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1 Einleitung

Unter anderem zur Systemanalyse, zu Zwecken der Simulation und auch fur die Reglersynthese
ist die Kenntnis geeigneter mathematischer Modelle, die das statische bzw. dynamische Verhal-
ten eines technischen Systems gentigend genau wiedergeben, unverzichtbar. Bel komplexen An-
wendungsbeispielen ist eine rein theoretische Modellbildung allerdings oft nicht durchfihrbar.
Deshalb wird in der Praxis haufig auf eine Kombination von theoretischer und experimentller
Modellierung zurtickgegriffen, wobei in der Regel die Modellstruktur aus bekanntem theore-
tischen Vorwissen abgeleitet wird und die Prozef3parameter mittels entsprechender Schétzver-
fahren zu bestimmen sind. Unter Modellstruktur ist dabel im Rahmen dieser Arbeit folgende
Begriffsbestimmung zu verstehen:

Definition 1.1 (Reuter 1995)

Die Modellstruktur eines Modells ist durch die Beschreibungsform (z. B. lineare Differenzen-
gleichung oder Ubertragungsfunktion, bilineares oder analytisch lineares Zustandsmodell, ein-
faches Wiener- oder Hammerstein-Modell) und das spezielle Besetzungsmuster fur die darin
enthaltenen Parameter (z. B. spezielle kanonische Formen) festgel egt. Q

Demzufolgeist der gewdahlte Systemtyp mit ausschlaggebend fir die Modellstruktur, als ebenso
wichtig sollte jedoch das Besetzungsmuster fir die Systemparameter angesehen werden.

Im weiteren soll von nichtlinearen Zustandsraum-Beschreibungen zur Approximation techni-
scher Systeme ausgegangen werden. Neben den schon angesprochenen bilinearen Systemen
(BLS) sind hierbei vor allem die quadratischen Systeme (QLS) (Schwarz 1993, Jelali 1994)
von Bedeutung, aber auch die allgemeinen analytischen Systeme mit linear eingehender Steue-
rung (ALS) (Schwarz 1991) werden berticksichtigt. Sowohl BLS als auch QLS sind besonders
gut fir Zwecke der Approximation nichtlinearer Ursache-/Wirkungsbeziehungen geeignet, da
sie zum einen hinsichtlich der systemtheoreti schen Untersuchungen einfach zu handhaben sind
und zum anderen hinreichend gut nichtlineare Prozesse nachbilden konnen.

In der Regel wird bei einer Identifikation solcher Systeme von kanonischen Formen, beispiels-
weise der beobachtbarkeitskanonischen (Reuter 1995) oder der beobachterkanonischen (Jelali
und Schwarz 1995, Jelali 1996) Form, ausgegangen. Diese bieten die Vortelle, dal3 zum einen
die Anzahl der freien Parameter recht klein ausfalt und zum anderen bel zahlreichen prakti-
schen Anwendungen das reale Prozef3verhalten gentigend gut nachgebildet wird. Als Nachteil
ist jedoch zu werten, dal’d derartige mit Parameterschétzverfahren bestimmte Modelle in ih-
ren Zustandsgrofden nicht mit den physikalisch vorhandenen Zustandsgrof3en korrespondieren.
Obwohl man also ein Zustandsmodell ermittelt hat, liefert die Kenntnis der inneren System-
zusammenhange keine zusétzliche Information Uber das zugrundeliegende technische System.
Lediglich das Ein-/Ausgangsverhalten wird durch das identifizierte Model| abgebildet.

Um hier eine Verbesserung zu erzielen, soll durch Anwendung eines graphentheoretischen Ver-
fahrens dasidentifizierte Model| derart vorstrukturiert werden, das die Korrespondenz zwischen
approximierten und realen Zustandsgréfien gegeben ist. Der Systemgraph beruht hierbei in er-
ster Linie auf den bereits vorhandenen theoretischen Kenntnissen Uber ein zu identifizierendes
System (Wey 1996). Zudem kdnnen auch graphentheoretische Algorithmen, bei spielsweise zur
Reglersynthese (Wey 1995, Spielmann 1997), verwendet werden und anschlief3end der so mo-
difizierte Graph a's Grundlage des I dentifikationsverfahrens dienen.
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Der Bericht gliedert sich in folgende Abschnitte:

Zunéchst wird in Abschnitt 2 auf die grundlegenden Begriffe einer strukturellen Systembe-
schreibung und deren Abbildung mit Hilfe von gerichteten Graphen eingegangen. Weiterhin
wird die Synthese von Regelungskonzepten unter Verwendung solcher Graphen vorgestellt. Im
nachsten Abschnitt 3 steht die Identifikation von vorstrukturierten Modellen im Vordergrund.
Neben einigen grundlegenden Anmerkungen zur Voridentifikation und Modellschétzung wird
insbesondere die Parameteridentifikation vorstrukturierter Modelle angesprochen. Am Beispiel
eines Differential zylinders werden sowohl bilineare al's auch quadratisch lineare Systemappro-
ximationen entworfen. Abschnitt 4 hat die Auslegung nichtlinearer Beobachter zum Inhalt. Spe-
ziell fur die Klasse der bilinearen Systeme wird die Beobachterauslegung néher untersucht und
auf den Fall des Differentialzylinders angewendet. Die mit diesem Konzept erzielten Ergebnis-
sesind in Abschnitt 5.1 fur die Identifikation und in Abschnitt 5.2 fir die Beobachterausiegung
festgehalten, sowohl fur den Fall der Simulation al's auch am Laborversuch selbst. Zusammen-
fassung und Ausblick schlief3en den Bericht.
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2 Graphentheoretische Begriffe und Definitionen

Die Verwendung der Graphentheorie ermdglicht fir eine ganze Reihe von Fragestellungen, bei-
spielsweise aus den Bereichen Algebra, Mechanik, Chemie oder auch Soziologie, die einfache
Représentation der jeweiligen Problemstruktur. Anhand zahlreicher speziell zur Analyse von
Graphen entwickelter Algorithmen kénnen — unabhéngig von dem eigentlichen darunter gela-
gerten Anwendungsgebiet — die im Graphen enthaltenen Informationen analysiert und zur Syn-
these herangezogen werden. Auch bei der Analyse von sowohl linearen a's auch nichtlinearen
Systemen (Kasinski und Lévine 1984, De Luca u. a. 1985, Reinschke 1988) ist dieses Konzept
sinnvoll einsetzbar. Im folgenden werden digjenigen Begriffe der Graphentheorie vorgestellt,
die fur das Verstandnis der vorliegenden Ausarbeitung von Bedeutung sind. Dariiber hinausge-
hende Definitionen und Konzepte sind in umfassenden Werken (z. B. Andrésfai 1991, Gondran
und Minoux 1986, Chen 1990) ausfthrlich erl&utert.

Definition 2.1 (Andrésfai 1991)

Seien Vg und Eg zwel digunkte Mengen und G eine Funktion, die jedem Element aus Eg ein
Paar von nicht notwendigerweise verschiedenen Elementen aus V; zuordnet. Das geordnete
Tripel (Vg, Eg,G) oder abkurzend G wird dann als abstrakter Graph bzw. einfach als Graph
bezeichnet. Die Elemente von V; heil3en die Knoten eines Graphen, die Elemente von E die
Kanten. Findet die Richtung einer Kante e mit

e=(i,4); i,j€Vg; e€ kg (2.1)

Bertcksichtigung, d. h., wird durch G auch die Reihenfolge von ¢ und ; festgelegt, so spricht
man von einem gerichteten Graphen. Andernfalls handelt es sich um einen ungerichteten Gra-
phen?. Q

Die Anzahl der Knoten ng = |V;| entspricht der Ordnung des Graphen, im Regelfall sind die
einzelnen Knoten fortlaufend mit 1, ... , ng bezeichnet. Eine Kante e = (i, j) des Graphen G
besitzt den Startknoten i und den Endknoten j, die Anzahl der Kantenist mg = |Eg|.

