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�Ubersicht� In diesem Forschungsbericht wird eine Multiparameter�Multizeitskalen�

Singular�Perturbation�Methode zur Regelung von Robotern mit elastischen Armen ent�

wickelt� Hierzu wird das Modell des Roboters zun	achst in Multiparameter�Multizeitskalen�

Form dargestellt� Anschlie�end wird ein rekursiver Algorithmus zur Dekomposition des

Robotersystems mit Hilfe der Multiparameter�Multizeitskalen�Singular�Perturbation�

Methode vorgestellt� Durch Verwendung des vorgestellten Algorithmus kann man nicht

nur die starre von der elastischen Dynamik� sondern auch die elastische Dynamik nach

verschiedenen Schwingungsfrequenzen trennen� Auf der Basis der resultierenden Teilsy�

steme wird ein Reglerentwurfsverfahren f	ur Roboter mit elastischen Gliedern angegeben�

Die vorgestellte Methode wird sowohl durch Simulationen eines einachsigen und eines

zweigliedrigen elastischen Roboterarms� als auch durch experimentelle Studien an einem

einachsigen elastischen Roboter veri
ziert� Die Ergebnisse zeigen� da� durch Verwendung

der vorgestellten Methode der Reglerentwurf f	ur Roboter mit elastischen Armen wesent�

lich erleichtert wird und der daraus resultierende Regler e�ektiv ist�
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� Einleitung

Um die Dynamik von Robotern mit elastischen Armen exakt zu beschreiben� ist die

elastische Deformation des Arms zu ber	ucksichtigen �Benati und Morro 
����� Dies

f	uhrt allerdings zu einem unendlich dimensionalen System� Im Hinblick auf die Rege�

lung ist jedoch eine endliche Ordnung w	unschenswert bzw� eine notwendige Vorausset�

zung �Schwarz 
��
�� Dies kann durch Verwendung eines Ritzschen Ansatzes geschehen

und liefert ein hoch�dimensionales System mit Multizeitskalen� d�h�� ein System� dessen

dynamische Verhalten im wesentlichen durch mehrere verschiedene Zeitkonstanten ge�

kennzeichnet werden kann �Zaad und Khorasani 
���� Siciliano und Book 
����� Wegen

der Kopplung zwischen dem langsamen und schnellen Verhalten ist das System schlecht

konditioniert� Darunter leiden die Analyse des Systems und der Reglerentwurf� F	ur einen

Roboter mit elastischen Armen kann angenommen werden� da� seine Gelenkwinkelge�

schwindigkeit viel niedriger als die kleinste Eigenfrequenz der elastischen Schwingungen

des Arms ist �Book 
���� Choura u� a� 
��
� Gawronski u� a� 
����� Unter dieser An�

nahme wird die Singular�Perturbation�Methode zur Trennung der starren und elastischen

Dynamik des Roboters mit elastischen Armen verwendet �Zaad und Khorasani 
���� Si�

ciliano und Book 
�����

Eine Schwierigkeit� die bei dem Reglerentwurf f	ur den Roboter mit elastischen Armen

auftritt� ist� da� die Anzahl der Regelgr	o�en gr	o�er als die Anzahl der Stellgr	o�en ist

�Siciliano und Book 
����� Durch Verwendung der von Siciliano und Book �
���� und

Zaad und Khorasani �
���� vorgestellten Ein�Parameter�Singular�Perturbation�Methode

kann man die Dynamik des Roboters mit elastischen Armen in ein starres und ein elasti�

sches Teilsystem zerlegen� F	ur das starre Teilsystem ist die Zahl der Eing	ange gleich der

Zahl der Ausg	ange� Aber das elastische Teilsystem hat immer noch mehrere Ausg	ange als

Eing	ange� wenn mehr als eine Ansatzfunktion pro Glied f	ur die Modellbildung benutzt

wird� Das bedeutet� da� die Ein�Parameter�Singular�Perturbation�Methode in diesem

Fall nicht gen	ugt� Allerdings w	urde ein dynamisches Modell mit nur einer Ansatzfunkti�

on pro Glied nur eine grobe Beschreibung des Roboters mit elastischen Armen darstellen

�Fraser und Daniel 
��
�� Deshalb mu� in der Praxis mehr als eine Ansatzfunktion pro

Glied bei der Modellbildung eines Roboters mit elastischen Armen benutzt werden� um

die Dynamik exakter darzustellen� In dieser Situation soll eine neue Methode gefunden

werden� um diese Schwierigkeit komplett zu 	uberwinden�

In Fraser und Daniel �
��
�� Wang �
���� und Zaad und Khorasani �
���� wurde ge�

zeigt� da� die Eigenwerte des entsprechend linearisierten Modells des Roboters mit ela�

stischen Armen sich nach dem Betrag ihres Imagin	arteils in Gruppen aufteilen lassen�

wenn mehr als eine Ansatzfunktion f	ur die Modellbildung benutzt wird� Weil die elasti�

schen Schwingungen nur schwach ged	ampft werden� kann dieses System nach Chow u� a�

�
���� mittels der Singular�Perturbation�Methode behandelt werden� Im Hinblick auf

diese Ergebnisse wird eine Methode zur Regelung der Roboter mit elastischen Armen mit



� Einleitung �

der Hilfe des Multiparameter�Multizeitskalen�Singular�Perturbation�Verfahrens in dieser

Arbeit entwickelt�

Im einzelnen gliedert sich der Inhalt der Arbeit wie folgt� Im Abschnitt � wird eine Sy�

stemdekompositionsmethode auf der Basis des Multiparameter�Multizeitskalen�Singular�

Perturbation�Verfahrens f	ur die betrachteten Robotersysteme entwickelt� Auf der Basis

der im Abschnitt � entwickelten Teilsysteme wird ein Reglerentwurfsverfahren f	ur den

Roboter mit elastischen Armen im Abschnitt � vorgestellt� Abschnitt � behandelt Simula�

tionsstudien� Im Abschnitt � wird die vorgestellte Methode experimentell veri
ziert� Der

Bericht schlie�t mit einer Zusammenfassung und mit einem Ausblick auf Ziele zuk	unftiger

Forschungen ab�



� Systemdekomposition mittels Multiparameter�Singular�Perturbation�Methode �

� Systemdekomposition mittels Multiparameter�

Singular�Perturbation�Methode

Betrachtet wird ein elastischer Roboter� der aus n elastischen Armsegmenten besteht� die

untereinander mit rotatorischen Gelenken in Reihe verbunden sind� Wir beschr	anken uns

auf einen sich nur in der horizontalen Ebene bewegenden Roboter� Das Moment des i�ten

Gelenks wird mit �i�t� �i � 
� �� � � � � n� bezeichnet� Unter den vereinfachenden Annahmen�

da��

� die Verformung jedes elastischen Arms nur durch reine Biegung hervorgerufen wird�

die in einer horizontalen Ebene ist und es sich bei den Armen um Euler�Bernoulli�

