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Nomenklatur

Skalare Groflien:

1,7,k Laufindex
lp Lénge des Pfades P
Anzahl der Systemeingénge
n Systemordnung
P Anzahl der Systemausginge
p Differentieller Rang
Pk Dimension des Vektorraums &
o Anzahl der NU mit Ordnung kleiner oder gleich k

Vektoren, Vektorfelder und Matrizen:

A Systemmatrix

a(z(l)) Systemvektorfeld eines ALS

B Nichtleere Teilmenge aus R

B Eingangsmatrix

B(x(t)) Eingangsvektorfeld eines ALS

C Ausgangsmatrix

c(z()) Ausgangsvektorfeld eines ALS
Vektordifferenzengrad eines MIMO Systems

dr Struktureller Vektordifferenzengrad eines MIMO Systems

d-° Erweiterter struktureller Vektordifferenzengrad eines MIMO Sy-
stems

fla(t),u(t)) Systemvektorfeld eines NS

F(s) Ubertragungsmatrix

h(z(1)) Ausgangsvektorfeld

Jy, Jacobi-Matrix

M~ Strukturmatrix von M

Nt Menge der natiirlichen Zahlen ohne Null

Nk Ordnung der NU

Q Beobachtbarkeitsmatrix

Qe Erweiterte strukturelle Beobachtbarkeitsmatrix

R Menge der reellen Zahlen

U Durch du aufgespannter Vektorraum

u(t) Eingangsvektor

U Arbeitspunkt im Eingangsraum
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Abkiirzende Schreibweise fiir {u,w,u}
Zustandsvektor
Arbeitspunkt im Zustandsraum

Ausgangsvektor

Mengen, Mengenelemente:

Geordnetes Paar

Element der Kantenmenge

Kantenmenge

Graph (geordnetes Paar, bestehend aus Kanten- und Knotenmen-
ge)

Kantenbewerteter Graph

Funktional kantenbewerteter Graph, Struktureller Graph
Pfad

Eingangsknoten

Element der Knotenmenge

Knotenmenge

Zustandsknoten

Ausgangsknoten

Vektorraum iiber dem Kérper K

durch {dy, . ,dy(k)} aufgespannter Vektorraum
Graphen Menge

Funktionen, Operatoren:

diff. dim
dim

F

K

K <u>

min(+)
Rg(A)
span )
c w(e)

ale)

Differentielle Dimension eines Vektorraums

Dimension eines Vektorraums

Abbildung des Zustands- und Eingangsraums in R

Korper der rationalen Funktionen in @, @, % ..., mit meromorphen
Koeffizienten in «

differentieller Korper aller rationalen Funktionen in den Variablen
u) mit Koeffizienten in K

Lie-Operator

Kleinster Wert aus (+)

Rang der Matrix A

der durch die Operanden aufgespannte K'-Vektorraum

Wert der Kante e

Funktionales Kantengewicht
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Abkiirzungen:

ALS
QLS
LS
MIMO
NS
NU

2.

Abbildung der Kantenelemente in R
Transponierte einer Matrix

Kronecker Summe

Analytisches System mit linear eingehender Steuerung
Quadratisches System mit linear eingehender Steuerung
Lineares System

Mehrgroflensystem (Multi Input Multi Output)
Nichtlineares System

Nullstellen im Unendlichen

System
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1 Einfithrende Ubersicht

Die Untersuchungen nichtlinearer Systeme auf die fiir eine Reglerauslegung relevanten Sy-
stemeigenschaften sind im allgemeinen nur unter Zuhilfenahme von Computer—Algebra—
Systemen, kurz CAS, moglich. Vor diesem Hintergrund sind bereits eine Reihe von
Software—Tools entstanden, mit dem Ziel, die routineméBig anfallenden Berechnungen zu
automatisieren und damit auch einem gréfleren Personenkreis nichtlineare Beurteilungs-
und Auslegungskriterien zugénglich zu machen. Genannt sei das ebenfalls in diesem
Fachgebiet entstandene Tool NSAS — Nonlinear System Analysis and Synthesis Package
(Lemmen u. a. 1995) — und das Software Packet NonLinCon (Essen und Jager 1992).
Beide setzen die beispielsweise in (Isidori 1995) und (Schwarz 1991) zu findenden Defi-
nitionen fiir Systemeigenschaften und Gleichungen zur Reglerauslegung in entsprechende
Algorithmen um.

GAFAS - Graph-theoretical Algorithms For Analysis and Synthesis (of nonlinear sy-
stems) — baut auf diesen Software-Paketen auf. Wie in verschiedenen Verdffentlichungen
(Svaricek 1993, Wey 1996, Spielmann und Schwarz 1996, Lévine 1997) nachgewiesen, zeigt
sich ein praktischer Nutzen bei der Verwendung graphentheoretisch basierter Algorithmen

im Besonderen durch die Reduzierung von Rechenzeiten.

10 | graphentheor etischel]
struktureli 0] » | Ergebnisl
Analyse(]

2.0 erweitert[] | graphentheor etische, [ .
strukturelIC] [ —— | Ergebnis]
| symbolische Analyse(]

3.0 | |
bolisched b
wayioo] 2] e [ Sysem ]
SE Analyse(] elgenschaften(]

Bild 1.1: Vorgehensweise bei der Systemanalyse

Dieser Vorteil wird im wesentlichen aufgrund der in Bild 1.1 am Beispiel der Systemana-
lyse dargestellten Schritte erzielt. So kann bereits vielfach bei der strukturellen Analy-
se (Schritt 1) ein Ergebnis erzielt werden. Der dazu verwendete Strukturgraph enthélt
fiir diesen Zweck lediglich Informationen iiber Abhangigkeiten zwischen den System-

zustanden.

Fiihrt diese strukturelle Untersuchung zu keinem brauchbaren Ergebnis, werden zusdtzlich

Gewichtungen zwischen den Zustanden beriicksichtigt (extended structural analysis). Die
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Gewichte kénnen konstant oder Funktionen in den Systemzustanden sein.

Wenn auch diese erweiterte strukturelle Untersuchung keinen Erfolg bringt, dann wird auf
die herkémmliche, also analytische Vorgehensweise zuriickgegriffen. Der sich daraus erge-
bende Nachteil, zwei zusdtzliche Operationen durchgefithrt zu haben kann vernachlassigt
werden, da die strukturelle und die erweiterte strukturelle Analyse auf graphentheoreti-
schen Methoden basieren und in der Regel schnelle Ergebnisse liefern. Des weiteren ist
bei einer analytischen Untersuchung komplexer Systeme bzw. bei Systemen mit hoher
Systemordnung die Wahrscheinlichkeit grof}, an die Grenzen der heutigen Rechnerleistun-

gen zu stofen.

Nachdem im folgenden Abschnitt einige fiir das weitere Versténdnis notwendige Grund-
lagen zur Graphentheorie behandelt werden, wird in Abschnitt 3 die Handhabung von
GAFAS néher erldutert. Alle implementierten Befehle werden mit dem notwendigen theo-

retischen Hintergrund in Abschnitt 4 erortert.

