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Formelzeichen und Bezeichnungen

Abkürzungen

ALS analytisches System mit linear eingehender Steuerung
AS analytisches System
BLS bilineares System
CAS Computer-Algebra-System
LS lineares System
QLS quadratisches System mit linear eingehender Steuerung
Σ System

Algebraische Größen1

A, Ai Systemmatrizen
B, Bi Eingangsmatrizen
C Ausgangsmatrix
cT

i i-te Zeile der Matrix C
e Schätzfehler
FC Coulombsche Reibung
FH Haftreibung
FR Reibkraft
FS Störkraft
FV viskose Reibung
m Dimension des Eingangsvektors u(t)
K(u) Rückführmatrix
k(u) Rückführvektor
N , Ni Systemmatrizen
n Dimension des Zustandsvektors x(t), Systemordnung
p Dimension des Ausgangsvektors y(t)
R Menge der reellen Zahlen
U0 Umgebung um einen Arbeitspunkt
uj(t) Elemente des Eingangsvektors
u(t) Eingangsvektor
ū abkürzende Schreibweise für {u(t), u̇(t), ü(t), . . . }
xk(t) Elemente des Zustandsvektors
x(t) Zustandsvektor
yi(t) Elemente des Ausgangsvektors
y(t) Ausgangsvektor

Graphentheoretische Größen

b(i, j) Bewertung der Kante vom Knoten i zum Knoten j
E Adjazenzmatrix
EG Menge der Kanten in einem Graphen G
1 Im Sinne einer möglichst übersichtlichen Notation wird die Zeitabhängigkeit von Größen nicht an

allen Stellen innerhalb des Berichts explizit vermerkt.
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1 Einleitung

Unter anderem zur Systemanalyse, zu Zwecken der Simulation und auch für die Reglersynthese
ist die Kenntnis geeigneter mathematischer Modelle, die das statische bzw. dynamische Verhal-
ten eines technischen Systems genügend genau wiedergeben, unverzichtbar. Bei komplexen An-
wendungsbeispielen ist eine rein theoretische Modellbildung allerdings oft nicht durchführbar.
Deshalb wird in der Praxis häufig auf eine Kombination von theoretischer und experimentller
Modellierung zurückgegriffen, wobei in der Regel die Modellstruktur aus bekanntem theore-
tischen Vorwissen abgeleitet wird und die Prozeßparameter mittels entsprechender Schätzver-
fahren zu bestimmen sind. Unter Modellstruktur ist dabei im Rahmen dieser Arbeit folgende
Begriffsbestimmung zu verstehen:

Definition 1.1 (Reuter 1995)
Die Modellstruktur eines Modells ist durch die Beschreibungsform (z. B. lineare Differenzen-
gleichung oder Übertragungsfunktion, bilineares oder analytisch lineares Zustandsmodell, ein-
faches Wiener- oder Hammerstein-Modell) und das spezielle Besetzungsmuster für die darin
enthaltenen Parameter (z. B. spezielle kanonische Formen) festgelegt.

Demzufolge ist der gewählte Systemtyp mit ausschlaggebend für die Modellstruktur, als ebenso
wichtig sollte jedoch das Besetzungsmuster für die Systemparameter angesehen werden.

Im weiteren soll von nichtlinearen Zustandsraum-Beschreibungen zur Approximation techni-
scher Systeme ausgegangen werden. Neben den schon angesprochenen bilinearen Systemen
(BLS) sind hierbei vor allem die quadratischen Systeme (QLS) (Schwarz 1993, Jelali 1994)
von Bedeutung, aber auch die allgemeinen analytischen Systeme mit linear eingehender Steue-
rung (ALS) (Schwarz 1991) werden berücksichtigt. Sowohl BLS als auch QLS sind besonders
gut für Zwecke der Approximation nichtlinearer Ursache-/Wirkungsbeziehungen geeignet, da
sie zum einen hinsichtlich der systemtheoretischen Untersuchungen einfach zu handhaben sind
und zum anderen hinreichend gut nichtlineare Prozesse nachbilden können.

In der Regel wird bei einer Identifikation solcher Systeme von kanonischen Formen, beispiels-
weise der beobachtbarkeitskanonischen (Reuter 1995) oder der beobachterkanonischen (Jelali
und Schwarz 1995, Jelali 1996) Form, ausgegangen. Diese bieten die Vorteile, daß zum einen
die Anzahl der freien Parameter recht klein ausfällt und zum anderen bei zahlreichen prakti-
schen Anwendungen das reale Prozeßverhalten genügend gut nachgebildet wird. Als Nachteil
ist jedoch zu werten, daß derartige mit Parameterschätzverfahren bestimmte Modelle in ih-
ren Zustandsgrößen nicht mit den physikalisch vorhandenen Zustandsgrößen korrespondieren.
Obwohl man also ein Zustandsmodell ermittelt hat, liefert die Kenntnis der inneren System-
zusammenhänge keine zusätzliche Information über das zugrundeliegende technische System.
Lediglich das Ein-/Ausgangsverhalten wird durch das identifizierte Modell abgebildet.

Um hier eine Verbesserung zu erzielen, soll durch Anwendung eines graphentheoretischen Ver-
fahrens das identifizierte Modell derart vorstrukturiert werden, das die Korrespondenz zwischen
approximierten und realen Zustandsgrößen gegeben ist. Der Systemgraph beruht hierbei in er-
ster Linie auf den bereits vorhandenen theoretischen Kenntnissen über ein zu identifizierendes
System (Wey 1996). Zudem können auch graphentheoretische Algorithmen, beispielsweise zur
Reglersynthese (Wey 1995, Spielmann 1997), verwendet werden und anschließend der so mo-
difizierte Graph als Grundlage des Identifikationsverfahrens dienen.
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Der Bericht gliedert sich in folgende Abschnitte:
Zunächst wird in Abschnitt 2 auf die grundlegenden Begriffe einer strukturellen Systembe-
schreibung und deren Abbildung mit Hilfe von gerichteten Graphen eingegangen. Weiterhin
wird die Synthese von Regelungskonzepten unter Verwendung solcher Graphen vorgestellt. Im
nächsten Abschnitt 3 steht die Identifikation von vorstrukturierten Modellen im Vordergrund.
Neben einigen grundlegenden Anmerkungen zur Voridentifikation und Modellschätzung wird
insbesondere die Parameteridentifikation vorstrukturierter Modelle angesprochen. Am Beispiel
eines Differentialzylinders werden sowohl bilineare als auch quadratisch lineare Systemappro-
ximationen entworfen. Abschnitt 4 hat die Auslegung nichtlinearer Beobachter zum Inhalt. Spe-
ziell für die Klasse der bilinearen Systeme wird die Beobachterauslegung näher untersucht und
auf den Fall des Differentialzylinders angewendet. Die mit diesem Konzept erzielten Ergebnis-
se sind in Abschnitt 5.1 für die Identifikation und in Abschnitt 5.2 für die Beobachterauslegung
festgehalten, sowohl für den Fall der Simulation als auch am Laborversuch selbst. Zusammen-
fassung und Ausblick schließen den Bericht.
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2 Graphentheoretische Begriffe und Definitionen

Die Verwendung der Graphentheorie ermöglicht für eine ganze Reihe von Fragestellungen, bei-
spielsweise aus den Bereichen Algebra, Mechanik, Chemie oder auch Soziologie, die einfache
Repräsentation der jeweiligen Problemstruktur. Anhand zahlreicher speziell zur Analyse von
Graphen entwickelter Algorithmen können – unabhängig von dem eigentlichen darunter gela-
gerten Anwendungsgebiet – die im Graphen enthaltenen Informationen analysiert und zur Syn-
these herangezogen werden. Auch bei der Analyse von sowohl linearen als auch nichtlinearen
Systemen (Kasinski und Lévine 1984, De Luca u. a. 1985, Reinschke 1988) ist dieses Konzept
sinnvoll einsetzbar. Im folgenden werden diejenigen Begriffe der Graphentheorie vorgestellt,
die für das Verständnis der vorliegenden Ausarbeitung von Bedeutung sind. Darüber hinausge-
hende Definitionen und Konzepte sind in umfassenden Werken (z. B. Andrásfai 1991, Gondran
und Minoux 1986, Chen 1990) ausführlich erläutert.

Definition 2.1 (Andrásfai 1991)
Seien VG und EG zwei disjunkte Mengen und G eine Funktion, die jedem Element aus EG ein
Paar von nicht notwendigerweise verschiedenen Elementen aus VG zuordnet. Das geordnete
Tripel (VG, EG,G) oder abkürzend G wird dann als abstrakter Graph bzw. einfach als Graph
bezeichnet. Die Elemente von VG heißen die Knoten eines Graphen, die Elemente von EG die
Kanten. Findet die Richtung einer Kante e mit

e = (i, j) ; i, j ∈ VG ; e ∈ EG (2.1)

Berücksichtigung, d. h., wird durch G auch die Reihenfolge von i und j festgelegt, so spricht
man von einem gerichteten Graphen. Andernfalls handelt es sich um einen ungerichteten Gra-
phen2.

