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� Einleitende �Ubersicht

Der Nulldynamik kommt bei der Behandlung technischer Systeme eine gro�e Bedeutung

zu� Dennoch wird der Nulldynamik wegen ihrer Latenz verh
altnism
a�ig wenig Aufmerk�

samkeit gewidmet� Verborgen ist sie deshalb	 weil sie per De�nition am Ausgang des

Systems nicht beobachtbar ist� Der Begri� der Nulldynamik entstammt der Theorie li�

nearer Systeme und ist eng mit der Dynamik der inversen 
Ubertragungsfunktion	 also

der Dynamik der 
Ubertragungsnullstellen verbunden� 
Ubertragungsnullstellen f
ur lineare

Systeme sind vielfach untersucht und auch unterschiedlich de�niert worden �Schrader

und Sain ����
� So orientiert sich beispielsweise eine fr
uhe Arbeit von Rosenbrock

�����
 an der Steuer� und Beobachtbarkeitsuntersuchung f
ur Zustandsraumdarstellungen

von Systemen und f
uhrt auf den Begri� der entkoppelnden Nullstellen� Eingangsent�

koppelnde Nullstellen sind dabei durch den Zeilen�Rangdefekt der Steuerbarkeitsmatrix

�B
���AB

���A�B
��� � � �

���An��B� nach Kalman u� a� �����
 und ausgangsentkoppelnde Nullstel�

len entsprechend durch den Zeilen�Rangdefekt der Beobachtbarkeitsmatrix �CT���ATCT���

�AT
�CT��� � � �
����AT
n��CT� gegeben�

In diesem Bericht werden nichtlineare analytische Systeme in Zustandsraumdarstellung

auf ihre Nulldynamik hin untersucht� Eine grundlegende Frage ist	 ob man f
ur speziel�

le Systemmodelle vorab eine Aussage 
uber die Existenz einer Nulldynamik tre�en kann�

Das Interesse an der gegebenenfalls vorhandenen Nulldynamik liegt darin begr
undet	 da�

die Funktionsf
ahigkeit vieler Regelungsgesetze von den Eigenschaften der Nulldynamik

abh
angt� Die Ursache dieser Abh
angigkeit ist	 da� insbesondere den Syntheseverfah�

ren f
ur nichtlineare Regelungsgesetze h
au�g eine Systeminversion zugrunde liegt� Greift

man zun
achst auf die von den linearen Systemen abgeleitete Vorstellung zur
uck	 da� die

Nulldynamik durch die Dynamik des inversen Systems bestimmt ist	 so ist unmittelbar

plausibel	 da� eine stabile Nulldynamik gewi� Voraussetzung f
ur das Funktionieren derje�

nigen Regelungsgesetze ist	 die auf einer Systeminversion beruhen� Da� die Untersuchung

der Nulldynamik durchaus praxisrelevant ist	 zeigen die in diesem Bericht behandelten

Beispiele� Zudem ist die Untersuchung der Nulldynamik besonders f
ur mittels Eigen�

schwingformen modellierte elastische Roboter von Belang	 denn die Modelle dieser Robo�

ter weisen stets eine Nulldynamik auf	 sofern die Ende�ektorposition als Systemausgang

gew
ahlt wird �Canudas de Wit u� a� ����
�

In diesem Bericht wird ein Berechnungsverfahren vorgestellt	 das die Bestimmung des

Nulldynamikvektorfeldes mit algebraischenWerkzeugen f
ur analytische nichtlineare Mehr�

gr
o�ensysteme erm
oglicht� Der vorliegende Bericht gliedert sich inhaltlich wie folgt�

Im Anschlu� an diese Einf
uhrung folgen im zweiten Abschnitt einige allgemeine Be�

trachtungen zur Nulldynamik� Wegen der engen Verwandtschaft des in diesem Bericht

vorgestellten Algorithmus zur Berechnung der Nulldynamik mit dem di�erentialgeometri�
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schen Nulldynamikalgorithmus nach Isidori �����
	 wird letzterer in Abschnitt drei kurz

dargestellt	 bevor ein di�erentialalgebraischer Berechnungsweg angegeben wird� Es wird

gezeigt	 da� der di�erentialalgebraische Algorithmus automatisiert berechenbar ist� In

dem vierten Abschnitt �nden sich einige Beispiele zur Berechnung der Nulldynamik� Der

Bericht endet mit einer kurzen Zusammenfassung der Ergebnisse in Abschnitt f
unf�
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� �Uberlegungen zur Nulldynamik

Wie eingangs erw
ahnt	 entstammt der Begri� der Nulldynamik der Theorie linearer Sy�

steme� F
ur lineare Systeme ergibt sich eine 
Aquivalenz verschiedener Aussagen	 die

nicht ohne weiteres auf nichtlineare Systeme 
ubertragbar ist� So entspricht die Null�

dynamik f
ur lineare Systeme gerade derjenigen Dynamik	 die durch die Nullstellen der

Ubertragungsfunktion charakterisiert ist� Da� diese Aussage nicht auf nichtlineare Syste�

me 
ubertragbar ist	 leuchtet unmittelbar ein�

F
ur diesen Bericht wird vorausgesetzt	 da� analytische Mehrgr
o�ensysteme behandelt

werden	 die durch eine Zustandsraumdarstellung der folgenden Form gegeben sind�

�x�t
 � f�x�t
�u�t

 � x� � x�t�
 � x � R
n � ����


y � h�x�t

 � u � R
m � y � R

p � ����


Zun
achst soll der Begri� der Nulldynamik de�niert werden� Gem
a� Schwarz �����
 hei�t

der maximale Systemteil	 f
ur den mittels Zustandsr
uckf
uhrung Unbeobachtbarkeit erzielt

werden kann	 Nulldynamik� F
ur lineare Eingr
o�ensysteme hat die Nulldynamik die Di�

mension n � d	 wobei n der Systemordnung und d dem Di�erenzengrad des Systems

entspricht� Isidori �����
 charakterisiert die Nulldynamik durch die Suche nach einem

Satz von Anfangsbedingungen und Funktionen f
ur die Eingangssignale derart	 da� die

Ausg
ange des Systems identisch null werden� Die unter diesen Bedingungen gegebene

Teilmannigfaltigkeit des Zustandsraumes hei�t ausgangssignalnullende Mannigfaltigkeit

oder Nulldynamikmannigfaltigkeit� Das Nulldynamikvektorfeld des Systems ergibt sich

aus den Systemgleichungen unter der Bedingung	 da� die Eingangssignale den gefunde�

nen Beziehungen gen
ugen und x der Nulldynamikmannigfaltigkeit entstammt� Bei Byrnes

und Isidori �����
 ist die Nulldynamik wie folgt beschrieben�

De
nition ��� Nulldynamik

Existiert eine Teilmannigfaltigkeit Z� des Zustandsraumes mit den folgenden Eigenschaf�

ten�

�� h�x
 � � � x � Z� 	

�� in jedem Punkt x � Z� existiert eine eindeutige Stellgr
o�e u� � R
m derart	 da�

�x � f�x�u�
 tangential zu Z� ist	

�� Z� ist maximal bez
uglich der Eigenschaften �� und �� 	

und ist u� ein Vektorfeld bestehend aus glatten Funktionen in x	 dann wird Z� Nulldy�

namikmannigfaltigkeit genannt� Weiterhin hei�t f � � f�x�u�
jx�Z� Nulldynamikvektor�

feld des Systems� Die Nulldynamik ist also durch das Tripel fZ��u��f �g bestehend aus