Zusammenfassung und Ausblick schlieen den Bericht ab.
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2 Graphentheoretische Grundlagen

Obwohl die Graphentheorie bereits iiber 250 Jahre in unzdhligen Bereichen erfolgreich
angewendet wird (Sachs und Stiebitz 1987), ist sie im Laufe der Zeit immer wieder
neu entdeckt worden. Dies hédngt damit zusammen, dafl den Elementen, aus denen ein
Graph besteht (Bild 2.1), unterschiedliche Bedeutungen zugeordnet werden kénnen. Bei
technischen Systemen beschreibt der hier gewdhlte Graph die Abhéngigkeiten der Zu-
standsénderungen von den Systemzusténden. Mit den Informationen lassen sich struk-
turelle Untersuchungen durchfithren, welche erste Hinweise auf Eigenschaften geben, die
alle Systeme mit gleicher Struktur gemeinsam haben. Die Hinzunahme einer Gewichtung
dieser Abhangigkeiten (Bild 2.1b) wird erforderlich, wenn anhand des Strukturgraphen

allein keine abschliefenden Aussagen getroffen werden kénnen.

b) 2

0»8»@@%&»@

Bild 2.1: Gerichteter Graph: a) Strukturgraph
b) bewerteter Graph

Bei den hier betrachteten gerichteten Graphen haben die Kanten eine Pfeilspitze, und
damit eine festgelegte Orientierung. Einen Uberblick iiber die unterschiedlichen Defini-

tionen fiir Graphen ist u. a. in (Gondran und Minoux 1986) und (Lemmen 1996) zu finden.

Ublicherweise werden die Kanten und Knoten zu einer Kantenmenge E und einer Kno-

tenmenge V' zusammengefaf}t:

Definition 2.1 (Wagner und Bodendiek 1989)

Ein geordnetes Paar D = (V, E) ist ein endlicher, gerichteter Graph genau dann, wenn
V' eine endliche Menge ist und E eine Teilmenge des kartesischen Produkts V' x V =
{(v,v") | v,v" € V} mit E CV xV bedeutet und F auBerdem die Bedingung erfiillt, daf
aus (v,v") € F stets (v,v) ¢ F gilt. a

Eine mégliche graphische Darstellung fiir ein nichtlineares System !

mit £ € R”, v € R™ und y € R?

! Die Zeitabhingigkeit der Zustinde und Ein-/Ausginge wird in diesem Abschnitt
nicht weiter angegeben.
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als gerichteter Graph resultiert aus Anwendung der in (Reinschke 1988) zu findenden
Bildungsregeln:

1. Der Graph hat fiir die Eingange, die Zusténde und fiir die Ausgénge je einen Knoten

mit entsprechender Bezeichnung:
V=Aa, 29, o @n, U, Uy oo Uy Y1 Y2y - o 5 Yp b

2. Wenn die Zustandsvariable x; in f;(@,u) enthalten ist, dann existiert eine Kante

vom Zustandsknoten z; zum Zustandsknoten z;:
(zj,2:) € E

3. Wenn die Eingangsvariable u; in f;(@,w) enthalten ist, dann existiert eine Kante

vom Eingangsknoten w; zum Zustandsknoten x;:
(uj,z;) € K

4. Wenn die Zustandsvariable z; in h;(@) enthalten ist, dann existiert eine Kante vom

Zustandsknoten z; zum Ausgangsknoten y;:
(xjv yi) S

Werden die linguistischen Bildungsregeln, die die Elemente der Kantenmenge festlegen,
durch partielles Ableiten der Funktionen f(,u) und h(«) nach den Zustinden & und

Eingéngen u ersetzt

Ofi(x,u o
E:{(l']‘,l'i) | %7&0, z,jzl...n}

U{(uj,xi) | W#O, izl...n;jzl...m} (2.2)
Oh; . .
U{(%yi) | aag?)%(), @=1---p;J=1---n} ,

dann besteht die Moglichkeit, neben einer Ja/Nein-Entscheidung beziiglich der Existenz

von Kanten, eine Gewichtung (Bewertung) dieser Kanten vorzunehmen.

Definition 2.2 (Wagner und Bodendiek 1990)

Ist G = (V| F) ein Graph aus I', B eine nichtleere Teilmenge von R und 8 : F — B eine
Abbildung, die jeder Kante von (& eine reelle Zahl aus B zuordnet, so heifit das Quadrupel
G' = (V, E, 3, B) kantenbewerteter Graph. Ist e € F, so heifit 3(e) Wert der Kante e. 1
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Die reellen Zahlen werden fiir ein technisches System so gewahlt, daf} sie identisch mit den
partiellen Ableitungen (vgl. Gl. (2.2)) an einem Arbeitspunkt sind. Bei einem linearen
System in Zustandsraumdarstellung sind die Kantengewichte identisch mit den Elementen
der Systemmatrix A, der Eingangsmatrix B und der Ausgangsmatrix C. Durch das
Einsetzen eines Arbeitspunktes konnen Kanten e mit Gewicht w(e) = 0 auftreten, also

Kanten verschwinden.

Definition 2.3 (Spielmann 1997)
Fiir ein System mit einer Zustandsraumdarstellung nach Gl. (2.1) resultiert der Wert 3(e)
einer Kante e € F fiir einen Punkt (@, ug) aus:

ofi(z, o
Ofi(=,w) , fire=(zj,z;)€E;1,5=1...n
al']‘
(x0,u0)
Ofi(z,u . . .
Be) = % , fire=(uj,z;)€eE;i=1...n; j=1...m
j
(x0,u0)
h; . .
Ohi(z) , fire=(x;,y;) €F;i=1...p; j=1...n
al']‘ ( )
(2.3)
a

Bei der Betrachtung nichtlinearer Systeme ist die Beschrankung auf einen Arbeitspunkt
in der Regel unerwiinscht. Damit verbunden ist der Ubergang von reellwertigen Kanten-

gewichten zu funktionalen Kantengewichten. Definition 2.2 ist entsprechend zu erweitern:

Definition 2.4 (Spielmann 1997)

Ist G = (V,E) ein Graph aus I', F' : (X,U) — R eine Abbildung des Zustandsraums
X C R” und des Eingangsraums U C R™ in R, sowie a : £ — F' eine Abbildung, die
jeder Kante von (i eine Funktion aus F' zuordnet, so heifit das Quadrupel G* = (V, E, a, F)
funktional kantenbewerteter Graph. Ist e € F, so heifit a(e) Wert der Kante e. a

Das funktionale Kantengewicht a(e) kann analog zu Definition 2.3 bestimmt werden:

Definition 2.5 (Spielmann 1997)

Fiir ein System mit einer Zustandsraumdarstellung nach GI. (2.1) ist

afz(wvu)7 fur€:(:1?],l‘z)€Ea @7]:171
al']‘
afe) = Lﬁi’,“), fiiv e = (uj,a;) € By i=1...n; j=1...m (2.4)
J
6h2(w)7 fﬁre:(:z:j,yi)EE; i=1l...pyg=1...n
al']‘
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Wie ein Vergleich der Gln. (2.3) und (2.4) zeigt, gilt der Zusammenhang

3(e) = afe) . 25)
(x0,u0)
Voraussetzung fiir die Existenz der partiellen Ableitungen ist die stetige Differenzier-
barkeit der Funktionen f(@,w) und h(x) in Gl. (2.1). Diese wird fiir die im weiteren
ausschlieBlich betrachtete, technisch relevante Klasse der analytischen Systeme mit linear
eingehender Steuerung (Schwarz 1991, Isidori 1995), kurz ALS, erfiillt. Viele Ergebnisse,
die anhand der behandelten Graphen gewonnen werden koénnen, lassen sich oftmals auf
allgemeine nichtlineare Systeme erweitern. Dies trifft insbesondere dann zu, wenn nicht-
differenzierbare Funktionen solchen Kanten zugeordnet werden, die keine Verwendung bei

der Systemanalyse oder Reglersynthese finden (Spielmann u. a. 1996).

In der Regel wird vor der expliziten Berechnung der Kanten mit sogenannten generischen
Grofen gearbeitet (Wey 1996, Spielmann 1996). Dies fiihrt zu einer wesentlichen Reduzie-
rung der Rechenzeit, da nur die tatséchlich benétigten Kantengewichte bestimmt werden

und zuvor mit konstanten Groflen gerechnet werden kann.
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3 GAFAS - Handhabung

3.1 Installation der Toolbox
GAFAS ist iiber die Internet-Adresse

http://www.msrt.uni-duisburg.de/software/index.html

verfiighar (Bild 3.1) und kann von dort direkt als gafas.zip-Datei geladen werden.