Die Anzahl der Knoten nG = |VG| entspricht der Ordnung des Graphen, im Regelfall sind die
einzelnen Knoten fortlaufend mit 1, . . . , nG bezeichnet. Eine Kante e = (i, j) des Graphen G
besitzt den Startknoten i und den Endknoten j, die Anzahl der Kanten ist mG = |EG|.
Definition 2.2 (Gondran und Minoux 1986)
Ein Weg P der Länge l entspricht einer Sequenz von l Kanten

{e1, . . . , el} ; ek ∈ EG

mit

e1 = (i0, i1) ; e2 = (i1, i2) ; · · · ; el = (il−1, il) ik ∈ VG .

Demzufolge stellt sich ein Weg als eine Aneinanderreihung von Knoten dar, deren Verbindungs-
kanten alle in die gleiche Richtung weisen. Der Knoten i0 ist der Start- und der Knoten il der
Endpunkt des Weges P . Ein elementarer Weg ist die Bezeichnung für einen Weg, der keinen
Knoten mehrfach enthält. Zyklus entspricht einem Weg, bei dem Start- und Endknoten über-
einstimmen. Zwei Wege sind knotendisjunkt, wenn sie keine gemeinsamen Knoten besitzen
(Bild 2.1).

2 Im Verlauf des Berichts werden ausschließlich gerichtete Graphen verwendet. Aus diesem Grund ent-
fällt im weiteren die explizite Klassifizierung „gerichtet“.
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a) elementarer Weg:
1 → 3 → 6 → 4 → 5 → 7

b) Zyklus:
3 → 6 → 4 → 3

c) knotendisjunkte Wege:
1 → 3 → 6 → 4 und
2 → 5 → 7

Bild 2.1. Elementare Wege, Zyklen und knotendisjunkte Wege in einem Graphen

Je nach Art der betrachteten Fragestellung kann es notwendig werden, die Kanten durch zu-
sätzliche Terme b(ek) = b(i, j), sogenannte Bewertungen, zu charakterisieren. In diesem Zu-
sammenhang wird von der Adjazenzmatrix E Gebrauch gemacht. Ihre Zeilen sowie Spalten
korrespondieren mit den Knoten des zugehörigen Graphen, so daß sie die Dimension (nG ×nG)
aufweist. Die Matrixelemente, die im allgemeinen nur Werte 0 und 1 annehmen, bezeichnen die
Existenz bzw. Nichtexistenz von Kanten:

E =




e11 · · · e1nG
...

. . .
...

enG1 · · · enGnG


 mit eij = (E)ij =

{
0, ∀(i, j) /∈ EG
1, ∀(i, j) ∈ EG

. (2.2)

Für bewertete Graphen hat es sich außerdem als zweckmäßig erwiesen, den Elementen anstatt
einer 1 die entsprechende Kantenbewertung b(i, j) zuzuweisen. Der Vorteil der Adjazenzmatrix
liegt zum einen in der kompakten mathematischen Beschreibungsweise eines Graphen, zum
anderen führt eine mehrfache Multiplikation zu Informationen über Wege zwischen Knoten
(Andrásfai 1991):

(Eq)ij �= 0 ⇒ Weg P der Länge q zwischen i und j existiert. (2.3)

Wenn die Anzahl der Kanten mG gegenüber dem Quadrat der Knotenanzahl n2
G klein ist, so

ist die Adjazenzmatrix schwach besetzt. In diesem Fall kann, besonders in Hinsicht auf eine
rechnergestützte Anwendung, eine Darstellung mit Folgeknoten effizienter sein. Hierzu wird
ein Vektor αG der Dimension nG verwendet, der Zeiger auf Elemente eines weiteren Vektors
βG der Dimension mG enthält, in dem die Folgeknoten abgelegt sind. In Tabelle 2.1 sind die
Methoden einander gegenübergestellt.

2.1 Strukturelle und graphentheoretische Systembeschreibung

An linearen Systemen werden schon seit geraumer Zeit strukturelle Untersuchungen durchge-
führt (u. a. Lin 1974, Reinschke 1982, Svaricek 1987, Reinschke 1988, Woude 1989, Com-
mault u. a. 1991). Strukturmodelle von LS können dahingehend interpretiert werden, daß sie
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Tabelle 2.1. Drei Darstellungsformen eines Graphen

Graph G Adjazenzmatrix E Folgeknoten αG , βG

1

2 3 4

5




0 1 0 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 0 1
1 0 0 0 0




Knoten:
αG : 1

1 2 3 4 5

2 4 6 7

Position:

βG : 2 1 3 4 5 5 1

1 2 3 4 5 6 7

� � � � �

ausschließlich Informationen darüber beinhalten, welche Eingangs-, Ausgangs- und Zustands-
größen sich untereinander beeinflussen bzw. voneinander abhängig sind. Explizite Zahlenwerte
von Systemparametern finden dagegen keine Berücksichtigung.

Aufbauend auf diesen Erfahrungen ist es gerade wegen dem aus numerischer Sicht noch weitaus
komplexeren Verhalten naheliegend, auch an nichtlinearen Systemen strukturelle Untersuchun-
gen durchzuführen. Ansätze hierzu sind für die Thematik der Beobachtbarkeitsanalyse z. B. in
Birk (1992) und für das Entkopplungsproblem in Kasinski und Lévine (1984) sowie Hahn und
Sommer (1994) enthalten. Um derartige Untersuchungen vornehmen zu können, ist in einem
ersten Schritt eine geeignete strukturelle Beschreibung nichtlinearer Systeme festzulegen. Für
LS orientieren sich Strukturmodelle an der Zustandsraumdarstellung, so daß es naheliegend ist,
im weiteren von nichtlinearen Zustandsmodellen ΣALS mit

ΣALS

ẋ(t) = a(x(t)) + B(x(t))u(t)

y(t) = c(x(t))
(2.4)

auszugehen. Die Jacobi-Matrix der Zustandsgleichung

A(x, u) =
∂ẋ

∂x
=

∂a(x)

∂x
+

∂(B(x)u)

∂x
(2.5)

beinhaltet die Information, ob zwei Zustände xi und xj miteinander verknüpft sind. Wenn xj

nicht auf xi einwirkt, so gilt für die zugehörige partielle Ableitung

∂ẋi

∂xj
= 0 . (2.6)

Ist dagegen eine Abhängigkeit ẋi = f(xj) vorhanden, so erhält man einen Term ungleich null.
Die Verknüpfungen der Zustandsgrößen mit den Ein- und Ausgangsgrößen ergeben sich in ana-
loger Weise zu

∂ẋ

∂u
= B(x) und

∂y

∂x
=

∂c(x)

∂x
= C(x) . (2.7)

Die Idee bei der Definition eines Strukturmodells beruht nun darauf, ausschließlich System-
parameter zuzulassen, die in Abhängigkeit der gerade erläuterten partiellen Differentiationen
entweder strukturellen Nullen oder strukturellen Unbekannten entsprechen:
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Definition 2.3
Das einem ΣALS zugeordnete Strukturmodell Σ∗ ist vollständig durch die Strukturmatrizen
{A∗, B∗, C∗} beschrieben. Man erhält das Tripel {A∗, B∗, C∗}, indem alle Elemente ungleich
null in den Matrizen A(x, u), B(x) und C(x) durch einen Platzhalter {∗q ∈ K̄|q = 1, 2, . . .}
ersetzt werden:

A∗ =
∂ẋ

∂x

∣∣∣∣
∗

= A(x, u)|∗

B∗ =
∂ẋ

∂u

∣∣∣∣
∗

= B(x)|∗

C∗ =
∂y

∂x

∣∣∣∣
∗

= C(x)|∗ ; ∗q ∈ K̄; q ∈ N
+ .

(2.8)

Die abkürzende Schreibweise K̄ steht in diesem Zusammenhang für den Körper, der neben
K〈u〉 Koeffizienten enthält, die meromorph in der Variablen x(t) sind. Damit beschreiben
die strukturellen Parameter allgemeine funktionale Beziehungen in x(t) und ū(t). Eine Ein-
schränkung auf ausschließlich reellwertige Größen sowie ununterscheidbare Platzhalter führt
dann auf die bekannte Definition linearer Strukturmodelle. Die Unterscheidbarkeit der Parame-
ter ∗q untereinander ist im Gegensatz zu Betrachtungen im Bereich der linearen Systemtheorie
(Svaricek 1987, Reinschke 1988) zweckmäßig, weil sie eine bessere Übereinstimmung zwi-
schen strukturellen und exakten Systemeigenschaften gewährleistet. In ähnlicher Weise wird
auch für LS vorgegangen, wenn die Analyse von Rang oder Nullstellen im Unendlichen im
Mittelpunkt steht (Woude 1991).