Balken handelt�

� die Deformation jedes elastischen Arms nach dem Ritzansatz beschrieben werden

kann� wobei als Ansatzfunktionen die ersten m Eigenfunktionen eines nicht rotie�

renden� einseitig fest eingespannten Balkens angesetzt werden�

� die Coulombsche und viskose Reibung in den Gelenken sowie die Strukturd	ampfung

des Arms vernachl	assigbar sind�

stellen sich die Bewegungsgleichungen dieses Roboters mit Hilfe des Lagrange�Verfahrens

zweiter Art wie folgt dar �De Luca und Siciliano 
��
� Siciliano und Book 
�����

M�q�t��	q�t� � h�q�t�� �q�t�� �Keq�t� � Q� �t�� ���
�

Dabei ist q�t� der Vektor der verallgemeinerten starren und elastischen Koordinaten und

ergibt sich zu

q�t� � ����t�� ���t�� � � � � �n�t�� ����t�� ����t�� � � � � ��m�t�� ����t�� ����t�� � � � � ��m�t��

� � � � �n��t�� �n��t�� � � � � �nm�t� T �

�i�t� �i � 
� �� � � � � n� sind die Gelenkwinkel� �ij�t� �i � 
� �� � � � � n� j � 
� �� � � � � m� sind

die j�ten elastischen Koordinaten des i�ten Armes� � �t� � ����t�� ���t�� � � � � �n�t� T ist der

Gelenkmomentvektor und die 	ubrigen Matrizen und Vektoren in Gl� ���
� sind wie folgt

de
niert�

M�q�t�� � positiv de
nite� symmetrische �m � 
�n� �m � 
�n Tr	agheits�

matrix�

h�q�t�� �q�t�� � �m � 
�n�Vektor der Coriolis� und Zentrifugalkr	afte�

Ke � �m � 
�n� �m � 
�n Stei
gkeitsmatrix und

Q � �In�n� 
n�mn T � Eingangsbelegungsmatrix�

Wir f	uhren einen neuen Vektor der verallgemeinerten starren und elastischen Koordinaten

q��t� � ����t�� ���t�� � � � � �n�t�� ����t�� ����t�� � � � � �n��t�� ����t�� ����t�� � � � � �n��t��

� � � � ��m�t�� ��m�t�� � � � � �nm�t� T
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durch ein Umsortieren des Vektors q�t� ein� Dabei sind q��t� und q�t� durch

q��t� � P Tq�t� �����

verkn	upft� wobei P eine geeignete Permutationsmatrix ist� Entsprechend gilt nun f	ur die

Bewegungsgleichung ���
��

M ��q��t��	q��t� � h��q��t�� �q��t�� �K�
eq

��t� � Q� �t�� �����

Dabei sind

M ��q��t�� � P TM�Pq��t��P �

h��q��t�� �q��t�� � P Th�Pq��t��P �q��t���

K�
e � P TKeP �

�����

Die Gl� ����� ist stark nichtlinear� Dies macht den Reglerentwurf f	ur das System kom�

pliziert und aufwendig� Im Hinblick auf eine sp	ater angedachte Regelung wird zuerst

das nichtlineare Systemmodell um den Arbeitspunkt q��t� � q�� �q��t� � 	q��t� � � und

� �t� � � linearisiert� Dies geschieht gem	a� Wang �
���� durch eine Taylorreihenentwick�

lung mit Abbruch nach dem ersten Glied des Systems ������

M ��q�� � 	q�t� �K�
e � q�t� � Qu�t�� �����

mit

�q�t� � q��t� � q��

u�t� � � �t��
�����

Das System aus Gl� ����� wird nun in eine Zustandsraumdarstellung 	uberf	uhrt� Der

Zustandsvektor x�t� des Systems wird aus �q�t� und seiner ersten zeitlichen Ableitung

� �q�t� gebildet�

x�t� �

�
x��t�

x��t�

�
�

�
�q�t�

� �q�t�

�
� xi � R

n�m��� �i � 
� ��� �����

Aus ����� und ����� folgt

�x��t� � x��t��

�x��t� � Ax��t� �Bu�t�
�����

mit

A � � �M ��q�� 
��
K�

e�

B � �M ��q�� 
��
Q�

�����

Wie Fraser und Daniel �
��
�� Wang �
���� sowie Zaad und Khorasani �
���� gezeigt

haben� werden die Eigenwerte des Systems ����� aus Nullen und rein imagin	aren Zahlen

gebildet� Diese Eigenwerte werden mit f	kij� i � 
� �� � � � � n! j � �� 
� � � � � m! k � 
� �g

bezeichnet� Wir beschr	anken uns dabei auf den Roboter� der die folgende Annahme erf	ullt�
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Annahme ���� Die Eigenwerte des Systems ����� k	onnen nach dem Betrag ihres Ima�

gin	arteils in die folgenden m � 
 Gruppen eingeteilt werden� f	ki�� i � 
� �� � � � � n! k �


� �g� f	ki�� i � 
� �� � � � � n! k � 
� �g� � � �� f	kim� i � 
� �� � � � � n! k � 
� �g� Die Betr	age

der Imagin	arteile der verschiedenen Eigenwerte innerhalb einer Gruppe haben die gleiche

Gr	o�enordnung� Also�

	k�i�j

	k�i�j
� O�
�� i�� i� � 
� �� � � � � n! k�� k� � 
� �! j � 
� �� � � � � m� ���
��

Dabei hei�t O��� von der Ordnung
�
gro� O�� Dagegen unterscheiden sich die Betr	age der

Imagin	arteile der Eigenwerte von verschiedenen Gruppen stark� Diese Gruppen sind so

angeordnet� da� gilt�

	k�i�j

	k�
i��j���

� o�
�� i�� i� � 
� �� � � � � n! k�� k� � 
� �! j � �� 
� � � � � m� 
� ���

�

o��� bezeichnet die Ordnung
�
klein o��

Bemerkung ���� Wie Fraser und Daniel �
��
�� Wang �
���� sowie Zaad und Khorasani

�
���� gezeigt haben� ist diese Annahme bei vielen Robotern mit homogenen elastischen

Armen erf	ullt�

Weil die Imagin	arteile dieser Eigenwerte f	ur die Schwingungsfrequenz des Systems �����

zust	andig sind� folgt gem	a� Chow u� a� �
����� da� das System ����� mittels der Singular�

Perturbation�Methode behandelt werden kann� Es handelt sich bei System ����� um

ein System mit m � 
�Zeitskalen �Ladde und Siljak 
����� Nun wird dieses System in

einer Multiparameter�Multizeitskalen�Singular�Perturbation�Form dargestellt� Dazu wer�

den zun	achst �j �j � 
� �� � � � � m� als die Kehrwerte des geometrischen Mittels der Abso�

lutwerte der Imagin	arteile der Eigenwerte der Gruppen f	kij �i � 
� �� � � � � n! k � 
� ��g

de
niert�

�j � 


�n

vuut nY
i��

�Y
k��

��Im�	kij�
��
� j � 
� �� � � � � m�

���
��

Nun f	uhrt man die folgenden Partitionen aus

x��t� � �x���t�� x���t�� � � � � x�m�t� T �

x��t� � �x���t�� x���t�� � � � � x�m�t� T �
xij�t� � R

n � ���
��

A �

�
���	
A�� A�� � � � A�m

A�� A�� � � � A�m

���
���

� � �
���

Am� Am� � � � Amm



���� � Aij � R

n�n � ���
��
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B �

�
���	
B�

B�

���

Bm



���� � Bi � R

n�n ���
��

und f	uhrt die Bezeichnungen

z�i�t� � 

��
i

x�i�t��

z�i�t� � 

�ix�i�t��

i � 
� �� � � � � m ���
��

ein� Durch Einsetzen von ���
�� bis ���
�� in ����� l	a�t sich das System ����� in folgender