Nulldynamikmannigfaltigkeit	 ausgangssignalnullender Zustandsr
uckf
uhrung und Nulldy�

namikvektorfeld gegeben�
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Unter einer glatten Funktion f�x�� � � � � xn
 wird dabei eine Funktion verstanden	 deren

partielle Ableitungen �f��xi � i � �� � � � � n� beliebiger Ordnung existieren und stetig sind�

Der verwendete Begri� der Tangentialit
at ist durch die Eigenschaften der Linearit
at so�

wie die Leibniz�sche Regel erkl
art �Isidori ����
� Mit der Nulldynamik ist der Begri�

des Phasenminimum�Systems eng verbunden� Ein System hei�t minimalphasig in ei�

nem Punkt x�	 wenn die Nulldynamik �x � f�x�u�
jx�Z� an diesem Punkt asymptotisch

stabil ist� Entsprechend hei�t ein System global minimalphasig	 wenn x� einen global

asymptotisch stabilen Punkt der Nulldynamik darstellt� Diese De�nition erweist sich als

konsistent zu linearen Systemen	 die genau dann Phasenminimumsysteme hei�en	 wenn

der Z
ahler der zugeh
origen 
Ubertragungsfunktion ein Hurwitz�Polynom �Hurwitz ����


darstellt	 d�h� wenn keine Nullstellen mit positiven Realteilen existieren�

Die Untersuchung der vorstehend de�nierten Nulldynamik spielt eine wichtige Rolle bei

der Analyse von Systemen	 denn die M
oglichkeiten der Synthese von Regelungsgesetzen

sind ma�geblich von den Eigenschaften der Nulldynamik	 insbesondere deren Stabilit
at	

bestimmt� Aber auch f
ur den Fall einer stabilen Nulldynamik eines physikalischen System�

modells ist das Verhalten der internen	 nicht beobachtbaren Dynamik von Bedeutung	 da

beispielsweise Aussagen 
uber Energiebedarf oder Verschlei� eines realen Systems hiervon

abgeleitet werden k
onnen� Weiterhin kann es sowohl bei der Nutzung eines Systemmo�

dells zur Simulation des Systemverhaltens als auch bei dessen Verwendung als Grundlage

f
ur einen Beobachter� oder Reglerentwurf je nach Berechnungsmethode zu numerischen

Instabilit
aten kommen	 die Folgen f
ur das System haben k
onnen�

Aufgrund der Bedeutung der Nulldynamik bieten sich 
Uberlegungen zu der Frage an	

unter welchen Umst
anden eine Nulldynamik existiert� Bei einer physikalischen Modellbil�

dung l
a�t sich nur schwer eine allgemeing
ultige Aussage tre�en� Dies liegt an der Freiheit

bei der Wahl der zu ber
ucksichtigenden physikalischen Gesetzm
a�igkeiten	 die zu sehr

unterschiedlichen Modellen f
uhren kann� Da die Nulldynamik aber stets eine modellbe�

zogene und nicht eine systemimmanente Gr
o�e ist	 l
a�t sich f
ur ein gegebenenes System

vorab keine Aussage 
uber die Nulldynamik tre�en�

F
ur eine zweite Kategorie von Modellen	 die der mathematischen Modelle	 �ndet man

leichter eine Antwort auf die Fragen nach Existenz und Ordnung der Nulldynamik� Da

diese Modelle in der Regel durch Parameteridenti�kation	 Kombination verschiedener Mo�

delle oder mit auf der Realisierungstheorie basierenden Verfahren ermittelt werden	 besit�

zen sie in den meisten F
allen eine vorgegebene Struktur der Systemgleichungen bzw� eine

vorgegebene Belegung der systembeschreibenden Matrizen� Aufgrund dieser Systemstruk�

tur k
onnen dann die Fragen nach Existenz und ggf� Ordnung der Nulldynamik beantwortet

werden� F
ur die Parameteridenti�kation w
ahlt man h
au�g kanonische Zustandsmodelle	

welche gem
a� dem Wesen der Kanonizit
at die Eigenschaften Konsistenz	 �Aquivalenz und

charakteristische Merkmale aufweisen �Schwarz ����
� Wichtige kanonische Modellformen

nichtlinearer Systeme sind die bei Zeitz �����
 angegebenen Normalformen Steuerbar�

keitsnormalform	 Regelungsnormalform	 Beobachtbarkeitsnormalform und Beobachternor�

malform� Geht man von der f
ur technische Systeme sinnvollen Annahme aus	 da� kein
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direkter Durchgri� zwischen Stell� und Ausgangsgr
o�e besteht	 dann haben diese kano�

nischen Modellstrukturen in ihrer allgemeinen Form einen Vektordi�erenzengrad	 dessen

Elemente s
amtlich identisch eins sind� Damit ergibt sich beispielsweise f
ur die Nulldy�

namik eines SISO�Systems die Ordnung n � �� Genauso wie es sinnvoll ist	 den Durch�

gri� zwischen Stell� und Ausgangsgr
o�e zu vernachl
assigen	 k
onnen f
ur spezielle Systeme

verschiedene Parameter des Steuerterms wie auch der Me�gleichungen zu null gesetzt

werden� Welche Koe�zienten hierf
ur in Frage kommen	 kann durch eine Strukturiden�

ti�kation �Reuter ����
 oder spezielle Parameteridenti�kationsalgorithmen �Jelali ����


herausgefunden werden� Entsprechend ver
andert sich dann gegebenenfalls die Ordnung

der Nulldynamik�

Wichtiger jedoch als die Ordnung der Nulldynamik ist der Nichtlinearit
atsgrad	 d� h� die

h
ochste Summe der Exponenten eines Monoms der Nulldynamik�Gleichungen� Ist die

Nulldynamik nichtlinear	 so kann ihre Stabilit
at im allgemeinen nur lokal durch Lineari�

sierung nachgewiesen werden�
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� Der Nulldynamikalgorithmus

Die Berechnung der Nulldynamik ist auf verschiedene Arten m
oglich� Der Algorithmus

von Isidori �����
 stellt vermutlich den bekanntesten Weg zur Berechnung der Nulldyna�

mik dar� Dieser Algorithmus bedient sich der Di�erentialgeometrie	 mit deren Methoden

auch der Nachweis der de�nierenden Eigenschaften erbracht ist� Im folgenden ist daher

der Ablauf des di�erentialgeometrischen Nulldynamikalgorithmus dargestellt	 bevor ein

alternativer	 di�erentialalgebraisch formulierter Berechnungsweg aufgezeigt wird�

��� Di�erentialgeometrische Formulierung

Die di�erentialgeometrische Formulierung des Nulldynamikalgorithmus ist der Darstellung

von Isidori �����
 entnommen� F
ur den dort angegebenen Algorithmus wird von einem

analytischen System mit linear eingehender Steuerung �ALS
 ausgegangen	 welches durch

diese Gleichungen gegeben ist�

�x�t
 � a�x�t

 �B�x�t

u�t
 � x� � x�t�
 � x � R
n � ����


� a�x�t

 �
mX
i��

bi�x�t

ui�t
 � ����


y � c�x�t

 � u � R
m � y � R

p � ����


Isidori �����
 geht vereinfachend davon aus	 da� die Anzahl der Ein� und Ausg
ange


ubereinstimmt� Es sei aber darauf hingewiesen	 da� dies f
ur die Berechnung der Null�

dynamik nicht notwendig ist� es ergibt sich lediglich ein besonders einfaches Abbruchkri�

terium f
ur den nachfolgend dargestellten Nulldynamikalgorithmus� Die Berechnung der

