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Ubersicht: In diesem Forschungsbericht wird eine Multiparameter-Multizeitskalen-
Singular-Perturbation-Methode zur Regelung von Robotern mit elastischen Armen ent-
wickelt. Hierzu wird das Modell des Roboters zunéchst in Multiparameter-Multizeitskalen-
Form dargestellt. Anschlieend wird ein rekursiver Algorithmus zur Dekomposition des
Robotersystems mit Hilfe der Multiparameter-Multizeitskalen-Singular-Perturbation-
Methode vorgestellt. Durch Verwendung des vorgestellten Algorithmus kann man nicht
nur die starre von der elastischen Dynamik, sondern auch die elastische Dynamik nach
verschiedenen Schwingungsfrequenzen trennen. Auf der Basis der resultierenden Teilsy-
steme wird ein Reglerentwurfsverfahren fiir Roboter mit elastischen Gliedern angegeben.
Die vorgestellte Methode wird sowohl durch Simulationen eines einachsigen und eines
zweigliedrigen elastischen Roboterarms, als auch durch experimentelle Studien an einem
einachsigen elastischen Roboter verifiziert. Die Ergebnisse zeigen, dafl durch Verwendung
der vorgestellten Methode der Reglerentwurf fiir Roboter mit elastischen Armen wesent-
lich erleichtert wird und der daraus resultierende Regler effektiv ist.
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1 Einleitung

Um die Dynamik von Robotern mit elastischen Armen exakt zu beschreiben, ist die
elastische Deformation des Arms zu beriicksichtigen (Benati und Morro 1994). Dies
fithrt allerdings zu einem unendlich dimensionalen System. Im Hinblick auf die Rege-
lung ist jedoch eine endliche Ordnung wiinschenswert bzw. eine notwendige Vorausset-
zung (Schwarz 1991). Dies kann durch Verwendung eines Ritzschen Ansatzes geschehen
und liefert ein hoch-dimensionales System mit Multizeitskalen, d.h., ein System, dessen
dynamische Verhalten im wesentlichen durch mehrere verschiedene Zeitkonstanten ge-
kennzeichnet werden kann (Zaad und Khorasani 1996, Siciliano und Book 1988). Wegen
der Kopplung zwischen dem langsamen und schnellen Verhalten ist das System schlecht
konditioniert. Darunter leiden die Analyse des Systems und der Reglerentwurf. Fiir einen
Roboter mit elastischen Armen kann angenommen werden, dafl seine Gelenkwinkelge-
schwindigkeit viel niedriger als die kleinste Eigenfrequenz der elastischen Schwingungen
des Arms ist (Book 1993, Choura u. a. 1991, Gawronski u. a. 1995). Unter dieser An-
nahme wird die Singular-Perturbation-Methode zur Trennung der starren und elastischen
Dynamik des Roboters mit elastischen Armen verwendet (Zaad und Khorasani 1996, Si-
ciliano und Book 1988).

Eine Schwierigkeit, die bei dem Reglerentwurf fiir den Roboter mit elastischen Armen
auftritt, ist, daf§ die Anzahl der Regelgrofien grofler als die Anzahl der Stellgréfien ist
(Siciliano und Book 1988). Durch Verwendung der von Siciliano und Book (1988) und
Zaad und Khorasani (1996) vorgestellten Ein-Parameter-Singular-Perturbation-Methode
kann man die Dynamik des Roboters mit elastischen Armen in ein starres und ein elasti-
sches Teilsystem zerlegen. Fiir das starre Teilsystem ist die Zahl der Eingénge gleich der
Zahl der Ausginge. Aber das elastische Teilsystem hat immer noch mehrere Ausgénge als
Eingénge, wenn mehr als eine Ansatzfunktion pro Glied fiir die Modellbildung benutzt
wird. Das bedeutet, daf} die Ein-Parameter-Singular-Perturbation-Methode in diesem
Fall nicht geniigt. Allerdings wiirde ein dynamisches Modell mit nur einer Ansatzfunkti-
on pro Glied nur eine grobe Beschreibung des Roboters mit elastischen Armen darstellen
(Fraser und Daniel 1991). Deshalb muf in der Praxis mehr als eine Ansatzfunktion pro
Glied bei der Modellbildung eines Roboters mit elastischen Armen benutzt werden, um
die Dynamik exakter darzustellen. In dieser Situation soll eine neue Methode gefunden
werden, um diese Schwierigkeit komplett zu iiberwinden.

In Fraser und Daniel (1991), Wang (1996) und Zaad und Khorasani (1996) wurde ge-
zeigt, dafl die Eigenwerte des entsprechend linearisierten Modells des Roboters mit ela-
stischen Armen sich nach dem Betrag ihres Imaginérteils in Gruppen aufteilen lassen,
wenn mehr als eine Ansatzfunktion fiir die Modellbildung benutzt wird. Weil die elasti-
schen Schwingungen nur schwach geddmpft werden, kann dieses System nach Chow u. a.
(1978) mittels der Singular-Perturbation-Methode behandelt werden. Im Hinblick auf
diese Ergebnisse wird eine Methode zur Regelung der Roboter mit elastischen Armen mit



1 FEinleitung 2

der Hilfe des Multiparameter-Multizeitskalen-Singular-Perturbation-Verfahrens in dieser
Arbeit entwickelt.

Im einzelnen gliedert sich der Inhalt der Arbeit wie folgt: Im Abschnitt 2 wird eine Sy-
stemdekompositionsmethode auf der Basis des Multiparameter-Multizeitskalen-Singular-
Perturbation-Verfahrens fiir die betrachteten Robotersysteme entwickelt. Auf der Basis
der im Abschnitt 2 entwickelten Teilsysteme wird ein Reglerentwurfsverfahren fiir den
Roboter mit elastischen Armen im Abschnitt 3 vorgestellt. Abschnitt 4 behandelt Simula-
tionsstudien. Im Abschnitt 5 wird die vorgestellte Methode experimentell verifiziert. Der
Bericht schliefft mit einer Zusammenfassung und mit einem Ausblick auf Ziele zukiinftiger
Forschungen ab.
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2 Systemdekomposition mittels Multiparameter-
Singular-Perturbation-Methode

Betrachtet wird ein elastischer Roboter, der aus n elastischen Armsegmenten besteht, die
untereinander mit rotatorischen Gelenken in Reihe verbunden sind. Wir beschrianken uns
auf einen sich nur in der horizontalen Ebene bewegenden Roboter. Das Moment des i-ten

Gelenks wird mit 7;(¢) (i = 1,2,...,n) bezeichnet. Unter den vereinfachenden Annahmen,
daB3:

e die Verformung jedes elastischen Arms nur durch reine Biegung hervorgerufen wird,
die in einer horizontalen Ebene ist und es sich bei den Armen um Euler-Bernoulli-
Balken handelt,

e die Deformation jedes elastischen Arms nach dem Ritzansatz beschrieben werden
kann, wobei als Ansatzfunktionen die ersten m Eigenfunktionen eines nicht rotie-
renden, einseitig fest eingespannten Balkens angesetzt werden,

e die Coulombsche und viskose Reibung in den Gelenken sowie die Strukturddmpfung
des Arms vernachléssigbar sind,

stellen sich die Bewegungsgleichungen dieses Roboters mit Hilfe des Lagrange-Verfahrens
zweiter Art wie folgt dar (De Luca und Siciliano 1991, Siciliano und Book 1988):

M(q(1))q(t) +h(q(t),q(t)) + Keq(t) = QT(?). (2.1)

Dabei ist g(t) der Vektor der verallgemeinerten starren und elastischen Koordinaten und
ergibt sich zu

q(t) = [01(t),02(t),...,0,(t),011(t),012(t), .., d1m (), d21(t), 022(t), . .., dom(t),
Ot (1), 6n2(1), - S (D]

0;(t) (i =1,2,...,n) sind die Gelenkwinkel, §;;(¢t) (i = 1,2,...,n, j =1,2,...,m) sind
die j-ten elastischen Koordinaten des i-ten Armes. 7(t) = [ri(t), 72(t), ..., 7o ()] ist der
Gelenkmomentvektor und die {ibrigen Matrizen und Vektoren in Gl. (2.1) sind wie folgt
definiert:

M (q(t)) : positiv definite, symmetrische (m + 1)n x (m + 1)n Trigheits-
matrix,

h(q(t),q(t)) : (m + 1)n-Vektor der Coriolis- und Zentrifugalkrifte,

K. : (m+ 1)n x (m + 1)n Steifigkeitsmatrix und

Q =[I,4n,0,xm]" : Eingangsbelegungsmatrix.