Bild 3.1: Gafas-Homepage

Das .zip-Archiv enthéilt die Dateien

e gafas.main
e gafas.tools

e algebra.tools
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® nsas.main
e gls.als

e gqls.mws

Die Datei nsas.main enthélt das in der Einleitung erw&hnte Tool NSAS, welches fiir den
Fall, dafl weder eine strukturelle noch eine erweitert strukturelle Untersuchung zu einem
Ergebnis fiithrt, angewendet wird. Vor dem ersten Aufruf innerhalb einer Maple-Session
sollten mit einem Editor die Pfad-Variablen gafas_ dir und gafas_ help in der Datei

gafas.main angepalit werden.

3.2 Verwendung in MaprrLe®

GAFAS nutzt die Vorteile des Computer Algebra Systems MAPLE®, insbesondere den
dort bereits vorhandenen Variablentyp fiir einen Graphen. Nach dem Start einer neuen

Maple-Sitzung wird die Tool-Box mit
read(‘gafas.main‘)

aus dem Verzeichnis, in der sich die Datei befindet, geladen. Anschlielend stehen die in
Tabelle 3.1 aufgefithrten und in Abschnitt 4 ndher erérterten Befehle zur Verfiigung. Der
in Bild 1.1 erkennbare Ansatz kann anhand der Befehls-Prefixe S fiir strukturell und ES
fiir erweitert strukturell nachvollzogen werden. Befehle ohne Prefix bedeuten demnach die
exakte analytische Berechnung, wie sie beispielsweise mit dem bereits erwéhnten Software-

Tool NSAS vorgenommen werden kann.

SRelativeDegree() |Relativer Grad (strukturell)
ESRelativeDegree() |Relativer Grad (erweitert strukturell)
RelativeDegree() Relativer Grad?

SZerosAtInfinity() |Nullstellen im Unendlichen (strukturell)
ESZerosAtInfinity() [Nullstellen im Unendlichen (erweitert strukturell)
SObservability() Beobachtbarkeit (strukturell)
ESObservability() |Beobachtbarkeit (erweitert strukturell)

Tabelle 3.1: In GAFAS implementierte Befehle

Fiir eigene Algorithmen kénnen desweiteren die in Tabelle 3.2 genannten und von den
GAFAS-Routinen verwendeten Befehle niitzlich sein.
Auch diese Befehle werden in Abschnitt 4 ndher beschrieben und an Beispielen demon-

striert. Der grofite Teil der in den Tabellen aufgefiihrten Befehle erwartet als Argument

? Dieser Befehl ist nicht in NASA implementiert, deshalb wurde der in GAFAS
aufgenommen.
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SSystem() ‘ALS = strukturelles System
SGraph() |ALS = Strukturgraph
SRank() |Struktureller Rang einer Matrix

Tabelle 3.2: Ergdnzende Befehlsliste

eine Liste mit den funktionalen Vektoren und Matrizen eines analytischen Systems mit
linear eingehender Steuerung (GI. 3.1):

z=a(x)+ B(x)u (3.1)
y = c(z)

Hilfreich ist es, das System in einer separaten Datei zu hinterlegen, wie das Beispiel in

dem folgenden Unterabschnitt zeigt.

3.3 Beispiel QLS

Untersucht werden soll das mit Gl. (3.2) gegebene quadratische System mit linear einge-

hender Steuerung:

0 10]
7 00
x3 00
x5 00
0 01
2
x = ig + 88 u y:{jjz} . (3.2)

x2 00
r3 00
x5 00
i, 00

| 71 | 100 ]

Das System der Ordnung n = 12 mit m = 2 Eingéngen und p = 2 Ausgéngen ist in
der Darstellung als ALS gegeben und sollte zweckméBigerweise in eine Datei wie folgt

iibernommen werden:

# quadratic system
n := 12:

m:= 2:

p := 2:
X
a

linalg[vector](n,[1):

linalglvector](n,[
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0,
x[1]"2,
x[2]"2,
x[3]"2,
0,
x[5]"2,
x[6]"2,
x[7]"2,
x[8]"2,
x[9]"2,
x[10]"2,
x[1]
1):

B := linalg[matrix](n,m,[

-
-

- - - - - - - -
- - - - - - - -

-
-

LH O O O O O O O O O O O
O O O O O O O O O O O

e’ e

¢ := linalg[vector] (p,[
x[4],
x[12]
IDE

Die unterschiedliche Definition von a, ¢ und x als Vektoren und B als Matrix im Falle
eines Mehrgroflen-ALS muf} auch fiir eigene Systeme eingehalten werden. Eine Definition
der Vektoren als Matrizen, was programmtechnisch ebenso méglich wére, fithrt zu Fehlern

bei der Programmausfithrung.

Eingelesen werden die Systemgleichungen genau wie die Tool-Box selbst iiber einen read ()-
Befehl. Bild 3.2 zeigt, wie der Ablauf einer Maple-Sitzung mit dem als qls.als hinter-

legten System aussehen kann.
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5] [zl]o] [=[5] (] [x]x]x] [1]

[ > read(‘qg:/home/uni/Programmierung/Haple/GAFAS/gafas.main*):
Warning, new definition for norm

Varning, new definition for trace

Warning, new definition for charpoly

| Warning, new definition for rank

[» read(**.als_dir. */gls.als*}:

[> start:=time():SRelativeDegree([x,a,B,c]);print{time()-start):
results are strongly structural: structural results are equal to exact results

2

£11
[> start:=time():ESRelativeDeqgree([x,a,B,c]);print{time()-start):
results are strongly structural: structural results are equal to exact results

2

481
[ start:=time():RelativeDegree([x,a,B,c]);print(time()-start):

2

[ Time: 00s | Bytes: 0.0k

Bild 3.2: Beispiel fiir die Anwendung von GAFAS
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4 Implementierte Befehle

4.1 Strukturelles System — SSystem

Grundlage einer strukturellen Untersuchung, wie sie geméfl Schritt 1 in Bild 1.1 durch-
gefiithrt wird, ist ein strukturelles System. Bei diesem Systemmodell sind nur die wechsel-
seitigen Abhéngigkeiten der Zustdande von Interesse. Physikalische Groflen, die ebenfalls
die Systemdynamik bestimmen, bleiben in dem Modellierungsansatz unberiicksichtigt.
Der Vorteil solcher Strukturmodelle liegt darin, dafl Systemeigenschaften fiir eine ganze
Klasse von strukturell dquivalenten Systemen Giiltigkeit besitzen. Aus einem linearen

System

(1) = Az(t) + Bu(t)

y(t) = (1) (4.1)

wird mit Anwendung der Definition

Definition 4.1 (Wend 1993)

Die Strukturmatrix M* ist von gleicher Dimension wie die zugehorige Zahlenmatrix M.
Fiir jedes nicht identisch verschwindende Element von M wird ein ,*“ an der entspre-
chenden Stelle von M* eingesetzt, jedem Nullelement von M eine ,,0“ oder eine Leerstelle
in M* zugeordnet. 4

das lineare strukturelle System

(4.2)

Wenn man beachtet, dafl bei den hier betrachteten analytischen Systemen mit linear
eingehender Steuerung (ALS) Vektorfelder und damit Funktionen in den ZustandsgroBen

auftreten, ist eine Ubertragung auf nichtlineare Systeme moglich.

(4.3)

Die Struktur des Systems ist damit abhdngig vom aktuellen Systemzustand. Elemente des
Strukturmodells, die mit ,,*“ markiert sind, konnen verschwinden. Besondere Beachtung

verdient aus diesem Grunde der Definitionsbereich des Strukturmodells.