Nulldynamik geschieht wie folgt�

Iterationsschritt ��

���� s� sei der Rang des Di�erentials dc�x
�

���� Es wird eine Matrix S� � R
s��p derart gew
ahlt	 da� c��x
 �� S�c�x
 genau s�

linear unabh
angige Zeilen aufweist�

���� Es sei U� eine Umgebung um x�� Dann gilt� Mc
� �M��U� � fx � U�jc��x
 � �g�

���� Bestimmung der ersten zeitlichen Ableitung der Ausg
ange�

�y � Lac��x
 � LBc��x
u ����


� Lac��x
 �
�
Lb�c��x
 � � � Lbnc��x


�
u � ����


Darin stellen bi Spalten aus B dar �vgl� Gln� ����
	����

�
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���� Weiterhin ist x � Mc
� gesucht	 so da� das Gleichungssystem

Lac��x
 � LBc��x
u � � ����


l
osbar in u ist� R� sei eine Matrix	 die den Vektorraum der L
osungen � f
ur die

Gleichung

�LBc��x
jx�Mc
�

� � ����


aufspannt� Die Dimension dieses L
osungsraumes sei s� � r� und konstant	 d�h� r�
entspricht dem Rang der Matrix LBc��x
jx�Mc

�
� Sofern r� � m ist	 sind weitere

Schritte des Algorithmus notwendig	 f
ur die in den n
achsten Unterpunkten einige

Vereinbarungen getro�en werden�

���� Damit Gl� ����
 erf
ullt wird	 mu� R�Lac��x
 � � gelten� F
ur diesen Ausdruck wird

abk
urzend die Gr
o�e ���x
 �� R�Lac��x
 de�niert�

���� Der Rang der Jacobi�Matrix von�
c��x


���x


�
� ����


wird mit s� � s� bezeichnet� Da ���x
 genau s� � r� Zeilen besitzt	 gilt damit�

s� � s� � r��

Gilt r� �� rang LBc��x
 � m	 f
ahrt man mit einem weiteren Iterationsschritt fort�

Andernfalls endet der Algorithmus an der Stelle ��� und die Nulldynamikmannigfal�

tigkeit Z� ergibt sich dann zu Z� � Mc
k��� Der damit zur L
osung der Gleichung

Lac�x
�LBc�x
u � � ben
otigte Stellgr
o�envektor wird mit u� bezeichnet und die Null�

dynamik errechnet sich durch �x � �a�x
 �B�x
u�
jx�Z��

Iterationsschritt k� k 	 ��

k��� Es sei Uk�� eine Umgebung um x��x� � M
c
�� Dann gilt�

Mc
k�� �Mk�� � Uk�� � fx � Uk��jck���x
 � � ��k���x
 � �g � ����


k��� Es habe

�
ck���x


�k���x


�
den Rang

k��P
i��

si� Dann wird eine Matrix Sk�� derart gew
ahlt	

da� Sk���k���x
 genau sk�� unabh
angige Zeilen besitzt und damit das Vektorfeld

ck�� ��

�
ck���x


Sk���k���x


�
�����


k��P
i��

si unabh
angige Zeilen aufweist�
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k��� Es wird die zeitliche Ableitung von ck���x
 bestimmt und zu null gesetzt�

Lack���x
 � LBck���x
u � � � �����


rk�� entspricht dem Rang der Matrix LBck���x
jx�Mc

k��
�

k��� Es sei Rk�� eine Matrix	 die den Vektorraum der L
osungen � f
ur die Gleichung

�LBck���x
jx�Mc

k��
� � �����


aufspannt� Die Dimension dieses L
osungsraumes sei �rk�� �
k��P
i��

si� Die Matrix

Rk�� l
a�t sich dabei mit folgender Struktur w
ahlen�

Rk�� �

�
Rk�� �

P k�� Qk��

�
� �����


k��� Damit Gl� �����
 erf
ullt wird	 mu� zudem Rk��Lack���x
 � � gelten� Es er�

gibt sich somit als Vorbereitung f
ur den n
achsten Iterationsschritt� �k���x
 �

P k��Lack���x
 �Qk��LaSk���k���x
�

Der Algorithmus endet	 wenn in dem k�ten Schritt die Abbruchbedingung rk�� � m

erreicht ist� Die NulldynamikmannigfaltigkeitZ� ergibt sich dann zu Z� �Mc
k�� und der

damit zur L
osung der Gleichung Lack���x
�LBck���x
u � � ben
otigte Stellgr
o�envektor

wird mit u� bezeichnet� Die Nulldynamik errechnet sich durch �x � �a�x
�B�x
u�
jx�Z��

Ein ausf
uhrliches Beispiel	 das auch bei Isidori �����
 angegeben ist	 soll den Ablauf

verdeutlichen�

Beispiel ���

Es sei ein System gegeben durch

�x �

�
������

x�
x�
x�x�
x�
x	

�
					
 �

�
������

� �

x	 x�
� �

x� x�
� �

�
					

�
u�
u�

�
� �����


y � �x� x��
T � �����


Iterationsschritt ��

���� dc�x
 besitzt den Rang s� � ��

���� Da s� � � ist	 f
allt die Wahl f
ur die Matrix S� auf die Einheitsmatrix der Dimension

zwei	 so da� gilt� c��x
 � c�x
 � �x� x��
T�
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���� Mc
� � fx � R

� jx� � x� � �g

����
�y �

�
x�
x�

�
�

�
� �

x	 x�

� �
u�
u�

�

���� Es ergibt sich r� �� rang�LBc��x
�jx�Mc
�
� � � m	 womit das Abbruchkriterium

noch nicht erf
ullt ist� Damit kann R� gew
ahlt werden zu R� � ��x	 ���

���� F
ur �� folgt� �� � ��x	 ���x� x��
T � x� � x�x	�

���� Der Rang der Jacobi�Matrix von

�
c��x


���x


�
�

�
� x�

x�
x� � x�x	

�



ergibt sich zu drei und damit gilt� s� � ��

Iterationsschritt ��

���� Mc
� � fx � R

� jx� � x� � x� � �g

���� Da s� � � ist	 entartet S� zur Einheitsmatrix	 wodurch f
ur c��x
 folgt�

c��x
 �

�
� x�

x�
x� � x�x	

�

 �

����

Lac��x
 � LBc��x
u �

�
� x�

x�
x� � x	x� � x�x�x�

�

 �

�
� � �

x	 x�
x� � x�	 �x�x	

�

� u�

u�

�

Weiterhin errechnet sich r� zu� r� � � � m� Das Abbruchkriterium ist also noch

nicht erf
ullt�

���� R� kann nun gew
ahlt werden zu�

R� �

�
�x	 � �

x�	 � x� � �

�
�

���� �� � �x�	�x� ���x� x��
T�� � �x��x	x��x�x�x�
 � x�x

�
	�x�x��x��x	x��x�x�x�

Iterationsschritt ��

���� Mc
� � fx � R

� jx� � x� � x� � x� � �g
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���� Die Jacobi�Matrix von �c� ���
T hat den Rang vier und daraus folgt� s� � �� Damit

entartet S� wiederum zur Einheitsmatrix	 wodurch sich c��x
 ergibt zu�

c��x
 �

�
����

x�
x�

x� � x�x	
x�x

�
	 � x�x� � x� � x	x� � x�x�x�

�
			
 �

���� In dieser Ableitungsstufe gilt�

Lac��x
 �

�
����

x�
x�

x� � x	x� � x�x�x�
c���

�
			


mit c��� � �x�x��x�x	�x�	x���x�x�x	x��x�x
�
��x	x��x��x��x��x

�
��x�x�
�x		

LBc��x
 �

�
������

�
���

x	
���

x� � x�	
���

�x�x� � ��x� � x�	 � x�x�
x	 � ��x	 � x�x�
x� � x� � �
���

�

x�
�x�x	

��x� � x�	 � x�x�
x� � �x�x	 � x� � ��x	 � x�x�
x� � x� � �

�
			


bzw�

Lac��x
jx�Mc
�

�

�
����

�

�

�

x	

�
			
 und

LBc��x
jx�Mc
�

�

�
����

� �

x	 �

�x�	 �

x		 � � �

�
			
 �

Damit besitzt die Matrix LBc��x
jx�Mc
�
den Rang zwei	 und die Abbruchbedingung ist