Wir fiihren einen neuen Vektor der verallgemeinerten starren und elastischen Koordinaten

qa(t) = [0:1(2),02(t),...,00(t),011(£),021(2), ..., 0n1(t), 12(t), Saa(t), . . ., Sna(t),
s O () o (1), - B ()]
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durch ein Umsortieren des Vektors g(t) ein. Dabei sind g*(¢) und g(t¢) durch
q'(t) = Pq(t) (2.2)

verkniipft, wobei P eine geeignete Permutationsmatrix ist. Entsprechend gilt nun fiir die
Bewegungsgleichung (2.1):

M*(g*(t))q*(t) + h*(q*(t), g*(t)) + K.q"(t) = QT (¢). (2.3)
Dabei sind

M*(g*(t)) = P"M(Pq'(1))P,

h*(q(t),q*(t) = PTh(Pq(t), P (t)), (2.4)

K - P'K,P.

Die Gl. (2.3) ist stark nichtlinear. Dies macht den Reglerentwurf fiir das System kom-
pliziert und aufwendig. Im Hinblick auf eine spéter angedachte Regelung wird zuerst
das nichtlineare Systemmodell um den Arbeitspunkt q*(¢) = q°, ¢*(t) = ¢*(t) = 0 und
7(t) = 0 linearisiert. Dies geschieht gem#fl Wang (1996) durch eine Taylorreihenentwick-
lung mit Abbruch nach dem ersten Glied des Systems (2.3):

M*(¢") A q(t) + K; A q(t) = Qu(t), (2.5)
mit
(2.6)

Das System aus Gl. (2.5) wird nun in eine Zustandsraumdarstellung iiberfiihrt. Der
Zustandsvektor x(t) des Systems wird aus Ag(t) und seiner ersten zeitlichen Ableitung
Aq(t) gebildet:

o(t) = [ 28 ] _ [ iggg } L @ eROMD (= 1,92). (2.7)

Aus (2.5) und (2.7) folgt

2B1(t) = 9 (t),

&o(t) = Az, (t) + Bu(t) (2.8)

mit
A=—-[M(q")] ' K,

B=[M(¢")]"Q. (2.9)

Wie Fraser und Daniel (1991), Wang (1996) sowie Zaad und Khorasani (1996) gezeigt
haben, werden die Eigenwerte des Systems (2.8) aus Nullen und rein imaginéren Zahlen
gebildet. Diese Eigenwerte werden mit {)\fj, i=1,2,...,n; 7=0,1,....m; k=1,2}
bezeichnet. Wir beschrianken uns dabei auf den Roboter, der die folgende Annahme erfiillt:
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Annahme 2.1: Die Eigenwerte des Systems (2.8) konnen nach dem Betrag ihres Ima-
ginérteils in die folgenden m + 1 Gruppen eingeteilt werden: {\f, i = 1,2,...,n; k =
L2}y, {\E, i=1,2...0n; k=12, .., {\E i=1,2,....n; k=1,2}. Die Betriige
der Imaginérteile der verschiedenen Eigenwerte innerhalb einer Gruppe haben die gleiche
Groflenordnung. Also:

k1
Ag' = 0(1), iia=1,2,....m; ki, ke =1,2; j=1,2,...,m. (2.10)

2]

Dabei heiit O(-) von der Ordnung ,,groff O“. Dagegen unterscheiden sich die Betriige der
Imaginérteile der Eigenwerte von verschiedenen Gruppen stark. Diese Gruppen sind so
angeordnet, daf} gilt:
i - .
W:o(l), i1,00 = 1,2,...,n; ki,ke =1,2; 7=0,1,...,m—1. (2.11)
i2(j+1)

o(-) bezeichnet die Ordnung ,klein o“.

Bemerkung 2.1: Wie Fraser und Daniel (1991), Wang (1996) sowie Zaad und Khorasani
(1996) gezeigt haben, ist diese Annahme bei vielen Robotern mit homogenen elastischen
Armen erfiillt.

Weil die Imaginirteile dieser Eigenwerte fiir die Schwingungsfrequenz des Systems (2.8)
zustandig sind, folgt gemiB Chow u. a. (1978), daf das System (2.8) mittels der Singular-
Perturbation-Methode behandelt werden kann. Es handelt sich bei System (2.8) um
ein System mit m + 1-Zeitskalen (Ladde und Siljak 1983). Nun wird dieses System in
einer Multiparameter-Multizeitskalen-Singular-Perturbation-Form dargestellt. Dazu wer-
den zunéchst p; (j =1,2,...,m) als die Kehrwerte des geometrischen Mittels der Abso-
lutwerte der Imaginirteile der Eigenwerte der Gruppen {)\fj (t=1,2,....,n; k=1,2)}
definiert:

jj = 1 S i=1,2,....m.

< LTI o) 2.12)

i=1 k=1

Nun fiihrt man die folgenden Partitionen aus

wl(t) = [51310(75), iBn(t), ey mlm(t)]T, .
(1) € R 2.1
CBZ(t) = [ZCQU (t), o1 (t), R (t)]T, Tij (t) € , ( 3)
Ay Ag ... Ay,
Ay, Ay .. A,
A e .10 ‘11 . 1 7 AU E Rnxn’ (214)

Ao Ann .. An;
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B=| |, B; € RV ™" (2.15)
B,

und fiihrt die Bezeichnungen

zu(t) = @ult),

Hi i=1,2,....m (2.16)

29i(t) = mmm(t),
ein. Durch Einsetzen von (2.13) bis (2.16) in (2.8) la8t sich das System (2.8) in folgender
Multizeitskalen-Singular-Perturbation-Form darstellen:

x10(t) = wa0(t),

_ ” 2.17
En(t) = 5 12 Agzy(t) + Bou(t), (2.17)
7j=1
piz1i(t) = z9(t),
i=1,2,....m (2.18)

pizai(t) = > p5Aiz14(t) + Biu(t),
j=1
Dabei werden A;p =0 (i =0,1,...,m) verwendet.

Gestiitzt auf die Multiparameter-Multizeitskalen-Singular-Perturbation-Methode (Ladde
und Siljak 1983) wird der folgende rekursive Algorithmus zur Dekomposition des Systems
aus Gl. (2.17) und (2.18) vorgestellt:

Algorithmus 2.1

1. Initialisierung:

k m,
xn(t) = mp(t), i=1,2,
() = =zy4(t), i=1,2j=12,...,m, (2.19)
u™(t) = u(t),
AZ’; = /'LgAZW ¢ 0’17 ,’ITL, ]:1727 7m7
B = B, 1=0,1,...,m.
2. Darstellung des Systems mit k + 1-Zeitskalen wie folgt:
3.3]160(75) = xhy (1),
_ k 2.20
(1) = 3 Af24,(0) + Blut(0), (2:20)
]:
lu’lzllcz(t) = Zgl(t),
i1=1,2,...,k. (2.21)
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3. Da A, nicht singulir ist, kann das System aus Gl. (2.20) und (2.21) mit Bezug auf
die py-Zeitskala mittels Singular-Perturbation-Methode, d.h. mit u; = 0 anstelle
des wahren Wertes, in die folgenden zwei Teilsysteme zerlegt werden (Kokotovic

u. a. 1986):

e das pu-Zeitskala quasistationére Teilsystem:

ahy (1) = f’f'lzco H(t),
(1) = 5 AL 0 + BE ), (2:22)
/lelfz_l(t) - zIZCz l(t)a
b 1 g 1=1,2,...,k—1,(2.23
(0 = T A 0+ B ), (2:29)
]_
k ok k k ko k-1
zip(t) = — Z (Aklc) Ak]zlj ( ) — (Alck) Biu™ (1), (2.24)
J=1 :
e das yu-Zeitskala Grenzschichtteilsystem:
-k
[k Zop(t) = Aikillck( t) + Bya* ().
Dabei gilt:
k=1 _ Ak k ( Ak koo
B! = BY - Ak (Agk) 'BY =12, k-1
xh1(t) und z”c 1(t) (t=1,2; j=1,2,...,k — 1) bezeichnen den langsamen Anteil

von xk (1) bzw z55(t).