Beispiel 2.1
Gegeben ist ein ΣALS mit den Systemmatrizen (Isidori und Moog 1986)

a(x) =




x2

x2x3 + x4

0
x3


 ; B(x) =




1 0
x3 0
0 1
0 0


 ; c(x) =

[
x1

x2

]
. (B 2.1-1)

Das korrespondierende Strukturmodell zu dem System wird beschrieben durch die Matrizen

A∗ =




0 ∗6 0 0
0 ∗7 ∗8 ∗9

0 0 0 0
0 0 ∗10 0


 ; B∗ =



∗1 0
∗2 0
0 ∗3

0 0


 ; C∗ =

[∗4 0 0 0
0 ∗5 0 0

]
. (B 2.1-2)

Solange ein Strukturmodell Σ∗ ausschließlich durch Boolesche Strukturmatrizen beschrieben
ist, enthält es wesentlich weniger Informationen über das zugehörige System als das ursprüng-
liche nichtlineare Modell. Auf den ersten Blick empfindet man diese Tatsache als Nachteil.
Jedoch ist gerade hierin einer der signifikanten Vorteile der strukturellen Betrachtungsweise zu
sehen, da sich durch das gezielte Außerachtlassen von Informationen die Systemanalyse und
-synthese deutlich einfacher gestaltet.

Reichen die in Σ∗ enthaltenen Informationen für die aussagekräftige Analyse nicht aus, so kann
in einem zweiten Schritt ein erweitertes Strukturmodell eingesetzt werden, welches die aus den
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Differentiationen (2.5, 2.7) resultierenden Matrizen mit berücksichtigt. Das erweiterte Modell
Σ∗e wird durch {A(x, u), B(x), C(x)} festgelegt und entspricht damit der um einen allgemei-
nen Punkt (x, u) linearisierten Zustandsbeschreibung eines ΣALS. In der Regel handelt es sich
hierbei um ein zeitvariantes System:

Σ∗e

ẋ∆ =
∂ẋ

∂x

∣∣∣∣
x,u

x∆ +
∂ẋ

∂u

∣∣∣∣
x,u

u∆

= A(x, u)x∆ + B(x)u∆

y∆ =
∂y

∂x

∣∣∣∣
x,u

x∆

= C(x)x∆ ; x∆ ∈ R
n .

(2.9)

Eine Analyse von Σ∗e erlaubt aufgrund der expliziten Systemparameter zusätzliche Aussagen
über das ursprüngliche ΣALS. Jedoch müssen hier deutlich komplexere Analyse- und Synthese-
verfahren zum Einsatz kommen, bei denen es wegen eventuell auftretender schlechter Kondi-
tionierung (Golub und van Loan 1989) zu numerischen Problemen kommen kann. Wenn auch
die Analyse von Σ∗e keine ausreichenden Ergebnisse liefert, muß in einem dritten Schritt auf
die Betrachtung des ursprünglichen Modells ΣALS zurückgegriffen werden. Hierbei ist jedoch
zu berücksichtigen, daß die Theorie es nicht erlaubt, beliebig komplexe Systeme zu behan-
deln (MacFarlane 1993). Vielmehr ist immer ein bestimmtes Maß an Abstraktion notwendig,
um überhaupt zu aussagekräftigen Resultaten zu gelangen. In diesem Kontext ist das Konzept
der strukturellen Systemanalyse besonders auch im Bereich der nichtlinearen Theorie, die sich
vielfach mit „sehr großen“ und gleichzeitig komplexen Prozessen befaßt, als vielversprechend
anzusehen.

2.2 Synthese von Regelungskonzepten am Graphen

Neben der Analyse von Systemeigenschaften kann anhand des gerichteten bewerteten Graphen
eine Synthese von Regelungskonzepten erfolgen. Die Änderung von Systemeigenschaften er-
folgt dabei immer durch Änderung von Kantengewichten, durch Hinzufügen oder Entfernen
von Kanten. Dabei können zunächst nur solche Kanten direkt verändert werden, die über die
Eingangsknoten erreichbar sind. Für das in Bild dargestellte Mehrgrößensystem sind die mit ∗
gekennzeichneten Kanten durch eine (Zustands-) Rückführung über u1 beeinflußbar und alle
mit ∗∗ gekennzeichneten Kanten über u2.

� �

� �

�

�

�

� �

� �
�

�
��

��

��

Bild 2.2. Durch Rückführung änderbare Kanten
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Desweiteren können die Kanten 1 → 1, 2 → 1 und 3 → 3 über eine geeignete Steuerung u
hinzugefügt werden. Am Beispiel der Regelung eines linearen Systems durch Polvorgabe soll
dies gezeigt werden.

Beispiel 2.2
Gegeben sei ein lineares System in Regelungsnormalform

ẋ =


0 1 0

0 0 1
0 −2 −3


x +


0

0
1


 u

y =
[
1 1 1

]
x

(B 2.2-1)

mit dem charakteristischen Polynom

C(λ) = λ3 + 3λ2 + 2λ . (B 2.2-2)

Es ist die Zustandsrückführung u = fTx gesucht, mit der das System das durch

C∗(λ) = λ3 + 5λ2 + 8λ + 6 (B 2.2-3)

gegebene dynamische Verhalten erhält. Bild 2.3 zeigt den Graphen des Systems vor und nach Anwen-
dung der Zustandsrückführung. Alle zu ändernden Kantengewichte gehören zu Kanten, die im Zustands-
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Bild 2.3: Graphentheoretische Bestimmung des Rückführvektors bei Polvorgabe
a) Graph des Systems vor der Rückführung
b) Differenz der durch Rückführung zu ändernden Kantengewichte
c) Graph des Systems nach der Rückführung

knoten 3 enden. Die Änderung dieses Zustandes ist über den Eingang u direkt möglich, was auch der
Gl. (B 2.2-1) zu entnehmen ist. Die Steuerung u muß so gewählt werden, daß damit die in Bild 2.3b
dargestellten Änderungen der Kantengewichte erzielt werden, also:

u = −6x1 − 6x2 − 2x3︸ ︷︷ ︸
fTx

+v . (B 2.2-4)
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Vergleichbar mit dem Hinzufügen der Kante 1 → 3 wird der Graph durch eine Kante vom neuen Ein-
gangsknoten v zum Zustandsknoten 3 mit dem Gewicht w = 1 ergänzt.

In Fällen, bei denen zu ändernde Kanten nicht in der beschriebenen Weise mit einem Eingang
verbunden sind, wird eine Koordinatentransformation erforderlich. Dies wird im folgenden bei
Anwendung der exakten Linearisierung (Isidori 1989, Spielmann 1995) verdeutlicht.

Beispiel 2.3
Ausgangspunkt ist das Differentialgleichungssystem und der zugehörige Graph:

ẋ =




x2x3 + x1u
x1x2 sin x4

x4

cos x2




y = x3

(B 2.3-1) � �
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Das Problem der exakten Linearisierung läßt sich graphentheoretisch so interpretieren, daß alle nicht
reellen Kantengewichte in reelle Kantengewichte überführt werden. Gelingt dies für alle Kanten, dann
kann das nichtlineare System einer exakten Zustandslinearisierung unterzogen werden. Werden nur alle
Kantengewichte von Kanten zwischen dem Ein- und Ausgangsknoten in reelle überführt, liegt die exakte
Ein-/Ausgangslinearisierung vor.

Im dargestellten Graphen können nicht alle Kantengewichte durch eine Zustandsrückführung in reelle
Größen überführt werden, z. B. die Gewichte der Kanten 1 → 2, und 4 → 2. Dies bedeutet, daß die bei
der exakten Lineariserung angewendeten nichtlinearen Zustandsrückführung nicht in den Koordinaten
x erfolgen kann, also eine Koordinatentransformation erforderlich wird. Nach (Schwarz 1991) existiert
eine Transformationsmatrix z(t) = T (x(t)) mit

z1 = t1(x) = y
z2 = t2(x) = ẏ

...
...

zr = tr(x) = y(r−1) .

(B 2.3-2)

Der relative Grad r gibt an, wie oft der Ausgang y abgeleitet werden muß, bevor erstmalig der Eingang u
in der Ableitung auftaucht. Diese Größe ist auch ein Indikator für den Linearisierungstyp. Wenn r gleich
der Systemordung n ist, kann eine exakte Zustandslinearisierung durchgeführt werden, ansonsten kann
nur eine Linearisierung des Ein-/Ausgangsverhaltens erzielt werden.

Der relative Grad kann in vielen Fällen direkt am Graphen abgelesen werden und ist abhängig von der
Länge des kürzesten Pfades zwischen dem Eingang und Ausgang min luy:

r ≥ min luy − 1 . (B 2.3-3)

Falls nur ein Pfad zwischen u und y vorhanden ist, kann r eindeutig angegeben werden, ansonsten sind
weitergehende Untersuchungen notwendig. Aus dem dargestellten Graphen ergibt sich ein relativer Grad
von r = n = 4 und damit die Möglichkeit einer exakten Zustandslinearisierung.

