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1 Einleitende Ubersicht

Der Nulldynamik kommt bei der Behandlung technischer Systeme eine grofle Bedeutung
zu. Dennoch wird der Nulldynamik wegen ihrer Latenz verhéltnisméfig wenig Aufmerk-
samkeit gewidmet. Verborgen ist sie deshalb, weil sie per Definition am Ausgang des
Systems nicht beobachtbar ist. Der Begriff der Nulldynamik entstammt der Theorie li-
nearer Systeme und ist eng mit der Dynamik der inversen Ubertragungsfunktion, also
der Dynamik der Ubertragungsnullstellen verbunden. Ubertragungsnullstellen fiir lineare
Systeme sind vielfach untersucht und auch unterschiedlich definiert worden (Schrader
und Sain 1989). So orientiert sich beispielsweise eine frithe Arbeit von Rosenbrock
(1970) an der Steuer- und Beobachtbarkeitsuntersuchung fiir Zustandsraumdarstellungen
von Systemen und fiithrt auf den Begriff der entkoppelnden Nullstellen. Eingangsent-
koppelnde Nullstellen sind dabei durch den Zeilen-Rangdefekt der Steuerbarkeitsmatrix

[B:AB:A’B:-.-A" 'B] nach Kalman u. a. (1969) und ausgangsentkoppelnde Nullstel-
len entsprechend durch den Zeilen-Rangdefekt der Beobachtbarkeitsmatrix [CT:ATC™:
(AT)2CT: .- i (AT 1CT] gegeben.

In diesem Bericht werden nichtlineare analytische Systeme in Zustandsraumdarstellung
auf ihre Nulldynamik hin untersucht. Eine grundlegende Frage ist, ob man fiir speziel-
le Systemmodelle vorab eine Aussage iiber die Existenz einer Nulldynamik treffen kann.
Das Interesse an der gegebenenfalls vorhandenen Nulldynamik liegt darin begriindet, daf3
die Funktionsfihigkeit vieler Regelungsgesetze von den Eigenschaften der Nulldynamik
abhingt. Die Ursache dieser Abhingigkeit ist, dafl insbesondere den Syntheseverfah-
ren fiir nichtlineare Regelungsgesetze hiufig eine Systeminversion zugrunde liegt. Greift
man zundchst auf die von den linearen Systemen abgeleitete Vorstellung zuriick, daf§ die
Nulldynamik durch die Dynamik des inversen Systems bestimmt ist, so ist unmittelbar
plausibel, daf} eine stabile Nulldynamik gewify Voraussetzung fiir das Funktionieren derje-
nigen Regelungsgesetze ist, die auf einer Systeminversion beruhen. Daf} die Untersuchung
der Nulldynamik durchaus praxisrelevant ist, zeigen die in diesem Bericht behandelten
Beispiele. Zudem ist die Untersuchung der Nulldynamik besonders fiir mittels Eigen-
schwingformen modellierte elastische Roboter von Belang, denn die Modelle dieser Robo-
ter weisen stets eine Nulldynamik auf, sofern die Endeffektorposition als Systemausgang
gewéhlt wird (Canudas de Wit u. a. 1996).

In diesem Bericht wird ein Berechnungsverfahren vorgestellt, das die Bestimmung des
Nulldynamikvektorfeldes mit algebraischen Werkzeugen fiir analytische nichtlineare Mehr-
groflensysteme ermoglicht. Der vorliegende Bericht gliedert sich inhaltlich wie folgt:

Im Anschlul an diese Einfiithrung folgen im zweiten Abschnitt einige allgemeine Be-
trachtungen zur Nulldynamik. Wegen der engen Verwandtschaft des in diesem Bericht
vorgestellten Algorithmus zur Berechnung der Nulldynamik mit dem differentialgeometri-
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schen Nulldynamikalgorithmus nach Isidori (1995), wird letzterer in Abschnitt drei kurz
dargestellt, bevor ein differentialalgebraischer Berechnungsweg angegeben wird. Es wird
gezeigt, dafl der differentialalgebraische Algorithmus automatisiert berechenbar ist. In
dem vierten Abschnitt finden sich einige Beispiele zur Berechnung der Nulldynamik. Der
Bericht endet mit einer kurzen Zusammenfassung der Ergebnisse in Abschnitt fiinf.
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2  Uberlegungen zur Nulldynamik

Wie eingangs erwéhnt, entstammt der Begriff der Nulldynamik der Theorie linearer Sy-
steme. Fiir lineare Systeme ergibt sich eine Aquivalenz verschiedener Aussagen, die
nicht ohne weiteres auf nichtlineare Systeme iibertragbar ist. So entspricht die Null-
dynamik fiir lineare Systeme gerade derjenigen Dynamik, die durch die Nullstellen der
Ubertragungsfunktion charakterisiert ist. Daf diese Aussage nicht auf nichtlineare Syste-
me iibertragbar ist, leuchtet unmittelbar ein.

Fiir diesen Bericht wird vorausgesetzt, dafl analytische Mehrgréflensysteme behandelt
werden, die durch eine Zustandsraumdarstellung der folgenden Form gegeben sind:

&(t) = flx(t),ult) ; zo==z() ; zcR"
y = h(z(t)) ; weR" ; yeR . (2.2)

Zunichst soll der Begriff der Nulldynamik definiert werden. Gemifl Schwarz (1991) heif3t
der maximale Systemteil, fiir den mittels Zustandsriickfiihrung Unbeobachtbarkeit erzielt
werden kann, Nulldynamik. Fiir lineare Eingrofiensysteme hat die Nulldynamik die Di-
mension n — d, wobei n der Systemordnung und d dem Differenzengrad des Systems
entspricht. Isidori (1995) charakterisiert die Nulldynamik durch die Suche nach einem
Satz von Anfangsbedingungen und Funktionen fiir die Eingangssignale derart, dafl die
Ausgénge des Systems identisch null werden. Die unter diesen Bedingungen gegebene
Teilmannigfaltigkeit des Zustandsraumes heift ausgangssignalnullende Mannigfaltigkeit
oder Nulldynamikmannigfaltigkeit. Das Nulldynamikvektorfeld des Systems ergibt sich
aus den Systemgleichungen unter der Bedingung, dafl die Eingangssignale den gefunde-
nen Beziehungen geniigen und @ der Nulldynamikmannigfaltigkeit entstammt. Bei Byrnes
und Isidori (1989) ist die Nulldynamik wie folgt beschrieben:

Definition 2.1 Nulldynamik
Existiert eine Teilmannigfaltigkeit Z* des Zustandsraumes mit den folgenden Eigenschaf-
ten:

1. h(z)=0 VxzeZ,

2. in jedem Punkt & € Z* existiert eine eindeutige Stellgrofle u* € R™ derart, dafl
& = f(x,u") tangential zu Z* ist,