L(t) und @"(t) bezeichnen den langsamen bzw. schnel-

i
u
len Anteil von uk(t) 2k (t) und 2% (t) (i = 1,2) bezeichnen den langsamen bzw.
(£).

schnellen Anteil von 2% (¢). Es ergibt sich (Kokotovic u. a. 1986):
zi(t) = iy () + Oex), i=12,
Z5(t) = 271 + O(ew), i=1,2 j=1,2,...,k—1
z?k(t) = sz(t) + 2fk(t) +O0(z), =12,
ub(t) = uF'(t) +a"(t) + O(eyp)
Dabei ist
M1, k= ]-7
T A k=23
Ty F=23,....m

4. Setze k =k — 1.

Y

(2.27)

(2.28)
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5. Wenn k£ > 0, dann gehe zu Punkt 2, sonst gehe zu Punkt 6.
6. Ende.

Durch Verwendung von Algorithmus 2.1 wird das System (2.8) in m + 1 voneinander
entkoppelte Teilsysteme zerlegt. Fiir £ = 1 stellt Gl. (2.22) das langsamste Systemverhal-
ten vom System (2.8) dar. Dies entspricht den linearisierten Bewegungsgleichungen des
entsprechenden starren Roboters. Fiir k£ = 1,2,..., m beschreibt Gl. (2.25) das p;-, po-,
..., [tm-Zeitskalen-Grenzschichtteilsystem vom System (2.8). Aus 2% (¢) und der durch
Gl. (2.24) gegebenen z% (t) kénnen die elastischen Koordinaten x.(t) (i = 1,2; k =
1,2,...,m) gebildet werden. Bei jedem Teilsystem ist die Zahl der Ausgangsgrofien gleich
der Zahl der Stellgrofien, wodurch sich der Reglerentwurf vereinfacht. Auf der Basis die-
ser Teilsysteme wird im n#chsten Abschnitt auf den Reglerentwurf fiir den betrachteten
Roboter eingegangen.
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3 Reglerentwurf

Der Reglerentwurf fiir den Roboter mit elastischen Armen hat zwei Ziele. Zum einen soll
das Gelenk aus seiner Anfangslage in eine gewiinschte Endlage mit vorgegebenen Win-
kelgeschwindigkeiten bewegt werden und zum anderen soll die elastische Schwingung des
Arms geddmpft werden (Baruh und Tadikonda 1989). Im Hinblick auf die im letzten
Abschnitt vorgestellten Ergebnisse werden diese Ziele nun durch Reglerentwiirfe fiir die
im letzten Abschnitt erhaltenen Teilsysteme (2.22) (k= 1) und (2.25) (k =1,2,...,m),
statt direkt fiir System (2.8) durchgefiihrt.

Wie im letzten Abschnitt gezeigt, wird die Stellgrofie w(t) durch die Systemdekompositi-
on mittels Multiparameter-Singular-Perturbation-Methode in m + 1-Anteile aufgespalten.
Aus Gl. (2.27) 148t sich eine einfache Gleichung fiir die Gesamtstellgrofie angeben:

w(t) = u(t) +a' (t) + a’(t) + -+ @™ (). (3.1)

Nun wird der Reglerentwurf genauer spezifiziert. Es wird vorausgesetzt, daf} alle Zustands-
grofen vom System (2.8) fiir die Riickfithrung zur Verfiigung stehen. Fiir den Entwurf des
Regleranteils u°(¢) wird vom Untersystem (2.22) (fiir & = 1) ausgegangen. Dabei dient
dieser Regleranteil zur Stabilisierung des starren Verhaltens des Systems (2.8) und zur
Verfolgung einer vorgegebenen Bahn des Gelenkwinkels. Es kann leicht bestétigt werden,
daB B) eine n x n positiv definite, symmetrische Matrix ist. Das bedeutet, daf die inverse
Matrix von B} existiert. So kann u’(t) als Folgeregler gewihlt werden (Schwarz 1991):

u’(t) = (BY) {8 () - K§ [23,(1) - 8'(1)] - KO [2,() — 6°(1)] . (3.2)
Hierbei ist 0%(t) = [0¢(2),04(2), ..., G;f(t)]T der vorgegebenen Bahnvektor, K§ und K
sind konstante, diagonale Reglermatrizen.

Die Regleranteile @* () (k = 1,2,...,m) haben die Aufgabe, die elastischen Schwingungen
von System (2.8) zu dimpfen. Fiir die Entwiirfe der Regleranteile a*(t) (k =1,2,...,m)
wird vom Untersystem (2.25) ausgegangen. Da das System (2.8) vollstindig steuerbar
ist (Riege 1996), konnen die Untersysteme (2.25) (kK = 1,2,...,m) auch als steuerbar
angenommen werden (Kokotovic u. a. 1986). Deshalb wird hier zur Losung der Aufgaben
das lineare Riickfiihrungsgesetz

Sk

a’“(t):—Kk{f}f(t) ] k=1,2,....m (3.3)
Zoi(1)

verwendet. Dabei ist K eine konstante Reglermatrix, die durch Verwendung des Verfah-

rens der Polvorgabe bestimmt werden kann (Friedland 1987).

Dieses einfache Vorgehen weist folgende Schwierigkeiten auf: % (¢) in Gl (3.2) und
2h(t) (i =1,2; k =1,2,...,m) in Gl (3.3) sind lediglich fiktive GréBen, die im rea-
len System nicht auftreten. Diese miissen in @;; (i = 1,2; k£ =0,1,...,m) umgerechnet
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werden. Aus den Gln. (3.1) bis (3.3) und mit Hilfe von (2.16), (2.19), (2.24) sowie (2.27)
ergeben sich

u'(t) = (BY)™! {éd(t) _ K" [m% (1) — éd(t)] — K [1(t) — 04(1)] } and  (3.4)

ut) = Kiu'(t)— K} { zu(t) ] ~ K { Z1a(!) ] ~ K7, { Zim(?) ] (3.5)
21 (t) L9 (t) Lom (t)
Dabei gilt:
K, = W, W,_,--- Wy, (3.6)
K, = {Wm {Wm—l { o {Wk-HKk + Fk(k+1)} + e } + Fk(mq)}
—|—I‘]€m}‘rk, k:1,2,,m—1, (37)
K =K,Y,, (3.8)
()" B,
OTLXTL
i\~ 4i
T = K, (A”) Air Onxn und (3.10)
nxn 0n><n
%Inxn 0n><n
Y, =| M . (3.11)