Die graphentheoretische Bestimmung der in Gl. (B 2.3-2) benötigten Ausgangssignalableitungen wird
in (Spielmann 1997) ausführlich beschrieben und besteht im wesentlichen aus der Suche nach Pfaden,
die im Ausgangsknoten enden. Für die erste Ableitung werden alle Pfade der Länge l = 1 und deren
Pfadgewichte benötigt:

ẏ = b(3, y) · ẋ3 = 1 · f3(x, u) . (B 2.3-4)
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Für die nächste Ableitung ÿ gehen alle Pfade der Länge l = 2 in die Berechnung ein:

ÿ = b(4, y) · ẋ4 = 1 · 1 · f4(x, u) . (B 2.3-5)

Auch bei der letzten, für die Koordinatentransformation benötigten, zeitlichen Ableitung des Ausgangs,
braucht nur ein Pfad berücksichtigt werden, diesmal der Länge l = 3:

···
y= b(2, 4) · x2 = − sinx2 · 1 · 1 · f2(x, u) (B 2.3-6)

Nach Anwendung der gefundenen Koordinatentransformation können alle noch auftretenden funktio-
nalen Kantengewichte mittels einer nichtlineare Zustandsrückführung in den neuen Koordinaten z eli-
miniert werden (Bild 2.4). Das dynamische Verhalten des linearen Systems kann anschließend, wie im
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Bild 2.4. Graph des Systems nach der Koordinatentransformation

vorangegangen Beispiel demonstriert, durch eine Polvorgabe bestimmt werden.

Für lineare Systeme gibt es bereits zahlreiche Algorithmen zur graphentheoretischen Gene-
rierung von Regelungen. Eine Übertragung auf nichtlineare Systeme ist durch das Auftreten
funktionaler Kantengewichte nicht immer in einfacher Weise möglich und ist Gegenstand der
aktuellen Forschung.
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3 Identifikation vorstrukturierter Modelle

Ein Identifikationsprozeß setzt sich im allgemeinen aus den drei Phasen

• Voridentifikation,

• Modellschätzung und

• Modellverifikation

zusammen (Reuter 1995). In der entsprechenden Literatur (u. a. Isermann 1992) wird im we-
sentlichen auf den Bereich der Modellschätzung eingegangen. Dies rührt unter anderem daher,
daß bei der Beschränkung auf lineare Identifikationsmodelle einige Inhalte der Voridentifikation
(z. B. die Bestimmung einer geeigneten Modellstruktur) nicht zum Tragen kommen. Besonders
dann, wenn nichtlineare Modelle identifiziert werden sollen, beispielsweise bilineare oder qua-
dratische Systeme, ist die Voridentifikation von größerer Bedeutung.

Voridentifikation In der Voridentifikationsphase werden die später benötigten a-priori Infor-
mationen über einen (nichtlinearen) Prozeß gewonnen. Hierzu sind u. a. Aussagen zur Modell-
struktur, zur Modellgröße und zur Prozeßdynamik zu zählen. Diese können sowohl aus Experi-
menten als auch aus theoretischen Überlegungen resultieren. Insbesondere ist es von Bedeutung
für die spätere Identifikation, ob und wie nichtlinear ein Prozeß ist und welche Charakteristik die
Nichtlinearität zeigt. Bei der Modellierung statischer Nichtlinearitäten hat sich die Verwendung
sogenannter Wiener- oder Hammerstein-Modelle (Isermann 1992) bewährt. Zur Approximation
dynamischer Nichtlinearitäten eignen sich bilineare Modelle (Schwarz 1991)

ΣBLS

ẋ(t) = Ax +
m∑

j=1

Njxuj + Bu

y(t) = Cx

(3.1)

und quadratische Modelle (Jelali 1994, Schwarz 1996)

ΣQLS

ẋ(t) = A1x + A2x ⊗ x + B0u + B1x ⊗ u

y(t) = Cx .
(3.2)

Beide bieten den Vorteil einer verhältnismäßig guten Approximation und Aggregation bei gleich-
zeitig einfacher Analyse und Synthese von Regelungskonzepten.

Modellschätzung Die Modellschätzung umfaßt die Auswahl eines geeigneten Schätzverfah-
rens, welches stark von der zu ermittelnden Modellstruktur abhängt, und die (Parameter-)Iden-
tifikation selbst. Vor der Identifikation müssen geeeignete Startwerte gefunden werden, hierfür
können Annahmen oder Kenntnisse über den Prozeß herangezogen werden. Alternativ sind
auch Verfahren anwendbar, die gerade für den Fall von wenig a-priori Wissen konzipiert sind
(Reuter 1995). Nach Beendigung des Schätzvorgangs bleibt festzustellen, ob die Parameter ein
plausibles Modell darstellen und wie gut gemessene und identifizierte Signale übereinstimmen.

Modellverifikation Liefert die Identifikation ein Modell, daß die zur Identifikation genutzten
Datensätze gut prädiziert, so ist anschließend zu verifizieren, ob das Modell auch für andere
Eingangssignalverläufe gültig ist. Vor allem die Grenzen, in denen das Prozeßverhalten genü-
gend genau nachgebildet wird, ist zu prüfen und mit den Anforderungen an das Modell zu
vergleichen.
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3.1 Vorstrukturierte Modelle

Die Anwendung der im letzten Abschnitt eingeführten strukturellen Systembeschreibung soll
hier zur Vorstrukturierung von Identifikationsmodellen genutzt werden. Entsprechend den Aus-
führungen ist dieses Verfahren der Phase der Voridentifikation zuzuordnen. Die Vorstrukturie-
rung benötigt insofern ein recht hohes Vorwissen über den betrachteten Prozeß, als die Wirkzu-
sammenhänge zwischen den einzelnen Systemzuständen teilweise bekannt sein müssen. Dies
setzt u. a. voraus, daß die Systemzustände und deren physikalische Bedeutung zuvor festgelegt
sind. Nicht bekannt sein muß dagegen die funktionale Verknüpfung der Zustände untereinander.
Eventuell vorhandenes Wissen über die System-Differentialgleichung können aber direkt in die
Voridentifikation einfließen.

Das genannte Wissen über den Prozeß wird in Form eines Graphen abgebildet und dem wei-
teren Vorgehen so in kompakter Form zur Verfügung gestellt. Ist der Graph bekannt, wird in
einem zweiten Schritt der gewünschte Systemtyp festgelegt. Für den nichtlinearen Fall kann
dies einfachstenfalls ein bilineares System sein. Andere Klassen wie quadratische Systeme oder
Polynomsysteme sind ebenfalls geeignet. Mit der Polynomordnung des gewählten Systemtyps
steigt allerdings die Anzahl der freien Parameter an, so daß die folgende Modellidentifikation
gegebenenfalls nicht zum Ziel führt.

Hat man sich bei der Identifikation für einen Systemtyp, wie beispielsweise ein bilineares Sy-
stem, ein quadratisches System o. ä. entschieden, so wird anhand des Graphen ein geeigne-
tes Approximationsmodell vorgeschlagen. Geeignet soll in diesem Kontext bedeuten, das die
Belegungsmuster der beschreibenden Systemmatrizen entsprechend dem Graphen vorgegeben
werden. Am Beispiel eines Differentialzylinders mit 4/3-Wege Servoventil (als PT2-System
modelliert, vgl. Ruppert (1982)) soll nun die Voridentifikation mit vorstrukturiertem Modell
verdeutlicht werden:

Für einen Differentialzylinder mit 4/3-Wege Servoventil soll eine nichtlineare Approximation
gefunden werden. Zu diesem Zweck wird aus den bekannten physikalischen Gesetzmäßigkeiten
ein Strukturmodell abgeleitet. Dieses beinhaltet Aussagen darüber, welche Zustandsgrößen auf-
einander wirken, ohne näher auf die zugehörigen Verknüpfungsvorschriften einzugehen. Wer-
den die wesentlichen physikalischen Größen mit

x1: Kolbenposition
x2: Kolbengeschwindigkeit
x3: Druck in Kammer A
x4: Druck in Kammer B
x5: Steuerkolbenposition
x6: Steuerkolbengeschwindigkeit

bezeichnet, so kann das Strukturmodell in Form des Graphen in Bild 3.13 visualisiert werden.