Multizeitskalen�Singular�Perturbation�Form darstellen�

�x���t� � x���t��

�x���t� �
mP
j��

��
jA�jz�j�t� �B�u�t��

���
��

�i �z�i�t� � z�i�t��

�i �z�i�t� �
mP
j��

��
jAijz�j�t� �Biu�t��

i � 
� �� � � � � m ���
��

Dabei werden Ai� � 
 �i � �� 
� � � � � m� verwendet�

Gest	utzt auf die Multiparameter�Multizeitskalen�Singular�Perturbation�Methode �Ladde

und Siljak 
���� wird der folgende rekursive Algorithmus zur Dekomposition des Systems

aus Gl� ���
�� und ���
�� vorgestellt�

Algorithmus ���


� Initialisierung�

k � m�

xmi��t� � xi��t�� i � 
� ��

zmij �t� � zij�t�� i � 
� �! j � 
� �� � � � � m�

um�t� � u�t��

Am
ij � ��

jAij� i � �� 
� � � � � m! j � 
� �� � � � � m�

Bm
i � Bi� i � �� 
� � � � � m�

���
��

�� Darstellung des Systems mit k � 
�Zeitskalen wie folgt�

�xk���t� � xk���t��

�xk���t� �
kP

j��

Ak
�jz

k
�j�t� �Bk

�u
k�t��

������

�i �zk�i�t� � zk�i�t��

�i �zk�i�t� �
kP

j��

Ak
ijz

k
�j�t� �Bk

iu
k�t��

i � 
� �� � � � � k� ����
�
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�� Da Ak
kk nicht singul	ar ist� kann das System aus Gl� ������ und ����
� mit Bezug auf

die �k�Zeitskala mittels Singular�Perturbation�Methode� d�h� mit �k � � anstelle

des wahren Wertes� in die folgenden zwei Teilsysteme zerlegt werden �Kokotovic

u� a� 
�����

� das �k�Zeitskala quasistation	are Teilsystem�

�xk��
�� �t� � xk��
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� das �k�Zeitskala Grenzschichtteilsystem�
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kk�zk�k�t� �Bk
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Dabei gilt�
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k� j � 
� �� � � � � k � 
�
������

xk��
i� �t� und zk��

ij �t� �i � 
� �! j � 
� �� � � � � k � 
� bezeichnen den langsamen Anteil

von xki��t� bzw� zkij�t�� u
k���t� und �uk�t� bezeichnen den langsamen bzw� schnel�

len Anteil von uk�t�� �zkik�t� und �zkik�t� �i � 
� �� bezeichnen den langsamen bzw�

schnellen Anteil von zkik�t�� Es ergibt sich �Kokotovic u� a� 
�����

xki��t� � xk��
i� �t� �O��k�� i � 
� ��

zkij�t� � zk��
ij �t� �O��k�� i � 
� �! j � 
� �� � � � � k � 
�
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uk�t� � uk���t� � �uk�t� �O��k��

������

Dabei ist

�k �

�
��� k � 
�

�k
�k��

� k � �� �� � � � � m�
������

�� Setze k �� k � 
�



� Systemdekomposition mittels Multiparameter�Singular�Perturbation�Methode �

�� Wenn k � �� dann gehe zu Punkt �� sonst gehe zu Punkt ��

�� Ende�

Durch Verwendung von Algorithmus ��
 wird das System ����� in m � 
 voneinander

entkoppelte Teilsysteme zerlegt� F	ur k � 
 stellt Gl� ������ das langsamste Systemverhal�

ten vom System ����� dar� Dies entspricht den linearisierten Bewegungsgleichungen des

entsprechenden starren Roboters� F	ur k � 
� �� � � � � m beschreibt Gl� ������ das ���� ����

� � �� �m�Zeitskalen�Grenzschichtteilsystem vom System ������ Aus �zkik�t� und der durch

Gl� ������ gegebenen �zkik�t� k	onnen die elastischen Koordinaten xik�t� �i � 
� �! k �


� �� � � � � m� gebildet werden� Bei jedem Teilsystem ist die Zahl der Ausgangsgr	o�en gleich

der Zahl der Stellgr	o�en� wodurch sich der Reglerentwurf vereinfacht� Auf der Basis die�

ser Teilsysteme wird im n	achsten Abschnitt auf den Reglerentwurf f	ur den betrachteten

Roboter eingegangen�



� Reglerentwurf �

� Reglerentwurf

Der Reglerentwurf f	ur den Roboter mit elastischen Armen hat zwei Ziele� Zum einen soll

das Gelenk aus seiner Anfangslage in eine gew	unschte Endlage mit vorgegebenen Win�

kelgeschwindigkeiten bewegt werden und zum anderen soll die elastische Schwingung des

Arms ged	ampft werden �Baruh und Tadikonda 
����� Im Hinblick auf die im letzten

Abschnitt vorgestellten Ergebnisse werden diese Ziele nun durch Reglerentw	urfe f	ur die

im letzten Abschnitt erhaltenen Teilsysteme ������ �k � 
� und ������ �k � 
� �� � � � � m��

statt direkt f	ur System ����� durchgef	uhrt�

Wie im letzten Abschnitt gezeigt� wird die Stellgr	o�e u�t� durch die Systemdekompositi�

on mittels Multiparameter�Singular�Perturbation�Methode in m�
�Anteile aufgespalten�

Aus Gl� ������ l	a�t sich eine einfache Gleichung f	ur die Gesamtstellgr	o�e angeben�

u�t� � u��t� � �u��t� � �u��t� � � � �� �um�t�� ���
�

Nun wird der Reglerentwurf genauer spezi
ziert� Es wird vorausgesetzt� da� alle Zustands�

gr	o�en vom System ����� f	ur die R	uckf	uhrung zur Verf	ugung stehen� F	ur den Entwurf des

Regleranteils u��t� wird vom Untersystem ������ �f	ur k � 
� ausgegangen� Dabei dient

dieser Regleranteil zur Stabilisierung des starren Verhaltens des Systems ����� und zur

Verfolgung einer vorgegebenen Bahn des Gelenkwinkels� Es kann leicht best	atigt werden�

da� B�
� eine n�n positiv de
nite� symmetrische Matrix ist� Das bedeutet� da� die inverse