Onin 7T
Bemerkung 3.1: Obwohl u®(t) baw. @"(t) (k = 1,2,...,m) mit Hilfe der voneinander
entkoppelten Teilsysteme (2.22) fiir (k = 1) bzw. (2.25) ausgelegt werden, mufl man sich
allerdings bei der Wahl von K9 und K?) bzw. Ky (k = 1,2,...,m) die Tatsache vor
Augen halten, daB u’(t) bzw. @"(t) (k =1,2,...,m) Teile des gesamten, geschlossenen
Systems sind. Da die durch u°(t) baw. @*(t) (k = 1,2,...,m) gelosten Aufgaben nicht
identisch sind, oft sogar einander widersprechen, muff man bei der Wahl von K9 und
K?) bzw. Ky (k= 1,2,...,m) bereit sein, geeignete Kompromisse einzugehen. Fiir gut
gewiihlte K und K?) bzw. Ky (k=1,2,...,m) sollen die Polstellen aller geregelten ord-
nungsreduzierten Teilsysteme nur gemé&figt links von ihrer urspriinglichen Stelle in den
offenen Teilsystemen liegen. Dies vermeidet hohe Stellimpulse, starke Anfangsschwin-
gungen und dergleichen (Féllinger 1994). Dies deutet an, daf§ die mit (3.2) bzw. (3.3)
geregelten ordnungsreduzierten Teilsysteme (2.22) (fiir £ = 1) bzw. (2.25) die Zeitskalen
der entsprechenden offenen Teilsysteme beibehalten. Daraus erkennen wir, dafl das mit
dem Regelgesetz (3.5) geregelte Gesamtsystem (2.8) auch m + 1-Zeitskalen besitzt, und
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es kann wie das entsprechende offene System mit dem in Abschnitt 2 vorgestellten Algo-
rithmus behandelt werden. Dadurch ergeben sich die folgenden Sétze:

Satz 3.1: Es seien K, Kg, K (k= 1,2,...,m) so gewahlt, da} die folgenden For-
derungen erfiillt sind:

1. Die mit (3.2) bzw. (3.3) (k =1,2,...,m) geregelten ordnungsreduzierten Teilsyste-
me (2.22) (fiir £ = 1) bzw. (2.25) sind stabil.

2. Die Zeitskalen des offenen Gesamtsystems werden beim iiber (3.5) geschlossenen
System beibehalten.

Dann existieren ¢f (i =1,2,...,m) und fiir alle ¢; € (0,ef] (i =1,2,...,m) ist das iiber
(3.5) geschlossene System (2.8) auch stabil. Q

Beweis: Kokotovic u. a. (1986) haben diesen Satz lediglich fiir ein System mit zwei
Zeitskalen bewiesen. Eine Erweiterung auf Systeme mit drei Zeitskalen fiihrten Ladde
und Siljak (1983) durch. Der Beweis fiir ein System mit m + 1 Zeitskalen wurde bisher
noch nicht erbracht, er kann jedoch analog zu Kokotovic u. a. (1986) und Ladde und
Siljak (1983) gefiihrt werden. Aufgrund der Kompliziertheit des Beweises wird dieser im
folgenden nur kurz skizziert.

Ohne Beschrinkung der Allgemeinheit wird %(t) in Gl. (3.4) bei dem Beweis zu Null
gesetzt. Durch das Einsetzen der Gl. (3.5) in (2.17) und (2.18) erfolgt die Darstellung
des exakten geschlossenen Systems in der Multizeitskalen-Singular-Perturbation-Form:

[ &o(t) ] [ zo(t) ]

piz1(t) z1(1)

pezo(t) | = E | 22(t) (3.12)
L Mmzm(t) i L ZM(t) i

mit
zo(t) = [zi0o(t) T2(t)]", (3.13)
zi(t) = [zu(t) Zzl(t)]T, i=1,2,...,m, '
[ Eyy Eyn Eyp ... Ey, |
E10 EH E12 e Elm

E=| Ey Ey Ey»n ... Ey, |, (3.14)
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Ey = [ [Onxn Inxn] :|
- BKBY (KD K )
0n><2n
EO]’ - 2 /LZ'Ian 0n><n )
 Aoi Onn] — BoK: | 1
L [MJ o nxn] 07 |: O0nxn MjInxn
i=1,2,...,m,
[ 0n><2n .
EZOZ * 0\ —1 0 0 :|7 221,27...7m,
| —B;K,(B)) (K, K] (3.15)
0n><2n
Eij - 2 MZInxn 0nxn )
B [MJ ! ) ] I |: O0nxn HjInxn J
6, =1,2,...,m, i # ],
[Onxn Inxn]
Eii = 2 |: MZInxn 0nxn :| )
‘Aji 0] — BiK; | 7
[MZ . ] ' 0n><n ,U/iIan
i=1,2,....,m.
Wir fiihren eine untere Blockdreiecksmatrix
[ Io5om 0 0 0 0 ]
L, I, 0 0 0
L= L, Ly Iopxon 0 0 (3.16)
: : : ) 0 0
L L, L, L, SR Lm(m—l) Iy, 00 i

so ein, daf die Matrix LEL™" eine obere Blockdreiecksmatrix ergibt. Ihre diagonalen
Blockelemente ergeben sich zu

|: Oan In><n

—K?) _Kg :| +O(51)+O(52)+"'+0(5m) (3.17)

und

|: [ [Onxn In><n] :|—|—0(€z)+0(5z+1)++0(5m)7 i:1,2,...,m. (318)

Durch Verwendung der gleichen Argumente wie Ladde und Siljak (1983) folgt dann, daf
das System stabil ist. a

Satz 3.2: Es seien K, Kg, K, (k= 1,2,...,m) so gewahlt, da} die folgenden For-
derungen erfiillt sind:

1. Die mit (3.2) bzw. (3.3) (k = 1,2,...,m) geregelten ordnungsreduzierten Teilsy-
steme (2.22) (fir k = 1) bzw. (2.25) besetzen die verschiedenen Eigenwerte
Ak i=1,2,...n k=1,2}, {0 i=1,2,...,n; k=1,2} (j=1,2,...,m).

ij )
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2. Die Zeitskalen des offenen Gesamtsystems werden beim iiber (3.5) geschlossenen
System beibehalten.

Dann existieren f (i = 1,2,...,m). Fiir alle & € (0,ef] ( = 1,2,...,m) besitzt
das mit (3.5) geregelte System (2.8) die Eigenwerte { A%} + O(g;) + 0(52) +--+0(em),
(M + O(e)) + O(ej41) + Olejpn) + -+ + O(en)] /1y, i=1,2,...,m5 k = 1,2;
j=1,2,...,m}. Q

Beweis: Um Satz 3.2 zu beweisen, gehen wir von der oberen Blockdreiecksform des ge-
schlossenen Gesamtsystems aus und beriicksichtigen die charakteristischen Gleichungen
der diagonalen Blockelemente:

1/)50(87517627"'76771) — 07 (319)
V(S 8k Ekgts -1 Em) = 0, k=1,2,...,m. (3.20)
Da fiir 1sc(s,€1,€2, ..., &m) und Yf.(s, ek, €p11, ..., Em) gilt, da

e an der Stelle {5, = 0,641 =0,...,6, =0}, s = Af baw. s = AF (j =1,2,...,m)
die Gleichungen (3.19) bzw. (3.20) erfiillt werden,

e alle charakteristische Polynome und ihrer partiellen Ableitungen nach s in einer
Umgebung dieser Stelle stetig sind und

e die Tatsache, dal die Eigenwerte verschieden sind, gewihrleistet, dafl die partiellen
Ableitungen aller charakteristischen Polynome nach s an der Stelle nicht Null sind,

1aBt sich dieser Satz beweisen. a
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4 Simulationsergebnisse

Das im vorangegangenen Abschnitt entwickelte Reglerentwurfsverfahren wird mit Hilfe
von Simulationen eines einachsigen und eines zweiachsigen elastischen Roboters erprobt.