Mit dem GAFAS-Befehl SSystem werden aus einem ALS die Strukturmatrizen bestimmt,

wie das folgende Beispiel demonstriert:
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Beispiel 4.1 Gegeben sei das nichtlineare Zustandsmodell

sin x9 3o
T = x% + et | 4 0| u ,
COS o 0
(4.4)
a(x) b(x)
Y= a3
e(x)

ZweckmiBigerweise werden die Vektorfelder a(«), b(z) und c(x), wie im Abschnitt 3.2 gezeigt,
in einer Datei hinterlegt. Den Aufruf und das Ergebnis zeigt der folgende Ausschnitt einer
Maple-Sitzung;:

> read(‘gafas.main®):
> read(‘beispiel.als‘):
> S:=SSystem([x,a,B,c]);

S = AStructumla BStructumla CStructuml

\%

print(S);

060 Js
92930 9 0 9 {0096}
0 g4 0 0

Maple-Session 4.1: Anwendung von SSystem

Fiir eine erweiterte strukturelle Untersuchung werden anstelle des in Definition 4.1 erw&hnten
Zeichens ,,** fiir ein von Null verschiedenes Element generische Gréflen g; verwendet. Die ge-
nerischen Gréflen sind zunichst nichts weiter als eine Moglichkeit, die Kanten voneinander zu
unterscheiden. d

4.2 Struktureller Graph — SGraph

Fiir die Anwendung graphentheoretischer Algorithmen findet der bereits in Maple im-
plementierte Objekttyp graph Anwendung. Ein Strukturgraph, der im wesentlichen die
Verkniipfungen der Systemzusténde, der Eingénge und der Ausginge darstellt, wird mit
dem von GAFAS zur Verfiigung gestellten Befehl SGraph angelegt.

Beispiel 4.2  Betrachtet wird wieder das mit Gl. (4.4) gegebene System. Bild 4.1 zeigt
den zugehérigen (erweiterten) Strukturgraph durch Anwendung der in Abschnitt 2 aufgefiihrten
Regeln zur Bildung eines Systemgraphen. Die Benennung der Kanten mit den generischen
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%@@%@

Bild 4.1: Erweiteter Strukturgraph

Groflen g1 bis g kann den (erweiterten) Strukturmatrizen der Maple-Session 4.1 entnommen
werden. Als Parameter erwartet der Befehl SGraph wiederum eine Liste mit dem Zustandsvektor
x und den Vektorfeldern a(x), B(x) und c(x). Wie die folgende Maple-Sitzung zeigt, ist das
Ergebnis von SGraph ein Maple-Objekt vom Typ Graph. Zur weiteren Verarbeitung stellt Maple
eine Reihe von Befehlen im Rahmen des Standard-Pakets networks zur Verfligung. Die in der
Maple-Session 4.2 angewendeten edges, vertices und ends stellen nur eine geringe Auswahl
dar.

> read(‘gafas.main®):
> read(‘beispiel.als‘):
> G:=SGraph([x,a,B,c]);

G = GStructuml
edges(G);

\%

{917 92, 93, g4, gs, 96}
> vertices(G);

{1, 2,3, yl, ul}
> ends(G);

{2, 3], [0, 21, (2,10, 2, 2], 13, wi], [ul, 1]}

Maple-Session 4.2: Anwendung von SGraph

Die Zustandsknoten werden fiir das Maple-Objekt Graph von 1 bis n durchnumeriert, die
Eingénge und Ausgidnge erhalten neben der Bezeichnung u bzw. y einen Index zur Unterschei-
dung bei Mehrgréfensystemen. Die Kantengewichte werden mit SGraph nicht weiter berechnet
und haben alle zunichst den Wert w(e;) = 1. Q

4.3 Struktureller Rang — SRank

Ausgehend von der Definition des Ranges einer Matrix
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Definition 4.2 (Bronstein und Semendjajew 1989)

Die Matrix A # 0 hat den Rang Rg(A) = o genau dann, wenn A mindestens eine re-
gulédre p-reihige Untermatrix besitzt und alle hoherreihigen Untermatrizen von A singular
sind. Dabei heifit eine quadratische Matrix reguldr bzw. singuldr je nachdem, ob ihre

Determinante von Null verschieden bzw. gleich Null ist. 4

kann der Rang als die Maximalzahl der linear unabhangigen Zeilen- bzw. Spaltenvektoren
der Matrix interpretiert werden. Ubertragen auf eine Strukturmatrix A*, die keine festen
Zahlenwerte enthélt, wird der strukturelle Rang als ein oberer Wert fiir den Rang aller

Matrizen mit gleicher Struktur definiert:

Definition 4.3 (Wend 1993)
Der strukturelle Rang einer Strukturmatrix ist der maximal mogliche Rang, den die

zuldssigen Zahlenmatrizen A mit der durch A* vorgegebenen Struktur annehmen kénnen:

s-RangA™ = max RangA . (4.5)
Ac A

Q

Mit dem GAFAS-Befehl SRank kann der strukturelle Rang bestimmt werden, wie die
folgende Maple-Sitzung zeigt:

> read(‘gafas.main‘):
> A:=matrix(2,2,[1,3,2,6]1);

13
A=
26
> SRank(A);
2

> linalgl[rank] (A);

Maple-Session 4.3: Anwendung von SRank

Der Vergleich mit dem gewohnlichen Rangbefehl zeigt deutlich die erwéhnte Eigenschaft

des strukturellen Ranges, ein Supremum zu sein.
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4.4 Differenzengrad — (E)SRelativeDegree

Der relative Grad oder auch Differenzengrad eines nichtlinearen Systems spielt bei der
Linearisierung und auch Entkopplung eine entscheidende Rolle. Unter anderem kann
anhand des Differenzengrads festgestellt werden, ob ein System eine Nulldynamik aufweist
und mit welchen Regelgesetzen eine Linearisierung durchgefithrt werden kann. Fir ALS

wird der Differenzengrad folgendermafien festgelegt:

Definition 4.4 (Schwarz 1991)
Ein MehrgroBen-ALS der Form (3.1) hat den (Vektor-) Differenzengrad d fiir alle & in

einer Umgebung von xg:

d={d,dy,... d,} (4.6)

mit?
d; = min{r|LgL’'cl® £ 0} ; i=1,2,...,m . (4.7)
Q

Diese Definition macht Gebrauch von sogenannten Lie-Operatoren L, die in (Schwarz
1991, Isidori 1995) ausfithrlich beschrieben sind. Mit dem Programmpaket NSAS — non-
linear systems analysis and synthesis — steht eine MAPLE-Anwendung zur Verfiigung, die
eine einfache Nutzung von Lie-Ableitungen und weiteren differentialgeometrischen Werk-

zeugen wie Lie-Klammern etc. erméglicht (Lemmen u. a. 1995).

Anschaulich bedeutet Gl. (4.7), dafi d; gerade der Anzahl der zeitlichen Differentiationen

von y; entspricht, bis mindestens eine Eingangsgréfie u; explizit darin enthalten ist:

o0 =T L p) - k=1

(4.8)

Fiir ¥aps wird nun der Differenzengrad mit den in Tabelle 4.1 genannten Befehlen be-
rechnet.

Befehl Argumente ‘ Resultat ‘Beschreibung‘
SRelativeDegree |Yars ODER G*|d* Gl (4.7)
wahr/moglich fir d = d*
ESRelativeDegree|X s UND G* |d*

G* optional wahr/moglich fir d = d*°

Tabelle 4.1: MAPLE-Befehle zur Bestimmung des Differenzengrads von Y1

3 c;F in Gl. (4.7) bezeichnet die i-te Zeile der Matrix C.
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Entsprechend dem dreigeteilten Ansatz wird unterschieden zwischen dem strukturellen
Differenzengrad d*, dem erweitert strukturellen Differenzengrad d** und dem analyti-
schen Differenzengrad d. Der Algorithmus liefert neben dem Ergebnis d* und d*° die
Information, ob das Resultat mit dem ,,exakten® Differenzengrad d geméf Definition 4.4

iibereinstimmdt.

