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� Einf�uhrende �Ubersicht

Die Untersuchungen nichtlinearer Systeme auf die f�ur eine Reglerauslegung relevanten Sy�

stemeigenschaften sind im allgemeinen nur unter Zuhilfenahme von Computer�Algebra�

Systemen	 kurz CAS	 m�oglich� Vor diesem Hintergrund sind bereits eine Reihe von

Software�Tools entstanden	 mit dem Ziel	 die routinem�a�ig anfallenden Berechnungen zu

automatisieren und damit auch einem gr�o�eren Personenkreis nichtlineare Beurteilungs�

und Auslegungskriterien zug�anglich zu machen� Genannt sei das ebenfalls in diesem

Fachgebiet entstandene Tool NSAS � Nonlinear System Analysis and Synthesis Package


Lemmen u� a� ����� � und das Software Packet NonLinCon 
Essen und Jager ���
��

Beide setzen die beispielsweise in 
Isidori ����� und 
Schwarz ����� zu �ndenden De��

nitionen f�ur Systemeigenschaften und Gleichungen zur Reglerauslegung in entsprechende

Algorithmen um�

GAFAS � Graph�theoretical Algorithms For Analysis and Synthesis 
of nonlinear sy�

stems� � baut auf diesen Software�Paketen auf� Wie in verschiedenen Ver�o�entlichungen


Svaricek ����	 Wey ����	 Spielmann und Schwarz ����	 L�evine ����� nachgewiesen	 zeigt

sich ein praktischer Nutzen bei der Verwendung graphentheoretisch basierter Algorithmen

im Besonderen durch die Reduzierung von Rechenzeiten�

erweitert�
strukturell�

Σ�

*�e�

strukturell�

Σ�

*�

graphentheoretische,�

symbolische Analyse�

analytisch� Σ�
ALS�

System-�
eigenschaften�

Ergebnis�

Ergebnis�

symbolische�

Analyse�

graphentheoretische�

Analyse�

1.�

2.�

3.�

Bild ���� Vorgehensweise bei der Systemanalyse

Dieser Vorteil wird im wesentlichen aufgrund der in Bild ��� am Beispiel der Systemana�

lyse dargestellten Schritte erzielt� So kann bereits vielfach bei der strukturellen Analy�

se 
Schritt �� ein Ergebnis erzielt werden� Der dazu verwendete Strukturgraph enth�alt

f�ur diesen Zweck lediglich Informationen �uber Abh�angigkeiten zwischen den System�

zust�anden�

F�uhrt diese strukturelle Untersuchung zu keinembrauchbaren Ergebnis	 werden zus�atzlich

Gewichtungen zwischen den Zust�anden ber�ucksichtigt 
extended structural analysis�� Die
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Gewichte k�onnen konstant oder Funktionen in den Systemzust�anden sein�

Wenn auch diese erweiterte strukturelle Untersuchung keinen Erfolg bringt	 dann wird auf

die herk�ommliche	 also analytische Vorgehensweise zur�uckgegri�en� Der sich daraus erge�

bende Nachteil	 zwei zus�atzliche Operationen durchgef�uhrt zu haben kann vernachl�assigt

werden	 da die strukturelle und die erweiterte strukturelle Analyse auf graphentheoreti�

schen Methoden basieren und in der Regel schnelle Ergebnisse liefern� Des weiteren ist

bei einer analytischen Untersuchung komplexer Systeme bzw� bei Systemen mit hoher

Systemordnung die Wahrscheinlichkeit gro�	 an die Grenzen der heutigen Rechnerleistun�

gen zu sto�en�

Nachdem im folgenden Abschnitt einige f�ur das weitere Verst�andnis notwendige Grund�

lagen zur Graphentheorie behandelt werden	 wird in Abschnitt � die Handhabung von

GAFAS n�aher erl�autert� Alle implementierten Befehle werden mit dem notwendigen theo�

retischen Hintergrund in Abschnitt � er�ortert�

Zusammenfassung und Ausblick schlie�en den Bericht ab�
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� Graphentheoretische Grundlagen

Obwohl die Graphentheorie bereits �uber 
�� Jahre in unz�ahligen Bereichen erfolgreich

angewendet wird 
Sachs und Stiebitz �����	 ist sie im Laufe der Zeit immer wieder

neu entdeckt worden� Dies h�angt damit zusammen	 da� den Elementen	 aus denen ein

Graph besteht 
Bild 
���	 unterschiedliche Bedeutungen zugeordnet werden k�onnen� Bei

technischen Systemen beschreibt der hier gew�ahlte Graph die Abh�angigkeiten der Zu�

stands�anderungen von den Systemzust�anden� Mit den Informationen lassen sich struk�

turelle Untersuchungen durchf�uhren	 welche erste Hinweise auf Eigenschaften geben	 die

alle Systeme mit gleicher Struktur gemeinsam haben� Die Hinzunahme einer Gewichtung

dieser Abh�angigkeiten 
Bild 
��b� wird erforderlich	 wenn anhand des Strukturgraphen

allein keine abschlie�enden Aussagen getro�en werden k�onnen�

� �� � ��

� � � �

� �

� �

Bild ���� Gerichteter Graph� a� Strukturgraph

b� bewerteter Graph

Bei den hier betrachteten gerichteten Graphen haben die Kanten eine Pfeilspitze	 und

damit eine festgelegte Orientierung� Einen �Uberblick �uber die unterschiedlichen De�ni�

tionen f�ur Graphen ist u� a� in 
Gondran und Minoux ����� und 
Lemmen ����� zu �nden�

�Ublicherweise werden die Kanten und Knoten zu einer Kantenmenge E und einer Kno�

tenmenge V zusammengefa�t�

De�nition ��� 
Wagner und Bodendiek �����

Ein geordnetes Paar D � 
V�E� ist ein endlicher	 gerichteter Graph genau dann	 wenn

V eine endliche Menge ist und E eine Teilmenge des kartesischen Produkts V � V �

f
v� v�� j v� v� � V g mit E � V � V bedeutet und E au�erdem die Bedingung erf�ullt	 da�

aus 
v� v�� � E stets 
v�� v� 	� E gilt�

Eine m�ogliche graphische Darstellung f�ur ein nichtlineares System �

�x
t� � f 
x
t��u
t��

y
t� � h
x
t��

mit x � Rn� u � Rm und y � Rp



���

� Die Zeitabh�angigkeit der Zust�ande und Ein��Ausg�ange wird in diesem Abschnitt

nicht weiter angegeben�
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als gerichteter Graph resultiert aus Anwendung der in 
Reinschke ����� zu �ndenden

Bildungsregeln�

�� Der Graph hat f�ur die Eing�ange	 die Zust�ande und f�ur die Ausg�ange je einen Knoten

mit entsprechender Bezeichnung�

V � fx�� x�� � � � xn� u�� u�� � � � � um� y�� y�� � � � � ypg �


� Wenn die Zustandsvariable xj in fi
x�u� enthalten ist	 dann existiert eine Kante

vom Zustandsknoten xj zum Zustandsknoten xi�


xj� xi� � E �

�� Wenn die Eingangsvariable uj in fi
x�u� enthalten ist	 dann existiert eine Kante

vom Eingangsknoten uj zum Zustandsknoten xi�


uj� xi� � E �

�� Wenn die Zustandsvariable xj in hi
x� enthalten ist	 dann existiert eine Kante vom

Zustandsknoten xj zum Ausgangsknoten yi�


xj� yi� � E �

Werden die linguistischen Bildungsregeln	 die die Elemente der Kantenmenge festlegen	

durch partielles Ableiten der Funktionen f 
x�u� und h
x� nach den Zust�anden x und