4.1 Einachsiger elastischer Roboterarm

Unter der Annahme, dafi das 2. und 3. Gelenk in Strecklage festgehalten werden, kann der
Canadarm als Beispiel fiir einen einachsigen elastischen Roboterarm (n = 1) betrachtet
werden. Nach Zaad und Khorasani (1996) wird m zu 2 gesetzt, und die Matrizen sowie
Vektoren in GL. (2.1) lassen sich wie folgt darstellen:

196040 + 4000, 7(611(t) — 612(1))> 29022 —27688
M(q(t)) = 20022 4985,5 —6633,4 | , (4.1)
—27688 —6633,4 13371

8001, 40, (¢) (611 (t) — 612(2)) (611 — d12(2))
h(q(t),q(t)) = —4000, T03(t) (611 () — 012(1)) , (4.2)
4000, 702 () (811 () — 612(1))

0 0 0
K.= |0 123180 0 , (4.3)
0 0 4865200

Q=[135 0 0] . (4.4)

Mit ¢° = [0 0 0]7 berechnen sich A und B in Gl. (2.8) zu:

0 1347,0399 14180, 5071 0,0012
A= |0 —12223,1233 —129333,8731 |, B=| —0,0109 |. (4.5)
0 —3274,5512 —35162,5632 -0, 0029

Die Eigenwerte des linearisierten Modells liegen bei Aj77 = 0, A;* = £11,53385, Ajy =
+217,3768;. Die Perturbations-Parameter sind gy, = 0,0867, py = 0,0046; ¢, = 0, 0867,
g, =0,0531. BY in Gl. (3.4) ist 5,101 - 1075,

Bei der Simulation wird die Sollbahn des Gelenks zu

55 et
™

(4.6)
5 fiirt >5s

£ t* AW
9%&):{ (6——15 +10 )g fiir £ < 5 5
gewihlt. Die Reglerparameter in Gl. (3.2) werden zu K) = 2, K) = 1 gesetzt. Als Pol-
vorgabe fiir das geschlossene Grenzschichtteilsystem (2.25) (k = 1,2) werden (—0,8197 +
0,81975)/p1 und (—0,6100 £ 0,61007) /2 gewdhlt. Mit diesen Polen ergeben sich K; =
[0 —7630,5278] und Ko = [0 —418,5536] in GL (3.3) (k = 1,2). Die Reglervektoren in
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Gl. (3.5) lassen sich zu K =1, K7 = [0 —88009, 0104], K3 = [0 —90983, 8263] berechnen.

Die Robustheit des Reglers (3.5) wird anhand der Regelung des linearen bzw. nichtli-
nearen Modells iiberpriift. Die Simulation beginnt mit den Anfangsbedingungen: #,(0) =
811 (0) = 612(0) = 6;(0) = 61, (0) = 612(0) = 0. Die Simulationsergebnisse sind in dem Bild
4.1 dargestellt.

16 ‘ == 01
I 147 T \
12} 0,05 i
L ! \
N £
= 08/ € 075
S 06/ < ' /
04 -0,05 \\ //
02/ \ S
01—
0 2 4 6 8 10 0 2 4 6 8 10
t/s — t/s -
a b
x 10° i x 10° ®)
3 1
/ \\\ 0’5 /I \\\
L / \
£ ol \ N S / Y
~ ! \'\ "~ 2 \ /=
£ o T = 0 (T
Q'Qﬁ ;‘:‘ \\ l,
1T . \\ If
Voo 05 Vo
20 J// 7
-3 -1
0 2 4 6 8 10 0 2 4 6 8 10
t/s — t/s —
(c) (d)
Bild 4.1: (a) Winkel des Gelenks 6, (t); (b) Elastische Koordinate d11(t); (¢) Elastische
Koordinate 015(t); (d) Moment des Motors u;(t). ,,— Sollbahn; - - lineares

Modell; ,,- -“ nichtlineares Modell.

4.2 Zweigliedriger elastischer Roboterarm

Betrachtet wird das von De Luca und Siciliano (1991) vorgestellte Modell eines planaren
elastischen Roboterarms, der aus zwei Gliedern (n = 2) besteht. Zur Beschreibung der
elastischen Deformationen werden zwei Ansatzfunktionen pro elastischem Glied (m = 2)
verwendet. Die Belegung der Systemmatrizen in Gl. (2.1) sind in De Luca und Siciliano
(1991) im einzelnen angegeben. Die physikalischen Parameter des Roboters ergeben sich
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nach De Luca und Siciliano (1993) zu:
ll lg = 0,5 m,
p1 = P = 1,0 kg/m,
(E[)l == (E[)Q = 10 N'm2,
d1 = d2 = 0,25 m,
mq = Mo = 0,5 kga
Jol == Jog = 0,0083 kg-mQ,
mp = myz = 1kg,
In1 = Jn 0,1 kg-m?,
my = 0,1 kg,
Jp 0,0005 kg-m?.
Die Frequenzen der Ansatzfunktionen sind:
)\11 = 1, 40 HZ, )\12 = 5, 10 HZ,
)\21 = 5, 21 HZ, )\22 = 32, 46 Hz.
Die Steifigkeitsmatrix ergibt sich zu:
K. =diag(0 0 38,79 513,37 536,09 20792,09). (4.7)

Die mit den Ansatzfunktionen verbundenen Koeffizienten sind:

P11e
e
Pa1,e
Gor e
U11

V21

W11
W21

0,39,
1,34,
1,49,
4,30,
0,069,
0,28,
0,026,
0,104,

P12,
iz
P22,
$r2c
V12
V22
W12

Wa2

0,36,
1,38,
—0,75,
—15,49,
0,12,
0,30,
0,0405,
0,073.

Mit ¢° =100 0 0 0 0]" folgt aus Gl. (2.8):

S O O O O O

o O O O O O

390, 3589

3,9373 9520, 9136

10438,1700 —340,9016 —151630, 1634

—4270, 7884

116,6448 —2414, 5601

1615,4170 48943, 4861

—708,9799

3688,1674 —739,8932  —58280, 9561

63,3213  —322,6628

—384, 8736

82, 9665
—50842, 3259

34040, 0731
12524, 7914
—15591,0318

—45972,1476 |
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15,6303 —16,9506
—16,9506 801, 7973
—10,0897 —269, 7979

—0,0073 0, 6362
~10,7533  295,3354
—0, 0040 2,4445

Die Eigenwerte des resultierenden linearen Modells liegen bei )\}62 =0, )\ég = 0, )\}’12 =
+32,53295, A7 = +£48,49477, \i7 = +£213,54914, Ayy = +£248,8475j. Die Perturbation-
Parameter sind p; = 0,0252, iy = 0,0043; £, = 0,0252, 5 = 0,1723. B in Gl. (3.4) ist

Bgz{ 2,2169 —3,6667

—-3,6667 13,5384 |

Die Sollbahnen der Gelenkwinkel werden zu

6L 158 1108 )6, firt <t
prry = § \Ver, — en, T ) RSty g (4.9)
Hif fﬁrt>tid,

gewdhlt. Hier sind 0;; = n/4 rad (¢ = 1,2) die Soll-Endpositionen der Gelenkwinkel,
tie = 5 s (1 = 1,2) sind die Zeiten bis zum Erreichen der Soll-Endposition. Bei den
Simulationen werden die Reglermatrizen in Gl. (3.4) wie folgt gesetzt:

K= 20 und K? = 10.
0 2 P 01

Zur Dampfung der elastischen Schwingungen werden die vorgegebenen Pole der geschlos-
senen Grenzschichtteilsysteme (2.25) (k = 1,2) zu {—0,5285 + 0,66255 — 0,7562 +
0,9482;5} /1 und {—0,5102 + 0,77205 — 0,6587 £+ 0,81967} /112 gewéhlt. Somit ergeben
sich

K, — {o 0 —0,0759  0,5447

0 0 —0,0257 12,0910
und K, =
0 0 0,0163 —0,4574

0 0 0,0035 0,4414

in GL (3.3) (k =1,2). Daraus lassen sich die Reglermatrizen in Gl. (3.5) als

1 ~3,0162 21,634
Kéz{ 0],1{’;:{00 3,016 .63

01 0 0 0,6464 —18,1688
0 0 —5,9298 2787,2664]

] und
K; =
2 { 0 0 0,842 101,7583
berechnen.
Die Robustheit des Reglers wird anhand der Regelung des linearen bzw. nichtlinearen

Modells iiberpriift. Die Simulation beginnt mit den Anfangsbedingungen 6;(0) = 05(0) =
611(0) = (512(0) - 621 (0) = (522(0) - 91(0) - 92(0) - (511(0) - 612(0) - (521(0) - 622(0) - 0
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6 8 10
—>
. (b)
x 10
25 ‘
I 2
H 157
é ,f-" ] g 1 fen )
S0 - < 05/
R <0 AT
\\ /'/ _015 ’
\ /
\‘\\/ _1
-5 ‘ -15 ‘
0 2 4 6 8 10 0 2 4 6 8 10
t/s — t/s —
(© (d)

Bild 4.2: (a) Winkel des Schultergelenks #,(¢); (b) Winkel des Ellbogengelenks 6,(t); (c)
Elastische Koordinate 611 (¢); (d) Elastische Koordinate d12(t). ,,—“Sollbahn; -

13

- lineares Modell; ,,- -“ nichtlineares Modell.