Matrix von B�
� existiert� So kann u��t� als Folgeregler gew	ahlt werden �Schwarz 
��
��

u��t� � �B�
��

��
n

	�
d
�t� �K�

d

h
x�
���t� �

��
d
�t�
i
�K�

p

�
x�
���t� � �

d�t�
�o

� �����

Hierbei ist �d�t� �
�
�d��t�� �d��t�� � � � � �dn�t�

�T
der vorgegebenen Bahnvektor� K�

d und K�
p

sind konstante� diagonale Reglermatrizen�

Die Regleranteile �uk�t� �k � 
� �� � � � � m� haben die Aufgabe� die elastischen Schwingungen

von System ����� zu d	ampfen� F	ur die Entw	urfe der Regleranteile �uk�t� �k � 
� �� � � � � m�

wird vom Untersystem ������ ausgegangen� Da das System ����� vollst	andig steuerbar

ist �Riege 
����� k	onnen die Untersysteme ������ �k � 
� �� � � � � m� auch als steuerbar

angenommen werden �Kokotovic u� a� 
����� Deshalb wird hier zur L	osung der Aufgaben

das lineare R	uckf	uhrungsgesetz

�uk�t� � �Kk

�
�zk�k�t�

�zk�k�t�

�
� k � 
� �� � � � � m �����

verwendet� Dabei ist Kk eine konstante Reglermatrix� die durch Verwendung des Verfah�

rens der Polvorgabe bestimmt werden kann �Friedland 
�����

Dieses einfache Vorgehen weist folgende Schwierigkeiten auf� x�
i��t� in Gl� ����� und

�zkik�t� �i � 
� �! k � 
� �� � � � � m� in Gl� ����� sind lediglich 
ktive Gr	o�en� die im rea�

len System nicht auftreten� Diese m	ussen in xik �i � 
� �! k � �� 
� � � � � m� umgerechnet



� Reglerentwurf 
�

werden� Aus den Gln� ���
� bis ����� und mit Hilfe von ���
��� ���
��� ������ sowie ������

ergeben sich
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Dabei gilt�
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� � ���

�

Bemerkung ���� Obwohl u��t� bzw� �uk�t� �k � 
� �� � � � � m� mit Hilfe der voneinander

entkoppelten Teilsysteme ������ f	ur �k � 
� bzw� ������ ausgelegt werden� mu� man sich

allerdings bei der Wahl von K�
d und K�

p bzw� Kk �k � 
� �� � � � � m� die Tatsache vor

Augen halten� da� u��t� bzw� �uk�t� �k � 
� �� � � � � m� Teile des gesamten� geschlossenen

Systems sind� Da die durch u��t� bzw� �uk�t� �k � 
� �� � � � � m� gel	osten Aufgaben nicht

identisch sind� oft sogar einander widersprechen� mu� man bei der Wahl von K�
d und

K�
p bzw� Kk �k � 
� �� � � � � m� bereit sein� geeignete Kompromisse einzugehen� F	ur gut

gew	ahlte K�
d und K�

p bzw� Kk �k � 
� �� � � � � m� sollen die Polstellen aller geregelten ord�

nungsreduzierten Teilsysteme nur gem	a�igt links von ihrer urspr	unglichen Stelle in den

o�enen Teilsystemen liegen� Dies vermeidet hohe Stellimpulse� starke Anfangsschwin�

gungen und dergleichen �F	ollinger 
����� Dies deutet an� da� die mit ����� bzw� �����

geregelten ordnungsreduzierten Teilsysteme ������ �f	ur k � 
� bzw� ������ die Zeitskalen

der entsprechenden o�enen Teilsysteme beibehalten� Daraus erkennen wir� da� das mit

dem Regelgesetz ����� geregelte Gesamtsystem ����� auch m � 
�Zeitskalen besitzt� und



� Reglerentwurf 



es kann wie das entsprechende o�ene System mit dem in Abschnitt � vorgestellten Algo�

rithmus behandelt werden� Dadurch ergeben sich die folgenden S	atze�

Satz ���� Es seien K�
d� K

�
p� Kk �k � 
� �� � � � � m� so gew	ahlt� da� die folgenden For�

derungen erf	ullt sind�


� Die mit ����� bzw� ����� �k � 
� �� � � � � m� geregelten ordnungsreduzierten Teilsyste�

me ������ �f	ur k � 
� bzw� ������ sind stabil�

�� Die Zeitskalen des o�enen Gesamtsystems werden beim 	uber ����� geschlossenen

System beibehalten�

Dann existieren ��i �i � 
� �� � � � � m� und f	ur alle �i � ��� ��i  �i � 
� �� � � � � m� ist das 	uber

����� geschlossene System ����� auch stabil�

Beweis� Kokotovic u� a� �
���� haben diesen Satz lediglich f	ur ein System mit zwei

Zeitskalen bewiesen� Eine Erweiterung auf Systeme mit drei Zeitskalen f	uhrten Ladde

und Siljak �
���� durch� Der Beweis f	ur ein System mit m � 
 Zeitskalen wurde bisher

noch nicht erbracht� er kann jedoch analog zu Kokotovic u� a� �
���� und Ladde und

Siljak �
���� gef	uhrt werden� Aufgrund der Kompliziertheit des Beweises wird dieser im

folgenden nur kurz skizziert�

Ohne Beschr	ankung der Allgemeinheit wird �d�t� in Gl� ����� bei dem Beweis zu Null

gesetzt� Durch das Einsetzen der Gl� ����� in ���
�� und ���
�� erfolgt die Darstellung

des exakten geschlossenen Systems in der Multizeitskalen�Singular�Perturbation�Form��
�����	

�x��t�

�� �z��t�

�� �z��t�
���

�m �zm�t�



������ � E

�
�����	

x��t�

z��t�

z��t�
���

zm�t�



������ ���
��

mit

x��t� � �x���t� x���t� 
T �

zi�t� � �z�i�t� z�i�t� 
T � i � 
� �� � � � � m�

���
��

E �

�
�����	

E�� E�� E�� � � � E�m

E�� E�� E�� � � � E�m

E�� E�� E�� � � � E�m

���
���

���
� � �

���

Em� Em� Em� � � � Emm



������ � ���
��



� Reglerentwurf 
�

E�� �

�
�
n�n In�n 

�B�K
�
��B

�
��

��
�
K�

p K�
d

� � �
E�j �

�
	 
n��n�

��
jA�j 
n�n

�
�B�K

�
j

�
��
jIn�n 
n�n

n�n �jIn�n

� 
� �
j � 
� �� � � � � m�

Ei� �

�

n��n

�BiK
�
��B

�
��

��
�
K�

p K�
d

� � � i � 
� �� � � � � m�

Eij �

�
	 
n��n�

��
jAij 
n�n

�
�BiK

�
j

�
��
jIn�n 
n�n

n�n �jIn�n

� 
� �
i� j � 
� �� � � � � m� i �� j�

Eii �

�
	 �
n�n In�n 

���
iAii 
n�n �BiK

�
i

�
��
iIn�n 
n�n

n�n �iIn�n

� 
� �
i � 
� �� � � � � m�

���
��

Wir f	uhren eine untere Blockdreiecksmatrix
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��

so ein� da� die Matrix LEL�� eine obere Blockdreiecksmatrix ergibt� Ihre diagonalen

Blockelemente ergeben sich zu

�

n�n In�n

�K�
p �K�

d

�
�O���� �O���� � � � ��O��m� ���
��

und �
�
n�n In�n �
Ai

ii 
n�n
�
�Bi

iKi

�
�O��i� �O��i��� � � � ��O��m�� i � 
� �� � � � � m� ���
��

Durch Verwendung der gleichen Argumente wie Ladde und Siljak �
���� folgt dann� da�

das System stabil ist�

Satz ���� Es seien K�
d� K

�
p� Kk �k � 
� �� � � � � m� so gew	ahlt� da� die folgenden For�

derungen erf	ullt sind�


� Die mit ����� bzw� ����� �k � 
� �� � � � � m� geregelten ordnungsreduzierten Teilsy�

steme ������ �f	ur k � 
� bzw� ������ besetzen die verschiedenen Eigenwerte�
	cki� � i � 
� �� � � � � n! k � 
� �

�
�
�
	ckij � i � 
� �� � � � � n! k � 
� �

�
�j � 
� �� � � � � m��



� Reglerentwurf 
�

�� Die Zeitskalen des o�enen Gesamtsystems werden beim 	uber ����� geschlossenen

System beibehalten�

Dann existieren ��i �i � 
� �� � � � � m�� F	ur alle �i � ��� ��i  �i � 
� �� � � � � m� besitzt

das mit ����� geregelte System ����� die Eigenwerte
�
	cki� �O���� �O���� � � � ��O��m� ��

	ckij � O��j� � O��j��� � O��j��� � � � � � O��m�
�
��j� i � 
� �� � � � � n! k � 
� �!

j � 
� �� � � � � mg�

Beweis� Um Satz ��� zu beweisen� gehen wir von der oberen Blockdreiecksform des ge�

schlossenen Gesamtsystems aus und ber	ucksichtigen die charakteristischen Gleichungen

der diagonalen Blockelemente�


sc�s� ��� ��� � � � � �m� � �� ���
��


k
fc�s� �k� �k��� � � � � �m� � �� k � 
� �� � � � � m� ������

Da f	ur 
sc�s� ��� ��� � � � � �m� und 
k
fc�s� �k� �k��� � � � � �m� gilt� da�

� an der Stelle f�k � �� �k�� � �� � � � � �m � �g� s � 	cki� bzw� s � 	ckij �j � 
� �� � � � � m�

die Gleichungen ���
�� bzw� ������ erf	ullt werden�

� alle charakteristische Polynome und ihrer partiellen Ableitungen nach s in einer

Umgebung dieser Stelle stetig sind und

� die Tatsache� da� die Eigenwerte verschieden sind� gew	ahrleistet� da� die partiellen

Ableitungen aller charakteristischen Polynome nach s an der Stelle nicht Null sind�

l	a�t sich dieser Satz beweisen�
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� Simulationsergebnisse

Das im vorangegangenen Abschnitt entwickelte Reglerentwurfsverfahren wird mit Hilfe

von Simulationen eines einachsigen und eines zweiachsigen elastischen Roboters erprobt�

��� Einachsiger elastischer Roboterarm

Unter der Annahme� da� das �� und �� Gelenk in Strecklage festgehalten werden� kann der

Canadarm als Beispiel f	ur einen einachsigen elastischen Roboterarm �n � 
� betrachtet

werden� Nach Zaad und Khorasani �
���� wird m zu � gesetzt� und die Matrizen sowie

Vektoren in Gl� ���
� lassen sich wie folgt darstellen�
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Mit q� � �� � � T berechnen sich A und B in Gl� ����� zu�
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� � �����

Die Eigenwerte des linearisierten Modells liegen bei 	����� � �� 	����� � �

� ����j� 	����� �

��
�� ����j� Die Perturbations�Parameter sind �� � �� ����� �� � �� ����! �� � �� �����

�� � �� ���
� B�
� in Gl� ����� ist �� 
�
 � 
����

Bei der Simulation wird die Sollbahn des Gelenks zu

�d��t� �
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� t
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� t
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� 
� t

�

��

�
�
� f	ur t 	 � s

�
� f	ur t � � s

�����

gew	ahlt� Die Reglerparameter in Gl� ����� werden zu K�
d � �� K�

p � 
 gesetzt� Als Pol�

vorgabe f	ur das geschlossene Grenzschichtteilsystem ������ �k � 
� �� werden ���� �
���

�� �
��j���� und ���� �
��� �� �
��j���� gew	ahlt� Mit diesen Polen ergeben sich K� �

�� � ����� ���� und K� � �� � �
�� ���� in Gl� ����� �k � 
� ��� Die Reglervektoren in
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Gl� ����� lassen sich zu K�
� � 
�K�

� � �� ������� �
�� �K�
� � �� ������� ���� berechnen�

Die Robustheit des Reglers ����� wird anhand der Regelung des linearen bzw� nichtli�

nearen Modells 	uberpr	uft� Die Simulation beginnt mit den Anfangsbedingungen� ����� �

������ � ������ � ������ � ������� � ������� � �� Die Simulationsergebnisse sind in dem Bild

��
 dargestellt�
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Bild ���� �a� Winkel des Gelenks ���t�! �b� Elastische Koordinate ����t�! �c� Elastische

Koordinate ����t�! �d� Moment des Motors u��t�� �
"� Sollbahn!

�
� �� lineares

Modell!
�
� �� nichtlineares Modell�

��� Zweigliedriger elastischer Roboterarm

Betrachtet wird das von De Luca und Siciliano �
��
� vorgestellte Modell eines planaren

elastischen Roboterarms� der aus zwei Gliedern �n � �� besteht� Zur Beschreibung der

elastischen Deformationen werden zwei Ansatzfunktionen pro elastischem Glied �m � ��

verwendet� Die Belegung der Systemmatrizen in Gl� ���
� sind in De Luca und Siciliano

�
��
� im einzelnen angegeben� Die physikalischen Parameter des Roboters ergeben sich
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nach De Luca und Siciliano �
���� zu�

l� � l� � ��� m�


� � 
� � 
�� kg�m�

�EI�� � �EI�� � 
� N�m��

d� � d� � ���� m�

m� � m� � ��� kg�

Jo� � Jo� � ������ kg�m��

mh� � mh� � 
 kg�

Jh� � Jh� � ��
 kg�m��

mp � ��
 kg�

Jp � ������ kg�m��

Die Frequenzen der Ansatzfunktionen sind�

	�� � 
� �� Hz� 	�� � �� 
� Hz�

	�� � �� �
 Hz� 	�� � ��� �� Hz�

Die Stei
gkeitsmatrix ergibt sich zu�

Ke � diag�� � ��� �� �
�� �� ���� �� ������ ���� �����

Die mit den Ansatzfunktionen verbundenen Koe�zienten sind�

����e � ����� ����e � �����

�
�

���e � 
���� �
�

���e � �
����

����e � 
���� ����e � ������

�
�

���e � ����� �
�

���e � �
�����

v�� � ������ v�� � ��
��

v�� � ����� v�� � �����

w�� � ������ w�� � �������

w�� � ��
��� w�� � ������

Mit q� � �� � � � � � T folgt aus Gl� ������

A �

�
�������	

� � ���� ���� �� ���� ����� �
�� ��� ����

� � 
����� 
��� ����� ��
� �
�
���� 
��� ������� ����

� � ������ ���� 
�
�� �
�� ������ ���
 ������ ���


� � 

�� ���� ���
�� ���
 ����� ���� �
����� ��
�

� � ����� 
��� ����� ���� ������� ���
 �
���
� ��
�

� � ��� ��
� ����� ���� ����� ���� ������� 
���
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B �

�
�������	


�� ���� �
�� ����

�
�� ���� ��
� ����

�
�� ���� ����� ����

��� ���� �� ����

�
�� ���� ���� ����

��� ���� �� ����



��������
� �����

Die Eigenwerte des resultierenden linearen Modells liegen bei 	����� � �� 	����� � �� 	����� �

���� ����j� 	����� � ���� ����j� 	����� � ��
�� ���
j� 	����� � ����� ����j� Die Perturbation�

Parameter sind �� � �� ����� �� � �� ����! �� � �� ����� �� � �� 
���� B�
� in Gl� ����� ist

B�
� �

�
�� �
�� ��� ����

��� ���� 
�� ����

�
�

Die Sollbahnen der Gelenkwinkel werden zu

�di �t� �

��
�
�

� t
	

t	id
� 
� t




t
id
� 
� t

�

t�id

�
�if f	ur t 	 tid�

�if f	ur t � tid�
i � 
� � �����

gew	ahlt� Hier sind �if � ��� rad �i � 
� �� die Soll�Endpositionen der Gelenkwinkel�

tid � � s �i � 
� �� sind die Zeiten bis zum Erreichen der Soll�Endposition� Bei den

Simulationen werden die Reglermatrizen in Gl� ����� wie folgt gesetzt�

K�
d �

�
� �

� �

�
und K�

p �

�

 �

� 


�
�

Zur D	ampfung der elastischen Schwingungen werden die vorgegebenen Pole der geschlos�

senen Grenzschichtteilsysteme ������ �k � 
� �� zu f��� ���� � �� ����j � �� ���� �

�� ����jg��� und f��� �
�� � �� ����j � �� ����� �� �
��jg��� gew	ahlt� Somit ergeben

sich

K� �

�
� � ��� ���� �� ����

� � �� �
�� ��� ����

�
und K� �

�
� � ��� ���� 
�� ��
�

� � �� ���� �� ��
�

�

in Gl� ����� �k � 
� ��� Daraus lassen sich die Reglermatrizen in Gl� ����� als

K�
� �

�

 �

� 


�
� K�

� �

�
� � ��� �
�� �
� ���

� � �� ���� �
�� 
���

�
und

K�
� �

�
� � ��� ���� ����� ����

� � �� ���� 
�
� ����

�

berechnen�

Die Robustheit des Reglers wird anhand der Regelung des linearen bzw� nichtlinearen

Modells 	uberpr	uft� Die Simulation beginnt mit den Anfangsbedingungen ����� � ����� �

������ � ������ � ������ � ������ � ������ � ������ � ������� � ������� � ������� � ������� � ��
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Bild ���� �a� Winkel des Schultergelenks ���t�! �b� Winkel des Ellbogengelenks ���t�! �c�

Elastische Koordinate ����t�! �d� Elastische Koordinate ����t�� �
"�Sollbahn!

�
�

�� lineares Modell!
�
� �� nichtlineares Modell�

Die Ergebnisse werden in den Bildern ��� und ��� gezeigt�

Die beiden Beispiele zeigen� da� viele Roboter mit elastischen Armen Systeme mit Mul�

tizeitskalen sind� und da� mit der vorgestellten Multiparameter�Multizeitskalen�Singular�

Perturbation�Methode der Reglerentwurf f	ur diese Systeme wesentlich erleichtert wird�

Die Simulationsergebnisse der beiden Beispiele zeigen� da� der resultierende Regler f	ur

das lineare und das nichtlineare Modell gut funktioniert� obwohl dem Reglerentwurf ein

lineares Modell zugrunde liegt� Aus den Simulationsergebnissen erkennen wir au�erdem�

da� die Gelenkwinkel der geregelten Roboter der vorgegebenen Bahn mit hoher Genauig�

keit folgen und die Anteile der elastischen Schwingungen mit den Eigenfrequenzen der Ar�

me sehr gut ged	ampft werden� Der Betrag der elastischen Koordinaten ist haupts	achlich

der Beitrag des quasistation	aren Anteils� der nur von u��t� abh	angig ist und bei einer

Regelung der Ende�ektorposition des Roboters leicht ber	ucksichtigt werden kann�
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Bild ���� �a� Elastische Koordinate ����t�! �b� Elastische Koordinate ����t�! �c� Moment

des Motors im Schultergelenk u��t�! �d� Moment des Motors im Ellbogengelenk

u��t�� �
� �� lineares Modell!

�
� �� nichtlineares Modell�
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� Versuchsergebnisse

��� Aufbau des Versuchstr�agers

Das in dieser Arbeit betrachtete elastische Handhabungssystem ist in Bild ��
 darge�

stellt� Bild ��� zeigt den Signal#u�plan des Versuchstr	agers� der aus einem sich in der

horizontalen Ebene bewegenden elastischen Arm besteht� Dieser wird durch eine elektri�

sche Gleichstrommotor�Getriebe�Kombination angetrieben� Die Steuerspannung f	ur den

Motor wird von einem Rechner �PC���DX�
��� durch eine D�A�Wandlerkarte RTI �
�

�Analog Devices 
��
� und einen Verst	arker LC ���� �Faulhaber 
���� ausgegeben� Ein

optischer Impulsgeber vom Typ Faulhaber�HEDS ��
�C�� �Faulhaber 
���� zusammen

mit der DEC���
 Z	ahlerkarte von MOVTEC GmbH liefert dem Rechner die Winkel�

position des Motors� Die Bestimmung der Deformationen des elastischen Arms wird

mit Dehnungsme�streifen �DMS� der Firma HBM �Ho�mann 
���� an zwei Me�punk�

ten durchgef	uhrt� Hierzu wurden auf jeder Seite des Roboterarms in der Biegeebene pro

Me�punkt ein Dehnungsme�streifen appliziert� Der erste Anbringungsort liegt �����m von

der Einspannstelle entfernt� Der zweite liegt ���m von der Einspannstelle entfernt� Die

zwei Einzelme�streifen werden zu einer Wheatstone�schen Halbbr	ucke zusammengeschal�

tet� Die Ausgangsspannung der Halbbr	uckenschaltung wird in einem HBM�Me�verst	arker

�KWS ����� aufbereitet und 	uber die A�D�Wandlerkarte RTI�
� in den Proze�rechner

geleitet�

Bild 	��� Laborroboter
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GetriebeMotor Elastischer
ArmVerstärker

D/A

D/A

D/A

Rechner

RTI-815

DMS

DMS

DEC4-01 Impulsgeber

Verstärker

Verstärker

KWS 3073

Brückenschaltung

Brückenschaltung

Bild 	��� Signal#u�plan des Pr	ufstandes

��� Modellierung des Versuchstr�agers

D�A�Wandler

Der Eingang des D�A�Wandlers ist ein 
� Bit Digitalsignal� der Ausgang eine Analog�

spannung im Bereich von �
� bis �
� V� Somit wird der D�A�Wandler n	aherungsweise

als ein lineares Element mit der Verst	arkung von 
������ V�Digit modelliert�

LC �

�

Der LC ���� ist in der Betriebsart
�
Stomregelung� eingesetzt� Durch Verwendung des