Definition 2.2 (Gondran und Minoux 1986)
Ein Weg P der Lange ! entspricht einer Sequenz von [ Kanten

{617"'7€l} ) ekeEg
mit
er = (ig,91); ex = (i1,92); -+ ; e = (l-1,%) 1 € Vg

Demzufolge stellt sich ein Weg al s eine Aneinanderreihung von Knoten dar, deren Verbindungs-
kanten alle in die gleiche Richtung weisen. Der Knoten i, ist der Start- und der Knoten ¢; der
Endpunkt des Weges P. Ein elementarer Weg ist die Bezeichnung fur einen Weg, der keinen
Knoten mehrfach enthélt. Zyklus entspricht einem Weg, bel dem Start- und Endknoten ber-
einstimmen. Zwei Wege sind knotendisjunkt, wenn sie keine gemeinsamen Knoten besitzen
(Bild 2.1). a

2 Im Verlauf des Berichts werden ausschlieflich gerichtete Graphen verwendet. Aus diesem Grund ent-
fallt im weiteren die explizite Klassifizierung ,, gerichtet”.
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O3
®< )
&0
a) elementarer Weg: b) Zyklus: c) knotendisjunkte Wege:
1-3—-6—-4—-5->7 3—6—4—3 1—-3—6—4und

2—-5—-7

Bild 2.1. Elementare Wege, Zyklen und knotendisjunkte Wege in einem Graphen

Je nach Art der betrachteten Fragestellung kann es notwendig werden, die Kanten durch zu-
sétzliche Terme b(ey.) = b(i, j), sogenannte Bewertungen, zu charakterisieren. In diesem Zu-
sammenhang wird von der Adjazenzmatrix E Gebrauch gemacht. Ihre Zeilen sowie Spalten
korrespondieren mit den Knoten des zugehdrigen Graphen, so dal3 sie die Dimension (ng x ng)
aufweist. Die Matrixelemente, dieim allgemeinen nur Werte O und 1 annehmen, bezeichnen die
Existenz bzw. Nichtexistenz von Kanten:

€11 €lng

E—| : - mit eij:(E)ijz{?: :m;i% . 2.2)

engl Tt engng

Fur bewertete Graphen hat es sich aul3erdem als zweckmdliig erwiesen, den Elementen anstatt
einer 1 die entsprechende Kantenbewertung b(i, j) zuzuweisen. Der Vorteil der Adjazenzmatrix
liegt zum einen in der kompakten mathematischen Beschreibungsweise eines Graphen, zum
anderen fuhrt eine mehrfache Multiplikation zu Informationen tber Wege zwischen Knoten
(Andrésfai 1991):

(E9);; #0 = Weg P der Lange ¢ zwischen i und j existiert. (2.3)

Wenn die Anzahl der Kanten mg gegentiber dem Quadrat der Knotenanzahl ng klein ist, so
ist die Adjazenzmatrix schwach besetzt. In diesem Fall kann, besonders in Hinsicht auf eine
rechnergestiitzte Anwendung, eine Darstellung mit Folgeknoten effizienter sein. Hierzu wird
ein Vektor ag der Dimension ng verwendet, der Zeiger auf Elemente eines weiteren Vektors
B¢ der Dimension mg enthdlt, in dem die Folgeknoten abgelegt sind. In Tabelle 2.1 sind die
Methoden einander gegentibergestel It.

2.1 Strukturelle und graphentheoretische Systembeschreibung

An linearen Systemen werden schon seit geraumer Zeit strukturelle Untersuchungen durchge-
fahrt (u. a. Lin 1974, Reinschke 1982, Svaricek 1987, Reinschke 1988, Woude 1989, Com-
mault u. a. 1991). Strukturmodelle von LS kdnnen dahingehend interpretiert werden, dai3 sie
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Tabelle 2.1. Drei Darstellungsformen eines Graphen

Graph G |Adjazenzmatrix E| Folgeknoten ag, Gg
Knoten: 1 2 3 4 5
ag:
2) 3 4 01000 g 112467
10100
00011
00001
10000 Positionn. 1 2 3 4 5 6 7
Bg: 121134 5|5]|1

ausschliefdich Informationen darUber beinhalten, welche Eingangs-, Ausgangs- und Zustands-
grof¥en sich untereinander beeinflussen bzw. voneinander abhangig sind. Explizite Zahlenwerte
von Systemparametern finden dagegen keine Berilicksichtigung.

Aufbauend auf diesen Erfahrungen ist es gerade wegen dem aus numerischer Sicht noch weitaus
komplexeren Verhalten naheliegend, auch an nichtlinearen Systemen strukturelle Untersuchun-
gen durchzufihren. Ansétze hierzu sind fur die Thematik der Beobachtbarkeitsanalyse z. B. in
Birk (1992) und fir das Entkopplungsproblem in Kasinski und Lévine (1984) sowie Hahn und
Sommer (1994) enthalten. Um derartige Untersuchungen vornehmen zu kénnen, ist in einem
ersten Schritt eine geeignete strukturelle Beschreibung nichtlinearer Systeme festzulegen. Fur
L S orientieren sich Strukturmodelle an der Zustandsraumdarstellung, so daf3 es naheliegend ist,
im weiteren von nichtlinearen Zustandsmodellen 35 mit

(t) = a(z(t)) + B(z(t))u(l)

z - 24

Ny = clel) &4
auszugehen. Die Jacobi-Matrix der Zustandsgleichung

Al ) = ox da(x) N J(B(x)u) 25)

ox ox ox

beinhaltet die Information, ob zwei Zusténde x; und z; miteinander verknipft sind. Wenn z ;
nicht auf z; einwirkt, so gilt fir die zugehdrige partielle Ableitung

O
5 =" (2.6)

Ist dagegen eine Abhéngigkeit ©; = f(x;) vorhanden, so erhélt man einen Term ungleich null.
Die Verknupfungen der Zustandsgrofen mit den Ein- und Ausgangsgrof3en ergeben sichin ana
loger Weise zu

or dy  Oc(x)
a—u = B(a:) Und a—w = aw
Die Idee bei der Definition eines Strukturmodells beruht nun darauf, ausschliefdlich System-
parameter zuzulassen, die in Abhangigkeit der gerade erlauterten partiellen Differentiationen
entweder strukturellen Nullen oder strukturellen Unbekannten entsprechen:

=C(z) . 2.7)
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Definition 2.3
Das einem Y515 zugeordnete Strukturmodell X, ist vollstandig durch die Strukturmatrizen
{A*, B*, C*} beschrieben. Man erhdlt das Tripel { A*, B*, C*}, indem alle Elemente ungleich
null in den Matrizen A(z,w), B(z) und C(z) durch einen Platzhalter {x, € K|¢=1,2,...}
ersetzt werden:

oz
Ar=—| =A .
87} . (w’u)‘
ox
B*"=—| =B X :
S| =Bl 28
C*:a—y = C(x)|. ; x, € K; qeN*
oz |, ’ 1 ’

a
Die abkiirzende Schreibweise K steht in diesem Zusammenhang fir den Korper, der neben
K (u) Koeffizienten enthélt, die meromorph in der Variablen xz(¢) sind. Damit beschreiben
die strukturellen Parameter allgemeine funktionale Beziehungen in x(t) und w(¢). Eine Ein-
schrankung auf ausschliefdich reellwertige Grof3en sowie ununterscheidbare Platzhalter fihrt
dann auf die bekannte Definition linearer Strukturmodelle. Die Unterscheidbarkeit der Parame-
ter *, untereinander ist im Gegensatz zu Betrachtungen im Bereich der linearen Systemtheorie
(Svaricek 1987, Reinschke 1988) zweckmaRig, weil sie eine bessere Ubereinstimmung zwi-
schen strukturellen und exakten Systemeigenschaften gewéhrleistet. In @nlicher Weise wird
auch fur LS vorgegangen, wenn die Analyse von Rang oder Nullstellen im Unendlichen im
Mittel punkt steht (Woude 1991).

Beispiel 2.1
Gegeben ist ein Yo mit den Systemmatrizen (Isidori und Moog 1986)

T2 10
Tox3 + T4 z3 0 r1
a(x) = 0 ; B(x) = 01| c(x) = [332] . (B2.1-1)
T3 00

Das korrespondierende Strukturmodell zu dem System wird beschrieben durch die Matrizen

0*60 0 *10
* _ 0*7*8*9 . * *20 . * >k4OOO _
A"=100 0 0 ’B_o*g’c_[o*w()] (B21-2
00 %90 00
a

Solange ein Strukturmodell X, ausschliefdlich durch Boolesche Strukturmatrizen beschrieben
ist, enthalt es wesentlich weniger Informationen Uber das zugehdrige System als das urspriing-
liche nichtlineare Modell. Auf den ersten Blick empfindet man diese Tatsache as Nachtell.
Jedoch ist gerade hierin einer der signifikanten Vorteile der strukturellen Betrachtungsweise zu
sehen, da sich durch das gezielte AulRerachtlassen von Informationen die Systemanalyse und
-synthese deutlich einfacher gestaltet.