Die Ergebnisse werden in den Bildern 4.2 und 4.3 gezeigt.

Die beiden Beispiele zeigen, daf} viele Roboter mit elastischen Armen Systeme mit Mul-
tizeitskalen sind, und dafl mit der vorgestellten Multiparameter-Multizeitskalen-Singular-
Perturbation-Methode der Reglerentwurf fiir diese Systeme wesentlich erleichtert wird.
Die Simulationsergebnisse der beiden Beispiele zeigen, dafl der resultierende Regler fiir
das lineare und das nichtlineare Modell gut funktioniert, obwohl dem Reglerentwurf ein
lineares Modell zugrunde liegt. Aus den Simulationsergebnissen erkennen wir auflerdem,
daf die Gelenkwinkel der geregelten Roboter der vorgegebenen Bahn mit hoher Genauig-
keit folgen und die Anteile der elastischen Schwingungen mit den Eigenfrequenzen der Ar-
me sehr gut geddmpft werden. Der Betrag der elastischen Koordinaten ist hauptséichlich
der Beitrag des quasistationiiren Anteils, der nur von u’(¢) abhingig ist und bei einer
Regelung der Endeffektorposition des Roboters leicht beriicksichtigt werden kann.
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u,()/Nm

x 10*
2 T

8,,(ty/m

—
H

0,2

0,157
01 ¢
0,05

-0,05 1
-01 |
-0,15 ¢
-0,2

0

6 8 10

s
St

(©)

—
6 8 10
—

—

0,,(t)/m

—

u,(t)/Nm

x 10°

[EnN
I—‘O_Ir\)

10

0,08
006 /N
0041/

-0,02 |
-0,04 |
-0,06 |

0,02 1/ Y

-0,08

(d)

10

Bild 4.3: (a) Elastische Koordinate d9;(¢); (b) Elastische Koordinate dy2(); (¢) Moment
des Motors im Schultergelenk u; (t); (d) Moment des Motors im Ellbogengelenk

uo(t). ,,- -« lineares Modell; - -

13

nichtlineares Modell.
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5 Versuchsergebnisse

5.1 Aufbau des Versuchstrigers

Das in dieser Arbeit betrachtete elastische Handhabungssystem ist in Bild 5.1 darge-
stellt. Bild 5.2 zeigt den Signalfluplan des Versuchstrigers, der aus einem sich in der
horizontalen Ebene bewegenden elastischen Arm besteht. Dieser wird durch eine elektri-
sche Gleichstrommotor-Getriebe-Kombination angetrieben. Die Steuerspannung fiir den
Motor wird von einem Rechner (PC486DX-100) durch eine D/A-Wandlerkarte RTT 815
(Analog Devices 1991) und einen Verstirker LC 3002 (Faulhaber 1994) ausgegeben. Ein
optischer ITmpulsgeber vom Typ Faulhaber-HEDS 5010C02 (Faulhaber 1994) zusammen
mit der DEC4-01 Zé&hlerkarte von MOVTEC GmbH liefert dem Rechner die Winkel-
position des Motors. Die Bestimmung der Deformationen des elastischen Arms wird
mit Dehnungsmefistreifen (DMS) der Firma HBM (Hoffmann 1987) an zwei Mefpunk-
ten durchgefiihrt. Hierzu wurden auf jeder Seite des Roboterarms in der Biegeebene pro
Meflpunkt ein Dehnungsmefistreifen appliziert. Der erste Anbringungsort liegt 0,052m von
der Einspannstelle entfernt. Der zweite liegt 0,2m von der Einspannstelle entfernt. Die
zwei Einzelmefstreifen werden zu einer Wheatstone’schen Halbbriicke zusammengeschal-
tet. Die Ausgangsspannung der Halbbriickenschaltung wird in einem HBM-Mef}verstéirker
(KWS 3073) aufbereitet und iiber die A/D-Wandlerkarte RTI815 in den ProzeBrechner
geleitet.

Bild 5.1: Laborroboter
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DECA4-01 |« | mpul sgeberte

Elastischer
Arm

> D/A » Verstarker Motor Getriebe

Rechner

4

D/A| < |Vedéke [« Briuckenschdtung| <« DMS

A

D/IA| <— |Veddka <« Brickenschdtung | |« DMS |«

RTI-815 KWS3073

Bild 5.2: Signalfluiplan des Priifstandes

5.2 Modellierung des Versuchstrigers
D/A-Wandler
Der Eingang des D/A-Wandlers ist ein 12 Bit Digitalsignal, der Ausgang eine Analog-

spannung im Bereich von —10 bis 410 V. Somit wird der D/A-Wandler ndherungsweise
als ein lineares Element mit der Verstdrkung von 1/204,8 V/Digit modelliert.

LC 3002

Der LC 3002 ist in der Betriebsart ,,Stomregelung“ eingesetzt. Durch Verwendung des
Least-Squares-Verfahrens 148t sich ein Modell des LC 3002 aus Messungen wie folgt her-
leiten:

io(t) = 0,3846u,(t) — 0,0072 = 0, 3846[uy(t) — 0,0187] A. (5.1)
Dabei entspricht i,(t) dem Ausgangsstrom des LC 3002, seine Eingangsspannung wird
mit uy(t) bezeichnet.

Motor

Unter Vernachlédssigung der Reibung im Motor wird die Dynamik des Motors durch die
folgende Differentialgleichung beschrieben:

karia(t) = T (t) + T (2). (5.2)

Hierbei ist kpy = 0,04288 Nm/A die Drehmomentkonstante, 7, () ist das Ausgangsmo-
ment des Motors, J,, = 6,437 - 107 kg - m? entspricht dem Rotortrigheitsmoment und
der Drehwinkel des Motors wird mit 6,,(¢) bezeichnet.
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Getriebe

Fiir das Getriebe gilt:
71 (1)01(t) = 0g17m (£) 00 (2). (5.3)

Hierbei sind 7 (t), 6 (t) sowie 1y = 0,7 das Ausgangsmoment, der Drehwinkel sowie der
Wirkungsgrad des Getriebes. 6 (t) ist durch das Untersetzungsverhiltnis ny, = 66 mit

O (t) verkniipft:

Durch Einsetzen von Gl. (5.4) in (5.3) ergibt sich
1
Tm(t) = T1(t). 2.0
(0= (o) (5.5)

Elastischer Arm

In dieser Arbeit beschrinken wir uns auf den Roboter ohne Endmasse. Die physikali-
schen Parameter des Arms sind:

l, = 0,03m,
[ = 0,42m,
p = 0,285 kg/m,

Jn = 0,00002 kgm®,
ET wird nachfolgend experimentell ermittelt.