Least�Squares�Verfahrens l	a�t sich ein Modell des LC ���� aus Messungen wie folgt her�

leiten�

ia�t� � �� ����ua�t� � �� ���� � �� �����ua�t� � �� �
�� A� ���
�

Dabei entspricht ia�t� dem Ausgangsstrom des LC ����� seine Eingangsspannung wird

mit ua�t� bezeichnet�

Motor

Unter Vernachl	assigung der Reibung im Motor wird die Dynamik des Motors durch die

folgende Di�erentialgleichung beschrieben�

kM ia�t� � �m�t� � Jm	�m�t�� �����

Hierbei ist kM � �� ����� Nm�A die Drehmomentkonstante� �m�t� ist das Ausgangsmo�

ment des Motors� Jm � �� ��� � 
��� kg � m� entspricht dem Rotortr	agheitsmoment und

der Drehwinkel des Motors wird mit �m�t� bezeichnet�
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Getriebe

F	ur das Getriebe gilt�

���t� ����t� � �g��m�t� ��m�t�� �����

Hierbei sind ���t�� ���t� sowie �g� � �� � das Ausgangsmoment� der Drehwinkel sowie der

Wirkungsgrad des Getriebes� ����t� ist durch das Untersetzungsverh	altnis ng� � �� mit
��m�t� verkn	upft�

��m�t� � ng� ����t�� �����

Durch Einsetzen von Gl� ����� in ����� ergibt sich

�m�t� �



�g�ng�
���t�� �����

Elastischer Arm

In dieser Arbeit beschr	anken wir uns auf den Roboter ohne Endmasse� Die physikali�

schen Parameter des Arms sind�
lh � �� �� m�

l � �� �� m�


 � �� ��� kg�m�

Jh � �� ����� kgm��
EI wird nachfolgend experimentell ermittelt�

Nach dem Ritz�Ansatz l	a�t sich die elastische Auslenkung w��x� t� des Arms wie folgt

beschreiben

w��x� t� � ����x�����t� � ����x�����t�� �����

Dabei sind ��i�x��i � 
� �� Ansatzfunktionen und es gilt

��i�x� � cosh�	�ix� � cos�	�ix� � c�i �sinh�	�ix� � sin�	�ix� �

c�i �
cos�	�il� � cosh�	�il�
sin�	�il� � sinh�	�il�

�
�����

	�i �i � 
� �� bezeichnen die Kreisfrequenzen der Ansatzfunktionen und sind die L	osung

der Gleichung


 � cos�	�il� cosh�	�il� � �� �����
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Mit Hilfe von Gl� ����� ergeben sich die Elemente in Gl� ���
� wie folgt�

M�� � Jh � 


�



� l

� � l
�
lh � l

�

���
� 
l ������t� � �����t� �

M�� � v���

M�� � v���

M�� � 
l�

M�� � ��

M�� � 
l�

�����

h� � �
l
h
����t� �����t� � ����t� �����t�

i
����t��

h� � �
l����t� �����t��

h� � �
l����t� �����t��

���
��

ke�� � 
l��
���

ke�� � 
l��
��

���

�

mit

v�i � 

R l
�
�lh � x���i�x�dx�

��i �
q

EI

 	��i�

i � 
� �� ���
��

Die Biegestei
gkeit EI des elastischen Arms kann durch die Verwendung der von Fraser

und Daniel �
��
� vorgestellten experimentellen Methode ermittelt werden� Bei stehen�

dem Motor erf	ahrt das Armende infolge eines manuellen Schlages zuerst eine Auslen�

kung von �cm aus der Ruhelage und wird dann losgelassen� Bild ���a zeigt die aus den

Messungen berechneten freien Schwingungen des Arms und Bild ���b die normierte Lei�

stungsspektraldichte Sx�f��max�Sx�f�� der Signale� Aus Bild ���b kann man die erste

Eigenfrequenz der Schwingungen f�� � �� ��
�Hz ablesen� Aus Gl� ���
�� folgt�

EI �

���f���

�

	
��
� �� ����� ���
��

Im folgenden wird EI����
�� gesetzt� weil die mit Hilfe der Rayleigh�Ritz�Methode

gesch	atzte Eigenfrequenz der Schwingung gr	o�er ist als die exakte Frequenz�

Impulsgeber

Die Au#	osung des Impulsgebers betr	agt 
�� Impulse pro Umdrehung� Da der Impuls�

geber auf der Motorseite angebracht ist� mu� das Getriebe mit der Untersetzung ng�
ber	ucksichtigt werden� Somit ist die Zahl der gesamten Ausgangsimpulse des Impulsge�

bers nIG durch

���t� �
��


��ng�
nIG ���
��
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Bild 	��� Freie Schwingung des Arms �a�� �b�� normierte Leistungsspektraldichte

mit dem Winkel des Getriebes verkn	upft�

Z�ahlerkarte

Der Z	ahlbereich ist 
�Bit und der Zusammenhang zwischen seinem Ausgang nZK und

Eingang l	a�t sich mit

nZK � �nIG ���
��

beschreiben�

Dehnungsme�streifen

Da die DMS�Me�systeme an den zwei Me�stellen identisch sind� sind die Modelle der

zu diesen zwei Systemen geh	orenden Elemente gleich� Die relative Widerstands	anderung�
�R
R

�
i

des DMS ist durch den
�
k�Faktor� kDMS � �� �� des DMS mit der zweiten Ablei�

tung nach der 	ortlichen Gr	o�e der elastischen Durchbiegung w��x� t� an der i�ten Me�stelle

verkn	upft��
�R

R

�
i

� �



�
kDMSd

��

�x�
w��x� t�

����
x�xi

� i � 
� �� ���
��

wobei d � �� ��
m die Dicke des Arms ist� Dabei liegt bei positivem Vorzeichen eine

positive Dehnung und bei negativem Vorzeichen eine negative Dehnung �Stauchung� vor�

Br�uckenschaltung

Die zwei Dehnungsme�streifen an der gleichen Me�stelle werden in eine Wheatstone�

Br	ucke geschaltet� mit der man auch kleinste Widerstands	anderungen messen kann� Da
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in der DMS�Technik nur sehr kleine Widerstands	anderungen vorliegen und eine Halb�

br	uckenschaltung gew	ahlt wurde� besteht folgender Zusammenhang zwischen Br	ucken�

speisespannung UB � �V und Br	uckenausgangsspannung UAi�

UAi �



�
UB

�
�R

R

�
i

� ���
��

HBM�Me�verst�arker

Der Verst	arkungsfaktor des Me�verst	arkers betr	agt 
����

A�D�Wandler

Der Eingang des A�D�Wandlers ist eine Analogspannung im Bereich von �
� bis �
�V�

der Ausgang ein 
� Bit Digitalsignal� Somit l	a�t er sich als ein lineares Element mit der

Verst	arkung von ����� Digit�V darstellen�

Reibungen

Die im betrachteten Robotersystem auftretende Reibung wird wie folgt dargestellt�

MR � MRv � MRC � ���
��

Dabei bezeichnet MRv die viskose Reibung� MRC die Coulomb�sche�Reibung� Aus Erfah�

rungen mit diesem Versuchstr	ager werden

MRv � �� 
 ����t� und ���
��

MRC �

���
��

sign� ����t���� 
�bm

h
�� � � �� �e����	j ����t�j

i
f	ur ����t� �� �

sign�u�t���� 
�bm f	ur ����t� � � und jua�t� � �� �
��j � �� 
�

bmu�t� f	ur ����t� � � und jua�t� � �� �
��j 	 �� 
�

������

mit

bm � �� �����g�ng�kM ����
�

gew	ahlt�

Durch Zusammenfassen der Modelle der einzelnen Elemente ergibt sich das Modell des