3. Z* ist maximal beziiglich der Eigenschaften 1. und 2. ,

und ist u* ein Vektorfeld bestehend aus glatten Funktionen in «, dann wird Z* Nulldy-
namikmannigfaltigkeit genannt. Weiterhin heifit f* = f(x, u*)|zez- Nulldynamikvektor-
feld des Systems. Die Nulldynamik ist also durch das Tripel {Z*, u*, f*} bestehend aus
Nulldynamikmannigfaltigkeit, ausgangssignalnullender Zustandsriickfiihrung und Nulldy-
namikvektorfeld gegeben. a
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Unter einer glatten Funktion f(zi,...,xz,) wird dabei eine Funktion verstanden, deren
partielle Ableitungen 0f/0x; ,i = 1,...,n, beliebiger Ordnung existieren und stetig sind.
Der verwendete Begriff der Tangentialitdt ist durch die Eigenschaften der Linearitét so-
wie die Leibniz’sche Regel erkléirt (Isidori 1995). Mit der Nulldynamik ist der Begriff
des Phasenminimum-Systems eng verbunden. FEin System heifit minimalphasig in ei-
nem Punkt @y, wenn die Nulldynamik & = f(x,u*)|zcz- an diesem Punkt asymptotisch
stabil ist. Entsprechend heifit ein System global minimalphasig, wenn &, einen global
asymptotisch stabilen Punkt der Nulldynamik darstellt. Diese Definition erweist sich als
konsistent zu linearen Systemen, die genau dann Phasenminimumsysteme heiflen, wenn
der Zahler der zugehorigen Ubertragungsfunktion ein Hurwitz-Polynom (Hurwitz 1895)
darstellt, d.h. wenn keine Nullstellen mit positiven Realteilen existieren.

Die Untersuchung der vorstehend definierten Nulldynamik spielt eine wichtige Rolle bei
der Analyse von Systemen, denn die Mdoglichkeiten der Synthese von Regelungsgesetzen
sind mafigeblich von den Eigenschaften der Nulldynamik, insbesondere deren Stabilitit,
bestimmt. Aber auch fiir den Fall einer stabilen Nulldynamik eines physikalischen System-
modells ist das Verhalten der internen, nicht beobachtbaren Dynamik von Bedeutung, da
beispielsweise Aussagen iiber Energiebedarf oder Verschleif} eines realen Systems hiervon
abgeleitet werden konnen. Weiterhin kann es sowohl bei der Nutzung eines Systemmo-
dells zur Simulation des Systemverhaltens als auch bei dessen Verwendung als Grundlage
fiir einen Beobachter- oder Reglerentwurf je nach Berechnungsmethode zu numerischen
Instabilitdten kommen, die Folgen fiir das System haben kénnen.

Aufgrund der Bedeutung der Nulldynamik bieten sich Uberlegungen zu der Frage an,
unter welchen Umstinden eine Nulldynamik existiert. Bei einer physikalischen Modellbil-
dung 148t sich nur schwer eine allgemeingiiltige Aussage treffen. Dies liegt an der Freiheit
bei der Wahl der zu beriicksichtigenden physikalischen Gesetzméifigkeiten, die zu sehr
unterschiedlichen Modellen fiihren kann. Da die Nulldynamik aber stets eine modellbe-
zogene und nicht eine systemimmanente Grofe ist, 148t sich fiir ein gegebenenes System
vorab keine Aussage tiber die Nulldynamik treffen.

Fiir eine zweite Kategorie von Modellen, die der mathematischen Modelle, findet man
leichter eine Antwort auf die Fragen nach Existenz und Ordnung der Nulldynamik. Da
diese Modelle in der Regel durch Parameteridentifikation, Kombination verschiedener Mo-
delle oder mit auf der Realisierungstheorie basierenden Verfahren ermittelt werden, besit-
zen sie in den meisten Féllen eine vorgegebene Struktur der Systemgleichungen bzw. eine
vorgegebene Belegung der systembeschreibenden Matrizen. Aufgrund dieser Systemstruk-
tur konnen dann die Fragen nach Existenz und ggf. Ordnung der Nulldynamik beantwortet
werden. Fiir die Parameteridentifikation wihlt man h&ufig kanonische Zustandsmodelle,
welche gemif dem Wesen der Kanonizitit die Eigenschaften Konsistenz, Aquivalenz und
charakteristische Merkmale aufweisen (Schwarz 1991). Wichtige kanonische Modellformen
nichtlinearer Systeme sind die bei Zeitz (1990) angegebenen Normalformen Steuerbar-
keitsnormalform, Regelungsnormalform, Beobachtbarkeitsnormalform und Beobachternor-
malform. Geht man von der fiir technische Systeme sinnvollen Annahme aus, dafl kein
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direkter Durchgriff zwischen Stell- und Ausgangsgrofie besteht, dann haben diese kano-
nischen Modellstrukturen in ihrer allgemeinen Form einen Vektordifferenzengrad, dessen
Elemente sdmtlich identisch eins sind. Damit ergibt sich beispielsweise fiir die Nulldy-
namik eines SISO-Systems die Ordnung n — 1. Genauso wie es sinnvoll ist, den Durch-
griff zwischen Stell- und Ausgangsgrofie zu vernachlissigen, kénnen fiir spezielle Systeme
verschiedene Parameter des Steuerterms wie auch der Mefigleichungen zu null gesetzt
werden. Welche Koeffizienten hierfiir in Frage kommen, kann durch eine Strukturiden-
tifikation (Reuter 1995) oder spezielle Parameteridentifikationsalgorithmen (Jelali 1997)
herausgefunden werden. Entsprechend verdndert sich dann gegebenenfalls die Ordnung
der Nulldynamik.

Wichtiger jedoch als die Ordnung der Nulldynamik ist der Nichtlinearitétsgrad, d.h. die
héchste Summe der Exponenten eines Monoms der Nulldynamik-Gleichungen. Ist die
Nulldynamik nichtlinear, so kann ihre Stabilitdt im allgemeinen nur lokal durch Lineari-
sierung nachgewiesen werden.
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3 Der Nulldynamikalgorithmus

Die Berechnung der Nulldynamik ist auf verschiedene Arten mdoglich. Der Algorithmus
von Isidori (1995) stellt vermutlich den bekanntesten Weg zur Berechnung der Nulldyna-
mik dar. Dieser Algorithmus bedient sich der Differentialgeometrie, mit deren Methoden
auch der Nachweis der definierenden Eigenschaften erbracht ist. Im folgenden ist daher
der Ablauf des differentialgeometrischen Nulldynamikalgorithmus dargestellt, bevor ein
alternativer, differentialalgebraisch formulierter Berechnungsweg aufgezeigt wird.

3.1 Differentialgeometrische Formulierung

Die differentialgeometrische Formulierung des Nulldynamikalgorithmus ist der Darstellung
von Isidori (1995) entnommen. Fiir den dort angegebenen Algorithmus wird von einem
analytischen System mit linear eingehender Steuerung (ALS) ausgegangen, welches durch
diese Gleichungen gegeben ist:

z(t) = a(z(t))+ B(xz(t)u(t) ; zy=z() ; zeR" |, (3.1)
= afz() + 3 _bi@®)u() (3.2)
y = c(z(t) ; weR"™ ; yeRkR . (3.3)

Isidori (1995) geht vereinfachend davon aus, dafl die Anzahl der Ein- und Ausgénge
iibereinstimmt. Es sei aber darauf hingewiesen, daf} dies fiir die Berechnung der Null-
dynamik nicht notwendig ist; es ergibt sich lediglich ein besonders einfaches Abbruchkri-
terium fiir den nachfolgend dargestellten Nulldynamikalgorithmus. Die Berechnung der
Nulldynamik geschieht wie folgt:

Iterationsschritt 1:

1.1: s sei der Rang des Differentials de(x).