3 Zum Zwecke der Übersichtlichkeit enthält der Graph Doppelpfeile ↔, die als Stellvertreter für zwei
wechselseitige Pfeile � stehen.
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Bild 3.1. Graph des hydraulischen Differentialzylinders

Grundlage für dieses Strukturmodell ist die analytische Beschreibung der Dynamik des Diffe-
rentialzylinders:

ẋ1 = x2 (3.3a)

ẋ2 =

(
x3 − x4

ϕ

)
AK − FR(x2) − FS

mG
(3.3b)

ẋ3 =
EÖl(x3)

VA(x1)

(
−AKx2 + BV(sg(x5) sign(p0 − x3)

√
|p0 − x3|

− sg(−x5) sign(x3 − pT)
√

|x3 − pT|)
)

(3.3c)

ẋ4 =
EÖl(x4)

VB(x1)

(
AK

ϕ
x2 + +BV(sg(−x5) sign(p0 − x4)

√
|p0 − x4|

− sg(x5) sign(x4 − pT)
√

|x4 − pT|)
)

(3.3d)

ẋ5 = x6 (3.3e)

ẋ6 = −ω2
0x5 − 2Dω0x6 + ω2

0u (3.3f)

Der gestrichelte Pfeil in Bild 3.1 deutet an, das die Abhängigkeit zwischen den Drücken A (x3)
und B (x4) nicht direkt aus dem analytischen Modell hervorgeht. Allerdings ist aus physikali-
scher Sicht eine Wechselwirkung beider Größen vorhanden, die bei einer genaueren mathema-
tischen Realisierung – hier ist an die Berücksichtigung von Leckölvolumenströmen, variablem
Tank- und Versorgungsdruck sowie der Ventilüberdeckung gedacht – auch im Systemmodell
enthalten wäre. Die explizite Kenntnis des Modells (3.3) ist keine Voraussetzung für die Vo-
ridentifikation. Lediglich das Wissen bezüglich der Anzahl der Systemzustände, deren phy-
sikalische Bedeutung und welche Zustände aufeinander wirken, wird verwendet. Zusätzliche
Informationen über den Prozeß können jedoch im Strukturgraphen eingebracht werden, z. B. in
Form von Kantenbewertungen (Abschnitt 2, S. 4).

Aus dem Strukturmodell bzw. dem Strukturgraphen kann, je nach der gewählten Systemklas-
se des Identifikationsmodells, ein Vorschlag für die Belegung der Systemmatrizen gefunden



3 Identifikation vorstrukturierter Modelle 14

werden. Für eine bilineare Approximation des Differentialzylinders mit

ΣBLS

ẋ = Ax + Nxu + bu ; x ∈ R
6

y = cT x
(3.4)

erhält man die strukturellen Systemmatrizen

A =




0 ∗1 0 0 0 0
0 ∗2 ∗3 ∗4 0 0
∗5 ∗6 ∗7 ∗8 ∗9 0

∗10 ∗11 ∗12 ∗13 ∗14 0

0 0 0 0 0 ∗15

0 0 0 0 ∗16 ∗17




; N =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ∗18 ∗19




; bT =




0
0
0
0
0
∗20




; cT =




∗21

0
0
0
0
0




.

(3.5)

Die umrahmten Elemente korrespondieren mit dem gestrichelten Pfeil in Bild 3.1 und stehen für
Verknüpfungen zwischen den Drucksignalen A und B. Als weitere Information ist bekannt, daß
x2 und x6 Geschwindigkeiten darstellen, so daß infolge der einfachen Integration ∗1 = 1 und
∗15 = 1 gelten. Weiterhin entspricht der Ausgang der Kolbenposition und damit gilt ∗21 = 1.
Das einfache bilineare System besitzt damit bereits 18 freie Parameter, die im nächsten Schritt
zu identifizieren sind.

Kommen komplexere Systemmodelle wie QLS mit

ΣQLS

ẋ = Ax + A2x
[2] +

[
Nx + N2x

[2] + b
]

u ; x ∈ R
6

y = cTx
(3.6)

bei der Approximation zum Einsatz so erhöht sich die Anzahl der freien Parameter weiter, wo-
hingegen sich die Ein-/Ausgangsbeschreibung des Systems natürlich nicht verändert. Aufgrund
des reduzierten Kronecker-Produkts (·)[2] in Gl. (3.6) steigt die Anzahl der Parameter deutlich,
denn es gilt (Jelali 1997)

x[2] =




x1q1

x2q2
...

xnqn


 mit qi =




xi

xi+1
...

xn


 ; i = 1, . . . , n . (3.7)

Für den hydraulischen Antrieb mit dem Strukturgraphen in Bild 3.1 kommen dementsprechend
neben den 18 freien Parametern aus den Matrizen A, N und dem Vektor b noch weitere aus
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A2 und N2 hinzu:

AT
2 =




0 0 ∗22 ∗23 0 0
0 0 ∗24 ∗25 0 0
0 0 ∗26 ∗27 0 0

0 0 ∗28 ∗29 0 0

0 0 ∗30 ∗31 0 0
0 0 0 0 0 0
∗32 ∗33 ∗34 ∗35 0 0
0 ∗36 ∗37 ∗38 0 0

0 ∗39 ∗40 ∗41 0 0

0 0 ∗42 ∗43 0 0
0 0 0 0 0 0
0 ∗44 ∗45 ∗46 0 0

0 ∗47 ∗48 ∗49 0 0

0 0 ∗50 ∗51 0 0

0 0 0 0 0 0
0 ∗52 ∗53 ∗54 0 0

0 0 ∗55 ∗56 0 0

0 0 0 0 0 0
0 0 ∗57 ∗58 0 ∗59

0 0 0 0 0 ∗60

0 0 0 0 ∗61 ∗62




NT
2 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ∗63

0 0 0 0 0 ∗64

0 0 0 0 0 ∗65




. (3.8)

Damit erhöht sich die Gesamtzahl der Parameter auf 65, wobei 10 Parameter für die Annahme
einer direkten Abängigkeit zwischen den Drücken A und B (ẋ3 = f(x4) und ẋ4 = f(x3))
eingefügt sind. Sie sind mit einer Box gekennzeichnet und können ggf. entfallen. Nicht alle
der 65 Parameter sind frei wählbar, vielmehr sind wie schon für die bilineare Approximation
aufgrund von Randbedingungen einige Parameter festgelegt, z. B.

∗32 = 1 ; ∗61 = 1 .

Die nächst komplexere Klasse sind die Polynomsysteme (PLS), bei denen die das System be-
schreibenden Differentialgleichungen durch Polynome höherer Ordnungen abgebildet werden.
Mit der gewählten Polynomordnung steigt die Anzahl der zu identifizierenden Parameter aller-
dings entsprechend an, so daß nur für Systeme niedriger Ordnungen n oder Sonderfälle eine
anschließende Identifikation möglich sein wird.

Verwendet man allgemeine Systemmodelle wie analytische Systeme mit linearer Steuerung
(ALS) (Schwarz 1991), so kann die Anzahl der Strukturparameter ∗k verhältnismäßig klein
ausfallen. Allerdings sind die ∗k in dem Falle Platzhalter für funktionale Zusammenhänge in
den Variablen xi des Zustandsmodells (Wey 1996). Fraglich ist, ob solche Funktionen, zumin-
dest in bestimmten Fällen, mit Identifikationsalgorithmen bestimmt werden können.

3.2 Parameteridentifikation

Im Rahmen eines geeigneten Identifikationsverfahrens sind nach der Festlegung der Modell-
struktur die numerischen Werte der Strukturparameter zu ermitteln. Hierbei ergibt sich je-
doch das Problem, daß die üblicherweise angewendeten Identifikationsverfahren dafür ausge-
legt sind, die Parameter einer Differentialgleichung höherer Ordnung zu bestimmen (Reuter
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1995). Die direkte Ermittlung der Parameter eines Zustandsmodells wird demgegenüber we-
sentlich seltener angewendet. Aus der oben betrachteten bilinearen Darstellung für den Diffe-
rentialzylinder ergibt sich durch Differentiation der Ausgangsgröße

y = x1

ẏ = ∗1x2

ÿ = ∗1(∗2x1 + ∗3x2 + ∗4x3 + ∗5x4)
= ∗1∗2y + ∗3ẏ + ∗1∗4x3 + ∗1∗5x4
...

(3.9)

eine Ein-/Ausgangs-Differentialgleichung der Ordnung 6. Diese besitzt weniger Koeffizienten
als die gesuchten 18 Strukturparameter ∗k, so daß keine eindeutige Lösung gefunden werden
kann. Da es sich um ein unterbestimmtes Gleichungssystem handelt, ist eine Lösung jedoch
grundsätzlich möglich. Alle Lösungen des Gleichungssystems führen darüber hinaus zu Zu-
standsmodellen, die durch im allgemeinen nichtlineare Transformationen miteinander verknüpft
sind. Eine der wesentlichen Eigenschaften eines graphentheoretischen Ansatzes, nämlich daß
die approximierten Zustandsgrößen mit den realen Zustandsgrößen in enger Verbindung stehen,
wird mit einer wachsenden Anzahl von unbestimmten Strukturparametern jedoch zunehmend
unwahrscheinlich.

Eine deutliche Vereinfachung der Identifikation ergibt sich, wenn alle oder zumindest ein Groß-
teil der Zustandsgrößen meßtechnisch erfaßbar sind. In dem Fall kann eine Ein-/Ausgangsglei-
chung wie die in (3.9) sukzessive identifiziert werden.