Versuchstr	agers zu��
	 M�� � �g�n

�
g�Jm M�� M��

M�� M�� M��

M�� M�� M��



�
�
	 	���t�

	����t�
	����t�



��

�
	 h� � MR

h�
h�



�

�

�
	 � � �

� ke�� �

� � ke��



�
�
	 ���t�

����t�

����t�



� �

�
	 bm

�

�



� �ua�t� � ���
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mit den Me�gleichungen

���t� � ��
� � 
��ng�

nZK�

w
��

� ��� ���� t� � � �
���� � � 
���dkDMSUB

Ud��

w
��

� ��� �� t� � �
���� � � 
���dkDMSUB

Ud��

������

Dabei bezeichnet Udi �i � 
� �� das durch den i�ten A�D�Wandler gelieferte digitale Signal�
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��� Simulationsstudien

Um die G	ute des Modells ������ zu 	uberpr	ufen� wird das Systemmodell mit drei verschie�

denen Eingangsspannungen


� ua�t� � �� � sin��t� � �� �
�� V�
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�� ua�t� � �� ��square���t � 
���� � �� �
�� V

simuliert� In Bild ���� ��� bzw� ��� werden die Simulationsergebnisse mit den am Versuchs�

tr	ager gemessenen Ausg	angen verglichen� Die gemessenen Ausgangsgr	o�en des Versuchs�

tr	agers sind die Gelenkwinkel ���t� und die Biegung w
��

� �x� t� am Me�punkt x � �� ��� m

sowie x � �� � m�

Es ist zu erkennen� da� das Modell den Versuchstr	ager mit ausreichender G	ute beschreibt�

Sowohl die Gelenkwinkel� als auch die Frequenzen der Schwingungen an den zwei Me�stel�

len stimmen mit den entsprechenden gemessenen Gr	o�en gut 	uberein� Die Ursache f	ur die

geringen Abweichungen zwischen der simulierten und gemessenen Schwingungsamplitude

ist die vernachl	assigte Strukturd	ampfung� Aus Bild ���� ��� und ��� ist auch der Ein#u�

des Getriebespiels klar zu erkennen�
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liert�

��� Regelungsergebnisse

In diesem Abschnitt wird das vorgestellte Reglerentwurfsverfahren mit Hilfe des Labor�

versuchstr	agers experimentell veri
ziert� Im Hinblick auf das Modell des Versuchstr	agers

wird der Regler in vier Anteile

u��t� � u��t� � �u��t� � �u��t� � uR�t� ������

aufgespalten� Die ersten drei Anteile sind f	ur die Bahnverfolgungsregelung des Gelenkwin�

kels und f	ur die D	ampfung der elastischen Schwingungen zust	andig� der letzte Anteil uR�t�

beschreibt die Kompensation der trockenen Reibung und des O�sets des Motorverst	arkers�

Durch Verwendung des im Abschnitt � vorgestellten Reglerentwurfsverfahren folgen

u��t� �
�� ����

bm

�
	�d��t� �

�� 


�� ����
����t� � 
�� ����t� � ��d��t�� � ������t� � �d��t��

�
� ������

K�
� � 
� ������
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F	ur uR�t� gilt�

uR�t� � MRC�bm � �� �
��� ������

Zur Realisierung des Reglers ������ lassen sich ����t� und ����t� zu�
����t�

����t�

�
�

�
�

��

����� ���� �
��

����� ����

�
��

����� �� �
��

����� ��

� �
w

��

� ��� ���� t�

w
��

� ��� �� t�

�
������

berechnen� ����t�� �����t� bzw� �����t� werden durch numerische Di�erentiation von ���t��

����t� btw� ����t� ermittelt�
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Der Regler ������ wird am Versuchstr	ager f	ur drei verschiedenen Sollbahnen angewendet�
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� Sprungsfunktion von 
 rad �siehe Bild ���a��

�� �d��t� �

�
��� �� � �� �� ��t	 � 
�t
 � 
�t�� f	ur t 	 
 s�

�� �� f	ur t � 
 s�

�� �d� �

�
�� �� sin��t� f	ur t 	 � s�

� f	ur t � � s�

Die experimentellen Ergebnisse sind in Bild ���� ��� bzw� ��� dargestellt� Daraus ist zu

erkennen� da� der Regler f	ur die drei Sollbahnen sehr gut funktioniert� Das Gelenk kann

den drei Sollbahnen mit hoher Genauigkeit folgen� obwohl die Sollbewegungen sehr schnell

sind� Gleichzeitig werden die elastischen Schwingungen gut ged	ampft� Die geringen Ab�

weichungen der Stellgr	o�e von Null �s� Bild ���d f	ur 
s� t ��s� sind auf Rauschen der

Me�signale zur	uckzuf	uhren�
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� Zusammenfassung und Ausblick

In diesem Forschungsbericht wird eine Multiparameter�Multizeitskalen�Singular�

Perturbation�Methode zur Regelung von Robotern mit elastischen Armen entwickelt�

Hierzu wird das Modell des Roboters zun	achst in Multiparameter�Multizeitskalen�Form

dargestellt� Anschlie�end wird ein rekursiver Algorithums zur Dekomposition des Robo�

tersystems mit Hilfe der Multiparameter�Multizeitskalen�Singular�Perturbation�Methode

vorgestellt� Durch Verwendung des vorgestellten Algorithmus kann man nicht nur die

Starrk	orperdynamik von der elastischen Dynamik� sondern auch die elastische Dynamik

nach verschiedenen Schwingungsfrequenzen trennen� Auf der Basis der resultierenden

Teilsysteme wird ein Reglerentwurfsverfahren f	ur Roboter mit elastischen Gliedern ange�

geben� Die vorgestellte Methode wird sowohl durch Simulationen eines einachsigen und

eines zweigliedrigen elastischen Roboterarms� als auch durch experimentelle Studien an

einem einachsigen elastischen Roboter veri
ziert� Die Ergebnisse zeigen� da� durch Ver�

wendung der vorgestellten Methode der Reglerentwurf f	ur Roboter mit elastischen Armen

wesentlich erleichtert wird und der daraus resultierende Regler e�ektiv ist�

Obwohl die Strukturd	ampfung des Armes in dieser Arbeit nicht ber	ucksichtigt wird� kann

die vorgestellte Methode auch direkt f	ur das Modell mit Strukturd	ampfung verwendet

werden� Au�erdem kann die korrigierte Singular�Perturbation�Methode oder das Ver�

fahren mittels Integralmannigfaltigkeit zur Erh	ohung der Genauigkeit verwendet werden�

wenn die Werte �i �i � 
� �� � � � � m� nicht klein genug sind�

Bisher wurde angenommen� da� die Endmasse und das Massentr	agheitsmoment des Robo�

ters bekannt ist und unver	anderlich w	ahrend der Bewegung bleibt� Die Erweiterung dieser

Arbeit auf die unbekannte oder ver	anderliche Endmasse kann Gegenstand zuk	unftiger For�

schung sein�

Der Verfasser dankt dem DAAD f	ur seine Unterst	utzung�
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