Eing�angen u ersetzt

E �

�

xj� xi� j


fi
x�u�


xj
�� �� i� j � � � � � n

�
�

�

uj� xi� j


fi
x�u�


uj
�� �� i � � � � � n� j � � � � �m

�
�

�

xj� yi� j


hi
x�


xj
�� �� i � � � � � p� j � � � � � n

�
�



�
�

dann besteht die M�oglichkeit	 neben einer Ja�Nein�Entscheidung bez�uglich der Existenz

von Kanten	 eine Gewichtung 
Bewertung� dieser Kanten vorzunehmen�

De�nition ��� 
Wagner und Bodendiek �����

Ist G � 
V�E� ein Graph aus �	 B eine nichtleere Teilmenge von R und � � E 	
 B eine

Abbildung	 die jeder Kante von G eine reelle Zahl aus B zuordnet	 so hei�t das Quadrupel

G� � 
V�E� ��B� kantenbewerteter Graph� Ist e � E	 so hei�t �
e� Wert der Kante e�
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Die reellen Zahlen werden f�ur ein technisches System so gew�ahlt	 da� sie identisch mit den

partiellen Ableitungen 
vgl� Gl� 

�
�� an einem Arbeitspunkt sind� Bei einem linearen

System in Zustandsraumdarstellung sind die Kantengewichte identisch mit den Elementen

der Systemmatrix A	 der Eingangsmatrix B und der Ausgangsmatrix C� Durch das

Einsetzen eines Arbeitspunktes k�onnen Kanten e mit Gewicht w
e� � � auftreten	 also

Kanten verschwinden�

De�nition ��� 
Spielmann �����

F�ur ein System mit einer Zustandsraumdarstellung nach Gl� 

��� resultiert der Wert �
e�

einer Kante e � E f�ur einen Punkt 
x��u�� aus�

�
e� �

������������
�����������


fi
x�u�


xj

					
�x��u��

� f�ur e � 
xj� xi� � E� i� j � � � � � n


fi
x�u�


uj

					
�x��u��

� f�ur e � 
uj� xi� � E� i � � � � � n� j � � � � �m


hi
x�


xj

					
�x��u��

� f�ur e � 
xj� yi� � E� i � � � � � p� j � � � � � n �



���

Bei der Betrachtung nichtlinearer Systeme ist die Beschr�ankung auf einen Arbeitspunkt

in der Regel unerw�unscht� Damit verbunden ist der �Ubergang von reellwertigen Kanten�

gewichten zu funktionalen Kantengewichten� De�nition 
�
 ist entsprechend zu erweitern�

De�nition ��� 
Spielmann �����

Ist G � 
V�E� ein Graph aus �	 F � 
X�U� 	
 R eine Abbildung des Zustandsraums

X � R
n und des Eingangsraums U � R

m in R	 sowie � � E 	
 F eine Abbildung	 die

jeder Kante vonG eine Funktion aus F zuordnet	 so hei�t das QuadrupelG� � 
V�E� �� F �

funktional kantenbewerteter Graph� Ist e � E	 so hei�t �
e� Wert der Kante e�

Das funktionale Kantengewicht �
e� kann analog zu De�nition 
�� bestimmt werden�

De�nition ��	 
Spielmann �����

F�ur ein System mit einer Zustandsraumdarstellung nach Gl� 

��� ist

�
e� �

����������
���������


fi
x�u�


xj
� f�ur e � 
xj� xi� � E� i� j � � � � � n


fi
x�u�


uj
� f�ur e � 
uj� xi� � E� i � � � � � n� j � � � � �m


hi
x�


xj
� f�ur e � 
xj� yi� � E� i � � � � � p� j � � � � � n �



���
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Wie ein Vergleich der Gln� 

��� und 

��� zeigt	 gilt der Zusammenhang

�
e� � �
e�
			
�x��u��

� 

���

Voraussetzung f�ur die Existenz der partiellen Ableitungen ist die stetige Di�erenzier�

barkeit der Funktionen f 
x�u� und h
x� in Gl� 

���� Diese wird f�ur die im weiteren

ausschlie�lich betrachtete	 technisch relevante Klasse der analytischen Systeme mit linear

eingehender Steuerung 
Schwarz ����	 Isidori �����	 kurz ALS	 erf�ullt� Viele Ergebnisse	

die anhand der behandelten Graphen gewonnen werden k�onnen	 lassen sich oftmals auf

allgemeine nichtlineare Systeme erweitern� Dies tri�t insbesondere dann zu	 wenn nicht�

di�erenzierbare Funktionen solchen Kanten zugeordnet werden	 die keine Verwendung bei

der Systemanalyse oder Reglersynthese �nden 
Spielmann u� a� ������

In der Regel wird vor der expliziten Berechnung der Kanten mit sogenannten generischen

Gr�o�en gearbeitet 
Wey ����	 Spielmann ������ Dies f�uhrt zu einer wesentlichen Reduzie�

rung der Rechenzeit	 da nur die tats�achlich ben�otigten Kantengewichte bestimmt werden

und zuvor mit konstanten Gr�o�en gerechnet werden kann�
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� GAFAS � Handhabung

��� Installation der Toolbox

GAFAS ist �uber die Internet�Adresse

http���www�msrt�uni�duisburg�de�software�index�html

verf�ugbar 
Bild ���� und kann von dort direkt als gafas�zip�Datei geladen werden�

Bild ���� Gafas�Homepage

Das �zip�Archiv enth�alt die Dateien

� gafas�main

� gafas�tools

� algebra�tools
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� nsas�main

� qls�als

� qls�mws

Die Datei nsas�main enth�alt das in der Einleitung erw�ahnte Tool NSAS	 welches f�ur den

Fall	 da� weder eine strukturelle noch eine erweitert strukturelle Untersuchung zu einem

Ergebnis f�uhrt	 angewendet wird� Vor dem ersten Aufruf innerhalb einer Maple�Session

sollten mit einem Editor die Pfad�Variablen gafas dir und gafas help in der Datei

gafas�main angepa�t werden�

��� Verwendung in Maple


GAFAS nutzt die Vorteile des Computer Algebra Systems Maple
	 insbesondere den

dort bereits vorhandenen Variablentyp f�ur einen Graphen� Nach dem Start einer neuen

Maple�Sitzung wird die Tool�Box mit

read��gafas�main��

aus dem Verzeichnis	 in der sich die Datei be�ndet	 geladen� Anschlie�end stehen die in

Tabelle ��� aufgef�uhrten und in Abschnitt � n�aher er�orterten Befehle zur Verf�ugung� Der

in Bild ��� erkennbare Ansatz kann anhand der Befehls�Pre�xe S f�ur strukturell und ES

f�ur erweitert strukturell nachvollzogen werden� Befehle ohne Pre�x bedeuten demnach die

exakte analytische Berechnung	 wie sie beispielsweisemit dem bereits erw�ahnten Software�

Tool NSAS vorgenommen werden kann�

SRelativeDegree�� Relativer Grad 
strukturell�

ESRelativeDegree�� Relativer Grad 
erweitert strukturell�

RelativeDegree�� Relativer Grad�

SZerosAtInfinity�� Nullstellen im Unendlichen 
strukturell�

ESZerosAtInfinity��Nullstellen im Unendlichen 
erweitert strukturell�

SObservability�� Beobachtbarkeit 
strukturell�

ESObservability�� Beobachtbarkeit 
erweitert strukturell�

Tabelle ���� In GAFAS implementierte Befehle

F�ur eigene Algorithmen k�onnen desweiteren die in Tabelle ��
 genannten und von den

