ost� Der Arbeitspunkt und der An�

fangsvektor wurden zu q� � ��� ����� ��� ����� �� ��T	 �q� � 
 und xm��
 � 
 sowie

z��
 � 
 gesetzt� Die F�uhrungsgr�o�en sind wie folgt gegeben�

xd
e � �� ���m� yde � �� ���m � ����


sowie

�d
�
� ���� �d

�
� �� � ����
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Bild 	��� Bahnverfolgung der Gelenke �a
	 �b
� gesch�atzte Winkelgeschwindigkeiten� �c
	

�d
� gesch�atzte Geschwindigkeiten der elastischen verallgemeinerten Koordina�

ten� �e
	 �f
� gesch�atzte St�orgr�o�en

Durch Au �osung der zeitdiskreten Riccati
Gleichungen ergibt sich die R�uckf�uhrungsmatrix

zu

Kf �

�
�� ��� �� ��� ��� ��� �� ��� �� ��� �� ��� ��� ��� �� ���

�� ��� �� ��� ��� ��� �� ��� �� ��� �� ��� ��� ��� �� ���

�
����


mit

Qy � diagf����� ����� �� �g und Ru � diagf�� �g �

Um die Anstiegszeit zu verringen	 wird nun Kf��� �
 � �� ��� und Kf��� �
 � �� ���

gesetzt� Die Verst�arkung des Kompensators ist Kc � diagf�� �� �g� Bild ��� zeigt die

F�uhrungssprungantworten des Ende�ektors und die entsprechenden Stellspannungen� Mit

dem Erreichen von kleinen Regelabweichungen �ca� �	���m und �	����m in x
 bzw� y


Richtung
 gehen die Stellspannungen auf Werte zur�uck	 die in der Gr�o�enordnung der
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Motoransprechschwelle liegen� Die ersten elastischen verallgemeinerten Koordinaten qi�

werden hier durch die von DMS ermittelten Dehnungen der elastischen Glieder berechnet�

Die gemessenen und gesch�atzten Ausg�ange des DFM�� werden in Bild ��� dargestellt� Die

gr�o�ere station�are Ungenauigkeit der Winkel erkl�art sich mit der Auswahl der Ausg�ange	

auf der der LQR
Regler beruht� Bild ��� zeigt die gesch�atzten Geschwindigkeiten der ver�

allgemeinerten Koordinaten und die St�orgr�o�en� Um die Positionierung des Ende�ektors

deutlicher darzustellen	 zeigt Bild ���� die Trajektorie des Regelungsvorganges�



� Experimentelle Ergebnisse ��

0 4 8 12

5

10

15

(a)
0 4 8 12

-10

-5

0

5

(b)

0 4 8 12

-12

-8

-4

0

4
x 10

-3

(c)
0 4 8 12

-1

0

1

2

3

4
x 10

-3

(d)

t/s t/s

t/st/s

1 
/o

2 
/o

q 1
1/

m

q 2
1/

m

Bild 	��� Positionierung des Ende�ektors �a
	 �b
� Zeitverl�aufe der Winkel� �c
	 �d
�

Zeitverl�aufe der elastischen verallgemeinerten Koordinaten� ��
� gemessen� �� ��

gesch�atzt




� Experimentelle Ergebnisse ��

0 4 8 12

0

10

20

30

(a)
0 4 8 12

-40

-20

0

20

40

(b)

0 4 8 12

-0,1

0

0,1

(c)
0 4 8 12

-0,05

0

0,05

(d)

0 4 8 12

-2

-1

0

1

(e)
0 4 8 12

-2

0

2

(f)

1

-1

t/s t/s

t/s

t/st/s

t/s

�� 1/
o /

s
�� 2/

o /
s

q 1
1/m

/s

�� q 2
1/m

/s

��

z 1
/V

� z 2
/V

�

Bild 	��� Positionierung des Ende�ektors �a
	 �b
� gesch�atzte Winkelgeschwindigkei�

ten� �c
	 �d
� gesch�atzte Geschwindigkeiten der elastischen verallgemeinerten

Koordinaten� �e
	 �f
� gesch�atzte St�orgr�o�en

0,965 0,97 0,975 0,98 0,985

0

0,04

0,08

0,12

0,16

0,2

xe/m

y e/
m

Anfangspunkt

Sollpunkt 
Istpunkt

Bild 	��
� Positionierung des Ende�ektors



� Experimentelle Ergebnisse ��

Unter Variation der Zusatzmassen wird nun die AEZR zur Bahnverfolgung des End�

e�ektors angewendet� Die Parameterschwankungen der Masse bei der Bahnverfolgung

des Ende�ektors wird durch das Anbringen einer zus�atzlichen Masse ����g
 realisiert�

Bild ���� zeigt die zus�atzliche Masse	 die auch das Tr�agheitsmoment des Ende�ektors

It beein u�t� Das F�uhrungsverhalten mit und ohne zus�atzliche Masse wird in Bild ����

zusätzliche Masse

Bild 	���� Zus�atzliche Masse des DFM��

dargestellt� Bei der Bahnverfolgung hat die Istbahn eine gro�e zeitliche Verz�ogerung	 die
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durch eine Vergr�o�erung der Parameter der R�uckf�uhrungsmatrix Kf verringert werden

kann� Eine �ahnliche Erscheinung ist in �Carusone u� a� ����
 beschrieben� Wegen der

Nichtphasenminimumdynamik des Ende�ektors erh�oht jedoch eine wachsende MatrixKf

die Neigung der Instabilit�at des Systems�

Da diese Zeitverz�ogerung ca� ��� ms betr�agt und zudem konstant ist	 kann sie unter

der Anwendung der Sollbahnvorsteuerung verschwinden	 d� h� zum Zeitpunkt k wird die

Sollbahn zu xd�k � kd
 statt x
d�k
 mit kd � ��� ms gesetzt� Bild ���� zeigt die Zeit�

verl�aufe des Ende�ektors und Stellspannungen mit und ohne zus�atzliche Masse	 bei der

die zeitliche Verz�ogerung nicht mehr existiert� Das F�uhrungsverhalten erreicht trotz der

gro�en Zusatzmassen�anderung kleine Regelabweichungen �ca� �	�� m	 �	�� m in x
 und

y
Koordinate
	 die durch das Getriebespiel �unbelastet ��
 und die Ungenauigkeit der

DMS verursacht werden� Eine weitere Ursache besteht in der nicht modellierten Dyna�

mik	 die durchKcz�k
 nicht komplett kompensiert wird� Das gute Regelverhalten erkl�art
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sich damit	 da� das STF die St�orgr�o�en	 die die Zusatzmassenschwankungen enthalten	

adaptiv sch�atzen kann� Dies f�uhrt zur adaptiven Kompensation der Parameterschwankun�

gen� Die sehr gut �ubereinstimmenden gemessenen und gesch�atzten Ausg�ange des DFM��

�ohne zus�atzliche Masse
 werden in Bild ���� dargestellt� Im Falle zus�atzlicher Masse

erh�alt man ebenfalls sehr gute Ergebnisse	 die hier nicht dargestellt sind� Bild ���� zeigt

die gesch�atzten Geschwindigkeiten der verallgemeinerten Koordinaten und die St�orgr�o�en

�ohne zus�atzliche Masse
� Um die Bahnverfolgung des Ende�ektors deutlicher zu illustrie�

ren	 wird die Kurve �f�ur � � t � � s
 in der x
y
Ebene dargestellt �siehe Bild ����
�
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	 Zusammenfassung

Dieser Bericht stellt die Regelung des im Fachgebiet MSRT vorhandenen zweiachsigen

elastischen Handhabungssystems DFM�� vor� Ein konventioneller PD
Regler mit einer

adaptiven Vorsteuerung wird zur Positionierung der Gelenke getestet	 in dem die ersten

elastischen Eigenfunktionen vernachl�assigt sind� Ein neues Regelungskonzept	 die Adap�

tive Erweiterte Zustandsregelung �AEZR
	 wird danach vorgestellt	 wobei der Regler aus

einem LQR
Regler und einem adaptiven Kompensator besteht� Alle Zust�ande und die

St�orgr�o�en	 die die nicht modellierte Dynamik des DFM�� repr�asentieren	 werden mit Hil�

fe des STF online adaptiv gesch�atzt� Die Leistungsf�ahigkeit der neu eingef�uhrten AEZR

wird sowohl f�ur die Positionierung und Bahnverfolgung der Gelenke als auch des Ende�ek�

tors am DFM�� nachgewiesen� Die experimentellen Ergebnisse zeigen	 da� der adaptive

erweiterte Zustandsregler trotz einer gro�en Zusatzmassen�anderungen starke Robustheit

gegen�uber Parameterungenauigkeiten und Parameterschwankungen besitzt�

Es ist anzumerken	 da� das in diesem Bericht vorgestellte AEZR
Konzept nicht auf das

Gebiet der elastischen Handhabungssysteme beschr�ankt ist� Es k�onnte bis zu einem ge�

wissen Grade auch auf andere nichtlineare Systeme angewendet werden�

Die Verfasserin dankt dem DAAD f�ur die Unterst�utzung�
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