erreicht� Aus der Bedingung Lac��x
jx�Mc
�
�LBc��x
jx�Mc

�
u� � � folgt� u� � �� � x	�

T�

F
ur die Nulldynamikmannigfaltigkeit gilt� Z� �Mc
� � fx � R

� jx� � x� � x� � x� � �g�

Das Nulldynamikvektorfeld des Systems ergibt sich aus Gl� �����
 nach Einsetzen von u�

und der Bedingung x � Z� zu �x	 � �x	�
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Das Beispiel ��� zeigt einige Probleme auf� Es sind in jedem Iterationsschritt zwei Matri�

zen zu bestimmen	 die im Fall von Si Basispolynome aus einem Vektorfeld ausw
ahlen und

im Fall von Ri den L
osungsraum eines im allgemeinen mehrdimensionalen Gleichungssy�

stems aufspannen� In Beispiel ��� ist das Au�nden der jeweiligen Matrizen einfach	 da

die Dimensionen s�	 s�	 r� und r� s
amtlich gleich eins sind� Im allgemeinen Fall	 wenn

Systeme h
oherer Ordnung vorliegen	 ist dies nicht mehr ohne weiteres m
oglich und auf�

wendige Berechnungsmethoden m
ussen hinzugezogen werden� Dies ist der wesentliche

Grund	 warum im folgenden ein di�erentialalgebraisch formulierter Nulldynamikalgorith�

mus vorgeschlagen wird	 der ohne diese Probleme zum Ziel f
uhrt�

��� Di�erentialalgebraische Formulierung

Betrachtet man den di�erentialgeometrisch formulierten Nulldynamikalgorithmus	 so be�

steht dieser im wesentlichen aus folgenden Abl
aufen� In jeder Ableitungsstufe wird ge�

pr
uft	 ob m unabh
angige Gleichungen in den Eingangsgr
o�en gebildet werden k
onnen� Ist

dieses nicht der Fall	 so wird ein Vektorfeld gebildet	 das die Polynome der vorangegan�

genen Ableitungsstufe enth
alt sowie zus
atzlich die durch u nicht nullbaren Polynome der

aktuellen Ableitungsstufe �siehe Schritt k��
� Was also gesucht wird	 ist die Ableitungs�

stufe	 bei der erstmalig die maximale Anzahl unabh
angiger	 von den Eingangssignalen

abh
angiger Ausgangssignalableitungen auftritt	 die dann durch ein geeignetes u genullt

werden k
onnen� F
ur alle niedrigeren Ableitungsstufen werden die Randbedingungen zur

Ausgangssignalnullung den jeweiligen Mannigfaltigkeiten Mi zugeschlagen� Ist die ma�

ximale Anzahl der in den Eing
angen unabh
angigen Ausgangssignalableitungen erreicht	

so werden die Stellgr
o�en u� bestimmt	 die zur Ausgangssignalnullung f
uhren� Diese

Beschreibung der Abl
aufe legt eine di�erentialalgebraische Formulierung eines Nulldyna�

mikalgorithmus nahe�

Die Erweiterung des zu untersuchenden Vektorfeldes l
a�t sich vermeiden	 wenn man den

Begri� der di�erentialalgebraischen Abh
angigkeit verwendet� Hierzu wird	 wie auch schon

in fr
uheren Berichten	 eine Totalordnung �engl� ranking
 verwendet	 die die Einf
uhrung

der u�Linksunabh
angigkeit einer Ausgangssignalableitung und damit die Bestimmung

von in den Eing
angen di�erentialalgebraisch unabh
angigen Ausgangssignalableitungen

erm
oglicht� Die Totalordnung ist wie folgt de�niert�

De
nition ��� Totalordnung

Es werden die Ableitungen fy
�k�
l g der Ausg
ange bzw� deren Di�erentiale fdy

�k�
l g in fol�

gender Weise angeordnet�

fy�� y�� � � � � yp� �y�� �y�� � � � � �yp� � � � � y
�k�
� � y

�k�
� � � � � � y�k�p � � � �g � �����


fdy�� dy�� � � � � dyp� d �y�� d �y�� � � � � d �yp� � � � � dy
�k�
� � dy

�k�
� � � � � � dy�k�p � � � �g � �����


so da� y
�k��
l�

dann und nur dann links von y
�k��
l�

steht	 wenn k� � k� oder k� � k� � l� � l��

Hierf
ur wird die Schreibweise y
�k��
l�

� y
�k��
l�

verwendet�
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De�niert man wie Di Benedetto u� a� �����
 einen �nicht�di�erentialalgebraischen
 K
orper

K der rationalen Funktionen in u� � � � �u�n��� mit meromorphen Koe�zienten in x	 so kann

die folgende De�nition angegeben werden�

De
nition ��� u�Linksabh�angigkeit �Cao und Zheng ����


dy
�k�
l wird als u�linksabh�angig bezeichnet	 wenn

dy
�k�
l � Ex � spanKfdy

���
� jy���� � y

�k�
l g gilt� mit �����


Ex � spanKfdxij� � i � ng � �����


Andernfalls wird dy
�k�
l als u�linksunabh�angiger Vektor in �����
 bezeichnet� Ein Element

y�k�l aus �����
 wird u�linksabh
angig �bzw� u�linksunabh
angig
 genannt	 wenn dy�k�l u�

linksabh
angig �bzw� u�linksunabh
angig
 ist�

Mit diesen einfachen Hilfsmitteln kann der di�erentialalgebraische Nulldynamikalgorith�

mus angegeben werden�

Iterationsschritt ��

���� Setze c�x
 � �� Daraus ergeben sich die Anfangsbedingungen U� � fu � R
m jc�x
 �

�g� Tritt in diesem Iterationsschritt keine Eingangsgr
o�e auf	 was bei techni�

schen Systemen h
au�g der Fall sein wird	 so ist U� � fu � R
mg� Weiterhin gilt�

M� � fx � R
n j�c�x
ju�U� � �
g�

���� Bestimmung der ersten zeitlichen Ableitung der Systemausg
ange�

�y �

�
nX
i��

�c�x


�xi

�
ai �

mX
j��

bi�juj

�
�

mX
i��

�c�x


�ui
�ui

�





u�U�

�

Darin stellt bi�j das Element der i�ten Zeile und j�ten Spalte der Matrix B dar�

���� Berechnung der Anzahl �� der u�linksunabh
angigen Ausgangssignalableitungen in

�yjx�M�
� Weiterhin mu� eine Basis B� der in u unabh
angigen Ausgangssignal�

ableitungen aus �yjx�M�
berechnet werden� Stimmt �� mit dem di�erentialalge�

braischen Rang �� �Fliess ����b
 des Systems 
uberein	 so ist eine Abbruchbe�

dingung erreicht und der ausgangssignalnullende Stellgr
o�envektor ergibt sich zu

u� � u � R
m j�u � U� � B� � �
 �� Die Anfangsbedingungen x� zur Ausgangssi�

gnalnullung ergeben sich zu� x� � x � R
n j�x � M�� B�ju�u� � �
�

Ist die Abbruchbedingung �� � �� noch nicht erreicht	 so f
ahrt man mit einem weiteren