GAFAS�Routinen verwendeten Befehle n�utzlich sein�

Auch diese Befehle werden in Abschnitt � n�aher beschrieben und an Beispielen demon�

striert� Der gr�o�te Teil der in den Tabellen aufgef�uhrten Befehle erwartet als Argument

� Dieser Befehl ist nicht in NASA implementiert� deshalb wurde der in GAFAS

aufgenommen�
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SSystem��ALS � strukturelles System

SGraph�� ALS � Strukturgraph

SRank�� Struktureller Rang einer Matrix

Tabelle ���� Erg�anzende Befehlsliste

eine Liste mit den funktionalen Vektoren und Matrizen eines analytischen Systems mit

linear eingehender Steuerung 
Gl� �����

�x � a
x� �B
x�u

y � c
x�

����

Hilfreich ist es	 das System in einer separaten Datei zu hinterlegen	 wie das Beispiel in

dem folgenden Unterabschnitt zeigt�

��� Beispiel QLS

Untersucht werden soll das mit Gl� 
��
� gegebene quadratische System mit linear einge�

hender Steuerung�

�x �



���������������������

�

x��
x��
x��
�

x��
x�	
x�

x��
x��
x���
x�



���������������������

�



���������������������

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �



���������������������

u � y �

�
x

x��

�
� 
��
�

Das System der Ordnung n � �
 mit m � 
 Eing�angen und p � 
 Ausg�angen ist in

der Darstellung als ALS gegeben und sollte zweckm�a�igerweise in eine Datei wie folgt

�ubernommen werden�

� quadratic system

n �� ���

m �� ��

p �� ��

x �� linalg�vector��n	��
�

a �� linalg�vector��n	�
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�	

x�����	

x�����	

x�
���	

�	

x�����	

x�����	

x�����	

x�����	

x�����	

x������	

x���

�
�

B �� linalg�matrix��n	m	�

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �	

�	 �

�
�

c �� linalg�vector��p	�

x���	

x����

�
�

Die unterschiedliche De�nition von a	 c und x als Vektoren und B als Matrix im Falle

eines Mehrgr�o�en�ALS mu� auch f�ur eigene Systeme eingehalten werden� Eine De�nition

der Vektoren als Matrizen	 was programmtechnisch ebenso m�oglich w�are	 f�uhrt zu Fehlern

bei der Programmausf�uhrung�

Eingelesen werden die Systemgleichungen genau wie die Tool�Box selbst �uber einen read���

Befehl� Bild ��
 zeigt	 wie der Ablauf einer Maple�Sitzung mit dem als qls�als hinter�

legten System aussehen kann�
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Bild ���� Beispiel f�ur die Anwendung von GAFAS
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	 Implementierte Befehle

��� Strukturelles System � SSystem

Grundlage einer strukturellen Untersuchung	 wie sie gem�a� Schritt � in Bild ��� durch�

gef�uhrt wird	 ist ein strukturelles System� Bei diesem Systemmodell sind nur die wechsel�

seitigen Abh�angigkeiten der Zust�ande von Interesse� Physikalische Gr�o�en	 die ebenfalls

die Systemdynamik bestimmen	 bleiben in dem Modellierungsansatz unber�ucksichtigt�

Der Vorteil solcher Strukturmodelle liegt darin	 da� Systemeigenschaften f�ur eine ganze

Klasse von strukturell �aquivalenten Systemen G�ultigkeit besitzen� Aus einem linearen

System

�x
t� �Ax
t� �Bu
t�

y
t� � cTx
t�

����

wird mit Anwendung der De�nition

De�nition ��� 
Wend �����

Die StrukturmatrixM � ist von gleicher Dimension wie die zugeh�orige ZahlenmatrixM �

F�ur jedes nicht identisch verschwindende Element von M wird ein
�
� an der entspre�

chenden Stelle vonM � eingesetzt	 jedem Nullelement von M eine
�
� oder eine Leerstelle

in M � zugeordnet�

das lineare strukturelle System

�x
t� �A�x
t� �B�u
t�

y
t� � c�
T

x
t� �

��
�

Wenn man beachtet	 da� bei den hier betrachteten analytischen Systemen mit linear

eingehender Steuerung 
ALS� Vektorfelder und damit Funktionen in den Zustandsgr�o�en

auftreten	 ist eine �Ubertragung auf nichtlineare Systeme m�oglich�

�x
t� � a
x
t�� �B
x
t��u
t�

y
t� � c
x
t�� �

����

Die Struktur des Systems ist damit abh�angig vom aktuellen Systemzustand� Elemente des

Strukturmodells	 die mit
�
! markiert sind	 k�onnen verschwinden� Besondere Beachtung

verdient aus diesem Grunde der De�nitionsbereich des Strukturmodells�

Mit dem GAFAS�Befehl SSystem werden aus einem ALS die Strukturmatrizen bestimmt	

wie das folgende Beispiel demonstriert�
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Beispiel ��� Gegeben sei das nichtlineare Zustandsmodell

�x �

�
�� sin x�
x�� � ex�

cosx�

�
��

� �z 	
a�x�

�

�
���x��

�

�
��

� �z 	
b�x�

u �

y � x���z	
c�x�

�

����	

Zweckm
a�igerweise werden die Vektorfelder a�x	� b�x	 und c�x	� wie im Abschnitt ��
 gezeigt�

in einer Datei hinterlegt� Den Aufruf und das Ergebnis zeigt der folgende Ausschnitt einer

Maple�Sitzung�

� read��gafas�main�
�

� read��beispiel�als�
�

� S��SSystem��x	a	B	c�
�

S �� AStructural � BStructural � CStructural

� print�S
�

�����

� g� �

g� g� �

� g
 �



����� �



�����
g�

�

�



����� �

h
� � g	

i

Maple�Session ���� Anwendung von SSystem

F
ur eine erweiterte strukturelle Untersuchung werden anstelle des in De�nition ��� erw
ahnten

Zeichens
�
�� f
ur ein von Null verschiedenes Element generische Gr
o�en gi verwendet� Die ge�

nerischen Gr
o�en sind zun
achst nichts weiter als eine M
oglichkeit� die Kanten voneinander zu

unterscheiden�

��� Struktureller Graph � SGraph

F�ur die Anwendung graphentheoretischer Algorithmen �ndet der bereits in Maple im�

plementierte Objekttyp graph Anwendung� Ein Strukturgraph	 der im wesentlichen die

Verkn�upfungen der Systemzust�ande	 der Eing�ange und der Ausg�ange darstellt	 wird mit

dem von GAFAS zur Verf�ugung gestellten Befehl SGraph angelegt�

Beispiel ��� Betrachtet wird wieder das mit Gl� ����	 gegebene System� Bild ��� zeigt

den zugeh
origen �erweiterten	 Strukturgraph durch Anwendung der in Abschnitt 
 aufgef
uhrten

Regeln zur Bildung eines Systemgraphen� Die Benennung der Kanten mit den generischen
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� � � � �� �

� �

� �

� �

� �

� 	 � 


Bild ���� Erweiteter Strukturgraph

Gr
o�en g� bis g	 kann den �erweiterten	 Strukturmatrizen der Maple�Session ��� entnommen

werden� Als Parameter erwartet der Befehl SGraph wiederum eine Liste mit dem Zustandsvektor

x und den Vektorfeldern a�x	� B�x	 und c�x	� Wie die folgende Maple�Sitzung zeigt� ist das

Ergebnis von SGraph ein Maple�Objekt vom Typ Graph� Zur weiteren Verarbeitung stellt Maple

eine Reihe von Befehlen im Rahmen des Standard�Pakets networks zur Verf
ugung� Die in der