Reichen diein X, enthaltenen Informationen fir die aussagekréftige Analyse nicht aus, so kann
in einem zweiten Schritt ein erweitertes Strukturmodell eingesetzt werden, welches die aus den
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Differentiationen (2.5, 2.7) resultierenden Matrizen mit berticksichtigt. Das erweiterte Modell
YeWirddurch {A(x,u), B(x), C(x)} festgelegt und entspricht damit der um einen allgemei-
nen Punkt (x, u) linearisierten Zustandsbeschreibung eines X'41s. In der Regel handelt es sich
hierbel um ein zeitvariantes System:

T _ o T +8_a’: u
= A(z,u)xsr + B(x)us
Ve (2.9)
o]
Y2~ oz o 2

=C(x)xa; xpoeR”

Eine Analyse von Y, erlaubt aufgrund der expliziten Systemparameter zusétzliche Aussagen
Uber das urspriingliche X'51,5. Jedoch missen hier deutlich komplexere Analyse- und Synthese-
verfahren zum Einsatz kommen, bel denen es wegen eventuell auftretender schlechter Kondi-
tionierung (Golub und van Loan 1989) zu numerischen Problemen kommen kann. Wenn auch
die Analyse von Y, keine ausreichenden Ergebnisse liefert, muf3 in einem dritten Schritt auf
die Betrachtung des urspriinglichen Modells X'y 1,¢ zuriickgegriffen werden. Hierbei ist jedoch
zu berticksichtigen, dal? die Theorie es nicht erlaubt, beliebig komplexe Systeme zu behan-
deln (MacFarlane 1993). Vielmehr ist immer ein bestimmtes Mal3 an Abstraktion notwendig,
um Uberhaupt zu aussagekraftigen Resultaten zu gelangen. In diesem Kontext ist das Konzept
der strukturellen Systemanalyse besonders auch im Bereich der nichtlinearen Theorie, die sich
vielfach mit ,, sehr grofRen” und gleichzeitig komplexen Prozessen befaldt, als vielversprechend
anzusehen.

2.2 Synthese von Regelungskonzepten am Graphen

Neben der Analyse von Systemeigenschaften kann anhand des gerichteten bewerteten Graphen
eine Synthese von Regel ungskonzepten erfolgen. Die Anderung von Systemeigenschaften er-
folgt dabei immer durch Anderung von Kantengewichten, durch Hinzufiigen oder Entfernen
von Kanten. Dabei konnen zunédchst nur solche Kanten direkt veréndert werden, die Uber die
Eingangsknoten erreichbar sind. Fir das in Bild dargestellte Mehrgrofensystem sind die mit
gekennzeichneten Kanten durch eine (Zustands-) Ruckfihrung Uber u; beeinflulbar und alle
mit s gekennzeichneten Kanten Uber u..

Bild 2.2. Durch Rickfiihrung anderbare Kanten
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Desweiteren kénnen die Kanten1 — 1,2 — 1 und 3 — 3 Uber eine geeignete Steuerung u
hinzugeftigt werden. Am Beispiel der Regelung eines linearen Systems durch Polvorgabe soll
dies gezeigt werden.

Beispiel 2.2
Gegeben sai ein lineares System in Regelungsnormalform

01 0 0
&=1[00 1 |z+|0|u
0-2-3 1 (B 2.2-1)

y=[111]x
mit dem charakteristischen Polynom

C\) =N +322+2)\ . (B2.2-2)
Esist die Zustandsriickfiihrung v = fTa gesucht, mit der das System das durch

C*(N) = A3+ 5\ + 8\ + 6 (B2.2-3)

gegebene dynamische Verhalten erhdlt. Bild 2.3 zeigt den Graphen des Systems vor und nach Anwen-
dung der Zustandsriickfuhrung. Alle zu &ndernden Kantengewichte gehdren zu Kanten, die im Zustands-

Bild 2.3: Graphentheoretische Bestimmung des Ruickfuhrvektors bei Polvorgabe
a) Graph des Systems vor der Ruckfihrung
b) Differenz der durch Rickfihrung zu @ndernden Kantengewichte
¢) Graph des Systems nach der Rickfihrung

knoten 3 enden. Die Anderung dieses Zustandes ist Ulber den Eingang w direkt moglich, was auch der
Gl. (B 2.2-1) zu entnehmen ist. Die Steuerung u mul3 so gewahlt werden, dal? damit die in Bild 2.3b
dargestellten Anderungen der Kantengewichte erzielt werden, also:

u = —6xy — 6xy — 2x3+v . (B 2.2-4)

fle
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Vergleichbar mit dem Hinzufligen der Kante 1 — 3 wird der Graph durch eine Kante vom neuen Ein-
gangsknoten v zum Zustandsknoten 3 mit dem Gewicht w = 1 ergénzt. a

In Falen, bei denen zu &ndernde Kanten nicht in der beschriebenen Weise mit einem Eingang
verbunden sind, wird eine Koordinatentransformation erforderlich. Dies wird im folgenden bel
Anwendung der exakten Linearisierung (Isidori 1989, Spielmann 1995) verdeutlicht.

Beispiel 2.3
Ausgangspunkt ist das Differentialgleichungssystem und der zugehérige Graph:

Tox3 + T1U

.| x1wosinay

= 4 (B2.3-1) @
COS T9

Yy=1x3

Das Problem der exakten Linearisierung &3t sich graphentheoretisch so interpretieren, dal3 ale nicht
reellen Kantengewichte in reelle Kantengewichte Uberfihrt werden. Gelingt dies fir alle Kanten, dann
kann das nichtlineare System einer exakten Zustandslinearisierung unterzogen werden. Werden nur alle
Kantengewichte von Kanten zwischen dem Ein- und Ausgangsknoten in reelle Uberfuhrt, liegt die exakte
Ein-/Ausgangslinearisierung vor.

Im dargestellten Graphen kénnen nicht alle Kantengewichte durch eine Zustandsriickfiihrung in reelle
GrofRen Uberfuhrt werden, z. B. die Gewichte der Kanten 1 — 2, und 4 — 2. Dies bedeutet, dal die bei
der exakten Lineariserung angewendeten nichtlinearen Zustandsriickfihrung nicht in den Koordinaten
x erfolgen kann, aso eine Koordinatentransformation erforderlich wird. Nach (Schwarz 1991) existiert
eine Transformationsmatrix z(¢) = T'(x(t)) mit

n=t(z)=y
2 =h(®) =g (B2.3-2)

Zr = tr(w) = y(r_l)

Der relative Grad r gibt an, wie oft der Ausgang y abgeleitet werden mul3, bevor erstmalig der Eingang u
in der Ableitung auftaucht. Diese Grof3e ist auch ein Indikator fr den Linearisierungstyp. Wenn r gleich
der Systemordung n ist, kann eine exakte Zustandslinearisierung durchgefihrt werden, ansonsten kann
nur eine Linearisierung des Ein-/Ausgangsverhatens erzielt werden.

Der relative Grad kann in vielen Féllen direkt am Graphen abgelesen werden und ist abhangig von der
Lange des kiirzesten Pfades zwischen dem Eingang und Ausgang min /,,,:

r > minly, —1 . (B2.3-3)

Falls nur ein Pfad zwischen u und y vorhanden ist, kann r eindeutig angegeben werden, ansonsten sind
weitergehende Untersuchungen notwendig. Aus dem dargestellten Graphen ergibt sich ein relativer Grad
von r = n = 4 und damit die Mé&glichkeit einer exakten Zustandslinearisierung.

Die graphentheoretische Bestimmung der in Gl. (B 2.3-2) benétigten Ausgangssignalableitungen wird
in (Spielmann 1997) ausfuhrlich beschrieben und besteht im wesentlichen aus der Suche nach Pfaden,
die im Ausgangsknoten enden. Fir die erste Ableitung werden alle Pfade der Lange [ = 1 und deren
Pfadgewichte benttigt:
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Fir die néchste Ableitung 4 gehen ale Pfade der Lange ! = 2 in die Berechnung ein:

Auch bei der letzten, fir die Koordinatentransformation benétigten, zeitlichen Ableitung des Ausgangs,
braucht nur ein Pfad beriicksichtigt werden, diesmal der Lange ! = 3:

Y="0(2,4) -xg = —sinzg - 1-1- fo(x,u) (B 2.3-6)

Nach Anwendung der gefundenen Koordinatentransformation kdnnen ale noch auftretenden funktio-
nalen Kantengewichte mittels einer nichtlineare Zustandsrtickfiihrung in den neuen Koordinaten z €li-
miniert werden (Bild 2.4). Das dynamische Verhalten des linearen Systems kann anschlief3end, wie im

. (z,u) Ui(zw)

Ui(zw)
T

Bild 2.4. Graph des Systems nach der Koordinatentransformation

vorangegangen Beispiel demonstriert, durch eine Polvorgabe bestimmt werden. a

Fur lineare Systeme gibt es bereits zahlreiche Algorithmen zur graphentheoretischen Gene-
rierung von Regelungen. Eine Ubertragung auf nichtlineare Systeme ist durch das Auftreten
funktionaler Kantengewichte nicht immer in einfacher Weise moglich und ist Gegenstand der
aktuellen Forschung.
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3 ldentifikation vorstrukturierter Modelle

Ein Identifikationsprozeld setzt sich im allgemeinen aus den drei Phasen

o Voridentifikation,
e Modellschézung und
o Modellverifikation

zusammen (Reuter 1995). In der entsprechenden Literatur (u. a. Isermann 1992) wird im we-
sentlichen auf den Bereich der M odellschétzung eingegangen. Dies rihrt unter anderem daher,
dal3 bel der Beschrankung auf lineare | dentifikationsmodelle einige Inhalte der Voridentifikation
(z. B. die Bestimmung einer geeigneten Model I struktur) nicht zum Tragen kommen. Besonders
dann, wenn nichtlineare Modelle identifiziert werden sollen, beispielsweise bilineare oder qua-
dratische Systeme, ist die Voridentifikation von grof3erer Bedeutung.