1.2: Es wird eine Matrix Sy € R**P derart gewihlt, dal cy(x) := Spc(x) genau s
linear unabhéngige Zeilen aufweist.

1.3: Es sei Uy eine Umgebung um x,. Dann gilt: M§ = MoNUy = {x € Up|co(x) = 0}.

1.4: Bestimmung der ersten zeitlichen Ableitung der Ausgéinge:

Yy = Laco(z) +Lpeo(z)u (3.4)
= Lgco(x) + [ Lp,eo(z) ... Lp,co(z) |u

Darin stellen b; Spalten aus B dar (vgl. Gln. (3.1),(3.2)).
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1.5:

1.6:

1.7:

Weiterhin ist & € M gesucht, so dafl das Gleichungssystem
Loco(z) + Lpep(x)u = 0 (3.6)

16sbar in w ist. Ry sei eine Matrix, die den Vektorraum der Losungen ~ fiir die
Gleichung

7LBCO($)|1:EM8 =0 (37)

aufspannt. Die Dimension dieses Losungsraumes sei sqg — 79 und konstant, d.h. rg
entspricht dem Rang der Matrix Lpcy()|zers. Sofern rg < m ist, sind weitere
Schritte des Algorithmus notwendig, fiir die in den néchsten Unterpunkten einige
Vereinbarungen getroffen werden.

Damit Gl. (3.6) erfiillt wird, mu8 RyLgco(x) = 0 gelten. Fiir diesen Ausdruck wird
abkiirzend die Grole ®@¢(x) := RoLgco(x) definiert.

Der Rang der Jacobi-Matrix von

] (38)

wird mit sy + s; bezeichnet. Da ®y(x) genau sy — ry Zeilen besitzt, gilt damit:
51 < 89— Ty

Gilt ry := rang Lgco(x®) < m, fihrt man mit einem weiteren Iterationsschritt fort.
Andernfalls endet der Algorithmus an der Stelle 1.5 und die Nulldynamikmannigfal-
tigkeit Z* ergibt sich dann zu Z* = t_1- Der damit zur Losung der Gleichung
Lec(z) + Lpe(x)u = 0 bendtigte Stellgrofienvektor wird mit u* bezeichnet und die Null-

dynamik errechnet sich durch & = (a(x) + B(z)u*)|zcz+-

Iterationsschritt k, k > 2:

k.1:

k.2:

Es sei Uj_1 eine Umgebung um x,, ¢y € Mj. Dann gilt:

MZ_I =Mp_1NU_1 = {33 € Z/lk_1|ck_2(az) =0A (I)k_g(ilt) = 0} . (39)

k-1

Es habe [ ;kZ((m)) ] den Rang > s;. Dann wird eine Matrix Sy _; derart gewéhlt,
k—2(T i=0

daBB Sj_1®_o(x) genau s,_; unabhingige Zeilen besitzt und damit das Vektorfeld

o (a5

k=1
> s; unabhingige Zeilen aufweist.
i=0
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k.3: Es wird die zeitliche Ableitung von ¢j_1(x) bestimmt und zu null gesetzt:
Lack_l(a:) + LBCk_l(CB)’U, =0 . (311)

71 entspricht dem Rang der Matrix Lpeg 1(T)]zems | -

k.4: Es sei Ry, eine Matrix, die den Vektorraum der Losungen « fiir die Gleichung

7L36k71($)|m€/\4271 =0 (312)
k—1

aufspannt. Die Dimension dieses Losungsraumes sei —rp 1 + > s;. Die Matrix
i=0

Ry 1483t sich dabei mit folgender Struktur wihlen:

(3.13)

Ry 0
Rk1:|: b2 }

Pk72 Qk—2

k.5: Damit Gl. (3.11) erfiillt wird, muf§ zudem Rj_;Lscx_i(x) = O gelten. Es er-
gibt sich somit als Vorbereitung fiir den néchsten Iterationsschritt: ®,_(x) =
Py sLacr2(x) + Qp 2LaSk-1®ro(x).

Der Algorithmus endet, wenn in dem k-ten Schritt die Abbruchbedingung rp,_; = m
erreicht ist. Die Nulldynamikmannigfaltigkeit Z* ergibt sich dann zu Z* = M7 _, und der
damit zur Losung der Gleichung Lgei 1 () +Lpek 1 (x)u = 0 benstigte StellgroBenvektor
wird mit u* bezeichnet. Die Nulldynamik errechnet sich durch & = (a(x)+B(x)u*)|zcz--

Ein ausfiihrliches Beispiel, das auch bei Isidori (1995) angegeben ist, soll den Ablauf

verdeutlichen:

Beispiel 3.1
Es sei ein System gegeben durch

T2 [ 1 0 1
Ty T3 To
. Uy
Ug
Ts Ts T2
i I3 ] i 1 1 ]
y = [1a]" . (3.15)

Iterationsschritt 1:

1.1: de(x) besitzt den Rang sy = 2.

1.2: Da so = 2 ist, fillt die Wahl fiir die Matrix S auf die Einheitsmatrix der Dimension
zwei, so daB gilt: ¢p(x) = c(x) = [z1 x2]".
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1.3: M§={z € R®|z; = x5 =0}

1.4:
. 1 0
R
Ty T3 To U2
1.5: Es ergibt sich 7y := rang[Lpcy(®)]|lzems = 1 < m, womit das Abbruchkriterium
noch nicht erfiillt ist. Damit kann Ry gewihlt werden zu Ry = [—x3 1].
1.6: Fiir ®, folgt: ®y = [—x3 ][z 24]T = 24 — 1273.

1.7: Der Rang der Jacobi-Matrix von

o) o’

= To
b
0(33) Ty — ToT3

ergibt sich zu drei und damit gilt: s; = 1.

Iterationsschritt 2:

2.1: M{={x e R®|r; =2y = 24 = 0}

2.2: Da s; = 1 ist, entartet S; zur Einheitsmatrix, wodurch fiir ¢; (x) folgt:

T
ci(z) = X
Ty — T3
- [ I
Loci(z) + Lpei(x)u = T4 + T3 T u1 }
{ L5 — X3y — B1Taly J [ T5 — 15 —TaT3 J “

Weiterhin errechnet sich r; zu: r; = 1 < m. Das Abbruchkriterium ist also noch
nicht erfiillt.