Iterationsschritt fort�

�
B� stellt eine geordnete Liste dar� B� � � bedeutet also� da� alle Listenelemente aus B� identisch

null sind�
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Iterationsschritt k	 k 	 ��

k��� Uk � fu � R
m j�u � Uk�� � Bk�� � �
g 	

Mk � fx � R
n j�x � Mk�� �Bk��ju�Uk � �
g

Die Bedingungen f
ur u ver
andern sich nur dann	 wenn in Bk�� eine Eingangsgr
o�e

auftritt	 die in vorherigen Iterationsschritten noch nicht vorhanden war�

k��� Bestimmung einer weiteren zeitlichen Ableitung der Systemausg
ange�

y�k� �

�
nX
i��

�y�k���

�xi

�
ai �

mX
j��

bi�juj

�
�

k��X
j��

�
mX
i��

�y�k���

�u
�j�
i

u
�j
��
i

��





u�Uk

�

k��� Berechnung der Anzahl �k der u�linksunabh
angigen Ausgangssignalableitungen in

y�k�jx�Mk
� Weiterhin mu� eine Basis Bk der in u unabh
angigen Ausgangssignal�

ableitungen in y�k�jx�Mk
berechnet werden� Stimmt

Pk

i�� �i mit dem di�erentialal�

gebraischen Rang �� des Systems 
uberein oder ist die n�te Ableitungsstufe erreicht	

so endet der Algorithmus und der ausgangssignalnullende Stellgr
o�envektor u� be�

rechnet sich aus den u�linksunabh
angigen Ausgangssignalableitungen� u� � u �

R
m j�u � Uk � Bk � �
� Die Anfangsbedingungen x� zur Ausgangssignalnullung

ergeben sich zu� x� � x � R
n j�x � Mk �Bkju�u� � �
� Ist noch keine Abbruchbe�

dingung erf
ullt	 so erfolgt ein weiterer Iterationsschritt�

Das Nulldynamikvektorfeld des Systemmodells ergibt sich durch Einsetzen des Stell�

gr
o�envektors u� sowie der Anfangsbedingungen x � x� in die Systemgleichungen�

Dieser Algorithmus ersetzt die Rangbetrachtungen des di�erentialgeometrischen Nulldy�

namikalgorithmus �vgl� darin Schritt k��
 durch eine di�erentialalgebraische Bedingung	

n
amlich die Bestimmung der Gesamtanzahl
P

�k der u�linksunabh
angigen Ausgangssi�

gnalableitungen �vgl� Schritt k�� der di�erentialalgebraischen Formulierung
�

Die Bestimmung der Anzahl der u�linksunabh
angigen Gleichungen kann durch die Be�

rechnung der Basen Bk geschehen	 so da� die Ermittlung der beiden Terme �k und Bk

des Schritts k�� in einer Rechnung erfolgen kann� Weiterhin ist es m
oglich	 die Basis der

durch die Ausgangssignalableitungen gegebenen Polynome automatisiert zu berechnen	

wie in dem n
achsten Abschnitt gezeigt wird�

Es sei an dieser Stelle angemerkt	 da� das von Isidori �����
 verwendete Abbruchkriterium

zwar hinreichend	 aber nicht notwendig ist� Aus der di�erentialalgebraischen Systemana�

lyse ist bekannt	 da� der di�erentielle Rang �� lediglich die Anzahl der Ein� und Ausg
ange

als oberen Grenzwert erreichen kann	 �� � minfm� pg �Fliess ����a
� Es ist also durchaus

m
oglich	 da� nicht m u�linksunabh
angige Ausgangssignalableitungen gefunden werden

k
onnen bzw� da� rk�� � rang LBck���x
jx�Mc

k��
� m f
ur kein k � 
 erreicht wird�

Aber auch �� stellt nur eine hinreichende Abbruchgrenze dar	 denn ein Vergleich mit der
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Berechnung von �� mittels Gr
obner�Basen �Senger ����
 zeigt	 da� sich durch die Nul�

lung der u�linksunabh
angigen Ausgangssignalableitungen im Verlauf des Algorithmus die

maximale Anzahl der u�linksunabh
angigen Ausgangssignalableitungen verringern kann�

Ohne die Nullungsbedingungen entspricht die maximale Anzahl der u�linksunabh
angigen

Ausgangssignalableitungen gerade ���

��� Di�erentialalgebraische Berechnung

Die algebraischen Berechnungen beschr
anken sich bei dem oben vorgestellten Nulldyna�

mikalgorithmus auf die Bestimmung der Anzahl �i der u�linksunabh
angigen Ausgangs�

signalableitungen und der Basis Bi der Ausgangssignalableitungen� Die Berechnung der

notwendigen Gr
o�en setzt einige Begri�e voraus	 die hier kurz dargestellt werden�

De
nition ���� Polynomring

Ein �kommutativer
 Polynomring in den Variablen x�� � � � � xn wird durch die Menge der

Polynome in x�� � � � � xn mit Koe�zienten aus einem Ring R gebildet� Dieser Polynomring

tr
agt die Bezeichnung R�x�� � � � � xn��

De
nition ���� Ideal

Ein Ideal I eines Ringes wird durch eine Untermenge eines Ringes	 f
ur die folgende Re�

chenregeln gelten	 gebildet�

i
 a� b � I � a� b � I 	

ii
 r � R� a � I � ar � I �

Im folgenden wird die Notation hP i f
ur das kleinste Ideal des Ringes R verwendet	 das

P � R enth
alt	 und P hei�t Basis des Ideals hP i� hP i ergibt sich als die Schnittmenge

aller Ideale in R	 die P enthalten� Ideale sind z�B� bei der Bestimmung der Nullstellen

eines Systems von Polynomen von Bedeutung� Deshalb interessiert das von einer Menge

f�� � � � � fn von Polynomen erzeugte Ideal des Polynomringes R�x�� � � � � xn� in besonderem

Ma�e� Es ergibt sich auf einfache Weise	 wie der folgende Satz zeigt�

Satz ��� �Sharp ����


Es seien f�� � � � � fm Polynome in dem K
orper k�x�� � � � � xn� der meromorphen Funktionen in

x�� � � � � xn mit Koe�zienten aus dem Grundk
orper k� Das durch die Polynome f�� � � � � fm
erzeugte Ideal ist dann gegeben durch

hf�� � � � � fmi �

�
mX
i��

gifi






 gi � k�x�� � � � � xn�

�
� �����


Eine Verbindung zwischen Idealen und Polynomen bildet das folgende Korollar�
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Korollar ���

Die Menge der gemeinsamen Nullstellen der Polynome f�� � � � � fn ist identisch mit der

Menge der Nullstellen aller Basispolynome in dem Ideal hf�� � � � � fni�

Beweis� Die Folgerung ergibt sich unmittelbar aus Satz ����

Satz ��� liefert die Legitimation daf
ur	 da� in dem di�erentialalgebraisch formulierten