Voridentifikation In der Voridentifikationsphase werden die spéter benétigten a-priori Infor-
mationen Uber einen (nichtlinearen) Prozeld gewonnen. Hierzu sind u. a. Aussagen zur Modell-
struktur, zur Modellgrof3e und zur Prozef3ddynamik zu z&hlen. Diese kdnnen sowohl aus Experi-
menten als auch aus theoretischen Uberlegungen resultieren. Insbesondere ist es von Bedeutung
fur die spétere I dentifikation, ob und wie nichtlinear ein Prozef3ist und welche Charakteristik die
Nichtlinearitét zeigt. Bei der Modellierung statischer Nichtlinearitéten hat sich die Verwendung
sogenannter Wiener- oder Hammerstein-Modelle (Isermann 1992) bewahrt. Zur Approximation
dynamischer Nichtlinearitdten eignen sich bilineare Modelle (Schwarz 1991)

T z(t) = Az + jzl N,zu; + Bu 3.1)
y(t) = Cx
und quadratische Modelle (Jelali 1994, Schwarz 1996)
&(t) = Aix+ Awx @z + Bou + Bix @ u
y(t)=Cx

Beide bieten den Vorteil einer verhé tnismaldig guten A pproximation und Aggregation bei gleich-
zeitig einfacher Analyse und Synthese von Regel ungskonzepten.

2QLs (3.2

Modellschatzung Die Modellschétzung umfaldt die Auswahl eines geeigneten Schatzverfah-
rens, welches stark von der zu ermittelnden Modellstruktur abhangt, und die (Parameter-)lden-
tifikation selbst. Vor der Identifikation missen geeeignete Startwerte gefunden werden, hierfir
kénnen Annahmen oder Kenntnisse Uber den Prozef3 herangezogen werden. Alternativ sind
auch Verfahren anwendbar, die gerade fur den Fall von wenig a-priori Wissen konzipiert sind
(Reuter 1995). Nach Beendigung des Schétzvorgangs bleibt festzustellen, ob die Parameter ein
plausibles Modell darstellen und wie gut gemessene und identifizierte Signal e Ubereinstimmen.

Modellverifikation Liefert die Identifikation ein Modell, dal3 die zur Identifikation genutzten
Datensétze gut pradiziert, so ist anschlieffend zu verifizieren, ob das Modell auch fur andere
Eingangssignalverlaufe giltig ist. Vor allem die Grenzen, in denen das Prozel3verhalten genu-
gend genau nachgebildet wird, ist zu prifen und mit den Anforderungen an das Modell zu
vergleichen.
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3.1 Vorstrukturierte Modelle

Die Anwendung der im letzten Abschnitt eingefthrten strukturellen Systembeschreibung soll
hier zur Vorstrukturierung von I dentifikationsmodellen genutzt werden. Entsprechend den Aus-
fuhrungen ist dieses Verfahren der Phase der Voridentifikation zuzuordnen. Die Vorstrukturie-
rung bendtigt insofern ein recht hohes Vorwissen tiber den betrachteten Prozef3, als die Wirkzu-
sammenhange zwischen den einzelnen Systemzusténden teilweise bekannt sein missen. Dies
setzt u. a. voraus, dal3 die Systemzustande und deren physikalische Bedeutung zuvor festgel egt
sind. Nicht bekannt sein muf3 dagegen die funktionale Verkntipfung der Zusténde untereinander.
Eventuell vorhandenes Wissen Uber die System-Differentialgleichung konnen aber direkt in die
Voridentifikation einfliefen.

Das genannte Wissen Uber den Prozel3 wird in Form eines Graphen abgebildet und dem wei-
teren Vorgehen so in kompakter Form zur Verfligung gestellt. Ist der Graph bekannt, wird in
einem zweiten Schritt der gewlinschte Systemtyp festgelegt. Fir den nichtlinearen Fall kann
dies einfachstenfallsein bilineares System sein. Andere Klassen wie quadratische Systeme oder
Polynomsysteme sind ebenfalls geeignet. Mit der Polynomordnung des gewahlten Systemtyps
steigt allerdings die Anzahl der freien Parameter an, so dal3 die folgende Modellidentifikation
gegebenenfalls nicht zum Ziel fuhrt.

Hat man sich bei der Identifikation fir einen Systemtyp, wie beispielsweise ein bilineares Sy-
stem, ein quadratisches System o. & entschieden, so wird anhand des Graphen ein geeigne-
tes Approximationsmodell vorgeschlagen. Geeignet soll in diesem Kontext bedeuten, das die
Belegungsmuster der beschreibenden Systemmatrizen entsprechend dem Graphen vorgegeben
werden. Am Beispiel eines Differentialzylinders mit 4/3-Wege Servoventil (als Pr,-System
modelliert, vgl. Ruppert (1982)) soll nun die Voridentifikation mit vorstrukturiertem Modell
verdeutlicht werden:

Fur einen Differentialzylinder mit 4/3-Wege Servoventil soll eine nichtlineare Approximation
gefunden werden. Zu diesem Zweck wird aus den bekannten physikalischen Gesetzméafdigkeiten
ein Strukturmodell abgeleitet. Dieses beinhaltet Aussagen dartber, wel che Zustandsgréfien auf-
einander wirken, ohne néher auf die zugehorigen Verkntpfungsvorschriften einzugehen. Wer-
den die wesentlichen physikalischen Groéf3en mit

x1: Kolbenposition

x9: Kolbengeschwindigkeit

x5: Druck in Kammer A

x4: Druck in Kammer B

x5. Steuerkolbenposition

x¢. Steuerkolbengeschwindigkeit

bezeichnet, so kann das Strukturmodell in Form des Graphen in Bild 3.12 visuaisiert werden.

3 Zum Zwecke der Ubersichtlichkeit enthélt der Graph Doppelpfeile <, die as Stellvertreter fiir zwei
wechselseitige Pfeile = stehen.
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Bild 3.1. Graph des hydraulischen Differentialzylinders

Grundlage fur dieses Strukturmodell ist die analytische Beschreibung der Dynamik des Diffe-
rential zylinders:

.I"l = T2 (333.)
x
(.]73 — —4) AK — FR(.I'Q) — FS
Gy = L — (3.3b)
G
iy = DO (g 1 Bufss(a) sign(oo — 23)VIpo — 7
VA(.Tl)
— s (—s) sign(zs — pr) /[ — prl) ) (3:30)
E A
T4 = M (—ng + + By (sg(—x5) sign(pg — x4)\/ |po — 4]
Va(z1) 2
—sg(xs) sign(zy — pr)V/ |4 — pﬂ)) (3.3d)
.I"5 = T¢ (339)
Tg = —w§$5 — 2Dwyxe + wgu (3.3)

Der gestrichelte Pfeil in Bild 3.1 deutet an, das die Abhangigkeit zwischen den Driicken A (z3)
und B (z,) nicht direkt aus dem analytischen Modell hervorgeht. Allerdings ist aus physikali-
scher Sicht eine Wechselwirkung beider Grof3en vorhanden, die bel einer genaueren mathema-
tischen Realisierung — hier ist an die Beriicksichtigung von Leckdlvolumenstrémen, variablem
Tank- und Versorgungsdruck sowie der Ventilliberdeckung gedacht — auch im Systemmodell
enthalten wére. Die explizite Kenntnis des Modells (3.3) ist keine Voraussetzung fir die Vo-
ridentifikation. Lediglich das Wissen beziiglich der Anzahl der Systemzustande, deren phy-
sikalische Bedeutung und welche Zustande aufeinander wirken, wird verwendet. Zusétzliche
Informationen Uber den Prozef3 kénnen jedoch im Strukturgraphen eingebracht werden, z. B. in
Form von Kantenbewertungen (Abschnitt 2, S. 4).