2.4: Ry kann nun gewéhlt werden zu:

Rl _ |: —T3 1 0:|

zi—x5 0 1

2.5 @) = [22 — 5 0][wo 24])T + 1+ (25 — 2374 — T17974) = ToX3 — XoT5 + 5 — T3Ty — T1 ToTy

Iterationsschritt 3:

3.1: M5={z e R®|z; =29 = 74 = x5 = 0}



3 Der Nulldynamikalgorithmus 10

3.2: Die Jacobi-Matrix von [¢; ®;]" hat den Rang vier und daraus folgt: s, = 1. Damit
entartet Sy wiederum zur Einheitsmatrix, wodurch sich ex(x) ergibt zu:

X1
02(33) N Ty — T2T3

ToT5 — ToTs + Ty — T3T4 — T ToTy

3.3: In dieser Ableitungsstufe gilt:

o)
Ty
Loco(z) =
Ty — T3Ty — T1X2T4
C2.4
mit Co g = —T4T5 — Tol3 + 1504 + 201 ToX3Ty — T105 — B305 — 1504 — T1 (25 + 22w5) + X3,
1
T3
Lpey(z) = )
| —wory + (—25 + 23 — 3124) T3 + (25 — T1T2) 5 — T2 + 1

0
T2
—T9oT3
(—x5 + 22 — 1174) 9 + 2793 — Ty + (—T3 — T179)To — T2 + 1

bzw.
[ 0
0
LaCo(T)|zerts = 0 und
—x3
[ 1 0
T 0
Lpco(®)|eerts = _;2 0
3
_x§+1 1

Damit besitzt die Matrix Lpcy(2)|zeams den Rang zwei, und die Abbruchbedingung ist
erreicht. Aus der Bedingung LaC;(%)|zemg + LBCo () |zemgu® = 0 folgt: u* = [0 — z5]".
Fiir die Nulldynamikmannigfaltigkeit gilt: Z* = M§ = {x € R®|z; = 29 = 24 = 25 = 0}.
Das Nulldynamikvektorfeld des Systems ergibt sich aus Gl. (3.14) nach Einsetzen von u*
und der Bedingung ® € Z* zu 3 = —ux3. a
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Das Beispiel 3.1 zeigt einige Probleme auf. Es sind in jedem Iterationsschritt zwei Matri-
zen zu bestimmen, die im Fall von S; Basispolynome aus einem Vektorfeld auswihlen und
im Fall von R; den Losungsraum eines im allgemeinen mehrdimensionalen Gleichungssy-
stems aufspannen. In Beispiel 3.1 ist das Auffinden der jeweiligen Matrizen einfach, da
die Dimensionen si, S, 79 und r; sdmtlich gleich eins sind. Im allgemeinen Fall, wenn
Systeme hoherer Ordnung vorliegen, ist dies nicht mehr ohne weiteres moglich und auf-
wendige Berechnungsmethoden miissen hinzugezogen werden. Dies ist der wesentliche
Grund, warum im folgenden ein differentialalgebraisch formulierter Nulldynamikalgorith-
mus vorgeschlagen wird, der ohne diese Probleme zum Ziel fiihrt.

3.2 Differentialalgebraische Formulierung

Betrachtet man den differentialgeometrisch formulierten Nulldynamikalgorithmus, so be-
steht dieser im wesentlichen aus folgenden Ablaufen: In jeder Ableitungsstufe wird ge-
priift, ob m unabhéngige Gleichungen in den Eingangsgréfien gebildet werden kénnen. Ist
dieses nicht der Fall, so wird ein Vektorfeld gebildet, das die Polynome der vorangegan-
genen Ableitungsstufe enthélt sowie zusétzlich die durch w nicht nullbaren Polynome der
aktuellen Ableitungsstufe (siehe Schritt £.2). Was also gesucht wird, ist die Ableitungs-
stufe, bei der erstmalig die maximale Anzahl unabhéngiger, von den Eingangssignalen
abhéingiger Ausgangssignalableitungen auftritt, die dann durch ein geeignetes w genullt
werden konnen. Fiir alle niedrigeren Ableitungsstufen werden die Randbedingungen zur
Ausgangssignalnullung den jeweiligen Mannigfaltigkeiten M; zugeschlagen. Ist die ma-
ximale Anzahl der in den Eingingen unabhingigen Ausgangssignalableitungen erreicht,
so werden die Stellgroflen u* bestimmt, die zur Ausgangssignalnullung fiihren. Diese
Beschreibung der Ablidufe legt eine differentialalgebraische Formulierung eines Nulldyna-
mikalgorithmus nahe.

Die Erweiterung des zu untersuchenden Vektorfeldes 148t sich vermeiden, wenn man den
Begriff der differentialalgebraischen Abhéingigkeit verwendet. Hierzu wird, wie auch schon
in friitheren Berichten, eine Totalordnung (engl. ranking) verwendet, die die Einfiihrung
der w-Linksunabhéngigkeit einer Ausgangssignalableitung und damit die Bestimmung
von in den Eingéngen differentialalgebraisch unabhingigen Ausgangssignalableitungen
ermoglicht. Die Totalordnung ist wie folgt definiert:

Definition 3.1 Totalordnung
Es werden die Ableitungen {yl(k)} der Ausgéinge bzw. deren Differentiale {dyl(k)} in fol-
gender Weise angeordnet:

(U0, U o Ups Ty T ey e U sy ) (3.16)
{dylady277dyp7dy17dy27adypaady£ )7dyé )77dy1()k)7} ) (317)

so dafl yl(lkl) dann und nur dann links von y

Hierfiir wird die Schreibweise yl(lkl) < yl(zk 2)

(k2)
l2

steht, wenn ky; < kg oder ki = ko Al < [s.

verwendet. a
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Definiert man wie Di Benedetto u. a. (1989) einen (nicht-differentialalgebraischen) Koérper

(n—1)

K der rationalen Funktionen in u, ..., u mit meromorphen Koeffizienten in x, so kann

die folgende Definition angegeben werden:

Definition 3.2 u-Linksabhdngigkeit (Cao und Zheng 1992)
dyl(k) wird als u-linksabhdngig bezeichnet, wenn

dyl(k) € &+ span,c{dyémy&ﬂ) < yl(k)} gilt, mit (3.18)
E, = spang{dz;|]l <i<n} . (3.19)

Andernfalls wird dyl(k) als u-linksunabhdngiger Vektor in (3.17) bezeichnet. Ein Element
yl(k) aus (3.16) wird u-linksabhéngig (bzw. wu-linksunabhéngig) genannt, wenn dyl(k) u-

linksabhéngig (bzw. u-linksunabhéngig) ist. a

Mit diesen einfachen Hilfsmitteln kann der differentialalgebraische Nulldynamikalgorith-
mus angegeben werden:

Iterationsschritt 1:

1.1: Setze ¢(x) = 0. Daraus ergeben sich die Anfangsbedingungen U; = {u € R"|e(x) =
0}. Tritt in diesem Iterationsschritt keine Eingangsgrofie auf, was bei techni-
schen Systemen h#ufig der Fall sein wird, so ist #; = {u € R™}. Weiterhin gilt:
M ={z € R"|(c(z)|ucr, = 0)}-

1.2: Bestimmung der ersten zeitlichen Ableitung der Systemausgéinge:
" dc(x) ~ " dc(x) .
— (il 8LL‘Z (ai + ]z; bm‘Uj) + ; aUl U;

Darin stellt b; ; das Element der i-ten Zeile und j-ten Spalte der Matrix B dar.

ueU1

1.3: Berechnung der Anzahl p; der u-linksunabhingigen Ausgangssignalableitungen in
Ylwer,- Weiterhin mufl eine Basis B; der in w unabhéngigen Ausgangssignal-
ableitungen aus ¢|zear, berechnet werden. Stimmt p; mit dem differentialalge-
braischen Rang p* (Fliess 1986b) des Systems iiberein, so ist eine Abbruchbe-
dingung erreicht und der ausgangssignalnullende Stellgréflenvektor ergibt sich zu
u* = u € R"|(u € Uy A By = 0) 1. Die Anfangsbedingungen x* zur Ausgangssi-
gnalnullung ergeben sich zu: * = x € R"|(x € My, Bi|y=u = 0).