Nulldynamikalgorithmus die Basispolynome zu null gesetzt werden anstelle der Nullung

der Ausgangssignalableitungen�

Die Basis eines Gleichungssystems kann durch die Basis des zu dem Gleichungssystem

geh
orenden Ideals dargestellt werden� Dieses wird durch diejenigen Polynome gebildet	

welche die Gleichungen in Normalform repr
asentieren� F
ur die Normalform einer Poly�

nomgleichung werden alle Terme auf eine Seite der Gleichung gebracht und das Polynom

auf dieser Seite betrachtet� Bei der Aufgabe der Ausgangssignalnullung ergeben sich be�

sonders vorteilhafte Verh
altnisse	 da die Ausgangsgleichungen und deren Ableitungen bis

zu einer gewissen Stufe gerade gleich null sein m
ussen	 so da� die rechte Seite der Aus�

gangssignalableitungen f
ur diesen Fall schon die Gleichungen in Normalform	 also die zu

untersuchenden Polynome darstellt� Gesucht wird also in dem jeweiligen Iterationsschritt

eine Basis des Ideals	 das von den Polynomen aufgespannt wird	 die auf der rechten Seite

der Me�gleichungen bzw� deren Ableitungen stehen�

Wie die u�Linksunabh
angigkeit mit Hilfe von Gr
obner�Basen 
uberpr
uft werden kann	

wurde bereits in Senger �����
 gezeigt� Dazu wird in jeder Ableitungsstufe eine Basis

der in u unabh
angigen Ausgangssignalableitungen bestimmt� Zur Ausgangssignalnullung

m
ussen alle Polynome dieser Basis gleich null werden	 woraus sich ggf� Bedingungen f
ur

u ergeben	 die dann in allen darau�olgenden Ableitungsstufen eingesetzt werden	 wie an

Hand von Beispielen noch deutlich wird�

Die Bestimmung der Basispolynome erfolgt mit dem Algorithmus zur Bestimmung der

Gr
obner�Basis GB der aufspannenden Polynome� Die Anzahl der von u abh
angigen

Polynome aus GB stimmt dabei mit der Anzahl der im aktuellen Algorithmusschritt neu

hinzukommenden u�linksunabh
angigen Polynome 
uberein� Die Grundlage hierf
ur bildet

der folgende Satz�

Satz ��� �Buchberger ����


Es sei I 
 k�x�� � � � � xn� u�� � � � � um� ein Ideal aus dem Polynomring R�x�� � � � � xn� u�� � � �

� um� und GB�I
 eine Gr
obner�Basis von I bez
uglich der lexikographischen Monomordung

u� � u� � � � � � um � x� � x� � � � � � xn� Dann gilt f
ur alle r � f�� �� � � � � mg�

hGB�I
i � k�u�� � � � � ur� � hGB�I
 � k�u�� � � � � ur�i � �����


Dies bedeutet	 da� das
�
i�te Eliminationsideal� �Buchberger ����
 durch diejenigen Poly�

nome in GB erzeugt wird	 die nur von den Variablen u�� � � � � ui abh
angen� Ausf
uhrungen



� Der Nulldynamikalgorithmus ��

zu Monomen und strikt lexikographischer Monomordnung sowie Beispiele zu Satz ��� �n�

den sich bei Senger �����
� Es sei hier nur angemerkt	 da� 
uber die Monomordnung die

Eliminationsreihenfolge der Variablen festgelegt werden kann�

Mit der in Satz ��� angegebenen Monomordnung berechnet sich im k�ten Schritt des

algebraischen Nulldynamikalgorithmus die Basis Bk als Gr
obner�Basis GBk der Polynome

y�k�� Aus den Bedingungen zur Nullung der Polynome in GBi	 i � �� � � � � k	 ergibt sich

�k als Gesamtanzahl der in k Schritten aufgetretenen Eliminationsideale aus GBi	 i �

�� � � � � k� Wichtig ist	 da� gefundene Bedingungen f
ur u im n
achsten Schritt eingesetzt

werden und die Gr
obner�Basis GBk mit den Randbedingungen y�k�jx�Mk
berechnet wird�

In dem n
achsten Abschnitt sind einige Beispiele zur Berechnung der Nulldynamik mit

dem algebraischen Nulldynamikalgorithmus aufgef
uhrt�
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� Beispiele zur Berechnung der Nulldynamik

Die theoretischen Ausf
uhrungen in Abschnitt � werden in diesem Abschnitt durch Berech�

nungsbeispiele vertieft� Es handelt sich dabei nicht	 wie sonst bei Beitr
agen zu diesem

Thema 
ublich	 ausschlie�lich um akademische Beispiele	 sondern auch um Zustandsmo�

dellbeschreibungen realer Systeme�

Zu Beginn soll jedoch zum Vergleich das schon in Abschnitt � mit dem di�erentialgeome�

trischen Nulldynamikalgorithmus behandelte Beispiel von Isidori �����
 mit dem vorge�

stellten di�erentialalgebraischen Nulldynamikalgorithmus untersucht werden� Die Bestim�

mung der Gr
obner�Basen sowie der Ausgangssignalableitungen erfolgt f
ur die im Rahmen

dieses Berichtes durchgef
uhrten Berechnungen mit dem Programmpaket Maple�

Beispiel ���

Betrachtet wird wieder das durch die Gln� ����� ����
 gegebene System� F
ur den di�e�

rentialalgebraischen Rang dieses Systems gilt �� � �	 wie man auf verschiedene Weisen

errechnen kann�

Iterationsschritt ��

���� U� � fu � R
�g 	 M� � fx � R

� jx� � x� � �g

����
�y �

�
x� � u�

x� � x	u� � x�u�

�
����


���� Die Gr
obner�Basis der Polynome auf der rechten Seite von Gl� ����
 an der Stelle

x � M� lautet GB� � fx�� u�g� Es l
a�t sich also nur ein Eliminationsideal f
ur

die Eingangsgr
o�en bilden� Daraus folgt	 da� �� � � ist und die Abbruchbedingung

noch nicht erreicht ist�

Iterationsschritt ��

���� U� � fu � R
� ju� � �g 	 M� � fx � R

� jx� � x� � x� � �g

���� u� eingesetzt	 ergibt sich�

�y �

�
x� � x�u�

x� � x�u� � u��x� � x�u�
 � x� �u�

�
����


���� Die Gr
obner�Basis der Polynome auf der rechten Seite von Gl� ����
 an der Stel�

le x � M� lautet GB� � fx�g� Es l
a�t sich also kein Eliminationsideal f
ur die

Eingangsgr
o�en bilden� Daraus folgt	 da� �� � �	 �� � �� � � gilt und die Abbruch�

bedingung immer noch nicht erreicht ist�
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Iterationsschritt ��

���� U	 � fu � R
� ju� � �g 	 M	 � fx � R

� jx� � x� � x� � x� � �g

���� y�	� � d
dt
��yju�U�
 ergibt einen einfachen Ausdruck	 der aber wegen seiner L
ange hier

aus Gr
unden der 
Ubersichtlichkeit nicht angegeben wird�

���� Die Gr
obner�Basis der Polynomausdr
ucke f
ur y�	�jx�M�
ergibt sich zu GB	 � fx	�

u�g� Es l
a�t sich also ein neues Eliminationsideal f
ur die Eingangsgr
o�en bilden und

es folgt �	 � �� � � � � � ��	 womit eine Abbruchbedingung erf
ullt ist�

F
ur die Stellgr
o�en ergibt sich nun u� � u � R
� j�u � U	 � GB	 � �
 � �� � x	�

T� Die

Anfangsbedingungen sind durch x� � x � R
� j�x � M	�GB	ju�u� � �
 � �� � x	 � ��T

festgelegt� Setzt man diese Anfangsbedingungen und Stellgr
o�en in die Systemgleichungen

ein	 so ergibt sich die Nulldynamik zu �x	 � �x	�

��� Elektrohydraulischer Antrieb

Als zweites Beispiel wird ein System behandelt	 das durch Parameteridenti�kation ge�

wonnen wurde� Es handelt sich um eine Systembeschreibung eines hydraulischen Gleich�

gangzylinders� Als Modellstruktur ist eine nichtlineare beobachterkanonische Normalform