Aus dem Strukturmodell bzw. dem Strukturgraphen kann, je nach der gewahlten Systemklas-
se des Identifikationsmodells, ein Vorschlag fir die Belegung der Systemmatrizen gefunden
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werden. Fir eine bilineare Approximation des Differentialzylinders mit

z=Ax+ Nzxu-+bu; xcR°
2BLS . (3.4)
y=c'z

erhdt man die strukturellen Systemmatrizen

[0 x, 0 0 0 O] (0000 0

0 0 ko1

0 #%9 %3 x4 0 0 0000 0 O 0 0

A k5 kg k7 *9 0 SN = 0000 O O b7 — 0 T = 0

*10*11*13*14 01’ 0000 0 0|’ 01’ 0

0 0 0 0 0 *5 0000 0 O 0 0

L0 0 0 0 6 %7] 10000 %8 *19 | | 20 | | 0 |
(3.5)

Die umrahmten Elemente korrespondieren mit dem gestrichelten Pfeil in Bild 3.1 und stehen fir
Verkniipfungen zwischen den Drucksignalen A und B. Alsweitere Information ist bekannt, daf3
x9 und z¢ Geschwindigkeiten darstellen, so dal’ infolge der einfachen Integration «; = 1 und
x15 = 1 gelten. Weiterhin entspricht der Ausgang der Kolbenposition und damit gilt x5, = 1.
Das einfache bilineare System besitzt damit bereits 18 freie Parameter, die im néchsten Schritt
Zu identifizieren sind.

Kommen komplexere Systemmodelle wie QLS mit

&= Ax + Az + [Na:+N2a:[2]+b] v ; xeR®
2qus (3.6)
y=c'z

bei der Approximation zum Einsatz so erhéht sich die Anzahl der freien Parameter weiter, wo-
hingegen sich die Ein-/Ausgangsbeschreibung des Systems natUrlich nicht verandert. Aufgrund
des reduzierten Kronecker-Produkts ()1 in Gl. (3.6) steigt die Anzahl der Parameter deutlich,
denn esgilt (Jelali 1997)

r1q1 i
x X

L = | PP mit  g=| | i=1,....n . (3.7)
ann In

Fur den hydraulischen Antrieb mit dem Strukturgraphen in Bild 3.1 kommen dementsprechend
neben den 18 freien Parametern aus den Matrizen A, IN und dem Vektor b noch weitere aus
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A, und N, hinzu:

0 0 x99 %93 0 0 00000 0
0 0 %94 *95 0 O 00000 O
0 0 3 [*27] 0 O 00000 0
0 O [*9g] %29 0 O 00000 0
0 0 %3 *x31 0 O 00000 O
0O 0 0 0 00 00000 0O
k32 k33 k34 *35 0 0 00000 O
0 36 *37 [*33] 0 O 00000 0
0 *39|*40] *a1 0 O 00000 0
0 0 %49 %43 0 O 00000 0O
AJ=10 0 0 0 00 NS =100000 0 (3.8)
0 g4 *45 [*46| O O 00000 0
0 kg7 |*45|[*20] O O 00000 O
0 0 *50 [*51] 0 0 00000 O
00 0 0 0 0 00000 O
0 *52 x50 0 0 00000 O
0 0 [#55] %56 0 0O 00000 0O
00 0 0 00 00000 0
0 0 #57 %55 0 ks9 00000 *e3
000 0 0 0 #g 00000 x4
0 0 0 0 s %] 100000 *g5

Damit erhoht sich die Gesamtzahl der Parameter auf 65, wobei 10 Parameter fir die Annahme
einer direkten Abangigkeit zwischen den Drucken A und B (i3 = f(zy) und 2, = f(x3))
eingefugt sind. Sie sind mit einer Box gekennzeichnet und kdnnen ggf. entfallen. Nicht alle
der 65 Parameter sind frel wéhlbar, vielmehr sind wie schon fir die bilineare Approximation
aufgrund von Randbedingungen einige Parameter festgelegt, z. B.

*30=1; *6 =1

Die néachst komplexere Klasse sind die Polynomsysteme (PLS), bel denen die das System be-
schreibenden Differentialgleichungen durch Polynome héherer Ordnungen abgebildet werden.
Mit der gewahlten Polynomordnung steigt die Anzahl der zu identifizierenden Parameter aler-
dings entsprechend an, so dal3 nur fir Systeme niedriger Ordnungen n oder Sonderfélle eine
anschliefdende | dentifikation moglich sein wird.

Verwendet man allgemeine Systemmodelle wie analytische Systeme mit linearer Steuerung
(ALS) (Schwarz 1991), so kann die Anzahl der Strukturparameter x, verhdltnismaliig klein
ausfallen. Allerdings sind die *;, in dem Falle Platzhalter fr funktionale Zusammenhénge in
den Variablen z; des Zustandsmodells (Wey 1996). Fraglich ist, ob solche Funktionen, zumin-
dest in bestimmten Fallen, mit | dentifikationsal gorithmen bestimmt werden kdnnen.

3.2 Parameteridentifikation

Im Rahmen eines geeigneten |dentifikationsverfahrens sind nach der Festlegung der Modell-
struktur die numerischen Werte der Strukturparameter zu ermitteln. Hierbei ergibt sich je-
doch das Problem, dal? die tblicherweise angewendeten | dentifikationsverfahren daf ir ausge-
legt sind, die Parameter einer Differentialgleichung héherer Ordnung zu bestimmen (Reuter
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1995). Die direkte Ermittlung der Parameter eines Zustandsmodells wird demgegeniiber we-
sentlich seltener angewendet. Aus der oben betrachteten bilinearen Darstellung fur den Diffe-
rentialzylinder ergibt sich durch Differentiation der Ausgangsgrofie

Y=
Y = *1T2
§ = %1 (%221 + *3Tg + %423 + *5T4) (3.9)

= kpkoy + k3 + K kgT3 + K1*5Ty

eine Ein-/Ausgangs-Differentialgleichung der Ordnung 6. Diese besitzt weniger Koeffizienten
als die gesuchten 18 Strukturparameter «,, so dal3 keine eindeutige L 6sung gefunden werden
kann. Da es sich um ein unterbestimmtes Gle chungssystem handelt, ist eine Ldsung jedoch
grundsétzlich mdglich. Alle Lésungen des Gleichungssystems fuhren dariiber hinaus zu Zu-
standsmodellen, die durch im allgemeinen nichtlineare Transformationen mitei nander verkntpft
sind. Eine der wesentlichen Eigenschaften eines graphentheoretischen Ansatzes, ndmlich dal3
die approximierten Zustandsgrofien mit den realen Zustandsgroéf3en in enger Verbindung stehen,
wird mit einer wachsenden Anzahl von unbestimmten Strukturparametern jedoch zunehmend
unwahrscheinlich.

Eine deutliche Vereinfachung der I dentifikation ergibt sich, wenn alle oder zumindest ein Grol3-
teil der Zustandsgrofien mefitechnisch erfal3bar sind. In dem Fall kann eine Ein-/Ausgangsglei-
chung wiediein (3.9) sukzessive identifiziert werden.

Im Falle des Differential zylinders stehen fur die vier Zustandsgrofien

x1: Kolbenposition

x3. Druck in Kammer A
4. Druck in Kammer B
x5. Steuerkolbenposition

Mef3einrichtungen zur Verfigung. Die fehlenden Geschwindigkeiten x5, und 5 kdnnen z. B.
mittel s Differenzenquotient bestimmt werden. FUr das bilineare Strukturmodel | (3.5) kann dem-
nach der Identifikationsprozefd aufgeteilt werden in vier Schritte, in denenjeweilsein Teilmodell
identifiziert wird:

e Modell 1 (vgl. GIn.(3.3a,3.3b))
Eingangsgroféen: Druck A und B
Ausgangsgrof3e:  Kolbenposition

=02 ] e [
(1) mes = [10] H

T2

(3.10)

e Modell 2 (vgl. GI.(3.3¢))
Eingangsgrofien: Kolbenposition, Kolbengeschwindigkeit, Druck B (optional),
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Steuerkolben-Position
Ausgangsgrofe:  Druck A

(xl)mes
ts| = x| |2 x5 %g [ *g | * (2)mes | kg =
@3] = [x7] [3] + [*5 %6 [x5] o] EM%M 9% =0 (3.11)

(23)mes = [1] [2]

e Modell 3 (vgl. GI.(3.3d))
Eingangsgroféen: Kolbenposition, Kolbengeschwindigkeit, Druck A (optional),
Steuerkolben-Position
Ausgangsgrofie: Druck B

(-Tl)mes
4] =[] [oa] + a0 w02 [F2z] %04 Eiiiﬁz -9 =0 (312)
x5)mes

(€4)mes = [1] [24]
o Modell 4 (vgl. GIn.(3.3¢,3.3)

Eingangsgrofde:  Steuerkolben-Position
Ausgangsgrof3e:  Steuerspannung

) = L] Lol L) ] 0] ] [0
(%5)mes = [10] {mf’}

Ze

(3.13)

Die Modelle 1-3 sind linear und kdnnen daher mit Standardal gorithmen, wie sie MATLAB ®© zur
Verfligung stellt, identifiziert werden. Das bilineare Modell wird mit dem im Fachgebiet Mef3-,
Steuer- und Regelungstechnik entstandenen Softwarepaket CONTIDNS (Jelali 1997) identifi-
Ziert.
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4 Beobachterauslegung fir bilineare Systeme

Fir eine Regelstrecke soll ein bilinearer Beobachter entworfen werden, der den Zustandsvek-
tor anhand der Ein- und Ausgangssignale rekonstruiert. Die Wahl eines bilinearen anstatt eines
linearen Beobachters hat das hauptsachliche Ziel, den zul&ssigen Arbeitsbereich zu vergrofdern
und damit die Gite der Schéatzwerte zu verbessern. Wie bei einem linearen Beobachter kann
auch hier im algemeinen nur ein Schéatzwert fir die Zustandsgrof3en ermittelt werden. Durch
geeignete Wahl des Beobachtungsalgorithmus kann allerdings erreicht werden, dal’ der Fehler
zwischen geschatztem und zu schétzendem Wert einer asymptotisch stabilen Beziehung ge-
horcht und somit fir ¢ — oo gegen Null geht (Dorif3en 1991). Die Ausfiihrungen in diesem
Abschnitt sind auf EingréRensysteme (u € RY, y € R') beschrankt.