Maple�Session ��
 angewendeten edges� vertices und ends stellen nur eine geringe Auswahl

dar�

� read��gafas�main�
�

� read��beispiel�als�
�

� G��SGraph��x	a	B	c�
�

G �� GStructural

� edges�G
�

fg�� g�� g�� g
� g�� g	g

� vertices�G
�

f�� 
� �� y� � u�g

� ends�G
�

f"
� �#� "�� 
#� "
� �#� "
� 
#� "�� y� #� "u� � �#g

Maple�Session ���� Anwendung von SGraph

Die Zustandsknoten werden f
ur das Maple�Objekt Graph von � bis n durchnumeriert� die

Eing
ange und Ausg
ange erhalten neben der Bezeichnung u bzw� y einen Index zur Unterschei�

dung bei Mehrgr
o�ensystemen� Die Kantengewichte werden mit SGraph nicht weiter berechnet

und haben alle zun
achst den Wert w�ei	 � ��

��� Struktureller Rang � SRank

Ausgehend von der De�nition des Ranges einer Matrix
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De�nition ��� 
Bronstein und Semendjajew �����

Die Matrix A �� 
 hat den Rang Rg
A� � � genau dann	 wenn A mindestens eine re�

gul�are ��reihige Untermatrix besitzt und alle h�oherreihigen Untermatrizen von A singul�ar

sind� Dabei hei�t eine quadratische Matrix regul�ar bzw� singul�ar je nachdem	 ob ihre

Determinante von Null verschieden bzw� gleich Null ist�

kann der Rang als die Maximalzahl der linear unabh�angigen Zeilen� bzw� Spaltenvektoren

der Matrix interpretiert werden� �Ubertragen auf eine Strukturmatrix A�	 die keine festen

Zahlenwerte enth�alt	 wird der strukturelle Rang als ein oberer Wert f�ur den Rang aller

Matrizen mit gleicher Struktur de�niert�

De�nition ��� 
Wend �����

Der strukturelle Rang einer Strukturmatrix ist der maximal m�ogliche Rang	 den die

zul�assigen ZahlenmatrizenA mit der durchA� vorgegebenen Struktur annehmen k�onnen�

s�RangA� � max

A � A�

RangA � 
����

Mit dem GAFAS�Befehl SRank kann der strukturelle Rang bestimmt werden	 wie die

folgende Maple�Sitzung zeigt�

� read��gafas�main���

� A��matrix�	
	
��


	
����

A ��



�� �


 �



�

� SRank�A��




� linalg�rank��A��

�

Maple�Session ���� Anwendung von SRank

Der Vergleich mit dem gew�ohnlichen Rangbefehl zeigt deutlich die erw�ahnte Eigenschaft

des strukturellen Ranges	 ein Supremum zu sein�
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��� Di�erenzengrad � �E�SRelativeDegree

Der relative Grad oder auch Di�erenzengrad eines nichtlinearen Systems spielt bei der

Linearisierung und auch Entkopplung eine entscheidende Rolle� Unter anderem kann

anhand des Di�erenzengrads festgestellt werden	 ob ein System eine Nulldynamik aufweist

und mit welchen Regelgesetzen eine Linearisierung durchgef�uhrt werden kann� F�ur ALS

wird der Di�erenzengrad folgenderma�en festgelegt�

De�nition ��� 
Schwarz �����

Ein Mehrgr�o�en�ALS der Form 
���� hat den 
Vektor�� Di�erenzengrad d f�ur alle x in

einer Umgebung von x��

d � fd�� d�� � � � � dmg 
����

mit�

di � minfrjLBL
r��
a
cTi x �� 
g � i � �� 
� � � � �m � 
����

Diese De�nition macht Gebrauch von sogenannten Lie�Operatoren L	 die in 
Schwarz

����	 Isidori ����� ausf�uhrlich beschrieben sind� Mit dem Programmpaket NSAS � non�

linear systems analysis and synthesis � steht eineMaple�Anwendung zur Verf�ugung	 die

eine einfache Nutzung von Lie�Ableitungen und weiteren di�erentialgeometrischen Werk�

zeugen wie Lie�Klammern etc� erm�oglicht 
Lemmen u� a� ������

Anschaulich bedeutet Gl� 
����	 da� di gerade der Anzahl der zeitlichen Di�erentiationen

von yi entspricht	 bis mindestens eine Eingangsgr�o�e uj explizit darin enthalten ist�

y
�k�
i 
t� �

dkyi
t�

dtk
�� f
u
t�� � k � �� � � � � di 	 �

y
�di�
i 
t� �

ddiyi
t�

dtdi
� f
u
t�� �


����

F�ur $ALS wird nun der Di�erenzengrad mit den in Tabelle ��� genannten Befehlen be�

rechnet�

Befehl Argumente Resultat Beschreibung

SRelativeDegree $ALS ODER G� d� Gl� 
����

wahr�m�oglich f�ur d � d�

ESRelativeDegree$ALS UND G� d�

G� optional wahr�m�oglich f�ur d � d�e

Tabelle ���� Maple�Befehle zur Bestimmung des Di�erenzengrads von $ALS

�
c
T

i
in Gl� ����	 bezeichnet die i�te Zeile der Matrix C�
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Entsprechend dem dreigeteilten Ansatz wird unterschieden zwischen dem strukturellen

Di�erenzengrad d�	 dem erweitert strukturellen Di�erenzengrad d�e und dem analyti�

schen Di�erenzengrad d� Der Algorithmus liefert neben dem Ergebnis d� und d�e die

Information	 ob das Resultat mit dem
�
exakten Di�erenzengrad d gem�a� De�nition ���

�ubereinstimmt�

Beispiel ��� Die analytische Berechnung des Di�erenzengrades f
ur das System nach Gl� ����	

durch Ableiten des Systemausgangs ergibt den Wert d � �� Die Maple�Session ��� zeigt die

alternative Vorgehensweise unter Verwendung von GAFAS�Befehlen�

� read��gafas�main�
�

� read��beispiel�als�
�

� G��SGraph��x	a	B	c�
�

G �� GStructural

� SRelativeDegree�G
�

results are strongly structural� structural results are equal to exact
results

�

� ESRelativeDegree��x	a	B	c�	G
�

results are strongly structural� structural results are equal to exact
results

�

Maple�Session ���� Anwendung von �E
SRelativeDegree

Mit dem Hinweis
�
Die strukturellen Ergebnisse entsprechen den exakten Ergebnissen�� nach

der Anwendung von SRelativeDegree� er
ubrigt sich die Anwendung von ESRelativeDegree

und erfolgt hier nur zu Demonstrationszwecken� Dabei reduziert die optionale 
Ubergabe des

strukturellen Graphen die Rechenzeit� die daf
ur erforderlich ist�

Der Algorithmus zur Bestimmung der strukturellen Di�erenzengrade basiert auf der Ana�

lyse des Systemgraphen� Es wird die Existenz des k�urzesten Pfades zwischen den Ein�

gangsgr�o�en u � genauer den diesen zugeordneten Knoten � und dem Ausgangsknoten yi
gepr�uft und dessen L�ange li ermittelt� F�ur den Di�erenzengrad di gilt dann

di � li 	 
 � 
����

Der Subtrahend
�
�
 resultiert aus den Verbindungskanten zwischen Eing�angen und Zust�anden

bzw� Zust�anden und Ausg�angen	 die im Gegensatz zu den �ubrigen Kanten keine Integra�

tion repr�asentieren� Existiert nur ein k�urzester Weg	 so gilt d� � d� Bei mehreren Pfaden
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k�urzester L�ange m�ussen zus�atzlich die Pfadgewichte untersucht werden� Addieren sich

alle Pfadgewichte zu einem Wert ungleich Null	 dann folgt daraus d�e � d� Sollte auf

diese Weise keine exakte Aussage m�oglich sein	 so sind d� und d�e dennoch immer obere