Im Falle des Differentialzylinders stehen für die vier Zustandsgrößen

x1: Kolbenposition
x3: Druck in Kammer A
x4: Druck in Kammer B
x5: Steuerkolbenposition

Meßeinrichtungen zur Verfügung. Die fehlenden Geschwindigkeiten x2 und x5 können z. B.
mittels Differenzenquotient bestimmt werden. Für das bilineare Strukturmodell (3.5) kann dem-
nach der Identifikationsprozeß aufgeteilt werden in vier Schritte, in denen jeweils ein Teilmodell
identifiziert wird:

• Modell 1 (vgl. Gln.(3.3a,3.3b))
Eingangsgrößen: Druck A und B
Ausgangsgröße: Kolbenposition

[
ẋ1

ẋ2

]
=

[
0 1
0 ∗2

] [
x1

x2

]
+

[∗3 ∗4

] [
(x3)mes

(x4)mes

]

(x1)mes =
[
1 0

] [
x1

x2

] (3.10)

• Modell 2 (vgl. Gl.(3.3c))
Eingangsgrößen: Kolbenposition, Kolbengeschwindigkeit, Druck B (optional),
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Steuerkolben-Position
Ausgangsgröße: Druck A

[
ẋ3

]
=

[∗7

] [
x3

]
+

[∗5 ∗6 ∗8 ∗9

]



(x1)mes

(x2)mes

(x4)mes

(x5)mes


 ; ggf. ∗8 = 0

(x3)mes =
[
1
] [

x3

]
(3.11)

• Modell 3 (vgl. Gl.(3.3d))
Eingangsgrößen: Kolbenposition, Kolbengeschwindigkeit, Druck A (optional),

Steuerkolben-Position
Ausgangsgröße: Druck B

[
ẋ4

]
=

[∗13

] [
x4

]
+

[∗10 ∗11 ∗12 ∗14

]



(x1)mes

(x2)mes

(x3)mes

(x5)mes


 ; ggf. ∗12 = 0

(x4)mes =
[
1
] [

x4

]
(3.12)

• Modell 4 (vgl. Gln.(3.3e,3.3f))
Eingangsgröße: Steuerkolben-Position
Ausgangsgröße: Steuerspannung[

ẋ5

ẋ6

]
=

[
0 1
∗16 ∗17

] [
x5

x6

]
+

[
0 0
∗18 ∗19

] [
x5

x6

] [
(u)mes

]
+

[∗20

] [
(u)mes

]

(x5)mes =
[
1 0

] [
x5

x6

] (3.13)

Die Modelle 1-3 sind linear und können daher mit Standardalgorithmen, wie sie MATLABzur
Verfügung stellt, identifiziert werden. Das bilineare Modell wird mit dem im Fachgebiet Meß-,
Steuer- und Regelungstechnik entstandenen Softwarepaket CONTIDNS (Jelali 1997) identifi-
ziert.
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4 Beobachterauslegung für bilineare Systeme

Für eine Regelstrecke soll ein bilinearer Beobachter entworfen werden, der den Zustandsvek-
tor anhand der Ein- und Ausgangssignale rekonstruiert. Die Wahl eines bilinearen anstatt eines
linearen Beobachters hat das hauptsächliche Ziel, den zulässigen Arbeitsbereich zu vergrößern
und damit die Güte der Schätzwerte zu verbessern. Wie bei einem linearen Beobachter kann
auch hier im allgemeinen nur ein Schätzwert für die Zustandsgrößen ermittelt werden. Durch
geeignete Wahl des Beobachtungsalgorithmus kann allerdings erreicht werden, daß der Fehler
zwischen geschätztem und zu schätzendem Wert einer asymptotisch stabilen Beziehung ge-
horcht und somit für t �→ ∞ gegen Null geht (Dorißen 1991). Die Ausführungen in diesem
Abschnitt sind auf Eingrößensysteme (u ∈ R

1, y ∈ R
1) beschränkt.

Analog zu Überlegungen für lineare Systeme entwirft man zunächst einen Beobachter, der im
wesentlichen aus dem möglichst exakten Modell der Strecke sowie einer Rückführung des Aus-
gangsfehlers besteht (vgl. Bild 4.1, (Zeitz 1987)). Der Schätzwert des Zustands ergibt sich hier-
für zu

x̂ = Ax̂ + Nx̂u + bu + k(u)(y − ŷ) . (4.1)

Anders als im Falle eines linearen Beobachters ist der Rückführkoeffizient des Ausgangsfehlers
k(u) eine Funktion der Eingangsgröße:

k(u) = kau + kb ; ka ∈ R
n ; kb ∈ R

n , (4.2)

was eine erhebliche Anzahl von wählbaren Parametern mit sich bringt. Damit ist eine direkte
Optimierung aller Rückführparameter selbst für Eingrößensysteme im allgemeinen nicht mög-
lich, gerade in Anbetracht des Einflusses der Eingangsgröße auf das Rückführgesetz. Um die
Stabilität eines Zustandsbeobachters trotzdem für alle u gewährleisten zu können, sind Ein-
schränkungen hinsichtlich der Belegungsmuster der Systemmatrizen des zu beobachtenden Zu-
standsmodells notwendig; hier hat sich u. a. die Beobachternormalform bewährt (Dorißen 1989,
Schwarz 1990). Für diese ist die Schätzfehlerdynamik

ė = ẋ − ˙̂x

= Ax + Nxu − Ax̂ − Nx̂u − k(u)cT(x − x̂)

= (A + Nu − k(u)cT)e

(4.3)

bei entsprechender Wahl von k(u) immer unabhängig von der Eingangsgröße u.

Die Einschränkung auf derartige Normalformen führt jedoch zu einer erheblichen Beeinträch-
tigung in der Anwendbarkeit, denn selten sind die physikalischen Zustandsgrößen einer tech-
nischen Anlage hinreichend genau durch ein bilineares Modell in Normalform zu beschreiben.
Zwar liefert ein aus einer Identifikation gewonnenes Normalform-Modell in der Regel eine gute
Abbildung des Ein-/Ausgangsverhaltens einer Anlage (vgl. (Schwarz u. a. 1996)), die Zustän-
de des Normalform-Modells korrespondieren aber nur in Ausnahmefällen direkt mit den realen
Zustandsgrößen. Eine Ausnahme beispielsweise ist der Fall, daß es sich bei dem in Normalform
vorliegenden Modell um die Transformation eines vorgegebenen Systemmodells handelt. Dann
kann durch Rücktransformation natürlich auf die Originalzustände rückgeschlossen werden.
Für eine Beobachterauslegung stellt sich allerdings die Frage, ob die Transformation on-line
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Bild 4.1. Blockschaltbild eines Zustandsbeobachters für bilineare Systeme

durchgeführt werden kann, d. h. ob in Echtzeit eine Rücktransformation in Originalkoordinaten
möglich ist.

Geht man von keiner Normalform aus, so muß im Einzelfall untersucht werden, ob die Feh-
lerdynamik bestimmten Forderungen genügt, beispielsweise Linearität oder Entkopplung von
der Eingangsgröße. Allgemeiner formuliert bleibt festzustellen, ob eine vorhandene bilineare
Realisierung in eine gewünschte Normalform transformiert werden kann. Für den untersuchten
Differentialzylinder ergibt sich aus den Strukturmatrizen der bilinearen Approximation (3.5)
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die folgende Fehlergleichung:

ė = (A + Nu − k(u)cT)e

=




−k1(u) 1 0 0 0 0
−k2(u) ∗2 ∗3 ∗4 0 0

∗5 − k3(u) ∗6 ∗7 ∗8 ∗9 0

∗10 − k4(u) ∗11 ∗12 ∗13 ∗14 0

−k5(u) 0 0 0 0 1
−k6(u) 0 0 0 ∗16 + ∗18u ∗17 + ∗19u




e = Aee .
(4.4)

Bereits an dieser Stelle wird deutlich, daß bestimmte Elemente der letzten Zeile der Matrix Ae

trotz freier Wahl der Rückführverstärkung k(u) nicht unabhängig von der Eingangsgröße sind.
Es kann somit auch keine Transformation existieren, die dieses System in z. B. Beobachternor-
malform überführt. Eine allgemeine Überprüfung mit MAPLE liefert keine expliziten Resultate
für die Eigenwerte der Schätzfehlergleichung, so daß erst bei Kenntnis der identifizierten Pa-
rameter eine Festlegung des Rückführvektors sinnvoll ist. Dies wird im nächsten Abschnitt für
den Laborversuch „Differentialzylinder“ durchgeführt.
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5 Ergebnisse am Laborversuch „Differentialzylinder“

5.1 Identifikation

Für den in Abschnitt 3.1 diskutierten Differentialzylinder soll in einem ersten Schritt eine bili-
neare Approximation gefunden werden. Auf der Basis der Approximation wird dann ein Beob-
achter ausgelegt, der anhand eines hochgenauen Simulationsmodells auf Basis von nichtlinea-
ren analytischen Differentialgleichungen (Spielmann 1996) und anhand von Meßdaten verifi-
ziert wird.
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Bild 5.1. Identifikations-Daten für Approximation eines Differentialzylinders: a)-d) Teilmodelle der bi-
linearen Approximation gemäß Gln. (3.10)-(3.13)

Das vorstrukturierte Modell und die Aufteilung in Teilmodelle ist bereits in Abschnitt 3.1 vorge-
stellt worden. Die Identifikation entsprechend der Teilmodelle (3.10-3.13) wurde mit der MAT-
LAB IDENTIFICATION TOOLBOXund CONTIDNS durchgeführt. Diese liefern die Systempa-
rameter des bilinearen Modells:
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Bild 5.2. Identifikations-Daten für Approximation eines Differentialzylinders: a)-d) Teilmodelle der bi-
linearen Approximation gemäß Gln. (3.10)-(3.13) mit zusätzlichen Drucksignalen

A =




0 1 0 0 0 0
0 −68, 997 4, 0734 −2, 0028 0 0

334, 7 311, 21 −2, 6499 0 −1, 5464 0
1445, 9 1019, 6 0 −5, 7039 −6, 0145 0

0 0 0 0 0 1
0 0 0 0 −36199 −262, 58




N =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −64, 645 1, 7452




b =




0
0
0
0
0

347640




; cT =
[
1 0 0 0 0 0

]
.