Analog zu Uberlegungen fiir lineare Systeme entwirft man zunachst einen Beobachter, der im
wesentlichen aus dem moglichst exakten Modell der Strecke sowie einer Riickfiihrung des Aus-
gangsfehlers besteht (vgl. Bild 4.1, (Zeitz 1987)). Der Schétzwert des Zustands ergibt sich hier-
far zu

T=Ax+ Nzu+bu+k(u)(y—79) . (4.1

Andersalsim Falle eineslinearen Beobachtersist der Ruckfhrkoeffizient des Ausgangsfehlers
k(u) eine Funktion der Eingangsgrofie:

k(u)=ku+ky; k,cR"; k,eR" | (4.2)

was eine erhebliche Anzahl von wéhlbaren Parametern mit sich bringt. Damit ist eine direkte
Optimierung aller Ruckfuhrparameter selbst fir Eingrofensysteme im allgemeinen nicht még-
lich, gerade in Anbetracht des Einflusses der Eingangsgrofie auf das Ruickfiihrgesetz. Um die
Stabilitét eines Zustandsbeobachters trotzdem fur alle « gewéhrleisten zu kénnen, sind Ein-
schrankungen hinsichtlich der Belegungsmuster der Systemmatrizen des zu beobachtenden Zu-
standsmodel s notwendig; hier hat sich u. a. die Beobachternormalform bewahrt (Dorif3en 1989,
Schwarz 1990). Fir dieseist die Schétzfehlerdynamik

é=d—a
= Az + Nzu — Az — Nzu — k(u)c' (z — 2) (4.3)
=(A+ Nu—Ek(u)ch)e

bei entsprechender Wahl von k(u) immer unabhéngig von der Eingangsgrofie w.

Die Einschrénkung auf derartige Normalformen fihrt jedoch zu einer erheblichen Beeintrach-
tigung in der Anwendbarkeit, denn selten sind die physikalischen Zustandsgrof3en einer tech-
nischen Anlage hinreichend genau durch ein bilineares Modell in Normalform zu beschreiben.
Zwar liefert ein aus einer ldentifikation gewonnenes Normalform-Modell in der Regel eine gute
Abbildung des Ein-/Ausgangsverhaltens einer Anlage (vgl. (Schwarz u. a. 1996)), die Zustan-
de des Normalform-M odells korrespondieren aber nur in Ausnahmefallen direkt mit den realen
Zustandsgrofen. Eine Ausnahme beispielsweiseist der Fall, dal3 essich bei dem in Normalform
vorliegenden Modell um die Transformation eines vorgegebenen Systemmodells handelt. Dann
kann durch Rucktransformation natirlich auf die Originalzustande riickgeschlossen werden.
Fur eine Beobachterauslegung stellt sich alerdings die Frage, ob die Transformation on-line
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Bild 4.1. Blockschaltbild eines Zustandsbeobachters fir bilineare Systeme

durchgefuhrt werden kann, d. h. ob in Echtzeit eine Ricktransformation in Origina koordinaten
moglichist.

Geht man von keiner Normalform aus, so mul3 im Einzelfall untersucht werden, ob die Feh-
lerdynamik bestimmten Forderungen gentigt, beispielsweise Linearitdt oder Entkopplung von
der Eingangsgrofie. Allgemeiner formuliert bleibt festzustellen, ob eine vorhandene bilineare
Realisierung in eine gewiinschte Normalform transformiert werden kann. Fir den untersuchten
Differentialzylinder ergibt sich aus den Strukturmatrizen der bilinearen Approximation (3.5)
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die folgende Fehlergleichung:
é=(A+ Nu—Ek(u)ch)e
—ky(uw) 1 0 O 0 1
—ko(u) kg *3  #y4 0

(4.4)

ks = ks(u) ke #7 *g
10 — Ka(u) *11 *13 *14
—ks(u) 0 0 O 0

—ke(u) 0 0 0 s+ k18U k17 + *19U

e=A.e

_— o O O O

Bereits an dieser Stelle wird deutlich, dal? bestimmte Elemente der letzten Zeile der Matrix A,
trotz freier Wahl der Ruckfuhrverstdrkung k(w) nicht unabhéngig von der Eingangsgrofie sind.
Es kann somit auch keine Transformation existieren, die dieses System in z. B. Beobachternor-
malform Uberfiihrt. Eine allgemeine Uberpriifung mit MAPLE liefert keine expliziten Resultate
fur die Eigenwerte der Schéatzfehlergleichung, so dal3 erst bei Kenntnis der identifizierten Pa-
rameter eine Festlegung des Rickfuhrvektors sinnvoll ist. Dies wird im ndchsten Abschnitt fur
den Laborversuch , Differentialzylinder* durchgefihrt.
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5 Ergebnisseam Laborversuch , Differentialzylinder *

5.1 Identifikation

Fir den in Abschnitt 3.1 diskutierten Differentialzylinder soll in einem ersten Schritt eine bili-
neare A pproximation gefunden werden. Auf der Basis der Approximation wird dann ein Beob-
achter ausgelegt, der anhand eines hochgenauen Simulationsmodells auf Basis von nichtlinea-
ren analytischen Differentialgleichungen (Spielmann 1996) und anhand von Mef3daten verifi-
ziert wird.

0,2

0,10

T 0f

X

0 —— Messung™]
0,10 g . 7 ! - - ldentifikationO
-0,211 | | | | | | |
a0 o0 20 40 601 - 80 1000 120 140 1600
—

I
do od 20 40 60 80 100 1200 1400 160
tB0—p

Bild 5.1. Identifikations-Daten fir Approximation eines Differentialzylinders. a)-d) Teilmodelle der bi-
linearen Approximation gemal3 Gln. (3.10)-(3.13)

Dasvorstrukturierte Modell und die Aufteilungin Teilmodelleist bereitsin Abschnitt 3.1 vorge-
stellt worden. Die Identifikation entsprechend der Teilmodelle (3.10-3.13) wurde mit der MAT-
LAB IDENTIFICATION TooLBOx®und CONTIDNS durchgefiihrt. Diese liefern die Systempa-
rameter des bilinearen Modélls:
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011 v : -7 : - ldentifikationd |
-0,2 | | | | | | |
a0 od 20 40 60 - 80 100 1200 140 160
—

tIs0——»p

-5 | | | | | | |
a0 o0 20 40 60 - 80 100 120 140 160
t80—»

Bild 5.2. Identifikations-Daten fir Approximation eines Differentialzylinders: a)-d) Teilmodelle der bi-
linearen Approximation gemal3 GIn. (3.10)-(3.13) mit zusétzlichen Drucksignalen

0 1 0 0 0 0
0 —68,997 4,0734 —2,0028 0 0
A | 3347 311,21 —2,6499 0 —1,5464 0
1445,9 1019,6 0  —5,7039 —6,0145 0
0 0 0 0 0 1
| 0 0 0 0  —36199 —262,58]
(0000 0 0 ]
0000 0 0
0000 0 0
N=1o000 o 0 (5.1)
0000 0 0
10000 —64,645 1,7452]
S
0
b=| U | c"=[100000]
R
0
347640
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Das Ein-/Ausgangsverhalten der identifizierten Teilmodelleist in Bild 5.1 abgebildet. Das zwei-
te Teilmodell zeigt zufriedenstellendes Verhalten hinsichtlich der Ubereinstimmung von iden-
tifiziertem und aus Messungen resultierendem Geschwindigkeitssignal. Hierbel ist zu berlick-
sichtigen, dal3 das ,,gemessene’ Geschwindigkeitssignal aus Differenzenquotienten besteht und
folglich selbst nicht exakt das Verhaten des Zylinders beschreibt. Die Kolbenposition im er-
sten Teilmodell weicht zum Teil erheblich ab; dies begriindet sich durch die bei der Integration
aufsummierten Geschwindigkeitsfehler. Fur die Drucksignaleist die Identifikation nicht akzep-
tabel. Offensichtlich sind die linearen Approximationen — der bilineare Anteil ist auf die den
Steuerkolben beschreibende Differentialgleichung beschrankt — nicht geeignet fir eine Repro-
duktion der Druckverl&ufe.