Absch�atzungen f�ur d�

��� Nullstellen im Unendlichen � �E�SZerosAtInfinity

Weitere wesentliche Eigenschaften nichtlinearer Systeme lassen sich anhand der soge�

nannten Nullstellenstruktur im Unendlichen de�nieren� Es sei darauf hingewiesen	 da�

dieser Terminus f�ur das Tupel aller Ordnungen der Nullstellen im Unendlichen steht� Der

hierin enthaltene Begri�
�
Struktur wurde in Anlehnung an die in der Literatur �ubliche

Benennung gew�ahlt und beinhaltet die Invarianz dieser Kenngr�o�e gegen�uber einer Sy�

stem�anderung durch bestimmte Transformationen und statische Zustandsr�uckf�uhrungen�

Er ist in keiner Weise mit den hier untersuchten
�
strukturellen Methoden zu verwech�

seln� Die Nullstellenstruktur im Unendlichen	 die im Falle von $LS direkt anhand der
�Ubertragungsmatrix F 
s� ermittelt wird	 hat f�ur nichtlineare Systeme keine derart an�

schauliche Bedeutung� Dennoch ist sie als eine f�ur die Analyse nichtlinearer Systeme

aussagekr�aftige Gr�o�e anzusehen�

De�nition

Als einer der ersten	 der die Di�erentialalgebra im Bereich der nichtlinearen Regelungs�

theorie verwendete	 f�uhrte Fliess 
����� eine algebraische De�nition f�ur die Nullstellen im

Unendlichen 
im folgenden mit NU bezeichnet� von nichtlinearen Systemen ein� Diese wird

anhand von di�erentiellenVektorr�aumen erstellt	 welche aus denK�ahler�Di�erentialen der

Ein� und Ausgangsgr�o�en resultieren� Im Gegensatz zu di�erentialgeometrisch de�nierten

NU verf�ugt die algebraische Darstellung �uber eine Reihe von Vorteilen� So ist sie z� B�

global �uber dem Zustandsraum eines Systems g�ultig und in ihren Eigenschaften konsistent

mit bekannten Eigenschaften der unendlichen Nullstellen linearer Systeme�

Geht man von einem $ALS�Zustandsmodell der Form 
���� aus	 lassen sich zun�achst die
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zeitlichen Ableitungen der Ausgangsgr�o�en durch

�y
t� � �y
x�u�

�

y


x
"a
x� �B
x�u#

�y
t� � �y
x�u� �u�

�

 �y


x
"a
x� �B
x�u# �


 �y


u
�u

���

y�k���
t� � y�k���
x�u� � � � �u�k��

�

y�k�


x
"a
x� �B
x�u# �

k��X
l��


y�k�


u�l�
u�l���


�����

allgemein beschreiben� Soll auf die Betrachtung von reinen Ein��Ausgangsdarstellungen

verzichtet und die zeitlichen Ableitungen der Ausgangsgr�o�en in der Form 
����� di�eren�

tialalgebraisch beschrieben werden	 so reicht der K�orper Khui hierf�ur nicht aus� Denn

in diesem sind formal keine Funktionen in x
t� enthalten	 die aber als Koe�zienten der

Di�erentialgleichungen ben�otigt werden� Deshalb wird der oben eingef�uhrte di�erenti�

elle K�orper �K verwendet	 der neben Khui Koe�zienten enth�alt	 die meromorph in der

Variablen x
t� sind�

�Uber �K wird anschlie�end ein di�erentieller Vektorraum U de�niert� Dieser ist aufge�

spannt durch K�ahler�Di�erentiale du�� � � � �dum� Die Projektionen der Ausgangsgr�o�en�

Di�erentiale dy�k� auf U spannen ihrerseits di�erentielle �K�Vektorr�aume auf	 deren di�e�

rentielle Dimensionen mit �k bezeichnet werden� Aus den �k	 f�ur die der Zusammenhang

� � �� 
 �� 
 � � � 
 �n 
 min
m� p� immer erf�ullt ist	 l�a�t sich direkt die Nullstellen�

struktur im Unendlichen eines Systems de�nieren zu

De�nition ��	

Die Di�erenz �k�� 	 �k mit �k � di�� dimspan �K

�
dy�k�

�
gibt die Anzahl der Nullstellen

im Unendlichen der Ordnung k � � an� Das Maximum der ganzzahligen Gr�o�en �n
entspricht der Gesamtanzahl der NU und stimmt mit dem di�erentiellen Rang � von $

�uberein�

Um die Auswertung der NU mit herk�ommlichen Programmsystemen	 d� h� mit klassischen

mathematischen Ans�atzen	 zu erm�oglichen	 wird nun ein �Ubergang zur linearen Algebra

vollzogen� Gem�a� Gl� 
����� sind sowohl der Ausgangsvektor y eines $ALS als auch dessen

zeitliche Ableitung Funktionen in x und �u� Die Di�erentiale d�y werden demzufolge in

Abh�angigkeit der Di�erentiale dx und d�u gebildet�

dy
�k�
i �

�

y

�k�
i


u
� � �


y
�k�
i


u�n���

� 
�� du
���

du�n���



�� �


y
�k�
i


x
dx � i � �� � � � � p � 
�����



� Implementierte Befehle 
�

Jedes Element von d�y kann als Vektor im 
nichtdi�erentiellen� Vektorraum E � U�X in�

terpretiert werden	 wobei U durch die d�u und X durch die dx aufgespannt wird� Der von

der Wahl des Zustandsvektors x unabh�angige di�erentielle Rang � � di�� trgKhyi	K

eines Systems entspricht der Anzahl von di�erentiell linear unabh�angigen Elementen

dy bzw� der di�erentiellen Dimension des durch dy aufgespannten Vektorraums� Der
�Ubergang auf 
nichtdi�erentiell� linear unabh�angige Gr�o�en erfolgt durch die sukzessiv

von d�y aufgespannten Vektorr�aume

E� � span �K fdxg

E� � span �K fdx�d �yg

���

En � span �K

�
dx�d �y� � � � �dy�n�

�
� 
���
�

Diese stellen Unterr�aume von E dar�

E� � E� � � � � � En � E � span �K fdx�d�ug � 
�����

Die Di�erenzen ihrer 
nichtdi�erentiellen� Dimensionen �k � dimEk entsprechen einer

monoton steigenden Folge	 die gegen den di�erentiellen Rang � konvergiert und f�ur k � n

diesem entspricht�

�k�� 	 �k � �k 	 �k�� �k � � 
�����

� � �k�� 	 �k � �n 	 �n�� �k � n � 
�����

Eine an De�nition ��� ankn�upfende Bestimmung der NU resultiert dann aus

De�nition ���

Die Anzahl �k der Nullstellen im Unendlichen der Ordnung kleiner oder gleich k	 k � �	

entspricht �k � dimEk 	 dimEk��� Setzt man ��� �� �	 so ergibt sich die Anzahl der

Nullstellen im Unendlichen einer Ordnung k aus �k 	 �k��� Die Struktur im Unendli�

chen wird durch das geordnete Tupel fn�� n�� � � � � n�ng der Indizes k beschrieben	 f�ur die

�k 	 �k�� �� � gilt� Die Indizes werden jeweils 
�k 	 �k����mal wiederholt�

Die Tupel f��� � � � � �ng	 f��� � � � � �ng und fn�� � � � � n�ng beinhalten im Grunde identische