Ist die Abbruchbedingung p; = p* noch nicht erreicht, so fihrt man mit einem weiteren
I[terationsschritt fort:

L B, stellt eine geordnete Liste dar. B; = 0 bedeutet also, daf alle Listenelemente aus B; identisch
null sind.
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Iterationsschritt k, k > 2:

kl: Uy ={u e R"|(u e Uy_1 ANBy_1=0)} ,
M ={x e R"|(x € My_1 A Bi_1|ucu, =0)}
Die Bedingungen fiir u veréindern sich nur dann, wenn in Bj_; eine Eingangsgrofie
auftritt, die in vorherigen Iterationsschritten noch nicht vorhanden war.

k.2: Bestimmung einer weiteren zeitlichen Ableitung der Systemausgéinge:

"L gykD m lfm oyk—b
(k) — , o (F+1)
Yy = (Z oz, a; + z; bijuj | + Z PG U;
]:

wEUy,

k.3: Berechnung der Anzahl p; der u-linksunabhéngigen Ausgangssignalableitungen in
y(k)|meMk. Weiterhin muf} eine Basis By der in w unabhingigen Ausgangssignal-
ableitungen in y®|,c s, berechnet werden. Stimmt Zle p; mit dem differentialal-
gebraischen Rang p* des Systems iiberein oder ist die n-te Ableitungsstufe erreicht,
so endet der Algorithmus und der ausgangssignalnullende Stellgréflenvektor u* be-
rechnet sich aus den w-linksunabhéingigen Ausgangssignalableitungen: u* = u €
R™|(u € U, A By = 0). Die Anfangsbedingungen x* zur Ausgangssignalnullung
ergeben sich zu: ¢* = & € R"|(x € My A Bg|y—u+ = 0). Ist noch keine Abbruchbe-
dingung erfiillt, so erfolgt ein weiterer Iterationsschritt.

Das Nulldynamikvektorfeld des Systemmodells ergibt sich durch Einsetzen des Stell-
groflenvektors u* sowie der Anfangsbedingungen & = x* in die Systemgleichungen.

Dieser Algorithmus ersetzt die Rangbetrachtungen des differentialgeometrischen Nulldy-
namikalgorithmus (vgl. darin Schritt £.3) durch eine differentialalgebraische Bedingung,
nédmlich die Bestimmung der Gesamtanzahl ) pp der w-linksunabhéngigen Ausgangssi-
gnalableitungen (vgl. Schritt k.3 der differentialalgebraischen Formulierung).

Die Bestimmung der Anzahl der u-linksunabhéngigen Gleichungen kann durch die Be-
rechnung der Basen Bj geschehen, so dafl die Ermittlung der beiden Terme p, und By
des Schritts k.3 in einer Rechnung erfolgen kann. Weiterhin ist es moglich, die Basis der
durch die Ausgangssignalableitungen gegebenen Polynome automatisiert zu berechnen,
wie in dem néchsten Abschnitt gezeigt wird.

Es sei an dieser Stelle angemerkt, daf§ das von Isidori (1995) verwendete Abbruchkriterium
zwar hinreichend, aber nicht notwendig ist. Aus der differentialalgebraischen Systemana-
lyse ist bekannt, dafl der differentielle Rang p* lediglich die Anzahl der Ein- und Ausgénge
als oberen Grenzwert erreichen kann, p* < min{m, p} (Fliess 1986a). Es ist also durchaus
moglich, dal nicht m wu-linksunabhingige Ausgangssignalableitungen gefunden werden
kénnen bzw. dafl ry; = rang Lpcy 1(@)|zerme | = m fiir kein k < oo erreicht wird.
Aber auch p* stellt nur eine hinreichende Abbruchgrenze dar, denn ein Vergleich mit der
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Berechnung von p* mittels Grobner-Basen (Senger 1997) zeigt, dafl sich durch die Nul-
lung der u-linksunabhéingigen Ausgangssignalableitungen im Verlauf des Algorithmus die
maximale Anzahl der w-linksunabhéingigen Ausgangssignalableitungen verringern kann.
Ohne die Nullungsbedingungen entspricht die maximale Anzahl der u-linksunabhéngigen
Ausgangssignalableitungen gerade p*.

3.3 Differentialalgebraische Berechnung

Die algebraischen Berechnungen beschrinken sich bei dem oben vorgestellten Nulldyna-
mikalgorithmus auf die Bestimmung der Anzahl p; der u-linksunabhidngigen Ausgangs-
signalableitungen und der Basis B; der Ausgangssignalableitungen. Die Berechnung der
notwendigen Groflen setzt einige Begriffe voraus, die hier kurz dargestellt werden.

Definition 3.3: Polynomring

Ein (kommutativer) Polynomring in den Variablen 1, ..., z, wird durch die Menge der
Polynome in z4, ..., z, mit Koeffizienten aus einem Ring R gebildet. Dieser Polynomring
triagt die Bezeichnung [z, ..., z,]. Qa

Definition 3.4: Ideal
Ein Ideal I eines Ringes wird durch eine Untermenge eines Ringes, fiir die folgende Re-
chenregeln gelten, gebildet:

i)abel=a+bel
i) reRacl=arel

a

Im folgenden wird die Notation (P) fiir das kleinste Ideal des Ringes R verwendet, das
P C R enthilt, und P heifit Basis des Ideals (P). (P) ergibt sich als die Schnittmenge
aller Ideale in R, die P enthalten. Ideale sind z.B. bei der Bestimmung der Nullstellen
eines Systems von Polynomen von Bedeutung. Deshalb interessiert das von einer Menge
fi, ..., fn von Polynomen erzeugte Ideal des Polynomringes R[z1, ..., x,] in besonderem
Mafle. Es ergibt sich auf einfache Weise, wie der folgende Satz zeigt.

Satz 3.1 (Sharp 1990)

Es seien f1,..., f;, Polynome in dem Korper k[zy, .. ., z,] der meromorphen Funktionen in
x1,...,x, mit Koeffizienten aus dem Grundkorper k. Das durch die Polynome f1,..., f,
erzeugte Ideal ist dann gegeben durch

<f1, . "7fm> = {Zgifi
i=1

g; € K[z1, . x]} . (3.20)

a

Eine Verbindung zwischen Idealen und Polynomen bildet das folgende Korollar:
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Korollar 3.1

Die Menge der gemeinsamen Nullstellen der Polynome fi,..., f, ist identisch mit der
Menge der Nullstellen aller Basispolynome in dem Ideal (f, ..., f,)- Qa
Beweis: Die Folgerung ergibt sich unmittelbar aus Satz 3.1. a

Satz 3.1 liefert die Legitimation dafiir, dafl in dem differentialalgebraisch formulierten
Nulldynamikalgorithmus die Basispolynome zu null gesetzt werden anstelle der Nullung
der Ausgangssignalableitungen.

Die Basis eines Gleichungssystems kann durch die Basis des zu dem Gleichungssystem
gehorenden Ideals dargestellt werden. Dieses wird durch diejenigen Polynome gebildet,
welche die Gleichungen in Normalform représentieren. Fiir die Normalform einer Poly-
nomgleichung werden alle Terme auf eine Seite der Gleichung gebracht und das Polynom
auf dieser Seite betrachtet. Bei der Aufgabe der Ausgangssignalnullung ergeben sich be-
sonders vorteilhafte Verhéltnisse, da die Ausgangsgleichungen und deren Ableitungen bis
zu einer gewissen Stufe gerade gleich null sein miissen, so daf} die rechte Seite der Aus-
gangssignalableitungen fiir diesen Fall schon die Gleichungen in Normalform, also die zu
untersuchenden Polynome darstellt. Gesucht wird also in dem jeweiligen Iterationsschritt
eine Basis des Ideals, das von den Polynomen aufgespannt wird, die auf der rechten Seite
der Mefigleichungen bzw. deren Ableitungen stehen.