In Abschnitt 3.1 ist bereits angesprochen worden, dal eine gegenseitige Abhangigkeit der
Drucksignale A und B anzunehmen ist. Beriicksichtigt man solch eine wechsel seitige Abhén-
gigkeit dieser Zustandsgrof3en untereinander — die Parameter g und x5 in Gl. (3.5) sind dann
ungleich null — erhdlt man die veranderte Matrix A’ mit

0 1 0 0 0
0 —68,997 4,0734 —2,0028 0O
2030,3 —3457,5 —214,83 102,86 21,824

_— o O O O

I __
A= 538,45 4296,4 622,94 316,18 —49,97 (52)
0 0 0 0 0
0 0 0 0 —36199 —262, 58 |

Das neue Modell fuhrt zu den in Bild 5.2 dargestellten Zeitverlaufen. Fir diesen Fall sind ale
vier Teilmodelle als gut zu bezeichnen, sowohl fir den Identifikations-Datensatz selbst als auch
den hier nicht abgebildeten Validierungs-Datensatz. Das Positionssignal weicht aufgrund der
Integration allerdings nach wie vor ab. Ebenfalls untersucht wird die Identifikation der zweit-
einfachsten Klasse nichtlinearer Systeme, des vorstrukturierten quadratischen Systems wie es
in den GIn. (3.6,3.8) vorgeschlagen ist. In einem ersten Schritt sind die nicht zufriedenstellend
approximierten Drucksignalgleichungen als QLS zu modellieren, fur die restlichen Zustands-
gleichungen erscheint dies nicht notwendig zu sein. Fur eine quadratische A pproximation steht
derzeit nur das Programmpaket CONTIDNS zur Verfigung. Allerdings zeigt sich bereits bel
der Untersuchung der Differentialgleichung 3 = ... entsprechend dem Modell (3.11), daf3
die zusétzlichen 10 Parameter nicht identifiziert werden kdnnen. Auch eine Reduktion der zu-
sétzlichen Parameter auf 4 fuhrt lediglich zur Identifikation von instabilen QLS. Damit wird
in eindrucksvoller Form dargestellt, dal3 — zumindest flr das vorliegende technische System
des Differentialzylinders — nur moglichst einfache Systeme mit wenigen Parametern zu einer
sinnvollen und nutzbaren | dentifikation fihren.

5.2 Beobachter

Auf der Basis des identifizierten bilinearen Modells soll nun im weiteren das Konzept eines
Beobachters verfolgt werden, wie es in Abschnitt 4 dargestellt ist. Die Fehlergleichung (4.4)
ergibt sich fur dieidentifizierten Parameter gemal3 Gl. (5.2) zu
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Bild 5.3. Messung und Schétzwerte fir die ZustandsgrofRen des Differential zylinders: Beobachter gemal}

Gl. (4.1)

é=(A+ Nu—Ek(u)che

[ —ki(u) 1 0 0
—ka(u)

2030,3 — k3(u) —3457,5 —214,83 102, 86

— s (u) 0 0 0
— kg (w) 0 0 0

—68,997 4,0734 —2,0028

538,45 — ka(u) 4296,4 622,94 —316,18

0

0
21,824
—49,97

0

—36199 — 64, 645u —262, 58 + 1, 7452u |

o O O O

1

(5.3)

Die Stabilitét der Fehlergleichung ist abhangig von der Eingangsgroéfe u, die in den Grenzen
zwischen —10V und +10V variiert. Fir den Ruckfihrvektor hat sich eine erste Wahl der Para-

meter zu

[ 100 |
1000
100
100
100
100

(5.4)
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als geeignet erwiesen, die mit diesen Werten erzielten Schétzergebnisse sind in Bild 5.3 doku-
mentiert. Hier zeigt sich, dal3 das Ergebnis besonders hinsichtlich der Schatzung der Druck-
signae nicht ausreichend ist. Eine deutliche Erhohung der konstanten Ruckfuhrkoeffizienten
liefert nur einen sehr begrenzten Erfolg, wie die Bilder A.1 und A.2 in Anhang A.1 zeigen. Die
Wahl eines Ruckfuhrvektors in Abhangigkeit von « wie in Gl. (4.2) fuhrt ebenfalls nicht zu
einer signifikanten Verbesserung.

Eine weitere Méglichkeit ist die zusétzliche Messung eines der beiden Drucksignale, entweder
pa Oder pg. Hieraus ergibt sich beispielsweise die folgende Schétzwertwertgleichung fir den
BL S-Beobachter

0,20

0,150+
xg  010¢
mo

0,05001 —— MessungO]

- - Schétzwert(
a0 oo ‘ ‘ ‘
00 20 40 601 80
ts—»p ts—»

00 20 40 60 80 00 20 40 60 80

80— p ts—p
0,0020 ‘ ‘ ‘ 0,20 ‘ ‘ ‘
010} \ i l ]
v L
X ’ I
st 0,100
0,200
€)o,00207 ‘ ‘ ‘ N0 0,30 ‘ ‘ ‘
o0 20 40 600 80 o0 20 40 600 80
ts0—p tsd—p

Bild 5.4. Messung und Schétzwerte fir die ZustandsgrofRen des Differential zylinders: Beobachter gemal}
Gl. (5.5)

& = Az + Nau+ bu + K (u) qxl] - l“D (5.5)
pa T3

mit den Zahlenwerten aus den GIn. (5.1,5.2). Diese Wahl der Mef3grof3en ist aus theoretischer

Sicht deshalb sinnvoll, weil ein Drucksignal zusammen mit dem Positionssignal gerade einen

sogenannten flachen Ausgang des Differentialzylinders bildet (Wey und Lemmen 1997). Die

Flachheit impliziert hierbei, dai3 die Bedingung (Rothful3 u. a. 1996)
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e jeder Systemzustand x,, £ = 1,... ,n kann direkt in Abhangigkeit des linearisierenden
Ausgangs yii, = [z1 pa]T und dessen zeitlichen Ableitungen berechnet werden.

erfullt wird, so dal3 in Positions- und Drucksignal zusammen alle Informationen tber die Sy-
stemzusténde enthalten sind. Mit der zusétzlichen Messung des Drucksignals erhét man die
erweiterte Ruckfuhrmatrix

(100 0 ]
1000 0
100 500
100 500|
100 0

100 0 |

(5.6)

mit dem die wesentlich besseren Beobachtungsresultate in Bild 5.4 erreicht werden. Bei dieser
Variante kann eine weitere Erhohung der Ruckfuhrparameter die Resultate noch zusétzlich ver-
bessern (vgl. Anhang A.2), besonders die Schatzung des Geschwindigkeitssignals z, verbessert
sich signifikant. Hierbei ist jedoch zu bedenken, dal3 dies zu einer ungewol lten Verstérkung von
Mefdrauschen und ggf. einem instabilen Verhalten des Beobachters fuhren kann.

Die Stabilitét beider Beobachter kann fiir beliebige v durch einfache Berechnung der Eigenwer-
te mit beispielsweise MAPLE verifiziert werden. Exemplarisch sind in Bild 5.5 die Realteile der

wVO—
-100 50 oo 50 100

Ay
N 1003
A

-2000-

Redl

-3000-

40003
M

Bild 5.5. Eigenwert-Realteile der Schétzfehlergleichung (5.3) mit k(u) aus Gl. (5.4)

Eigenwerte der Schétzfehlergleichung (5.3) mit k(u) entsprechend der Gl. (5.4) dargestellt, alle
sind im fir v zulassigen Bereich negativ. Weitere Untersuchungen bestétigen, dal3 die Redltelle
nur wenig auf eine Verénderung des Ruckfuhrvektors k(u) reagieren (vgl. Bild 5.5).