Beispiel 4.3 Die analytische Berechnung des Differenzengrades fiir das System nach Gl. (4.4)
durch Ableiten des Systemausgangs ergibt den Wert d = 3. Die Maple-Session 4.3 zeigt die
alternative Vorgehensweise unter Verwendung von GAFAS-Befehlen:

> read(‘gafas.main®):
> read(‘beispiel.als‘):
> G:=SGraph([x,a,B,c]);

G = GStructuml
> SRelativeDegree(G);

results are strongly structural: structural results are equal to exact
results

3
> ESRelativeDegree([x,a,B,c],G);

results are strongly structural: structural results are equal to exact
results

Maple-Session 4.4: Anwendung von (E)SRelativeDegree

Mit dem Hinweis ,Die strukturellen Ergebnisse entsprechen den exakten Ergebnissen®, nach
der Anwendung von SRelativeDegree, eriibrigt sich die Anwendung von ESRelativeDegree
und erfolgt hier nur zu Demonstrationszwecken. Dabei reduziert die optionale Ubergabe des
strukturellen Graphen die Rechenzeit, die dafiir erforderlich ist.

d

Der Algorithmus zur Bestimmung der strukturellen Differenzengrade basiert auf der Ana-
lyse des Systemgraphen. Es wird die Existenz des kiirzesten Pfades zwischen den Ein-
gangsgroflen u — genauer den diesen zugeordneten Knoten — und dem Ausgangsknoten y;

gepriift und dessen Lange [; ermittelt. Fiir den Differenzengrad d; gilt dann
di=1—-2 | (4.9)

Der Subtrahend ,,-2% resultiert aus den Verbindungskanten zwischen Eingéngen und Zustanden
bzw. Zustanden und Ausgéngen, die im Gegensatz zu den tibrigen Kanten keine Integra-

tion reprasentieren. Existiert nur ein kiirzester Weg, so gilt d* = d. Bei mehreren Pfaden
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kiirzester Lange miissen zusatzlich die Pfadgewichte untersucht werden. Addieren sich
alle Pfadgewichte zu einem Wert ungleich Null, dann folgt daraus d** = d. Sollte auf
diese Weise keine exakte Aussage moglich sein, so sind d* und d*° dennoch immer obere
Abschatzungen fiir d.

4.5 Nullstellen im Unendlichen — (E)SZerosAtInfinity

Weitere wesentliche Eigenschaften nichtlinearer Systeme lassen sich anhand der soge-
nannten Nullstellenstruktur tm Unendlichen definieren. Es sei darauf hingewiesen, daf}
dieser Terminus fiir das Tupel aller Ordnungen der Nullstellen im Unendlichen steht. Der
hierin enthaltene Begriff ,,Struktur® wurde in Anlehnung an die in der Literatur tibliche
Benennung gewéhlt und beinhaltet die Invarianz dieser Kenngrofle gegeniiber einer Sy-
steménderung durch bestimmte Transformationen und statische Zustandsriickfithrungen.
Er ist in keiner Weise mit den hier untersuchten ,strukturellen® Methoden zu verwech-
seln. Die Nullstellenstruktur im Unendlichen, die im Falle von Yjg direkt anhand der
Ubertragungsmatrix F(s) ermittelt wird, hat fiir nichtlineare Systeme keine derart an-
schauliche Bedeutung. Dennoch ist sie als eine fiir die Analyse nichtlinearer Systeme
aussagekriftige Grofle anzusehen.

Definition

Als einer der ersten, der die Differentialalgebra im Bereich der nichtlinearen Regelungs-
theorie verwendete, fithrte Fliess (1986) eine algebraische Definition fiir die Nullstellen im
Unendlichen (im folgenden mit NU bezeichnet) von nichtlinearen Systemen ein. Diese wird
anhand von differentiellen Vektorraumen erstellt, welche aus den Kdhler-Differentialen der
Ein- und Ausgangsgrofien resultieren. Im Gegensatz zu differentialgeometrisch definierten
NU verfiigt die algebraische Darstellung tiber eine Reihe von Vorteilen. So ist sie z. B.
global iiber dem Zustandsraum eines Systems giiltig und in ihren Eigenschaften konsistent
mit bekannten Eigenschaften der unendlichen Nullstellen linearer Systeme.

Geht man von einem Ypg-Zustandsmodell der Form (4.3) aus, lassen sich zunéchst die
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zeitlichen Ableitungen der Ausgangsgrofien durch

y(t) =y(z,u)
dy
= 55 (%) + B(x)u]
y(t) =y(z,u, v
Jy oy .
= 5, a(®) + B(x)u] + =~

gy Y (4.10)
=— [a(a:)+B(a:)u]+lZO:au(l)u

allgemein beschreiben. Soll auf die Betrachtung von reinen Ein-/Ausgangsdarstellungen

verzichtet und die zeitlichen Ableitungen der Ausgangsgrofien in der Form (4.10) differen-
tialalgebraisch beschrieben werden, so reicht der Korper K(w) hierfiir nicht aus. Denn
in diesem sind formal keine Funktionen in @(t¢) enthalten, die aber als Koeffizienten der
Differentialgleichungen benétigt werden. Deshalb wird der oben eingefiihrte differenti-
elle Kérper K verwendet, der neben K(u) Koeffizienten enthilt, die meromorph in der
Variablen () sind.

Uber K wird anschlieBend ein differentieller Vektorraum 2 definiert. Dieser ist aufge-
spannt durch Kéahler-Differentiale duy,... ,du,,. Die Projektionen der Ausgangsgrofien-
Differentiale dy™®) auf 2 spannen ihrerseits differentielle K-Vektorraume auf, deren diffe-
rentielle Dimensionen mit o bezeichnet werden. Aus den oy, fiir die der Zusammenhang
0=09 <oy < <o, <min(m,p) immer erfillt ist, 1aBt sich direkt die Nullstellen-

struktur im Unendlichen eines Systems definieren zu

Definition 4.5

Die Differenz o1 — o mit o, = diff. dimspang {dy(k)} gibt die Anzahl der Nullstellen
im Unendlichen der Ordnung k£ 4 1 an. Das Maximum der ganzzahligen Gréflen o,
entspricht der Gesamtanzahl der NU und stimmt mit dem differentiellen Rang p von ¥

iberein. a

Um die Auswertung der NU mit herkémmlichen Programmsystemen, d. h. mit klassischen
mathematischen Ansitzen, zu ermdglichen, wird nun ein Ubergang zur linearen Algebra
vollzogen. Geméaf Gl. (4.10) sind sowohl der Ausgangsvektor y eines Y15 als auch dessen
zeitliche Ableitung Funktionen in @ und w. Die Differentiale dy werden demzufolge in

Abhéngigkeit der Differentiale de und du gebildet:

du

(k) (k) SyH)
dyfk): 9y; .. 9y : + Ui

5 B dul-1) oz

da i=1,....,p. (4.11)
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Jedes Element von dy kann als Vektor im (nichtdifferentiellen) Vektorraum & = U & X in-
terpretiert werden, wobei ¢ durch die du und X durch die d& aufgespannt wird. Der von
der Wahl des Zustandsvektors @ unabhéngige differentielle Rang p = diff. trg K(y)/K
eines Systems entspricht der Anzahl von differentiell linear unabhéngigen Elementen
dy bzw. der differentiellen Dimension des durch dy aufgespannten Vektorraums. Der
Ubergang auf (nichtdifferentiell) linear unabhéngige GréBen erfolgt durch die sukzessiv

von dy aufgespannten Vektorrdume

& = spang {dx}
& = spang {dx,dy}

&, = spang {de,dy,... ,dy™} . (4.12)
Diese stellen Unterraume von & dar:
o C&EC-CE,CE=spang {dx,du} . (4.13)