Informationen �uber die Nullstellen im Unendlichen� In Abh�angigkeit des jeweiligen An�

wendungsfalls kann sich eine der Darstellungsformen jedoch als vorteilhafter erweisen als

die anderen� Soweit m�oglich	 wird im weiteren das Tupel der Ordnungen fn�� � � � � n�ng

verwendet�

Im Falle von $LS ist die Struktur im Unendlichen eng mit dem Begri� Toeplitz�Matrizen
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verkn�upft� Das nichtlineare �Aquivalent der Toeplitz�Matrix sind die Jacobi�Matrizen

Jk � Jk
x�u� � � � �u
�k���� �



 �y� � � � �y�k��



u� � � � �u�k����
� k � �� � � � � n � J� � 


�



���������


 �y


u




 �y


u


 �y


 �u
���

� � �


y�k�


u


y�k�


 �u
� � �


y�k�


u�k���



���������

�


�����

Der rekursive Charakter der Bestimmungsgleichung bei wachsendem k	 der vor allem f�ur

die sp�atere Implementierung als Algorithmus von Interesse ist	 wird in der Form

Jk �

�
Jk�� 


Yk

�
mit Yk �

�

y�k�


u


y�k�


 �u
� � �


y�k�


u�k���

�

�����

besonders deutlich� Ein Vergleich der Elemente von Jk mit Gl� 
����� f�uhrt zu einer

direkten Beziehung zwischen der Dimension eines Vektorraums Ek und dem Rang der

Matrix Jk	 wenn Ek folgenderma�en aufgespalten wird�

Ek � span �K

�

 �y


u
du� � � � �

k��X
l��


y�k�


u�l�
du�l�

�
� span �K fdxg

� Vk � span �K fdxg �


�����

Dann k�onnen auch die Dimensionen derart zerlegt werden	 da� die Zeilen von Jk gerade

den aufspannenden Vektoren entsprechen�

dimEk � dim span �K

�

 �y


u
du� � � � �

k��X
l��


y�k�


u�l�
du�l�

�
� dim span �K fdxg

� rang Jk � n � k � �� � � � � n �


�����

Beispiel ���

Die Matrizen

a�x	 �

�
�� �

x��
�

�
�� � B�x	 �

�
�� � �

x� �

� �

�
�� � C �



� � �

� � �

�
���
�	

beschreiben das gegebene �ALS� Durch Anwendung von De�nition ��� kann festgestellt werden�

da� das System rechtsinvertierbar und damit entkoppelbar ist�

�y �



�x�
�x�

�
�



u�

x�� � x�u�

�

� �� � rangJ� � rang

�
� �y

�u



� rang



� �

x� �

�
� � �

���
�	
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Die Di�erenz �� � �� erreicht noch nicht den gr
o�tm
oglichen Rang� deshalb sind weitere Di�e�

rentiationen notwendig�


y �



�u�


x�u� � u�u� � x� �u�

�

�
� 
y

�u
�



� �


x� � u� u�

�
�

� 
y

� �u
�



� �

x� �

�

� �� � rang

�
��
� �y

�u
�

� 
y

�u

� 
y

� �u

�
��� rangJ� � 
 �

���

	

Wegen Gl� �����	 kann �� nicht kleiner als �� werden� so da� f
ur den Rang � � �� � �� � 
 gilt�

Folglich ist das System entkoppelbar�

Damit steht eine auf einfache Weise in symbolischen Programmiersprachen zu implemen�

tierende Beschreibungsform f�ur die NU zur Verf�ugung� F�ur einen e�zienten Algorithmus

zur Ermittlung der Struktur im Unendlichen ist die Begrenzung

�k � dimEk 	 dimEk��

� rang Jk 	 rang Jk�� 
 min
m� p� �k � N�

��
��

von Interesse� Sobald ein �k in Gl� 
��
�� erstmalig gleich dem Minimum der Anzahl

von Ein� und Ausg�angen ist	 kann die Berechnung abgebrochen werden� Die weiteren

Nullstellenanzahlen erf�ullen dann �n � � � � � �k� Insbesondere bei Mehrgr�o�ensystemen

h�oherer Ordnungen kann der Einsatz des Abbruchkriteriums eine erhebliche Reduzierung

des erforderlichen Rechenaufwandes bewirken�

Der Rechenaufwand steigt exponentiell mit k an	 so da� bereits f�ur Nullstellen�Ordnungen

zwischen � und �� die Rangbestimmung der Jacobi�Matrizen 
����� kein Ergebnis liefert�

In diesem Fall bietet sich die strukturelle Vorgehensweise an	 die in Maple mit den in

Tabelle ��
 genannten Befehlen aufgerufen wird�

Befehl Argumente Resultat Beschreibung

SZerosAtInfinity $ALS ODER G� fn��� � � � � n
�
�g Def� 
����

wahr�m�oglich f�ur ni � n�i
ESZerosAtInfinity$ALS UND G� fn�e� � � � � � n

�e
� g

G� optional wahr�m�oglich f�ur ni � n�ei

Tabelle ���� Maple�Befehle zur Bestimmung der Nullstellen im Unendlichen von $ALS

Algorithmus

Auch hier wird f�ur die strukturelle Untersuchung der Systemgraph verwendet� Im Gegen�

satz zur Bestimmung des Di�erenzengrads mu� jedoch nicht nur ein Ein��Ausgangspfad
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berechnet werden� Vielmehr werden mehrere Ein��Ausgangswege gesucht	 die knotendis�

junkt sind	 also keine gemeinsamen Knoten � und damit auch Kanten � aufweisen� Aus

den Pfadl�angen kann dann die Struktur im Unendlichen ermittelt werden� Einer der e��

zientesten Algorithmen zur sukzessiven Ermittlung solcher knotendisjunkter Pfade greift

auf den inkrementalen Graphen zur�uck� Hierbei ist zu betonen	 da� es sich um einen

ausschlie�lich graphentheoretisch orientierten Algorithmus handelt	 der in keiner Weise

mit dem urspr�unglichen regelungstechnischen Problem verkn�upft ist�

Algorithmus ���

Ordnungen der NU mittels knotendisjunkter Ein��Ausgangspfade bestimmen

�� Eingabe�

� Graph G � �VG� EG�


� Setze�

� Eingangsknoten� U � fu�� � � � � umg � VG

� Ausgangsknoten� Y � fy�� � � � � ypg � VG

� Zustandsknoten� X � f�� 
� � � � � ng � VG

�� Graphen �G festlegen�

� Knotenmenge�

Ein��Ausgangsknoten von G 
ubernehmen und Zustandsknoten verdoppeln�

�VG � U � Y � f��� 
�� � � � � n�g � f���� 
��� � � � � n��g � �U � �Y � �X

mit �U � U � �Y � Y und �X � �X � � �X ��

� Kantenmenge�

�EG � f�i� j�	ji � �U� j� � �X �� �i� j	� EGg

� f�i��� j	ji�� � �X ��� j � �Y � �i� j	� EGg

� f�i�� i��	ji� � �X �� i�� � �X ��g

�� Initialisierung� k � �� L� � �

�� K
urzesten Ein��Ausgangspfad fP � ui � yj jui � �U� yj � �Y g in �G �nden und streng

strukturelles Verhalten pr
ufen

� angepa�ter Moore�Algorithmus �Wey ����� S� ��	

�� Wenn P nicht existiert� dann gehe zu ���

 � k �� k � �

!� L
ange lP des Pfads P bestimmen� wobei doppelte Zustandsknoten Ber
ucksichtigung �n�

den�

lP �
luiyj � �
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�� Ein� und Ausgangsknoten des Pfads P nicht mehr f
ur weitere knotendisjunkte Pfade

verwenden�

�U �� �Unfuig � �Y �� �Y nfyjg

��� Ordnungen der Nullstellen im Unendlichen anhand der L
ange lP des Pfads P bestimmen�

Lk � Lk�� � lP � n�k �

����
���
L� � � f
ur k � �

Lk � k �

k��X
j��

n�j f
ur k � 


��� Richtungen aller Kanten e � P umkehren und deren L
ange invertieren�

f �EG �� �EGnf�i� j	g� f�j� i	g� lji � �lij j��i� j	 � Pg

�
� Wenn k � min�m� p	� dann gehe zu ��

��� Ausgabe�

� Ordnungen der Nullstellen im Unendlichen�

fn��� n
�
�� � � � � n

�
kg

� Das System verh
alt sich �nicht	 streng strukturell

��

����

� ��

�

�

�

��

�

�

�

�

�

�

��

�

��
�� ��


� 
�

�� ��

��� ���


�� 
��

��� ���

u� u�

u� u�

y� y�

y� y�

a� b�

Bild ���� K�urzeste Ein��Ausgangswege im inkrementalen Graph �G

Den zentralen Gedanken	 welcher auf einer Richtungsumkehr von Kanten in Verbin�

dung mit der Invertierung ihrer L�angen beruht 
vgl� Punkt �� in Algorithmus ����	 ver�

deutlicht Bild ��
� Diese Richtungsumkehr wird allein zur Abarbeitung des graphen�

theoretischen Algorithmus ben�otigt	 besitzt aber keine physikalische Bedeutung f�ur den

urspr�unglichen Systemgraphen bzw� das nichtlineare System� F�ur den Graphen wird

zun�achst der Ein��Ausgangsweg u� 
 
� 
 
�� 
 y� 
Bild ��
a� mit k�urzester L�ange �

gefunden� Durch Umkehr der verwendeten Kanten und Streichen von bereits verwen�

deten Ein� und Ausgangsknoten existiert im zweiten Schritt wieder ein k�urzester Ein�

�Ausgangsweg 
Bild ��
b�

u� 
 �� 
 ��� 
 
� 
 u� 
 �� 
 ��� 
 y� � 
��
��
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der aufgrund einer negativen Kantenl�ange die Gesamtl�ange � aufweist� Bei Ber�ucksich�

tigung doppelter Zustandsknoten k�onnen aus den L�angen dieser Wege die Ordnungen

der NU zu f�� 
g berechnet werden� Zum Au�nden des jeweilig k�urzesten Wegs zwi�

schen einem der Ein� und einem der Ausgangsknoten wird ein speziell angepa�ter Moore�

Algorithmus 
Gondran und Minoux ����	 S� ��� benutzt	 der in der Lage ist	 negative Kan�

tenl�angen zu ber�ucksichtigen� Da� die Suche nach Wegen in �G kein eindeutiges Problem

darstellt	 wird an der Existenz einer weiteren Kombination k�urzester Ein��Ausgangswege

u� 
 �� 
 ��� 
 y� und u� 
 �� 
 ��� 
 
� 
 
�� 
 y� 
��
��

in Bild ��
 deutlich� Die k�urzesten Gesamtl�angen dieser Wege sind jedoch identisch mit

den zuvor bestimmten�

Das bisher aufgef�uhrte Verfahren bestimmt Kenngr�o�en struktureller Natur	 da keinerlei

Kantenbewertungen Ber�ucksichtigung �nden� Allerdings ist ohne hohen Aufwand anhand

des inkrementalen Graphen zu pr�ufen	 ob mehrere M�oglichkeiten f�ur knotendisjunkte We�

ge bestehen und ob diesen dieselben Bewertungen zugeordnet sind� Denn es kann nur bei

einer gegenseitigen Elimination von Wegbewertungen zur Abweichung von strukturellen

und exakten Kenngr�o�en kommen� Zur Ber�ucksichtigung dessen ist Algorithmus ��� eine

Pr�ufung auf identische Wegbewertungen hinzuzuf�ugen�

Algorithmus ���

Ordnungen der NU mit knotendisjunkten Ein��Ausgangswegen in ��e bestimmen

Algorithmus ���� wobei Punkt � ersetzt wird durch

�� K
urzeste Ein��Ausgangswege Ph in �G �nden und streng strukturelles Verhalten pr
ufen�

� angepa�ter Moore�Algorithmus �Wey ����� S� � 	

�a� Wenn h � �� dann Bewertungen aller Kanten f�i� j	j�i� j	 � Ph� h � �g mittels Di�eren�

tiationen �� Ordnung bestimmen

�b� Wegbewertungen f
ur alle Ph bestimmen und auf Identit
at pr
ufen� Falls identisch� dann

Ausgabe von

� n�k �� nk

� ab Schritt k ist eine 
Ubereinstimmung von strukturellen und exakten Ordnungen der

NU nicht gew
ahrleistet

�c� Weiterrechnen mit einem der Wege�

P � P�

Zur Realisierung dieser Erweiterung ist ein Verfahren �ahnlich dem Moore�Algorithmus

notwendig	 welches nicht nur einen	 sondern alle Ein��Ausgangswege einer k�urzesten

L�ange ermittelt� Die Kantenbewertungen in Schritt �a entsprechen f�ur in ihrer Richtung

umgekehrte Kanten dem negativen Kehrwert der urspr�unglichen Bewertung�
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Der Vorteil der strukturellen Vorgehensweise bei der Bestimmung der Nullstellen im Un�

endlichen kann schon f�ur einfache Klassen nichtlinearer Systeme nachgewiesen werden�

Betrachtet man z� B� einfache quadratische Systeme 
QLS� mit den Matrizen

$a
QLS

�x� � u�
�x� � u�
�xi � x�i�� �i � 
� �� �� �� � � � � �


�x�� � x�

y� � x

y� � x��

$b
QLS � $a

QLS mit �x�� � x� �


��
��

so ist $b
QLS nicht beobachtbar und degeneriert	 d� h� der Systemrang entspricht nicht der

minimalen Anzahl 
 von Ein� und Ausg�angen� Die Ordnungen der Nullstellen im Un�

endlichen ergeben sich damit zu f
��g� Vergleicht man alle drei Ebenen � strukturelle	

erweitert strukturelle und analytische �	 so sind signi�kante Unterschiede in den Rechen�

zeiten
 der Algorithmen erkennbar 
vgl� Tabelle ����� Der Aufruf und die Ergebnisse

Tabelle ���� Rechenzeiten f�ur die Bestimmung der Nullstellen im Unendlichen
System

Algorithmus $a
QLS $b

QLS

SZerosAtInfinity ���� s ���
 s

ESZerosAtInfinity ���� s ���� s

ZerosAtInfinity ��
� s ���
� s

der verschiedenen in GAFAS implementierten Algorithmen sind in der Maple�Session ���

wiedergegeben� Insbesondere stellt sowohl der strukturelle als auch der erweitert struktu�

relle Ansatz die �Ubereinstimmung der Ergebnisse mit den gem�a� De�nition ��� richtigen

Resultaten fest�

� Alle Ergebnisse wurden auf einem Pentium 
��MHzmit 
�MB Hauptspeicher undMaple V Release

� unter Windows NT��� erzielt�
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� read��gafas�main���

� read����als�dir���qls�b�als���

� start��time���SZerosAtInfinity��x
a
B
c���print�time���start��

results are strongly structural� structural results are equal to exact
results

"
� �#

���



� start��time���ESZerosAtInfinity��x
a
B
c���print�time���start��

results are strongly structural� structural results are equal to exact
results

"
� �#

�����

� start��time���ZerosAtInfinity��x
a
B
c���print�time���start��
"
� �#

���
��

Maple�Session ��	� Bestimmung der Nullstellen im Unendlichen mit GAFAS

��	 Beobachtbarkeit � �E�SObservability

Bei der Entwicklung von Zustandsreglern spielt die Frage nach der Beobachtbarkeit der