Nach dem Ritz-Ansatz 148t sich die elastische Auslenkung wi(z,t) des Arms wie folgt
beschreiben

wi(z,t) = 11 ()61 (2) + dr2(x)012(2). (5.6)
Dabei sind ¢1;(2)(i = 1,2) Ansatzfunktionen und es gilt
¢1l($) = COSh()\li]I) — COS()\UJI) — Cq; [smh()\hx) — Sin()\lil')] 5

_ _cos(Agl) + cosh(Ag;l) (5.7)
CLi o Sin()\lil) + Slnh()\lll) )

A1 (i = 1,2) bezeichnen die Kreisfrequenzen der Ansatzfunktionen und sind die Losung
der Gleichung

1 4 cos(Ay;l) cosh(Ay;l) = 0. (5.8)
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Mit Hilfe von Gl. (5.6) ergeben sich die Elemente in Gl. (2.1) wie folgt:

2
My =Jn+p [%13 + 1 (lh + %) ] +pL[63(8) + 0% (B)]

My = vy,

Mz = via, (5.9)
My, = pl,

Ma3 =0,

M3z = pl,

hy = 2pl {811 (£)011 () 4 012(t)d12(t) | 61(2),
hy = —pldy, (£)02(t), (5.10)
hg = —pl612 (t)ﬁf (t),

ken = plwiy, (5.11)

keia = PZW%Q
mit

V1 = pfgl(lh + ) p1i(x)du,

1=1,2. (5.12)
w1 = \/ %)‘%za

Die Biegesteifigkeit EI des elastischen Arms kann durch die Verwendung der von Fraser
und Daniel (1991) vorgestellten experimentellen Methode ermittelt werden: Bei stehen-
dem Motor erfihrt das Armende infolge eines manuellen Schlages zuerst eine Auslen-
kung von 2cm aus der Ruhelage und wird dann losgelassen. Bild 5.3a zeigt die aus den
Messungen berechneten freien Schwingungen des Arms und Bild 5.3b die normierte Lei-
stungsspektraldichte S, (f)/max(S,(f)) der Signale. Aus Bild 5.3b kann man die erste
Eigenfrequenz der Schwingungen fi; = 4,2318Hz ablesen. Aus Gl. (5.12) folgt:

EI = 7’)(2”4{“)2
)
11

Im folgenden wird E7=0,4158 gesetzt, weil die mit Hilfe der Rayleigh-Ritz-Methode
geschiitzte Eigenfrequenz der Schwingung grofler ist als die exakte Frequenz.

= 0,5072. (5.13)

Impulsgeber

Die Auflésung des Impulsgebers betragt 100 Impulse pro Umdrehung. Da der Impuls-
geber auf der Motorseite angebracht ist, mufl das Getriebe mit der Untersetzung ng
beriicksichtigt werden. Somit ist die Zahl der gesamten Ausgangsimpulse des Impulsge-
bers nyg durch

01(t)

2

_ 5.14
100n,, ¢ (5:14)




5 Versuchsergebnisse 24

04 1
T 03} T
02 | Ao,s
= o
g 01 7 06
d -011 E 0’4
. o
= -0.2 0.2
03+
-0,4 : : : : : : — : :
2 4 6 8 10 12 14 16 0 5 10 15 20
t/s — flHz —
(@ (b)

Bild 5.3: Freie Schwingung des Arms (a), (b): normierte Leistungsspektraldichte

mit dem Winkel des Getriebes verkniipft.
Zihlerkarte

Der Zahlbereich ist 16Bit und der Zusammenhang zwischen seinem Ausgang nzx und
Eingang 148t sich mit

Nz — 471]6' (515)

beschreiben.
Dehnungsmeflstreifen

Da die DMS-Mefsysteme an den zwei Mefistellen identisch sind, sind die Modelle der

zu diesen zwei Systemen gehorenden Elemente gleich. Die relative Widerstandsénderung

(A—RR> ~des DMS ist durch den , k-Faktor” kparg = 2,07 des DMS mit der zweiten Ablei-

tung nach der értlichen GréBe der elastischen Durchbiegung wy (z, t) an der i-ten Mefstelle

verkniipft:

2

AR 1 0 :
<F>l =+ §I€DMSdﬁw1(x,t) y 1= ]_, 2, (516)

T=x;

wobei d = 0,00lm die Dicke des Arms ist. Dabei liegt bei positivem Vorzeichen eine
positive Dehnung und bei negativem Vorzeichen eine negative Dehnung (Stauchung) vor.

Briickenschaltung

Die zwei Dehnungsmefistreifen an der gleichen MeBstelle werden in eine Wheatstone-
Briicke geschaltet, mit der man auch kleinste Widerstandsinderungen messen kann. Da
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in der DMS-Technik nur sehr kleine Widerstandsédnderungen vorliegen und eine Halb-
briickenschaltung gewiahlt wurde, besteht folgender Zusammenhang zwischen Briicken-
speisespannung Up = 5V und Briickenausgangsspannung U 4;:

1 AR

HBM-Meflverstirker
Der Verstiarkungsfaktor des Mefiverstirkers betrigt 1000.
A /D-Wandler

Der Eingang des A/D-Wandlers ist eine Analogspannung im Bereich von —10 bis +10V,
der Ausgang ein 12 Bit Digitalsignal. Somit 148t er sich als ein lineares Element mit der
Verstérkung von 204,8 Digit/V darstellen.

Reibungen

Die im betrachteten Robotersystem auftretende Reibung wird wie folgt dargestellt:
MR:MRU+MRC- (518)

Dabei bezeichnet My, die viskose Reibung, M- die Coulomb’sche-Reibung. Aus Erfah-
rungen mit diesem Versuchstriger werden

Mp, = 0,16,(t) und (5.19)
sign(61(1))0, 14b,, (0,6 + 0, 4¢=02510 01| fiir 6, (¢) # 0

Mpre = sign(u(t))0,14b,, fir 6;(t) =0 und |ug(t) — 0,0187| > 0,14  (5.20)
brpu(t) fir 0;(t) =0 und |u.(t) —0,0187| < 0,14

mit
bm = 0, 38467’]917’LglkM (521)

gewdhlt.

Durch Zusammenfassen der Modelle der einzelnen Elemente ergibt sich das Modell des
Versuchstrigers zu:

" My +ngny Jm My Mg -| [ 91(t) | " hi + Mg -|
Mo My Mys {5_11(15) + ho
L M3 Mss  Mss J [ d12(t) L hs J
0 0 0 0, (t) b ]|
+ 0 kell 0 (511(t) = 0 [Ua(t) - 00187] 5 (522)
0 0 kelg (512(t) 0 i
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mit den Mefigleichungen

_ 2T
() = T100m,, "2k

" _ 4
w1 (0,052,8) = =500 51000k parsT5 L
w1 (0,2,1) =

_ 4 Us.
904, 8 - 1000k parsUs

(5.23)

Dabei bezeichnet Uy; (i = 1,2) das durch den i-ten A/D-Wandler gelieferte digitale Signal.

0,6 ‘ ‘ ‘ ‘ 0,8
T 04/ 1 T 0,6/
0,2 ] 0,4 r
= ol g 0,2+
S 02 S
: < 02!
047 04 |
0.6 | * -0,6
0% 4 s 8 10 08,2 4 6 8 10
t/s — t/s —
@ (b)
0,3 0,15
T 0,2t T 01 ¢
£ I I
S 01 § 0,05
=05, = 0
% ]-‘.", N: i
S -01 ¢t ;C_’, -0,05 -
=02 : 3 i = .01 |
-0,3 + ] -0,15 ¢
-0,4 : ‘ ‘ : -0,2
0 2 4 6 8 10 0 2 4 6 8 10
(c) (d)
Bild 5.4: (a) Eingangsspannung 1; (b) Gelenkwinkel; (c¢) Biegung am MeBpunkt z =
0,052 m; (d) Biegung am Mefpunkt = 0,2 m (,——“ gemessen; ,—-“ simu-
liert)

5.3 Simulationsstudien

Um die Giite des Modells (5.22) zu iiberpriifen, wird das Systemmodell mit drei verschie-
denen Eingangsspannungen

1. u4(t) = 0,5sin(7wt) + 0,0187 V,
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1 0,6
| E
0,5 02!
2 B o
59 =-02 |
04|
-0,5 ’
-0,6
1 ‘ ‘ ‘ ‘ 08
0 2 4 6 8 10 0 2 4 6 8 10
t/s — t/s —
©) (b)
0,8
E |
0,4 | l l | l
£ = N
E 0,2 E L | L (A A
= 0 ) | !
N J
8_-02 it lﬂ gj F I \-
e ! =
<04 |
-0,6
08 N ‘
0 2 4 6 8 10 4 6 8 10
t/s — t/s —
(©) (d)
Bild 5.5: (a) Eingangsspannung 2; (b) Gelenkwinkel; (c¢) Biegung am MeBpunkt z =
0,052 m; (d) Biegung am Mefpunkt = 0,2 m (,——* gemessen; ,—-“ simu-

liert)

2. uy(t) = 0,8sin(2rt) +0,0187 V,
3. ug(t) = 0,35square(w(t +1/2)) +0,0187 V

simuliert. In Bild 5.4, 5.5 bzw. 5.6 werden die Simulationsergebnisse mit den am Versuchs-
trager gemessenen Ausgingen verglichen. Die gemessenen Ausgangsgrofien des Versuchs-
triigers sind die Gelenkwinkel 6, (¢) und die Biegung w (z,t) am MeBpunkt z = 0,052 m
sowie x = 0,2 m.