Die Differenzen ihrer (nichtdifferentiellen) Dimensionen p, = dim &, entsprechen einer
monoton steigenden Folge, die gegen den differentiellen Rang p konvergiert und fiir £ > n

diesem entspricht:

PEk+1 — Pk > PE — Pk—1 Vk >0 (4.14)
P = Prit — Pk = po—po-1 V1o (4.15)

Eine an Definition 4.5 ankniipfende Bestimmung der NU resultiert dann aus

Definition 4.6

Die Anzahl o, der Nullstellen im Unendlichen der Ordnung kleiner oder gleich &k, k > 1,
entspricht o, = dim &, — dim&,_;. Setzt man o<y := 0, so ergibt sich die Anzahl der
Nullstellen im Unendlichen einer Ordnung k& aus o — ox_1. Die Struktur im Unendli-
chen wird durch das geordnete Tupel {ny,nq,... ,n,, } der Indizes k beschrieben, fiir die

o — ok—1 # 0 gilt. Die Indizes werden jeweils (o), — o_1)-mal wiederholt. Q

Die Tupel {p1,...,pun}, {o1,... ,0,} und {ny,... ,n,, } beinhalten im Grunde identische
Informationen iiber die Nullstellen im Unendlichen. In Abhédngigkeit des jeweiligen An-
wendungsfalls kann sich eine der Darstellungsformen jedoch als vorteilhafter erweisen als
die anderen. Soweit moglich, wird im weiteren das Tupel der Ordnungen {ny,... ,n,, }

verwendet.

Im Falle von Yp1g ist die Struktur im Unendlichen eng mit dem Begriff Toeplitz-Matrizen
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verkniipft. Das nichtlineare Aquivalent der Toeplitz-Matrix sind die Jacobi-Matrizen

ANy, ...,y»
Ji = Jk(wvuv' .. 7u(k_1)) = a(,f'ly u,!’(,k—1))) ; k= 17' R Jy=0
- 09 i}
— 0
Jou
% i (416)

= | Jdu Jdu

Gy gy oy
L ou Ou  Oul-D]

Der rekursive Charakter der Bestimmungsgleichung bei wachsendem k, der vor allem fiir

die spatere Implementierung als Algorithmus von Interesse ist, wird in der Form
*) Gy (k)
J = [J’“‘l 0] mit Y= {ay oy Oy (4.17)
ou Ju Ou(k—1)
besonders deutlich. Ein Vergleich der Elemente von Jy mit Gl. (4.11) fithrt zu einer

direkten Beziehung zwischen der Dimension eines Vektorraums & und dem Rang der

Matrix Ji, wenn & folgendermafen aufgespalten wird:

Loy

Jdy .
Er = spang {a—udu, ceey 2 mdu( )} @ spang {dx}

= Vi @ spang {dx}

(4.18)

Dann kénnen auch die Dimensionen derart zerlegt werden, dafl die Zeilen von J; gerade

den aufspannenden Vektoren entsprechen:

. . 0y ol
dim &, = dim spang a—udu, cee 2 B du + dim spang {dz} (4.19)
=rangJy+n; k=1,....n
Beispiel 4.4
Die Matrizen
0 10
a@ = |22 |: Bley=|mo|; o= [100] (4.20)
010
0 01

beschreiben das gegebene Ya1,g. Durch Anwendung von Definition 4.5 kann festgestellt werden,
dafl das System rechtsinvertierbar und damit entkoppelbar ist:

i-[1]-

! 1
= oy =rang Jy = rang a_y = rang 0 =1
8’& T3 0

Uy

2
x] + xsuq

(4.21)
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Die Differenz o1 — 0g erreicht noch nicht den gréfitméglichen Rang, deshalb sind weitere Diffe-
rentiationen notwendig:

i—| i
2211 4 uguy 4 @31
Lo oo o] gl
ou |22+ up uy ou  |x30 (4.22)
P
8—'” 0
_ u _ _
= 0y = rang a_ya_y rang J; =2
Ju Ou

Wegen Gl. (4.14) kann o3 nicht kleiner als o3 werden, so daf§ fiir den Rang p = 03 = 05 = 2 gilt.
Folglich ist das System entkoppelbar. d

Damit steht eine auf einfache Weise in symbolischen Programmiersprachen zu implemen-

tierende Beschreibungsform fiir die NU zur Verfiigung. Fiir einen effizienten Algorithmus
zur Ermittlung der Struktur im Unendlichen ist die Begrenzung

o = dim &, — dim &

k k k—1 | (4.23)

= rang J), — rang J;_; < min(m,p) Vke€ NF

von Interesse. Sobald ein oy in Gl. (4.23) erstmalig gleich dem Minimum der Anzahl

von Ein- und Ausgéngen ist, kann die Berechnung abgebrochen werden. Die weiteren

Nullstellenanzahlen erfiillen dann o, = --- = 0. Insbesondere bei Mehrgréfiensystemen

héherer Ordnungen kann der Finsatz des Abbruchkriteriums eine erhebliche Reduzierung

des erforderlichen Rechenaufwandes bewirken.

Der Rechenaufwand steigt exponentiell mit £ an, so dafl bereits fiir Nullstellen-Ordnungen
zwischen 6 und 10 die Rangbestimmung der Jacobi-Matrizen (4.16) kein Ergebnis liefert.
In diesem Fall bietet sich die strukturelle Vorgehensweise an, die in MAPLE mit den in

Tabelle 4.2 genannten Befehlen aufgerufen wird.

Befehl Argumente ‘ Resultat ‘Beschreibung‘
SZerosAtInfinity |Yars ODER G*[{n],... ,n;} Def. (4.6)
wahr/méglich fir n; = n;
ESZerosAtInfinityXars UND G* |{nj¢,... ,n}°
G* optional wahr/méglich fir n; = n}®

Tabelle 4.2: MAPLE-Befehle zur Bestimmung der Nullstellen im Unendlichen von ¥a1g

Algorithmus

Auch hier wird fiir die strukturelle Untersuchung der Systemgraph verwendet. Im Gegen-

satz zur Bestimmung des Differenzengrads muf jedoch nicht nur ein Ein-/Ausgangspfad
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berechnet werden. Vielmehr werden mehrere Fin-/Ausgangswege gesucht, die knotendis-
junkt sind, also keine gemeinsamen Knoten — und damit auch Kanten — aufweisen. Aus
den Pfadlangen kann dann die Struktur im Unendlichen ermittelt werden. Einer der effi-
zientesten Algorithmen zur sukzessiven Ermittlung solcher knotendisjunkter Pfade greift
auf den inkrementalen Graphen zuriick. Hierbei ist zu betonen, dafl es sich um einen
ausschlieBlich graphentheoretisch orientierten Algorithmus handelt, der in keiner Weise

mit dem urspriinglichen regelungstechnischen Problem verkniipft ist.