Zust�ande eine entscheidende Rolle� Sind alle Zust�ande des Systems beobachtbar	 so las�

sen sich diese theoretisch mit Hilfe eines Beobachters aus den Eingangssignalen u
t�	

den Ausgangssignalen y
t� und deren zeitlichen Ableitungen ermitteln� Dies f�uhrt zur

Kostensenkung bei der Me�technik bzw� macht die Bestimmung von einigen Zust�anden

�uberhaupt erst m�oglich�

Die Betrachtung der Beobachtbarkeit eines Systems f�uhrt auf die Auswertung eines Rang�

kriteriums 
hier f�ur Eingr�o�ensysteme��

Rang



����������


y


x


 �y


x
���


y�n���


x



����������
� n � 
��
��

Dabei wird �uberpr�uft	 ob zur Berechnung der n Systemzust�ande n linear unabh�angige

Gleichungen zur Verf�ugung stehen� Ist das der Fall	 so k�onnen die Gleichungen eindeutig
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nach den gesuchten Zust�anden aufgel�ost werden� Im Falle eines linearen Systems

X
LS

�x
t� �Ax
t� � bu
t� �

y
t� � cTx
t� �

mit x
t� � Rn� u
t�� y
t� � R


��
��

f�uhrt Gl� 
��
�� zum Kalman�Kriterium f�ur Eingr�o�ensysteme�

De�nition ��� 
Kalman u� a� �����

Ein lineares System	 gegeben durch das Zustandsmodell gem�a� Gl� 
��
��	 ist vollst�andig

beobachtbar genau dann	 wenn gilt

Rang



����

cT

cTA
���

cTAn��



����

� �z �
Q

� n � 
��
��

Wie in 
Spielmann ����� ausf�uhrlich hergeleitet	 kann ein Element der Beobachtbarkeits�

matrix Q graphentheoretisch durch Multiplikation von Pfadgewichten bestimmt werden�

Die i�te Zeile von Q enth�alt Pfade der L�ange i zum Ausgangsknoten y� Dabei ist der

Start
zustands�knoten durch die Spalte von Q festgelegt� F�ur eine strukturelle Untersu�

chung reicht zur Bestimmung von qij die Information	 ob ein Pfad der L�ange l � i vom

Zustandsknoten j zum Ausgang y existiert� Falls ein Pfad vorhanden ist	 hat das Element

qij den Wert
�
� 	 ansonsten den Wert

�
� �

Da die strukturelle Beobachtbarkeitsuntersuchung nur f�ur den Fall	 da� ein Rangdefekt

auftritt	 zu einem abschlie�endes Ergebnis gelangt	 werden f�ur eine erweiterte strukturelle

Untersuchung die Kantengewichte explizit eingesetzt� Die resultierende Beobachtbarkeits�

matrix Q�e liefert dann das gew�unschte Endergebnis� Insbesondere im Falle eines nicht

vollst�andig beobachtbaren Systems ergibt sich ein gro�er Rechenzeitvorteil im Vergleich

zur herk�ommlichen analytischen Vorgehensweise	 da bereits die strukturelle Untersuchung

das Ergebnis liefert� Die �Ubertragung auf nichtlineare Systeme ist ebenso m�oglich	 wobei

die Rangbestimmung durch die in der Beobachtbarkeitsmatrix enthaltenen Ver�anderlichen

aufwendiger ausf�allt� Hierzu wurde	 wie bereits bei NSAS von Lemmen u� a� 
�����	 auf

die Funktion extrank aus der Arbeit von Essen und Jager 
���
� zur�uckgegri�en� Ferner

wird die in 
Fliess und Glad ����� dargestellte Erkenntnis	 wonach ein nichtlineares Sy�

stem nur dann beobachtbar ist	 wenn das zugeh�orige Tangentialsystem beobachtbar ist	

herangezogen�
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Beispiel ��	 Die Anwendung der zur Beobachtbarkeitsanalyse erforderlichen Befehle zeigt

die folgende Maple�Session�

� read��gafas�main�
�

� read��beispiel�als�
�

� G��SGraph��x	a	B	c�
�

G �� GStructural

� SObservability�G
�

true

� Erg��ESObservability��x	a	B	c�	G
�

the system is structural observable

the tangent system is observable

Erg �� Q� true

� print�Erg���
�

�����

� � �

� 	sin
x�� �

	sin
x�� ex� 	
 sin
x��x� �



�����

Maple�Session ���� Anwendung von �E
SObservability

Liefert die strukturelle Untersuchung das Ergebnis� da� das System strukturell beobachtbar

ist� ist eine erweiterte Untersuchung mit ESObservaility erforderlich� R
uckgabewert ist dabei

neben einer ja�nein Entscheidung die Beobachtbarkeitsmatrix Q�
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 Zusammenfassung und Ausblick

Innerhalb der drei Schritte Modellbildung	 Systemanalyse und Reglersynthese	 die beim

konventionellen Reglerentwurf vorgenommen werden	 bietet die in diesem Bericht vorge�

stellte Maple Toolbox GAFASHilfestellung bei der Analyse� Die auf graphentheoretischen

Algorithmen basierenden Befehle erlauben durch einen ebenfalls dreigeteilten Ansatz eine

systematische und durchsichtige Vorgehensweise� Zun�achst kann durch eine strukturel�

le Untersuchung festgestellt werden	 ob Systeme mit der gleichen Struktur wie das zu

untersuchende System eine Eigenschaft erf�ullen oder nicht� Bei genauerer Kenntnis der

Systemzusammenh�ange erfolgt in einem zweiten Schritt eine erweiterte strukturelle Un�

tersuchung	 bei der die Systemparameter	 die als Gewichte in dem zugrundeliegenden

Systemgraphen ein%ie�en	 Ber�ucksichtigung �nden� Die dadurch gewonnenen Aussagen

beziehen sich nicht mehr auf eine Klasse von Systemen mit gleicher Struktur	 sondern

auf das zu untersuchende System� In wenigen F�allen kann die auf dem Tangentialsystem

beruhende graphentheoretische Analyse nicht zu einem abschlie�enden Ergebnis gelan�

gen� Dann ist in einem dritten Schritt die Anwendung herk�ommlicher Analyseverfahren	

z� B� durch Verwendung der ebenfalls im Fachgebiet erstellten Maple Toolbox NSAS	

unumg�anglich� Gerade bei komplexen nichtlinearen Systemen und bei Systemen hoher

Ordnung 
large�scale systems� entsteht ein gro�er Vorteil durch den dreigeteilten Ansatz	

da Aussagen zu Systemeigenschaften oftmals bereits durch eine strukturelle Untersuchung	

also beim ersten Schritt	 gewonnen werden k�onnen�

Die erste Version von GAFAS bietet zwar bereits zu wesentlichen Fragestellungen wie

Beobachtbarkeit	 Entkoppelbarkeit und Nullstellenstruktur im Unendlichen Einsatzm�og�

lichkeiten� Dennoch steht die Implementierung zu einigen anderen Eigenschaften	 die f�ur

eine Reglerauslegung von Interesse sind	 noch aus� Erw�ahnenswert sind hier die Steuerbar�

keit	 die exakte Linearisierbarkeit und damit verbunden die Stabilit�at der Nulldynamik�

Weiteres Potential besteht neben der Ausweitung auf den Bereich des Reglerentwurfs

in der Anwendung komplexer graphentheoretischer Beschreibungen durch Mehrschicht�

Graphen 
Spielmann ����� mit dem Ziel einer ausschlie�lich graphentheoretisch basierten

Systemanalyse und Reglersynthese�
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