�Zeitz ����
 vorgegeben� Das vorliegende System weist die Besonderheit auf	 da� die Drift

linear ist �Schwarz ����
� Die urspr
unglich aus Gr
unden des Stabilit
atsnachweises spe�

zieller Regelungsgesetze gew
ahlte lineare Drift hat im Fall der Nulldynamikberechnung

f
ur diese Normalform die Folge	 da� auch die Nulldynamik linear ist	 da der nichtlineare

Teil der Systemgleichungen nur von dem zu nullenden Zustand multiplikativ abh
angt� Die

Stabilit
atsuntersuchung der Nulldynamik eines solchen Systems ist also besonders einfach	

da bekannte Kriterien der Theorie linearer Systeme Anwendung �nden k
onnen�

Bei dem Modell handelt es sich um ein System	 das quadratisch in den Zust
anden und line�

ar in den Eing
angen ist und als QLS bezeichnet wird� Dieses System liegt in nichtlinearer

Beobachternormalform vor und ist durch folgende Gleichungen gegeben�

�x�t
�

�
�������

� � � � � � � � �a�
� � � � � � �a�

� �
� � �

���
���

���
� � � � � � �

���

� � � � � � �an

�
						

x�t
 �

�
BBB�
�
����

b�
b�
���

bn

�
			
 �

�
����

b���
b���
���

b��n

�
			
 xn�t
 �

�
����

b���
b���
���

b��n

�
			
 x�n�t


�
CCCA u�t


y�t
��� � � � � ��x�t
 � xn�t
� x� � x�t�
�

Die Werte der Modellparameter sind Schwarz und Senger �����
 zu entnehmen	 wo das

Modell ausf
uhrlich vorgestellt ist� Es handelt sich um ein Modell vierter Ordnung �n � �
	

woraus sich wegen des Di�erenzengrades d � � eine Nulldynamik der Ordnung drei ergibt�

F
ur die Berechnung der Nulldynamik folgt�
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Iterationsschritt ��

���� U� � fu � Rg 	 M� � fx � R
� jx� � �g

����
�y � x	 � a�x� � �b� � b���x� � b���x

�
�
u ����


���� Die Gr
obner�Basis der Polynome auf der rechten Seite von Gl� ����
 an der Stelle

x � M� entspricht gerade GB� � fx	 � b�ug� Es l
a�t sich also ein Eliminations�

ideal f
ur die Eingangsgr
o�e u bilden� Daraus folgt� �� � �� Da es sich um ein

Eingr
o�ensystem handelt	 gilt wegen der Bedingung �� � minfm� pg f
ur den di�e�

rentialalgebraischen Rang des Systems� �� � �� Daher ist die Abbruchbedingung

bereits erreicht�

F
ur die Stellgr
o�e gilt damit� u� � �x	�b�� Die Anfangsbedingungen sind durch x� �

�x� x� x	 ��T festgelegt� Setzt man diese Anfangsbedingungen und Stellgr
o�e in die Sy�

stemgleichungen ein	 so resultiert diese Nulldynamik�

�
� �x�

�x�
�x	

�

 �

�
������

� � �
b�
b�

� � �
b�
b�

� � �
b	
b�

�
					

�
� x�

x�
x	

�

 � ����


Wie schon oben erw
ahnt	 ist auf Grund der speziellen Modellstruktur die Nulldynamik

linear	 wodurch sich die Stabilit
at leicht 
uberpr
ufen l
a�t� Setzt man die identi�zierten

Zahlenwerte f
ur die Parameter b�	 b�	 b	 und b� �Schwarz und Senger ����


b� � �� �� � ���	 � b� � ��� �� � ���� �

b	 � �� �� � ���� � b� � ��� �� � ���� �

in Gl� ����
 ein	 so ergeben sich f
ur die Nulldynamik folgende Eigenwerte�

�� � �� ���� � �� ����j �

�� � �� ����� �� ����j �

�	 � �� ���� �

Die Eigenwerte der Nulldynamik haben positive Realteile	 so da� keine Stabilit
at der

Nulldynamik gegeben ist� Es handelt sich also um ein Nicht�Phasenminimum�System�

Entsprechend ist bei der Verwendung dieses Modells zur Bildung des inversen Modells

sowie im Fall einer Ausgangssignalnullung Vorsicht geboten�
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��� Zweiachsiger Roboter mit elastischen Gelenken

Das folgende Beispiel stellt ein System dar	 dessen Modell durch Auswertung physikali�

scher Gesetzm
a�igkeiten gewonnen wurde� Es handelt sich dabei um ein System aus dem

Bereich Robotik� Dieses Beispiel weist insofern eine Besonderheit auf	 als Gr
obner�Basen

nicht zur Bestimmung der u�linksunabh
angigen Gleichungen verwendet werden k
onnen�

Dies hat seinen Grund darin	 da� die Systemgleichungen nicht in Form von Polynomen ge�

geben sind	 sondern trigonometrische Funktionen beinhalten� Es soll aber gezeigt werden	

da� dennoch die u�Linksunabh
angigkeit von Hand 
uberpr
uft und damit die Nulldynamik

berechnet werden kann� Dies ist bemerkenswert	 da das System eine hohe Modellord�

nung besitzt und stark vermascht ist	 wie auch der graphentheoretischen Behandlung des

Systems in Wey �����
 zu entnehmen ist�

Als Beispielsystem wird ein Modell eines zweiachsigen planaren Roboters mit elastischen

Gelenken herangezogen� Die Modellierung der Gelenke als Elemente mit inh
arenter Elasti�

zit
at ist z�B� dann sinnvoll	 wenn bei dem betrachteten Roboter Harmonic�Drive�Getriebe

zum Einsatz kommen� Bild ��� zeigt eine schematische Darstellung des Beispielsystems�

x�

x�

x	
x�

u�

u�

Bild ���� Zweiarmiger planarer Roboterarm mit elastischen Gelenken

Zustandsvariablen x�� x	 bezeichnen in Bild ��� die Aktuatorwinkelstellung relativ zum

vorausgegangenen Arm	 x�� x� bezeichnen die Winkel der Armstellungen relativ zum vor�

ausgegangenen Arm� u� und u� stellen die Momente der Aktuatoren dar� Die beschrei�
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benden Gleichungen sind De Luca und Isidori �����
 entnommen�

�x �

�
�������������

x�
x�
x�
x


a��x


a��x


a��x


a
�x


�
												

�

�
�������������

� �

� �

� �

� �

b����x
 �

� b����x


� b����x


� b
���x


�
												

u � ����


y � �x� x��
T � ����


F
ur die Matrizenelemente gilt�

a��x
 �
G�K�

N�
�

�N�x� � x�
 �

a��x
 �
�

A�
	 cos

� x� � A�

�
K�A�

N�
�N�x� � x�
 �

K��A� �N��A	 cos x� � A�



N�
�

��N�x� � x	
� A	 sinx��A	x
�
� cos x� � A��x� � x



�


�
�

a��x
 � �a��x
 �
G�K�

N�
�

�N�x� � x	
 �

a
�x
 �
�

A�
	 cos

� x� � A�

�
�
K��A	 cos x� � A�


N�
�N�x� � x�


�
K�

N�
�

�
�N� � �
�A	 cos x� � A�
 �N�

�
A	 cos x� �

A�

A�

��
�N�x� � x	


� A	 sinx�

��
A	 cos x� �

A�

A�

�
x�� � �A	 cos x� � A�
�x� � x



�

��
�

b����x
 � G� �

b����x
 �
A�

A�
	 cos

� x� � A�
�

b����x
 � G� � b����x
 �

b
���x
 � �
A	 cos x� � A�

A�
	 cos

� x� � A�
�

A�	 A�	 A		 A�	 G�	 G�	 K�	 K�	 N� und N� stellen Konstanten dar	 deren physikalische