Wie die u-Linksunabhingigkeit mit Hilfe von Grobner-Basen iiberpriift werden kann,
wurde bereits in Senger (1997) gezeigt. Dazu wird in jeder Ableitungsstufe eine Basis
der in w unabhéngigen Ausgangssignalableitungen bestimmt. Zur Ausgangssignalnullung
miissen alle Polynome dieser Basis gleich null werden, woraus sich ggf. Bedingungen fiir
u ergeben, die dann in allen darauffolgenden Ableitungsstufen eingesetzt werden, wie an
Hand von Beispielen noch deutlich wird.

Die Bestimmung der Basispolynome erfolgt mit dem Algorithmus zur Bestimmung der
Grobner-Basis GB der aufspannenden Polynome. Die Anzahl der von w abhingigen
Polynome aus GB stimmt dabei mit der Anzahl der im aktuellen Algorithmusschritt neu
hinzukommenden u-linksunabhéngigen Polynome iiberein. Die Grundlage hierfiir bildet
der folgende Satz:

Satz 3.2 (Buchberger 1985)

Es sei I C k[z1,...,%n,u,...,uy] ein Ideal aus dem Polynomring R[xq,...,z,, us,. ..
, Um] und GB(I) eine Grobner-Basis von I beziiglich der lexikographischen Monomordung
Uy < Uy < oo < Uy < Ty < Ty < ...< Ty, Dann gilt fiir alle r € {1,2,...,m}:

(GBI Nk[ur,...,u] = (GBUI)Nkui, ... u]) . (3.21)
Q

Dies bedeutet, daf das ,i-te Eliminationsideal“ (Buchberger 1985) durch diejenigen Poly-
nome in GB erzeugt wird, die nur von den Variablen u, ..., u; abhingen. Ausfiihrungen
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zu Monomen und strikt lexikographischer Monomordnung sowie Beispiele zu Satz 3.2 fin-
den sich bei Senger (1997). Es sei hier nur angemerkt, daf} {iber die Monomordnung die
Eliminationsreihenfolge der Variablen festgelegt werden kann.

Mit der in Satz 3.2 angegebenen Monomordnung berechnet sich im k-ten Schritt des
algebraischen Nulldynamikalgorithmus die Basis By, als Grobner-Basis G By der Polynome
y® . Aus den Bedingungen zur Nullung der Polynome in GB;, i = 1,...,k, ergibt sich
pr als Gesamtanzahl der in k Schritten aufgetretenen Eliminationsideale aus GB;, ¢ =
1,..., k. Wichtig ist, dafl gefundene Bedingungen fiir w im néchsten Schritt eingesetzt
werden und die Grébner-Basis G By, mit den Randbedingungen y*) |zem, berechnet wird.

In dem n#chsten Abschnitt sind einige Beispiele zur Berechnung der Nulldynamik mit
dem algebraischen Nulldynamikalgorithmus aufgefiihrt.
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4 Beispiele zur Berechnung der Nulldynamik

Die theoretischen Ausfiihrungen in Abschnitt 3 werden in diesem Abschnitt durch Berech-
nungsbeispiele vertieft. Es handelt sich dabei nicht, wie sonst bei Beitrdgen zu diesem
Thema iiblich, ausschlieSlich um akademische Beispiele, sondern auch um Zustandsmo-
dellbeschreibungen realer Systeme.

Zu Beginn soll jedoch zum Vergleich das schon in Abschnitt 3 mit dem differentialgeome-
trischen Nulldynamikalgorithmus behandelte Beispiel von Isidori (1995) mit dem vorge-
stellten differentialalgebraischen Nulldynamikalgorithmus untersucht werden. Die Bestim-
mung der Grobner-Basen sowie der Ausgangssignalableitungen erfolgt fiir die im Rahmen
dieses Berichtes durchgefiihrten Berechnungen mit dem Programmpaket MAPLE.

Beispiel 4.1

Betrachtet wird wieder das durch die Gln. (3.14-3.15) gegebene System. Fiir den diffe-
rentialalgebraischen Rang dieses Systems gilt p* = 2, wie man auf verschiedene Weisen
errechnen kann.

Iterationsschritt 1:

1.: Uy ={ueR}, M, ={xecR|r,=12,=0}

1.2: To + Uy

) = 4.1
Y T4+ T3U1 + ToUs ( )

1.3: Die Grobner-Basis der Polynome auf der rechten Seite von Gl. (4.1) an der Stelle
x € M, lautet GB; = {x4, u;}. Es ldBit sich also nur ein Eliminationsideal fiir
die Eingangsgréfien bilden. Daraus folgt, dal p; = 1 ist und die Abbruchbedingung
noch nicht erreicht ist.

Iterationsschritt 2:

2.1: Uy = {u e Ruy =0}, My={x € R°|z; =29 = 24 =0}

2.2: wuy eingesetzt, ergibt sich:

. Tyq + ToUo
§ = , (4.2)
Ty + TolUo + ’LLQ(IL‘4 + JIQUQ) + Tolo

2.3: Die Grobner-Basis der Polynome auf der rechten Seite von Gl. (4.2) an der Stel-
le x € M lautet GBy, = {x5}. Es liBt sich also kein Eliminationsideal fiir die
Eingangsgrofien bilden. Daraus folgt, dafl po = 0, p; + p2 = 1 gilt und die Abbruch-
bedingung immer noch nicht erreicht ist.
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Iterationsschritt 3:

3.: Us={u eRu; =0}, My={x€R|z; =12y =24 =125 =0}

3.2: y® = & (§j|yey,) ergibt einen einfachen Ausdruck, der aber wegen seiner Linge hier
aus Griinden der Ubersichtlichkeit nicht angegeben wird.

3.3: Die Grobner-Basis der Polynomausdriicke fiir y®)|,c 0, ergibt sich zu GBs = {3+
us}. Es 148t sich also ein neues Eliminationsideal fiir die Eingangsgréfien bilden und
es folgt p3 = ps +1 =2 = p*, womit eine Abbruchbedingung erfiillt ist.

Fiir die Stellgrofien ergibt sich nun u* = u € R*|(u € U3 AGB3 =0) = [0 — x3]T. Die
Anfangsbedingungen sind durch z* = z € R?|(z € M3AGBs|y—y- =0) =1[0 0 23 0 0]T
festgelegt. Setzt man diese Anfangsbedingungen und Stellgréfen in die Systemgleichungen
ein, so ergibt sich die Nulldynamik zu 3 = —x3. a

4.1 Elektrohydraulischer Antrieb

Als zweites Beispiel wird ein System behandelt, das durch Parameteridentifikation ge-
wonnen wurde. Es handelt sich um eine Systembeschreibung eines hydraulischen Gleich-
gangzylinders. Als Modellstruktur ist eine nichtlineare beobachterkanonische Normalform
(Zeitz 1990) vorgegeben. Das vorliegende System weist die Besonderheit auf, daf§ die Drift
linear ist (Schwarz 1996). Die urspriinglich aus Griinden des Stabilitdtsnachweises spe-
zieller Regelungsgesetze gewdhlte lineare Drift hat im Fall der Nulldynamikberechnung
fiir diese Normalform die Folge, dafl auch die Nulldynamik linear ist, da der nichtlineare
Teil der Systemgleichungen nur von dem zu nullenden Zustand multiplikativ abhéingt. Die
Stabilitdtsuntersuchung der Nulldynamik eines solchen Systems ist also besonders einfach,
da bekannte Kriterien der Theorie linearer Systeme Anwendung finden kénnen.