Algorithmus 4.1
Ordnungen der NU mittels knotendisjunkter Ein-/Ausgangspfade bestimmen

1. Eingabe:
— Graph G = [Vg, E¢]
2. Setze:
— Eingangsknoten: U = {uy,...,u,} € Vg

— Ausgangsknoten: Y ={y;,...,y,} € Vg
— Zustandsknoten: X = {1,2,...,n} € Vg

3. Graphen G festlegen:

— Knotenmenge:
Ein-/Ausgangsknoten von G iibernehmen und Zustandsknoten verdoppeln:

Vo=UUY U{l,2, ... 2}u{1"2" ... . n"}=UuYUX
mit U =U,Y =Y und X = X' U X"
— Kantenmenge:
Eg={(i,j)li€ U,j' € X', (i, j) € Eg}
U{(", )" € X", j €Y, (i,)) € Fg}
u{(, ")) e X',i" € X"}
4. Initialisierung: £ =0, Lo =0
5. Kiirzesten Ein-/Ausgangspfad {P : u; — yjlu; € U,y; € Y} in G finden und streng
strukturelles Verhalten priifen

— angepafiter Moore-Algorithmus (Wey 1996, S. 96)
6. Wenn P nicht existiert, dann gehe zu 13.
7. k=k+1

8. Lénge [p des Pfads P bestimmen, wobei doppelte Zustandsknoten Beriicksichtigung fin-
den:
iy, +1

lp ==
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9. Ein- und Ausgangsknoten des Pfads P nicht mehr fiir weitere knotendisjunkte Pfade
verwenden:

U=0U\{w} ; Y :=Y\{y;}

10. Ordnungen der Nullstellen im Unendlichen anhand der Liange {p des Pfads P bestimmen:

Ll—l firk=1
Lp=Li1+1lp ; * = it
T et Y L=k =S wrfiir k> 2
=

11. Richtungen aller Kanten e € P umkehren und deren Linge invertieren:
{Eg = Eg\{(i,5)}U{(, D)}, i = —1;|¥(i,j) € P}
12. Wenn k£ < min(m, p), dann gehe zu 5.
13. Ausgabe:
— Ordnungen der Nullstellen im Unendlichen:

{ni,n3,...,n;}

— Das System verhélt sich (nicht) streng strukturell Q

a)

Bild 4.2: Kiirzeste Ein-/Ausgangswege im inkrementalen Graph G

Den zentralen Gedanken, welcher auf einer Richtungsumkehr von Kanten in Verbin-
dung mit der Invertierung ihrer Langen beruht (vgl. Punkt 11 in Algorithmus 4.1), ver-
deutlicht Bild 4.2. Diese Richtungsumkehr wird allein zur Abarbeitung des graphen-
theoretischen Algorithmus benétigt, besitzt aber keine physikalische Bedeutung fiir den
urspriinglichen Systemgraphen bzw. das nichtlineare System. Fiir den Graphen wird
zunéchst der Ein-/Ausgangsweg uy — 2/ — 2" — y; (Bild 4.2a) mit kiirzester Linge 3
gefunden. Durch Umkehr der verwendeten Kanten und Streichen von bereits verwen-

deten Ein- und Ausgangsknoten existiert im zweiten Schritt wieder ein kiirzester Fin-

/Ausgangsweg (Bild 4.2b)

u — 1" = 1" =2 suy =3 =3" =y, (4.24)
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der aufgrund einer negativen Kantenlénge die Gesamtldange 5 aufweist. Bei Beriicksich-
tigung doppelter Zustandsknoten kénnen aus den Langen dieser Wege die Ordnungen
der NU zu {1,2} berechnet werden. Zum Auffinden des jeweilig kiirzesten Wegs zwi-
schen einem der Ein- und einem der Ausgangsknoten wird ein speziell angepafiter Moore-
Algorithmus (Gondran und Minoux 1986, S. 51) benutzt, der in der Lage ist, negative Kan-
tenlingen zu beriicksichtigen. DaB die Suche nach Wegen in G kein eindeutiges Problem

darstellt, wird an der Existenz einer weiteren Kombination kiirzester Ein-/Ausgangswege
uy — 3 —= 3" = 1y, und u — 1" —= 1" =20 52" =y (4.25)

in Bild 4.2 deutlich. Die kiirzesten Gesamtléngen dieser Wege sind jedoch identisch mit

den zuvor bestimmten.

Das bisher aufgefithrte Verfahren bestimmt Kenngréfien struktureller Natur, da keinerlei
Kantenbewertungen Beriicksichtigung finden. Allerdings ist ohne hohen Aufwand anhand
des inkrementalen Graphen zu priifen, ob mehrere Moglichkeiten fiir knotendisjunkte We-
ge bestehen und ob diesen dieselben Bewertungen zugeordnet sind. Denn es kann nur bei
einer gegenseitigen Elimination von Wegbewertungen zur Abweichung von strukturellen
und exakten Kenngréflen kommen. Zur Beriicksichtigung dessen ist Algorithmus 4.1 eine

Priifung auf identische Wegbewertungen hinzuzufiigen:
Algorithmus 4.2
Ordnungen der NU mit knotendisjunkten Ein-/Ausgangswegen in Y,. bestimmen

Algorithmus 4.1, wobei Punkt 5 ersetzt wird durch

5. Kiirzeste Ein-/Ausgangswege P, in G finden und streng strukturelles Verhalten priifen:
— angepafiter Moore-Algorithmus (Wey 1996, S. 97)

5a. Wenn h > 1, dann Bewertungen aller Kanten {(7, j)|(7,7) € Py; h > 1} mittels Differen-

tiationen 1. Ordnung bestimmen

5b. Wegbewertungen fiir alle P, bestimmen und auf Identitét priifen. Falls identisch, dann

Ausgabe von

- np #£ng
— ab Schritt k ist eine Ubereinstimmung von strukturellen und exakten Ordnungen der
NU nicht gew&hrleistet

Be. Weiterrechnen mit einem der Wege:

P="Fr d

Zur Realisierung dieser Erweiterung ist ein Verfahren &hnlich dem Moore-Algorithmus
notwendig, welches nicht nur einen, sondern alle Ein-/Ausgangswege einer kiirzesten
Lénge ermittelt. Die Kantenbewertungen in Schritt 5a entsprechen fiir in ihrer Richtung

umgekehrte Kanten dem negativen Kehrwert der urspriinglichen Bewertung.
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Der Vorteil der strukturellen Vorgehensweise bei der Bestimmung der Nullstellen im Un-
endlichen kann schon fiir einfache Klassen nichtlinearer Systeme nachgewiesen werden.

Betrachtet man z. B. einfache quadratische Systeme (QLS) mit den Matrizen

Ty =y
Ts = U
] ii=a7, Yi=12,3,4,6,...,12
EQLS Ty =1
T (4.26)
Y2 = T2

Z[()QLS — Z((IQLS mlt :tlQ = I 5

so ist ZgLS nicht beobachtbar und degeneriert, d. h. der Systemrang entspricht nicht der
minimalen Anzahl 2 von Fin- und Ausgdngen. Die Ordnungen der Nullstellen im Un-
endlichen ergeben sich damit zu {2, 00}. Vergleicht man alle drei Ebenen — strukturelle,
erweitert strukturelle und analytische —, so sind signifikante Unterschiede in den Rechen-
zeiten? der Algorithmen erkennbar (vgl. Tabelle 4.3). Der Aufruf und die Ergebnisse

Tabelle 4.3: Rechenzeiten fiir die Bestimmung der Nullstellen im Unendlichen

System

a

Algorithmus OLS ZgLS

SZerosAtInfinity ||1.71 s| 1.62 s
ESZerosAtInfinity ||1.87 s| 1.79 s
ZerosAtInfinity ||8.26 s[66.25 s

der verschiedenen in GAFAS implementierten Algorithmen sind in der Maple-Session 4.5
wiedergegeben. Insbesondere stellt sowohl der strukturelle als auch der erweitert struktu-
relle Ansatz die Ubereinstimmung der Ergebnisse mit den gemaf Definition 4.6 richtigen
Resultaten fest.