(5.1)
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Das Ein-/Ausgangsverhalten der identifizierten Teilmodelle ist in Bild 5.1 abgebildet. Das zwei-
te Teilmodell zeigt zufriedenstellendes Verhalten hinsichtlich der Übereinstimmung von iden-
tifiziertem und aus Messungen resultierendem Geschwindigkeitssignal. Hierbei ist zu berück-
sichtigen, daß das „gemessene“ Geschwindigkeitssignal aus Differenzenquotienten besteht und
folglich selbst nicht exakt das Verhalten des Zylinders beschreibt. Die Kolbenposition im er-
sten Teilmodell weicht zum Teil erheblich ab; dies begründet sich durch die bei der Integration
aufsummierten Geschwindigkeitsfehler. Für die Drucksignale ist die Identifikation nicht akzep-
tabel. Offensichtlich sind die linearen Approximationen – der bilineare Anteil ist auf die den
Steuerkolben beschreibende Differentialgleichung beschränkt – nicht geeignet für eine Repro-
duktion der Druckverläufe.

In Abschnitt 3.1 ist bereits angesprochen worden, daß eine gegenseitige Abhängigkeit der
Drucksignale A und B anzunehmen ist. Berücksichtigt man solch eine wechselseitige Abhän-
gigkeit dieser Zustandsgrößen untereinander – die Parameter ∗8 und ∗12 in Gl. (3.5) sind dann
ungleich null – erhält man die veränderte Matrix A′ mit

A′ =




0 1 0 0 0 0
0 −68, 997 4, 0734 −2, 0028 0 0

2030, 3 −3457, 5 −214, 83 102, 86 21, 824 0
538, 45 4296, 4 622, 94 −316, 18 −49, 97 0

0 0 0 0 0 1
0 0 0 0 −36199 −262, 58




. (5.2)

Das neue Modell führt zu den in Bild 5.2 dargestellten Zeitverläufen. Für diesen Fall sind alle
vier Teilmodelle als gut zu bezeichnen, sowohl für den Identifikations-Datensatz selbst als auch
den hier nicht abgebildeten Validierungs-Datensatz. Das Positionssignal weicht aufgrund der
Integration allerdings nach wie vor ab. Ebenfalls untersucht wird die Identifikation der zweit-
einfachsten Klasse nichtlinearer Systeme, des vorstrukturierten quadratischen Systems wie es
in den Gln. (3.6,3.8) vorgeschlagen ist. In einem ersten Schritt sind die nicht zufriedenstellend
approximierten Drucksignalgleichungen als QLS zu modellieren, für die restlichen Zustands-
gleichungen erscheint dies nicht notwendig zu sein. Für eine quadratische Approximation steht
derzeit nur das Programmpaket CONTIDNS zur Verfügung. Allerdings zeigt sich bereits bei
der Untersuchung der Differentialgleichung ẋ3 = . . . entsprechend dem Modell (3.11), daß
die zusätzlichen 10 Parameter nicht identifiziert werden können. Auch eine Reduktion der zu-
sätzlichen Parameter auf 4 führt lediglich zur Identifikation von instabilen QLS. Damit wird
in eindrucksvoller Form dargestellt, daß – zumindest für das vorliegende technische System
des Differentialzylinders – nur möglichst einfache Systeme mit wenigen Parametern zu einer
sinnvollen und nutzbaren Identifikation führen.

5.2 Beobachter

Auf der Basis des identifizierten bilinearen Modells soll nun im weiteren das Konzept eines
Beobachters verfolgt werden, wie es in Abschnitt 4 dargestellt ist. Die Fehlergleichung (4.4)
ergibt sich für die identifizierten Parameter gemäß Gl. (5.2) zu
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Bild 5.3. Messung und Schätzwerte für die Zustandsgrößen des Differentialzylinders: Beobachter gemäß
Gl. (4.1)

ė = (A + Nu − k(u)cT)e

=




−k1(u) 1 0 0 0 0
−k2(u) −68, 997 4, 0734 −2, 0028 0 0

2030, 3 − k3(u) −3457, 5 −214, 83 102, 86 21, 824 0
538, 45 − k4(u) 4296, 4 622, 94 −316, 18 −49, 97 0

−k5(u) 0 0 0 0 1
−k6(u) 0 0 0 −36199 − 64, 645u −262, 58 + 1, 7452u




.

(5.3)

Die Stabilität der Fehlergleichung ist abhängig von der Eingangsgröße u, die in den Grenzen
zwischen −10V und +10V variiert. Für den Rückführvektor hat sich eine erste Wahl der Para-
meter zu

k(u) = k =




100
1000
100
100
100
100




(5.4)
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als geeignet erwiesen, die mit diesen Werten erzielten Schätzergebnisse sind in Bild 5.3 doku-
mentiert. Hier zeigt sich, daß das Ergebnis besonders hinsichtlich der Schätzung der Druck-
signale nicht ausreichend ist. Eine deutliche Erhöhung der konstanten Rückführkoeffizienten
liefert nur einen sehr begrenzten Erfolg, wie die Bilder A.1 und A.2 in Anhang A.1 zeigen. Die
Wahl eines Rückführvektors in Abhängigkeit von u wie in Gl. (4.2) führt ebenfalls nicht zu
einer signifikanten Verbesserung.

Eine weitere Möglichkeit ist die zusätzliche Messung eines der beiden Drucksignale, entweder
pA oder pB. Hieraus ergibt sich beispielsweise die folgende Schätzwertwertgleichung für den
BLS-Beobachter
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Bild 5.4. Messung und Schätzwerte für die Zustandsgrößen des Differentialzylinders: Beobachter gemäß
Gl. (5.5)

x̂ = Ax̂ + Nx̂u + bu + K(u)

([
x1

pA

]
−

[
x̂1

x̂3

])
(5.5)

mit den Zahlenwerten aus den Gln. (5.1,5.2). Diese Wahl der Meßgrößen ist aus theoretischer
Sicht deshalb sinnvoll, weil ein Drucksignal zusammen mit dem Positionssignal gerade einen
sogenannten flachen Ausgang des Differentialzylinders bildet (Wey und Lemmen 1997). Die
Flachheit impliziert hierbei, daß die Bedingung (Rothfuß u. a. 1996)
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• jeder Systemzustand xk, k = 1, . . . , n kann direkt in Abhängigkeit des linearisierenden
Ausgangs ylin = [x1 pA]T und dessen zeitlichen Ableitungen berechnet werden.

erfüllt wird, so daß in Positions- und Drucksignal zusammen alle Informationen über die Sy-
stemzustände enthalten sind. Mit der zusätzlichen Messung des Drucksignals erhält man die
erweiterte Rückführmatrix

K(u) = K =




100 0
1000 0
100 500
100 500
100 0
100 0




, (5.6)

mit dem die wesentlich besseren Beobachtungsresultate in Bild 5.4 erreicht werden. Bei dieser
Variante kann eine weitere Erhöhung der Rückführparameter die Resultate noch zusätzlich ver-
bessern (vgl. Anhang A.2), besonders die Schätzung des Geschwindigkeitssignals x2 verbessert
sich signifikant. Hierbei ist jedoch zu bedenken, daß dies zu einer ungewollten Verstärkung von
Meßrauschen und ggf. einem instabilen Verhalten des Beobachters führen kann.

Die Stabilität beider Beobachter kann für beliebige u durch einfache Berechnung der Eigenwer-
te mit beispielsweise MAPLE verifiziert werden. Exemplarisch sind in Bild 5.5 die Realteile der

-400�

-300�

-200�

-100�

0�-10� -5� 5� 10�

u/V�

Re�

λò
1ò

λò
2,ò
λò
3ò

λò
4,ò
λò
5ò

λò
6ò

Bild 5.5. Eigenwert-Realteile der Schätzfehlergleichung (5.3) mit k(u) aus Gl. (5.4)

Eigenwerte der Schätzfehlergleichung (5.3) mit k(u) entsprechend der Gl. (5.4) dargestellt, alle
sind im für u zulässigen Bereich negativ. Weitere Untersuchungen bestätigen, daß die Realteile
nur wenig auf eine Veränderung des Rückführvektors k(u) reagieren (vgl. Bild 5.5).