Bei dem Modell handelt es sich um ein System, das quadratisch in den Zustédnden und line-
ar in den Eingiingen ist und als QLS bezeichnet wird. Dieses System liegt in nichtlinearer
Beobachternormalform vor und ist durch folgende Gleichungen gegeben:

0 0 —a;
1 0 0 —ay by b1 by 1
. by b2 b2.2 5
z(t)=| 0 1 x(t) + |+ ) zo(t) + ) x; () | u(t)
: . . ' bn bl,n b2,n
0 - 0 1 —ay, |

y)=[0 ... 0 1)z(t) = 2a(t); @0 = 2(to).

Die Werte der Modellparameter sind Schwarz und Senger (1997) zu entnehmen, wo das
Modell ausfiihrlich vorgestellt ist. Es handelt sich um ein Modell vierter Ordnung (n = 4),
woraus sich wegen des Differenzengrades d = 1 eine Nulldynamik der Ordnung drei ergibt.
Fiir die Berechnung der Nulldynamik folgt:
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Iterationsschritt 1:

1.1: Z/{l :{UER} ,

1.2:

M, ={z € Rz, =0}

y = T3 — Q4T4 + (b4 + b1,41‘4 + b2,4xi)u (43)

1.3: Die Grobner-Basis der Polynome auf der rechten Seite von Gl. (4.3) an der Stelle
x € M, entspricht gerade GB; = {z3 + byu}. Es lit sich also ein Eliminations-
ideal fiir die Eingangsgrofie v bilden. Daraus folgt: p; = 1. Da es sich um ein

Eingrofilensystem handelt, gilt wegen der Bedingung p* < min{m, p} fiir den diffe-
rentialalgebraischen Rang des Systems: p* = 1. Daher ist die Abbruchbedingung

bereits erreicht.

Fiir die Stellgrole gilt damit: u* = —x3/bs. Die Anfangsbedingungen sind durch x* =
(1 2y 23 0]T festgelegt. Setzt man diese Anfangsbedingungen und Stellgréfe in die Sy-

stemgleichungen ein, so resultiert diese Nulldynamik:

T
Ty
T3

0 0
= 1 0
0 1

4o

T3

Wie schon oben erwéhnt, ist auf Grund der speziellen Modellstruktur die Nulldynamik
linear, wodurch sich die Stabilitit leicht iiberpriifen 148t. Setzt man die identifizierten

Zahlenwerte fiir die Parameter by, by, b3 und by (Schwarz und Senger 1997)

b1:

6,85-1073 |

by = 5,91-1072

by
by

—1,81-107%
-1,21-107% |

in Gl. (4.4) ein, so ergeben sich fiir die Nulldynamik folgende Eigenwerte:

)\1 -
Az
)\3 -

0,2327 + 0, 7344
0,2327 — 0, 7344;
0,9538

)

)

Die Eigenwerte der Nulldynamik haben positive Realteile, so dafl keine Stabilitdt der

Nulldynamik gegeben ist. Es handelt sich also um ein Nicht-Phasenminimum-System.

Entsprechend ist bei der Verwendung dieses Modells zur Bildung des inversen Modells

sowie im Fall einer Ausgangssignalnullung Vorsicht geboten.
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4.2 Zweiachsiger Roboter mit elastischen Gelenken

Das folgende Beispiel stellt ein System dar, dessen Modell durch Auswertung physikali-
scher Gesetzmifigkeiten gewonnen wurde. Es handelt sich dabei um ein System aus dem
Bereich Robotik. Dieses Beispiel weist insofern eine Besonderheit auf, als Grobner-Basen
nicht zur Bestimmung der u-linksunabhéngigen Gleichungen verwendet werden koénnen.
Dies hat seinen Grund darin, daf} die Systemgleichungen nicht in Form von Polynomen ge-
geben sind, sondern trigonometrische Funktionen beinhalten. Es soll aber gezeigt werden,
dafl dennoch die u-Linksunabhéngigkeit von Hand iiberpriift und damit die Nulldynamik
berechnet werden kann. Dies ist bemerkenswert, da das System eine hohe Modellord-
nung besitzt und stark vermascht ist, wie auch der graphentheoretischen Behandlung des
Systems in Wey (1996) zu entnehmen ist.

Als Beispielsystem wird ein Modell eines zweiachsigen planaren Roboters mit elastischen
Gelenken herangezogen. Die Modellierung der Gelenke als Elemente mit inhérenter Elasti-
zitét ist z. B. dann sinnvoll, wenn bei dem betrachteten Roboter Harmonic-Drive-Getriebe
zum Einsatz kommen. Bild 4.1 zeigt eine schematische Darstellung des Beispielsystems.

o
Ko
fo5 0N
SR05%05%:
Ge95055%
RSS555555555%%
N5
RS

Bild 4.1: Zweiarmiger planarer Roboterarm mit elastischen Gelenken

Zustandsvariablen x1, x5 bezeichnen in Bild 4.1 die Aktuatorwinkelstellung relativ zum
vorausgegangenen Arm, xy, 4 bezeichnen die Winkel der Armstellungen relativ zum vor-
ausgegangenen Arm. wu; und us stellen die Momente der Aktuatoren dar. Die beschrei-



4  Beispiele zur Berechnung der Nulldynamik 21

benden Gleichungen sind De Luca und Isidori (1987) entnommen:

o | ] 0 0 ]
Tg 0 0
T 0 0
T 0 0
r = + u , 4.5
05(33) b571(33) 0 ( )
ag(x) 0 bs 2 ()
az(x) 0 bra(x)
| ag(CL') i i 0 b&g(iL’) i
y = [z x4]" (4.6)
Fiir die Matrizenelemente gilt:
G K
05(12) = ]1\[121(]\711‘2 —1'1) s
1 K1A2 KZ(AQ — NZ(Ag COS T4 + AZ))
= Noxog —
%6 (CL') A% COS2 Ty —+ A4 ( N1 ( 22 1'1) + N22

(Nyzy — x3) — Agsin x4(A3xf25 cosxy + Ag(xg + x8)2)> ,

Gy K
a7(x) = —ag(x)+ ]2\[2 2 (Nozy — x3) ;
9
1 K (Azcosxy + As)
— — Nz —
as (x) A2 cos?xy + Ay ( N, (Nizz = 21)
K2 A4
+—2 (N2 — 1)(143 COS T4 + AZ) + N2 Ag COSTyqy — —(— (N2x4 — xg)
A
+ Azsinay (<A3 COS Ty — A_4> 12+ (Azcosxy + Ag) (w6 + x8)2>> ,
2
b5,1(93) = Gy )
Ay
boal@) = A2 cos?xy + Ay ’
b7,2(iL‘) = Gy — 56,2(33) )
Ascosxy + A
ba(z) = 3 4 2