Auch fir den Fall der zusétzlichen Messung von p, mit der erweiterten Ruckfuhrmatrix K (u)
kann die Stabilitat der Schétzfehlergleichung fir den gesamten Definitionsbereich von u nach-
gewiesen werden. In Tabelle 5.1 sind Mittelwert und Schwankungsbreite der Eigenwerte fur
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Tabelle 5.1. Eigenwerte (Realteile) der Schéatzfehlergleichung des bilinearen Beobachters (5.5) fur Ein-
gangsgroRen —10 <« < 10

Redlteile fur —10 <« < 10
Eigenwert|Mittelwert| Minimalwert Maximalwert
A -714,55 -714,55 -714,55
Ao -267,98 -267,98 -267,98
A3 -131,29 -140,02 -122,56
A -131,29 -140,02 -122,56
As -109,05 -109,05 -109,05
A6 -109,05 -109,05 -109,05

—10 < u < 10 dargestellt. Die Stabilitétsreserve dieses Beobachters ist hdher als im zuvor
beschriebenen Fall.
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6 Zusammenfassung

Das hier vorgestellte, auf der Graphentheorie basierende, Verfahren zur Approximation tech-
nischer Systeme erlaubt es, ohne grof3en Aufwand eine (Struktur-)\Vorgabe fir ein geeignetes
Systemmodell zu erstellen. Ein zentraler Vorteil dieses Verfahrens liegt in der Tatsache, dal3
die Zustandsgrofien des Modells mit den realen Zustandsgrof3en des zugrundeliegenden techni-
schen Systems korrespondieren. Zwar kdnnen auch fr solche Modelle die realen und die mo-
dellierten Zustandsgrof3en in ihrer Interpretierbarkeit differieren, jedoch ist das Verhalten der
modellierten Zustandsgrofien in der Regel wesentlich ndher am technischen System orientiert
aswenn Normalformen (Jelali 1994) fur Approximationsmodelle Verwendung finden.

Insbesondere bei Wahl eines bilinearen Approximationsmodells erweist sich der hier vorge-
stellte Ansatz als tragfahig. Fur Approximationsmodelle hoherer Ordnungen wie belspielswel-
se QLS erhoht sich gegentiber den BLS die Anzahl der Strukturparameter deutlich. Bel An-
wendung konventioneller |dentifikationsverfahren, die sich an der Ein-/Ausgangs-Differential-
gleichung orientieren, fuhrt das zu einem stark unterbestimmten Gleichungssystem und damit
eventuell zu ungeeigneten oder instabilen Approximationsmodellen. Selbst recht zuverlassige
| dentifikationsprogramme wie CONTIDNS, die speziell fr die Ermittlung von QLS entworfen
wurden (Jelali 1997), konnen zumindest im Falle des hier als Beispiel gewahlten Differential-
zylinders nicht unmittelbar eine stabile QL S-Zustandsgleichung ermitteln.

Generéll ist zu berticksichtigen, dafi3 | dentifikationsverfahren zur Ermittlung von Parametern el -
nes Zustandsmodells derzeit nur fir lineare Systeme hinreichend erforscht sind. Im Falle von
nichtlinearen Systemen dagegen sind noch viele Fragen zu diesem Themenbereich offen, fur
die Identifikation nichtlinearer Zustandsmodellein bestimmten Normalformen sind viel verspre-
chende Ansdtze und Methoden z. B. mit (Reuter 1995, Jelali 1997) verfligbar. Solange keine
zufriedenstellenden Lésungen hierzu gefunden werden, sind auch die vorgestellten Struktur-
modelle in ihrer Anwendung fur den hier diskutierten Themenbereich eingeschrankt. Anders
verhdt es sich, wenn man die oben genannte Annahme trifft, dal3 alle Zustandsgrofien mef3-
technisch erfa®bar sind. In dem Fall ist auch fir komplexere Modelle wie QLS die Identifika-
tion eines Zustandsmodells vorgegebener Struktur moglich, weil das Identifikationsproblem in
mehrere Einzelidentifikationen untergliedert werden kann, es wird quasi Zustandsgle chung fur
Zustandsgleichung einzeln identifiziert. Austechnischer Sicht ist die Kenntnisder Zustandsgro-
[3en zudem nicht ungewohnlich. Bel dem betrachteten Differential zylinder kbnnen beispiel swel-
se ale Grofen aul3er der Kolbenstangengeschwindigkeit gemessen werden. Fir bilineare Ap-
proximationsmodelle erweist sich dieser Ansatz als ausgesprochen erfolgreich. Versucht man
hingegen, quadratisch lineare Gleichungen einzubeziehen, so gestaltet sich die Identifikation
deutlich schwieriger und liefert bel gleichem Entwurfsaufwand schlechtere Ergebnisse als die
bilineare Approximation. Das bestétigt den Grundsatz, dal3 in der Regel nur moglichst einfache
Systeme mit wenigen Parametern zu einer sinnvollen und nutzbaren Identifikation fihren. Bel
entsprechend besseren Identifikationsalgorithmen wird jedoch mit Sicherheit ein QLS-Modell
zu ermitteln sein, dal3 glnstigere A pproximationseigenschaften als das bilineare Modell auf-
weist.

Hinsichtlich der Anwendung kann die bilineare Approximation als geeignete Basis eines Be-
obachterentwurfs genutzt werden. Das Konzept fir den Beobachterentwurf verfolgt dasgleiche
Prinzip wie der L uenberger-Beobacher fur den linearen Fall, d. h. der Beobachter besteht im we-
sentlichen aus einem Abbild der Strecke mitsamt einer Rickfihrung des Ausgangsfehlers. Dies



Lusammenrassurig

fahrt trotz der einfachen Systemklasse zu unerwartet guten Ergebnissen, zusétzlich bietet ein
bilinearer Ansatz den Vorteil einer ggf. linearen Fehlerdynamik des Beobachters. Zumindest ist
aber die Fehlergleichung einfach auszuwerten, so dal? die Stabilitét des bilinearen Beobachters
im voraus sichergestellt werden kann. Der Erfolg dieses Konzepts konnte an dem untersuch-
ten Differentialzylinder nachgewiesen werden, der Ansatz 183t sich aber auch verallgemeinern
fur andere technische Systeme. Der Grundgedanke besteht darin, ein technisches System un-
ter Einsatz von entsprechend genauer Mef3sensorik auf einem Prifstand zu vermessen. Anhand
der Messungen und eines Strukturmodells, welches aus dem Wissen tber die physikalischen
Grundlagen des technischen Systems resultiert, kann dann ein nichtlineares Model | identifiziert
werden. Dieses Modell zusammen mit einer unter Umsténden deutlich reduzierten Sensorik
genugt dann fur die Auslegung von Zustandsrtickftihrungen.
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A Versuchsergebnisse

A.1 Bilinearer Beobachter ohne Druckmessung

Fir den bilinearen Beobachter mit Ruckfuhrung des Positionsfehlerse = x; — 2; soll durch
Erhohung der (konstanten) Ruckfihrparameter eine Verbesserung vor allem fir die Schatzung
der Drucksignale erzielt werden. Fur den 10-fachen (Bild A.1) Wert
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Bild A.1. Messung und Schétzwerte fir die Zustandsgrof3en des Differential zylinders: Beobachter gemaf3
Gl. (4.1) mit dem Ruckfuhrvektor aus (A.1)
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oder hundertfachen Wert (Bild A.2)

k(u)=k = (A.1)
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Bild A.2. Messung und Schétzwerte fir die Zustandsgrof3en des Differential zylinders: Beobachter gemaf3
Gl. (4.1) mit dem Ruckfuhrvektor aus (A.2)
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der betroffenen Rickflhrparameter zeigen die Ergebnisse nahezu keine Verbesserung. Das be-
grundet sich mit dem in den Druckgleichungen linearen Approximationsmodell, was die realen
Druckverlaufe nur ungenau wiedergeben kann. Selbst sehr hohe Riickfihrverstérkungen fuir den
Ausgangsfehler kdnnen den Beobachtungsfehler dann nicht minimieren, da e selbst nahezu O
entspricht (s. Bild 5.3a).

A.2 Bilinearer Beobachter mit Druckmessung

Im weiteren werden die Koeffizienten in der Ruckfuhrmatrix K () des bilinearen Beobachters
bei zusétzlicher Druckmessung deutlich erhoht. Im Gegensatz zu Gl. (5.6) wird folgende Matrix
gewahlt:

[ 100 0
100000 0
100 10000
K =K=1 100 10000 (A-3)
100 0
1000 0 |

Mit dieser Ausgangsfehler-Rickfuhrung verbessert sich in besonderer Weise das Beobach-
tungsresultat hinsichtlich der Geschwindigkeit (s. Bild A.3). Aber auch die Drucksignale wer-
den besser approximiert. Allerdings wurde hierbei bereits eine Verhundertfachung der Rick-
fUhrparameter vorgenommen, wasin der Bestimmung der beobachteten Grof3en zu numerischen
Instabilitéten und damit weitaus htheren Rechenzeiten fihrt.
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Bild A.3. Messung und Schétzwerte flr die Zustandsgroéfien des Differentialzylinders. Beobachter geméld
Gl. (5.5) mit dem Ruckfuhrvektor aus (A.3)