Auch für den Fall der zusätzlichen Messung von pA mit der erweiterten Rückführmatrix K(u)
kann die Stabilität der Schätzfehlergleichung für den gesamten Definitionsbereich von u nach-
gewiesen werden. In Tabelle 5.1 sind Mittelwert und Schwankungsbreite der Eigenwerte für
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Tabelle 5.1. Eigenwerte (Realteile) der Schätzfehlergleichung des bilinearen Beobachters (5.5) für Ein-
gangsgrößen −10 ≤ u ≤ 10

Realteile für −10 ≤ u ≤ 10
Eigenwert Mittelwert Minimalwert Maximalwert

λ1 -714,55 -714,55 -714,55
λ2 -267,98 -267,98 -267,98
λ3 -131,29 -140,02 -122,56
λ4 -131,29 -140,02 -122,56
λ5 -109,05 -109,05 -109,05
λ6 -109,05 -109,05 -109,05

−10 ≤ u ≤ 10 dargestellt. Die Stabilitätsreserve dieses Beobachters ist höher als im zuvor
beschriebenen Fall.
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6 Zusammenfassung

Das hier vorgestellte, auf der Graphentheorie basierende, Verfahren zur Approximation tech-
nischer Systeme erlaubt es, ohne großen Aufwand eine (Struktur-)Vorgabe für ein geeignetes
Systemmodell zu erstellen. Ein zentraler Vorteil dieses Verfahrens liegt in der Tatsache, daß
die Zustandsgrößen des Modells mit den realen Zustandsgrößen des zugrundeliegenden techni-
schen Systems korrespondieren. Zwar können auch für solche Modelle die realen und die mo-
dellierten Zustandsgrößen in ihrer Interpretierbarkeit differieren, jedoch ist das Verhalten der
modellierten Zustandsgrößen in der Regel wesentlich näher am technischen System orientiert
als wenn Normalformen (Jelali 1994) für Approximationsmodelle Verwendung finden.

Insbesondere bei Wahl eines bilinearen Approximationsmodells erweist sich der hier vorge-
stellte Ansatz als tragfähig. Für Approximationsmodelle höherer Ordnungen wie beispielswei-
se QLS erhöht sich gegenüber den BLS die Anzahl der Strukturparameter deutlich. Bei An-
wendung konventioneller Identifikationsverfahren, die sich an der Ein-/Ausgangs-Differential-
gleichung orientieren, führt das zu einem stark unterbestimmten Gleichungssystem und damit
eventuell zu ungeeigneten oder instabilen Approximationsmodellen. Selbst recht zuverlässige
Identifikationsprogramme wie CONTIDNS, die speziell für die Ermittlung von QLS entworfen
wurden (Jelali 1997), können zumindest im Falle des hier als Beispiel gewählten Differential-
zylinders nicht unmittelbar eine stabile QLS-Zustandsgleichung ermitteln.

Generell ist zu berücksichtigen, daß Identifikationsverfahren zur Ermittlung von Parametern ei-
nes Zustandsmodells derzeit nur für lineare Systeme hinreichend erforscht sind. Im Falle von
nichtlinearen Systemen dagegen sind noch viele Fragen zu diesem Themenbereich offen, für
die Identifikation nichtlinearer Zustandsmodelle in bestimmten Normalformen sind vielverspre-
chende Ansätze und Methoden z. B. mit (Reuter 1995, Jelali 1997) verfügbar. Solange keine
zufriedenstellenden Lösungen hierzu gefunden werden, sind auch die vorgestellten Struktur-
modelle in ihrer Anwendung für den hier diskutierten Themenbereich eingeschränkt. Anders
verhält es sich, wenn man die oben genannte Annahme trifft, daß alle Zustandsgrößen meß-
technisch erfaßbar sind. In dem Fall ist auch für komplexere Modelle wie QLS die Identifika-
tion eines Zustandsmodells vorgegebener Struktur möglich, weil das Identifikationsproblem in
mehrere Einzelidentifikationen untergliedert werden kann, es wird quasi Zustandsgleichung für
Zustandsgleichung einzeln identifiziert. Aus technischer Sicht ist die Kenntnis der Zustandsgrö-
ßen zudem nicht ungewöhnlich. Bei dem betrachteten Differentialzylinder können beispielswei-
se alle Größen außer der Kolbenstangengeschwindigkeit gemessen werden. Für bilineare Ap-
proximationsmodelle erweist sich dieser Ansatz als ausgesprochen erfolgreich. Versucht man
hingegen, quadratisch lineare Gleichungen einzubeziehen, so gestaltet sich die Identifikation
deutlich schwieriger und liefert bei gleichem Entwurfsaufwand schlechtere Ergebnisse als die
bilineare Approximation. Das bestätigt den Grundsatz, daß in der Regel nur möglichst einfache
Systeme mit wenigen Parametern zu einer sinnvollen und nutzbaren Identifikation führen. Bei
entsprechend besseren Identifikationsalgorithmen wird jedoch mit Sicherheit ein QLS-Modell
zu ermitteln sein, daß günstigere Approximationseigenschaften als das bilineare Modell auf-
weist.

Hinsichtlich der Anwendung kann die bilineare Approximation als geeignete Basis eines Be-
obachterentwurfs genutzt werden. Das Konzept für den Beobachterentwurf verfolgt das gleiche
Prinzip wie der Luenberger-Beobacher für den linearen Fall, d. h. der Beobachter besteht im we-
sentlichen aus einem Abbild der Strecke mitsamt einer Rückführung des Ausgangsfehlers. Dies
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führt trotz der einfachen Systemklasse zu unerwartet guten Ergebnissen, zusätzlich bietet ein
bilinearer Ansatz den Vorteil einer ggf. linearen Fehlerdynamik des Beobachters. Zumindest ist
aber die Fehlergleichung einfach auszuwerten, so daß die Stabilität des bilinearen Beobachters
im voraus sichergestellt werden kann. Der Erfolg dieses Konzepts konnte an dem untersuch-
ten Differentialzylinder nachgewiesen werden, der Ansatz läßt sich aber auch verallgemeinern
für andere technische Systeme. Der Grundgedanke besteht darin, ein technisches System un-
ter Einsatz von entsprechend genauer Meßsensorik auf einem Prüfstand zu vermessen. Anhand
der Messungen und eines Strukturmodells, welches aus dem Wissen über die physikalischen
Grundlagen des technischen Systems resultiert, kann dann ein nichtlineares Modell identifiziert
werden. Dieses Modell zusammen mit einer unter Umständen deutlich reduzierten Sensorik
genügt dann für die Auslegung von Zustandsrückführungen.
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A.1 Bilinearer Beobachter ohne Druckmessung

Für den bilinearen Beobachter mit Rückführung des Positionsfehlers e = x1 − x̂1 soll durch
Erhöhung der (konstanten) Rückführparameter eine Verbesserung vor allem für die Schätzung
der Drucksignale erzielt werden. Für den 10-fachen (Bild A.1) Wert
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Bild A.1. Messung und Schätzwerte für die Zustandsgrößen des Differentialzylinders: Beobachter gemäß
Gl. (4.1) mit dem Rückführvektor aus (A.1)
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oder hundertfachen Wert (Bild A.2)
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Bild A.2. Messung und Schätzwerte für die Zustandsgrößen des Differentialzylinders: Beobachter gemäß
Gl. (4.1) mit dem Rückführvektor aus (A.2)
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der betroffenen Rückführparameter zeigen die Ergebnisse nahezu keine Verbesserung. Das be-
gründet sich mit dem in den Druckgleichungen linearen Approximationsmodell, was die realen
Druckverläufe nur ungenau wiedergeben kann. Selbst sehr hohe Rückführverstärkungen für den
Ausgangsfehler können den Beobachtungsfehler dann nicht minimieren, da e selbst nahezu 0
entspricht (s. Bild 5.3a).

A.2 Bilinearer Beobachter mit Druckmessung

Im weiteren werden die Koeffizienten in der Rückführmatrix K(u) des bilinearen Beobachters
bei zusätzlicher Druckmessung deutlich erhöht. Im Gegensatz zu Gl. (5.6) wird folgende Matrix
gewählt:

K(u) = K =




100 0
100000 0

100 10000
100 10000
100 0
100 0




. (A.3)

Mit dieser Ausgangsfehler-Rückführung verbessert sich in besonderer Weise das Beobach-
tungsresultat hinsichtlich der Geschwindigkeit (s. Bild A.3). Aber auch die Drucksignale wer-
den besser approximiert. Allerdings wurde hierbei bereits eine Verhundertfachung der Rück-
führparameter vorgenommen, was in der Bestimmung der beobachteten Größen zu numerischen
Instabilitäten und damit weitaus höheren Rechenzeiten führt.
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