B A2cos?xy + Ay

Ay, Ay, Az, Ay, Gy, Gy, K1, K5, Ny und N, stellen Konstanten dar, deren physikalische
Bedeutungen De Luca und Isidori (1987) zu entnehmen sind und hier fiir die Berechnung
nicht von Belang sind. Da, wie schon erwidhnt, Grobner-Basen nicht zur Bestimmung der
u-Linksunabhéingigkeit der Ausgangssignalableitungen herangezogen werden kénnen, wer-
den die Gleichungen nicht-automatisiert untersucht. Es ist eine Ausgangssignalableitung
genau dann u-linksunabhéngig, wenn darin eine neue Eingangsgrofie bei einer Ableitungs-
stufe auftritt, die weder bei einer anderen Ausgangsgrofle in der gleichen Ableitungsstufe
noch bei einer Ausgangsgrofle in einer niedrigeren Ableitungsstufe auftritt (vgl. Definiti-
on 3.2). Es kénnen daher die u-linksunabhéngigen Ausgangssignalableitungen in folgender
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Weise von Hand bestimmt werden: Ist eine Ausgangssignalableitung u-linksunabhingig,

so wird sie nach einer neu aufgetretenen Eingangsgriofie aufgelost und diese Eingangsgrofie
im weiteren Verlauf durch diesen Ausdruck substituiert. Der Vorgang des sukzessiven Ab-
leitens der Ausgangssignalableitungen und Substituierens schon aufgetretener Eingangs-
groflen wird so lange fortgesetzt, bis p* wu-linksunabhéngige Ausgangssignalableitungen
aufgetreten sind oder die n-te Ableitung erreicht ist. Fiir das Modell des Roboterarms
werden die Ableitungen mit dem Computer-Algebra-Programm MAPLE berechnet, aber
hier nicht aufgefiihrt, weil die Ergebnisse zwar einfache Ausdriicke darstellen, jedoch mehr
als 70 DIN-A4-Seiten fiillen wiirden.

Bei der Bestimmung der Nulldynamik wird nun wie folgt vorgegangen: Der vorstehend be-
schriebene Ablauf ergibt, dafl die zweite Ableitung des ersten Ausgangs 4j; von uy abhingt
und die vorherigen Ableitungsstufen auf die Randbedingungen My = {x € R®|zy = x4 =
g = xg = 0} zur Ausgangssignalnullung fithren. Daher wird §; = f(u2)|zem, = 0 nach
uy aufgelost, woraus sich der Ausdruck

Ay K N2xy + KoNy(Ag — A3Ny cos(zy) — AgNo)x3

_ 47
2 AN N2 (4.7)

ergibt, der sowohl in §j, als auch allen hheren Ableitungen eingesetzt wird. Die néchste
u-linksunabhéngige Ausgangssignalableitung ist yéG) = f(uy). Als Randbedingungen fiir
die Nulldynamik ergeben sich diese Beziehungen fiir @, welche y1, y2, U1lecrm,, Uolzem,,
y1|$EM27 y2|$EM27 Ya |€EEM37 Ya |€EEM47 Ya |wEM5 und ys |wEM6 nullen. u; 1olgt aus der
Bedingung yéG) = 0. Geht man die Ableitungsstufen durch, so ergibt sich im einzelnen,
wenn man die gefundenen Bedingungen fiir & jeweils im néchsten Schritt einsetzt:

yp=y=0 : = M ={zlrs =24}

M o= My ={=z|ry =24 = 16 = 13 = 0}
Yoleer, =0

1lzem, =0 N { uy = siehe G1.(4.7)
g2|w€/\/t2:0 M3:{$|$2:$3:1‘4:x6:x8:0}

Kyxq —0
NyAy
= M4:{CL'|1'221'321'4:1'6:1'7:1'8:0}

953) |mEM3 =0
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() —0 - KK (Ar — Ay + A3Gy + AuGo)ag
Ys "lxeMy . AQNlNQ(A% n A4)
= Ms={zlx;=2y=123 =124 =126 =27 =23 =0}

=0

(5) . . KlKg(Al - AQ + A§G2 + A4G2)1‘5
Yo |m€M5 =0 : 2
- AleNQ(A3 + A4)
= Me={zlx,=0y=x3 =104 =15 =26 =127 =25 =0}

=0

(6) . . KlKQ(Al —A2+G2(A§+A4))
Yo |€B€M6 =0 : 2
- AleNQ(A3 + A4)
= Uy = 0

u1:0

Mit den gefundenen Randbedingungen fiir « folgt, dafl us ebenfalls null ist. Damit ergibt
die Nulldynamikrechnung, daf lediglich die triviale L6sung £ = 0 A u = 0 eine Ausgangs-
signalnullung bewirkt. Dieses Ergebnis in die Systemgleichungen eingesetzt, liefert das
Resultat, daf} fiir das betrachtete Modell des zweiachsigen Roboters mit elastischen Ge-
lenken keine Nulldynamik existiert. Diese Aussage stimmt mit den Angaben bei De Luca
und Isidori (1987) iiberein.
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5 Zusammenfassung

Der vorliegende Bericht behandelt die Berechnung der Nulldynamik analytischer Systeme.
Neben der Darstellung des differentialgeometrischen Nulldynamikalgorithmus ist erstmals
ein differentialalgebraisch formulierter Nulldynamikalgorithmus vorgestellt worden. Zur
Auswertung der darin notwendigen differentialalgebraischen Kenngroflen wird mit den
Grobner-Basen ein (nicht-differential-)algebraisches Werkzeug verwendet.

Die Wirkungsweise des differentialalgebraisch formulierten Nulldynamikalgorithmus ist
in Abschnitt 4 an verschiedenen Beispielen dargestellt. Wie gezeigt ist, konnen sowohl
mathematische Systemmodelle untersucht werden, als auch durch physikalische Modell-
bildung ermittelte Systemmodelle, die hidufig eine hthere Modellordnung aufweisen und
kompliziertere Terme beinhalten.

Die behandelten Systemmodelle stellen Modelle realer Systeme dar, ndmlich im Fall des
identifizierten Modells einen elektrohydraulischen Antrieb und im Fall des physikalischen
Modells einen zweiachsigen planaren Roboter mit elastischen Gelenken. Letzteres Bei-
spielmodell demonstriert, dal der Nulldynamikalgorithmus auch dann noch halbautoma-
tisiert berechnet werden kann, wenn es unmoglich ist, Grébner-Basen als Hilfsmittel zur
Bestimmung der u-Linksunabhéngigkeit einer Ausgangssignalableitung zu verwenden.

Der entscheidende Vorteil des differentialalgebraisch formulierten Nulldynamikalgorith-
mus gegeniiber dem differentialgeometrischen Pendant ist, dafl die Bestimmung der Ma-
trizen S; und R; entféllt. Diese miissen der Aufgabe gerecht werden, Basispolynome
auszuwihlen bzw. einen mehrdimensionalen Losungsraum eines Gleichungssystems auf-
zuspannen. Die systematische Wahl dieser Matrizen bereitet insbesondere fiir Systeme
hoher Ordnung mit vielen Ein-/Ausgingen grofie Schwierigkeiten. Ein solcher , Freiheits-
grad“ besteht im differentialalgebraischen Nulldynamikalgorithmus nicht.
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