Bedeutungen De Luca und Isidori �����
 zu entnehmen sind und hier f
ur die Berechnung

nicht von Belang sind� Da	 wie schon erw
ahnt	 Gr
obner�Basen nicht zur Bestimmung der

u�Linksunabh
angigkeit der Ausgangssignalableitungen herangezogen werden k
onnen	 wer�

den die Gleichungen nicht�automatisiert untersucht� Es ist eine Ausgangssignalableitung

genau dann u�linksunabh
angig	 wenn darin eine neue Eingangsgr
o�e bei einer Ableitungs�

stufe auftritt	 die weder bei einer anderen Ausgangsgr
o�e in der gleichen Ableitungsstufe

noch bei einer Ausgangsgr
o�e in einer niedrigeren Ableitungsstufe auftritt �vgl� De�niti�

on ���
� Es k
onnen daher die u�linksunabh
angigen Ausgangssignalableitungen in folgender
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Weise von Hand bestimmt werden� Ist eine Ausgangssignalableitung u�linksunabh
angig	

so wird sie nach einer neu aufgetretenen Eingangsgr
o�e aufgel
ost und diese Eingangsgr
o�e

im weiteren Verlauf durch diesen Ausdruck substituiert� Der Vorgang des sukzessiven Ab�

leitens der Ausgangssignalableitungen und Substituierens schon aufgetretener Eingangs�

gr
o�en wird so lange fortgesetzt	 bis �� u�linksunabh
angige Ausgangssignalableitungen

aufgetreten sind oder die n�te Ableitung erreicht ist� F
ur das Modell des Roboterarms

werden die Ableitungen mit dem Computer�Algebra�Programm Maple berechnet	 aber

hier nicht aufgef
uhrt	 weil die Ergebnisse zwar einfache Ausdr
ucke darstellen	 jedoch mehr

als �� DIN�A��Seiten f
ullen w
urden�

Bei der Bestimmung der Nulldynamik wird nun wie folgt vorgegangen� Der vorstehend be�

schriebene Ablauf ergibt	 da� die zweite Ableitung des ersten Ausgangs 
y� von u� abh
angt

und die vorherigen Ableitungsstufen auf die Randbedingungen M� � fx � R
� jx� � x� �

x� � x
 � �g zur Ausgangssignalnullung f
uhren� Daher wird 
y� � f�u�
jx�M�
� � nach

u� aufgel
ost	 woraus sich der Ausdruck

u� �
A�K�N

�
�x� �K�N��A� � A	N� cos�x�
� A�N�
x	

A�N�N�
�

����


ergibt	 der sowohl in 
y� als auch allen h
oheren Ableitungen eingesetzt wird� Die n
achste

u�linksunabh
angige Ausgangssignalableitung ist y
���
� � f�u�
� Als Randbedingungen f
ur

die Nulldynamik ergeben sich diese Beziehungen f
ur x	 welche y�	 y�	 �y�jx�M�
	 �y�jx�M�

	


y�jx�M�
	 
y�jx�M�

	 y
�	�
� jx�M�

	 y
���
� jx�M�

	 y
���
� jx�M�

und y
���
� jx�M�

nullen� u� folgt aus der

Bedingung y
���
� � �� Geht man die Ableitungsstufen durch	 so ergibt sich im einzelnen	

wenn man die gefundenen Bedingungen f
ur x jeweils im n
achsten Schritt einsetzt�

y� � y� � � � � M� � fxjx� � x�g

�y�jx�M�
� �

�y�jx�M�
� �

�
� � M� � fxjx� � x� � x� � x
 � �g


y�jx�M�
� �


y�jx�M�
� �

�
� �

�
u� � siehe Gl�����


M	 � fxjx� � x	 � x� � x� � x
 � �g

y
�	�
� jx�M�

� � �
K�x�
N�A�

� �

� M� � fxjx� � x	 � x� � x� � x� � x
 � �g
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y
���
� jx�M�

� � �
K�K��A� � A� � A�

	G� � A�G�
x�
A�N�N��A�

	 � A�

� �

� M� � fxjx� � x� � x	 � x� � x� � x� � x
 � �g

y
���
� jx�M�

� � �
K�K��A� � A� � A�

	G� � A�G�
x�
A�N�N��A�

	 � A�

� �

� M� � fxjx� � x� � x	 � x� � x� � x� � x� � x
 � �g

y
���
� jx�M�

� � �
K�K��A� � A� �G��A

�
	 � A�



A�N�N��A�
	 � A�


u� � �

� u� � �

Mit den gefundenen Randbedingungen f
ur x folgt	 da� u� ebenfalls null ist� Damit ergibt

die Nulldynamikrechnung	 da� lediglich die triviale L
osung x � � � u � � eine Ausgangs�

signalnullung bewirkt� Dieses Ergebnis in die Systemgleichungen eingesetzt	 liefert das

Resultat	 da� f
ur das betrachtete Modell des zweiachsigen Roboters mit elastischen Ge�

lenken keine Nulldynamik existiert� Diese Aussage stimmt mit den Angaben bei De Luca

und Isidori �����
 
uberein�
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� Zusammenfassung

Der vorliegende Bericht behandelt die Berechnung der Nulldynamik analytischer Systeme�

Neben der Darstellung des di�erentialgeometrischen Nulldynamikalgorithmus ist erstmals

ein di�erentialalgebraisch formulierter Nulldynamikalgorithmus vorgestellt worden� Zur

Auswertung der darin notwendigen di�erentialalgebraischen Kenngr
o�en wird mit den

Gr
obner�Basen ein �nicht�di�erential�
algebraisches Werkzeug verwendet�

Die Wirkungsweise des di�erentialalgebraisch formulierten Nulldynamikalgorithmus ist

in Abschnitt � an verschiedenen Beispielen dargestellt� Wie gezeigt ist	 k
onnen sowohl

mathematische Systemmodelle untersucht werden	 als auch durch physikalische Modell�

bildung ermittelte Systemmodelle	 die h
au�g eine h
ohere Modellordnung aufweisen und

kompliziertere Terme beinhalten�

Die behandelten Systemmodelle stellen Modelle realer Systeme dar	 n
amlich im Fall des

identi�zierten Modells einen elektrohydraulischen Antrieb und im Fall des physikalischen

Modells einen zweiachsigen planaren Roboter mit elastischen Gelenken� Letzteres Bei�

spielmodell demonstriert	 da� der Nulldynamikalgorithmus auch dann noch halbautoma�

tisiert berechnet werden kann	 wenn es unm
oglich ist	 Gr
obner�Basen als Hilfsmittel zur

Bestimmung der u�Linksunabh
angigkeit einer Ausgangssignalableitung zu verwenden�

Der entscheidende Vorteil des di�erentialalgebraisch formulierten Nulldynamikalgorith�

mus gegen
uber dem di�erentialgeometrischen Pendant ist	 da� die Bestimmung der Ma�

trizen Si und Rj entf
allt� Diese m
ussen der Aufgabe gerecht werden	 Basispolynome

auszuw
ahlen bzw� einen mehrdimensionalen L
osungsraum eines Gleichungssystems auf�

zuspannen� Die systematische Wahl dieser Matrizen bereitet insbesondere f
ur Systeme

hoher Ordnung mit vielen Ein��Ausg
angen gro�e Schwierigkeiten� Ein solcher
�
Freiheits�

grad� besteht im di�erentialalgebraischen Nulldynamikalgorithmus nicht�
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