4 Alle Ergebnisse wurden auf einem Pentium 150MHz mit 80MB Hauptspeicher und MAPLE V RELEASE
4 unter Windows® NT4.0 erzielt.
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> read(‘gafas.main):
> read(‘‘.als_dir.‘/qls_b.als‘);
> start:=time() :SZerosAtInfinity([x,a,B,c]);print(time()-start):

results are strongly structural: structural results are equal to exact
results

[2, oo]
1.622
> start:=time() :ESZerosAtInfinity([x,a,B,c]) ;print(time()-start):

results are strongly structural: structural results are equal to exact
results

[2, o]
1.793
> start:=time():ZerosAtInfinity([x,a,B,c]);print(time()-start):
[2, o]
66.246

Maple-Session 4.5: Bestimmung der Nullstellen im Unendlichen mit GAFAS

4.6 Beobachtbarkeit — (E)SObservability

Bei der Entwicklung von Zustandsreglern spielt die Frage nach der Beobachtbarkeit der
Zustdnde eine entscheidende Rolle. Sind alle Zustédnde des Systems beobachtbar, so las-
sen sich diese theoretisch mit Hilfe eines Beobachters aus den Eingangssignalen w(t),
den Ausgangssignalen y(¢) und deren zeitlichen Ableitungen ermitteln. Dies fithrt zur
Kostensenkung bei der Mefitechnik bzw. macht die Bestimmung von einigen Zustidnden

tiberhaupt erst moglich.

Die Betrachtung der Beobachtbarkeit eines Systems fiihrt auf die Auswertung eines Rang-

kriteriums (hier fiir Eingroflensysteme):

_@_
ox

9y
Rang E =n : (4.27)

Hyn)
L Jz

Dabei wird iiberpriift, ob zur Berechnung der n Systemzustande n linear unabhéngige

Gleichungen zur Verfiigung stehen. Ist das der Fall, so kénnen die Gleichungen eindeutig
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nach den gesuchten Zustinden aufgelost werden. Im Falle eines linearen Systems

Z x(t)= Ax(t) + bu(t) ,
LS y(t) = cTa:(t) ) (4.28)
mit &(¢) € R™ u(t),y(t) e R
fithrt Gl. (4.27) zum Kalman-Kriterium fiir Eingroflensysteme:

Definition 4.7 (Kalman u. a. 1969)
Ein lineares System, gegeben durch das Zustandsmodell gemafl Gl. (4.28), ist vollstandig
beobachtbar genau dann, wenn gilt

CT

ctA
Rang _ =n . (4.29)
CTAn—l
————

Q
Q

Wie in (Spielmann 1996) ausfiihrlich hergeleitet, kann ein Element der Beobachtbarkeits-
matrix @ graphentheoretisch durch Multiplikation von Pfadgewichten bestimmt werden.
Die i-te Zeile von @Q enthilt Pfade der Linge ¢ zum Ausgangsknoten y. Dabei ist der
Start(zustands)knoten durch die Spalte von Q festgelegt. Fiir eine strukturelle Untersu-
chung reicht zur Bestimmung von ¢;; die Information, ob ein Pfad der Lénge [ =1 vom
Zustandsknoten j zum Ausgang y existiert. Falls ein Pfad vorhanden ist, hat das Element

gi; den Wert 1%, ansonsten den Wert ,,0%.

Da die strukturelle Beobachtbarkeitsuntersuchung nur fiir den Fall, dafl ein Rangdefekt
auftritt, zu einem abschliefendes Ergebnis gelangt, werden fiir eine erweiterte strukturelle
Untersuchung die Kantengewichte explizit eingesetzt. Die resultierende Beobachtbarkeits-
matrix @*° liefert dann das gewiinschte Endergebnis. Insbesondere im Falle eines nicht
vollsténdig beobachtbaren Systems ergibt sich ein grofler Rechenzeitvorteil im Vergleich
zur herkémmlichen analytischen Vorgehensweise, da bereits die strukturelle Untersuchung
das Ergebnis liefert. Die Ubertragung auf nichtlineare Systeme ist ebenso méglich, wobei
die Rangbestimmung durch die in der Beobachtbarkeitsmatrix enthaltenen Verdnderlichen
aufwendiger ausfallt. Hierzu wurde, wie bereits bei NSAS von Lemmen u. a. (1995), auf
die Funktion extrank aus der Arbeit von Essen und Jager (1992) zuriickgegriffen. Ferner
wird die in (Fliess und Glad 1993) dargestellte Erkenntnis, wonach ein nichtlineares Sy-
stem nur dann beobachtbar ist, wenn das zugehérige Tangentialsystem beobachtbar ist,

herangezogen.
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Beispiel 4.5 Die Anwendung der zur Beobachtbarkeitsanalyse erforderlichen Befehle zeigt
die folgende Maple-Session.

> read(‘gafas.main®):
> read(‘beispiel.als‘):
> G:=SGraph([x,a,B,c]);

G = GStructuml
> SObservability(G);

true
> Erg:=ESObservability([x,a,B,c],G);

the system is structural observable

the tangent system is observable

Erg:= Q, true
> print(Erg[1]);
0 0 1
0 —sin(xy) 0

—sin(xy) €” —2sin(xz) x4 0

Maple-Session 4.6: Anwendung von (E)SObservability

Liefert die strukturelle Untersuchung das Ergebnis, dafi das System strukturell beobachtbar
ist, ist eine erweiterte Untersuchung mit ESObservaility erforderlich. Riickgabewert ist dabei
neben einer ja/nein Entscheidung die Beobachtbarkeitsmatrix Q. d
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5 Zusammenfassung und Ausblick

Innerhalb der drei Schritte Modellbildung, Systemanalyse und Reglersynthese, die beim
konventionellen Reglerentwurf vorgenommen werden, bietet die in diesem Bericht vorge-
stellte Maple Toolbox GAFAS Hilfestellung bei der Analyse. Die auf graphentheoretischen
Algorithmen basierenden Befehle erlauben durch einen ebenfalls dreigeteilten Ansatz eine
systematische und durchsichtige Vorgehensweise. Zunédchst kann durch eine strukturel-
le Untersuchung festgestellt werden, ob Systeme mit der gleichen Struktur wie das zu
untersuchende System eine Figenschaft erfiillen oder nicht. Bei genauerer Kenntnis der
Systemzusammenhénge erfolgt in einem zweiten Schritt eine erweiterte strukturelle Un-
tersuchung, bei der die Systemparameter, die als Gewichte in dem zugrundeliegenden
Systemgraphen einflielen, Beriicksichtigung finden. Die dadurch gewonnenen Aussagen
beziehen sich nicht mehr auf eine Klasse von Systemen mit gleicher Struktur, sondern
auf das zu untersuchende System. In wenigen Féllen kann die auf dem Tangentialsystem
beruhende graphentheoretische Analyse nicht zu einem abschlieBenden Ergebnis gelan-
gen. Dann ist in einem dritten Schritt die Anwendung herkémmlicher Analyseverfahren,
z. B. durch Verwendung der ebenfalls im Fachgebiet erstellten Maple Toolbox NSAS,
unumgénglich. Gerade bei komplexen nichtlinearen Systemen und bei Systemen hoher
Ordnung (large-scale systems) entsteht ein groBer Vorteil durch den dreigeteilten Ansatz,
da Aussagen zu Systemeigenschaften oftmals bereits durch eine strukturelle Untersuchung,

also beim ersten Schritt, gewonnen werden kénnen.

Die erste Version von GAFAS bietet zwar bereits zu wesentlichen Fragestellungen wie
Beobachtbarkeit, Entkoppelbarkeit und Nullstellenstruktur im Unendlichen Einsatzmog-
lichkeiten. Dennoch steht die Implementierung zu einigen anderen Figenschaften, die fiir
eine Reglerauslegung von Interesse sind, noch aus. Erwéhnenswert sind hier die Steuerbar-

keit, die exakte Linearisierbarkeit und damit verbunden die Stabilitat der Nulldynamik.

Weiteres Potential besteht neben der Ausweitung auf den Bereich des Reglerentwurfs
in der Anwendung komplexer graphentheoretischer Beschreibungen durch Mehrschicht—
Graphen (Spielmann 1997) mit dem Ziel einer ausschlielich graphentheoretisch basierten
Systemanalyse und Reglersynthese.
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