Es ist zu erkennen, dafl das Modell den Versuchstriger mit ausreichender Giite beschreibt.
Sowohl die Gelenkwinkel, als auch die Frequenzen der Schwingungen an den zwei Mefistel-
len stimmen mit den entsprechenden gemessenen Grofien gut iiberein. Die Ursache fiir die
geringen Abweichungen zwischen der simulierten und gemessenen Schwingungsamplitude
ist die vernachlissigte Strukturddmpfung. Aus Bild 5.4, 5.5 und 5.6 ist auch der Einfluf}
des Getriebespiels klar zu erkennen.
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O 4————— ‘ ] 0,8
]
T 03¢ T 0,6+
0,21 04+
> 01 '§ 0,2+
< o0 = 0
: —
0,1 | ©-02
-0,2 | -04
037 L L L1 L1 [ -0,6
042 4 s 8 10 08, 4 6 8 10
t/s — t/s - »
(@ (b)
1 0,4
T T 03 ;
0,2
e g
5 S o1
5 S 0
8 =)
S S0
-g‘_‘ '0,2 [
-0,3 !
-1 04
0 2 4 6 8 10 0 2 4 6 8 10
t/s — t/s —
(0) (d)
Bild 5.6: (a) Eingangsspannung 3; (b) Gelenkwinkel; (c¢) Biegung am MeBpunkt z =
0,052 m; (d) Biegung am MeBSpunkt = 0,2 m (,——* gemessen; ,—-“ simu-

liert)

5.4 Regelungsergebnisse

In diesem Abschnitt wird das vorgestellte Reglerentwurfsverfahren mit Hilfe des Labor-
versuchstriagers experimentell verifiziert. Im Hinblick auf das Modell des Versuchstrigers
wird der Regler in vier Anteile

ui(t) = u®(t) + ' (t) + a2(t) + ug(t) (5.24)

aufgespalten. Die ersten drei Anteile sind fiir die Bahnverfolgungsregelung des Gelenkwin-
kels und fiir die Ddmpfung der elastischen Schwingungen zusténdig, der letzte Anteil ug(t)
beschreibt die Kompensation der trockenen Reibung und des Offsets des Motorverstérkers.
Durch Verwendung des im Abschnitt 3 vorgestellten Reglerentwurfsverfahren folgen

0,0283 [ 0,1
0(t) = = 0%t
w(t) )+ 50283
Ki=1, (5.26)

61(t) — 12(61 (1) — 6(1)) — 36(61(£) — 67(1)) | , (5.25)

b 1
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Kr=1[0 —0,3712], (5.27)

K:=[0 —9,9703]. (5.28)
Fiir ug(t) gilt:

wr(t) = Mpe /by + 0, 0187. (5.20)
Zur Realisierung des Reglers (5.24) lassen sich 611 (t) und d12(¢) zu

ot 1= 1005 s [ ateas | s

berechnen. 6 (t), d11(t) bzw. &15(t) werden durch numerische Differentiation von 6y (t),
611(t) btw. 612(t) ermittelt.

0,5 1
T | os
£
B S o)
= 0 N
< S -05
e
o
- -1,5 :
05 "0 2 4 6 8 10
t/s —
(b)
04 15
T 0,3 [ T 1
0,2 ]
0,5
S o1 o2
= 1
N =
?, -0,1 1 -0,5
£ -02 .
-0,3 =
042 4 6 8 10 o 2 a2 6 8 10
t/s — t/s —
(©) (d)
Bild 5.7: (a) Gelenkwinkel; (b) Biegung am Mefpunkt = = 0,052 m; (c) Biegung am
MeBpunkt = = 0,2 m; (d) Eingangsspannung (,,——* gemessen; ,,—-“ Sollbahn).

Der Regler (5.24) wird am Versuchstréger fiir drei verschiedenen Sollbahnen angewendet:
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0,8 0,3 ‘
I 0,67 T 02"
0,4 [ g 0,1 L
g 0(,)2 E\ 0
= I )
SN 0.2 g; -0,1
04 ¥ 02
-0,6 -0,3 |
08,2 4 & 8 10 04 2 4 6 8 10
t/s —> t/s - >
(€Y (b)
0,1 ‘ ‘ ‘ ‘ 1
T l os
0,057 ]
£ 0,67
S0 || e 2 04
S_: -0.05 1 =) 0,2 W
) 0
-0,1 ]
-02 1
OBy 2 4 s 8 10 %2 4 s 8 10
t/s — t/s —
(©) (d)
Bild 5.8: (a) Gelenkwinkel; (b) Biegung am Mefpunkt = = 0,052 m; (c) Biegung am
MeBpunkt = = 0,2 m; (d) Eingangsspannung (,,——* gemessen; ,,—-“ Sollbahn).
1. Sprungsfunktion von 1 rad (siehe Bild 5.7a),
J —0,27 + 0,47 (6t — 15t* + 10t3) fiir t < 1,
2. 04(t) = .
0,2m fiirt > 1 s,
J 0,2msin(mt) fiir t <6s,
3. 09 = .
0 fiir t > 6 s.

Die experimentellen Ergebnisse sind in Bild 5.7, 5.8 bzw. 5.9 dargestellt. Daraus ist zu
erkennen, dafl der Regler fiir die drei Sollbahnen sehr gut funktioniert. Das Gelenk kann
den drei Sollbahnen mit hoher Genauigkeit folgen, obwohl die Sollbewegungen sehr schnell
sind. Gleichzeitig werden die elastischen Schwingungen gut geddmpft. Die geringen Ab-
weichungen der Stellgréfie von Null (s. Bild 5.7d fiir 1s< ¢ <4s) sind auf Rauschen der

Mef3signale zuriickzufiihren.
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otrad —»

w,"(0,2,t)/Im — »

02 4 s 8 10 o 2 4 6 8 10
t/s — t/s —
(©) (d)
Bild 5.9: (a) Gelenkwinkel; (b) Biegung am Mefpunkt = = 0,052 m; (c) Biegung am
MeBpunkt = = 0,2 m; (d) Eingangsspannung (,,——* gemessen; ,,—-“ Sollbahn).
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6 Zusammenfassung und Ausblick

In diesem Forschungsbericht wird eine Multiparameter-Multizeitskalen-Singular-
Perturbation-Methode zur Regelung von Robotern mit elastischen Armen entwickelt.
Hierzu wird das Modell des Roboters zunédchst in Multiparameter-Multizeitskalen-Form
dargestellt. Anschlieflend wird ein rekursiver Algorithums zur Dekomposition des Robo-
tersystems mit Hilfe der Multiparameter-Multizeitskalen-Singular-Perturbation-Methode
vorgestellt. Durch Verwendung des vorgestellten Algorithmus kann man nicht nur die
Starrkorperdynamik von der elastischen Dynamik, sondern auch die elastische Dynamik
nach verschiedenen Schwingungsfrequenzen trennen. Auf der Basis der resultierenden
Teilsysteme wird ein Reglerentwurfsverfahren fiir Roboter mit elastischen Gliedern ange-
geben. Die vorgestellte Methode wird sowohl durch Simulationen eines einachsigen und
eines zweigliedrigen elastischen Roboterarms, als auch durch experimentelle Studien an
einem einachsigen elastischen Roboter verifiziert. Die Ergebnisse zeigen, dafl durch Ver-
wendung der vorgestellten Methode der Reglerentwurf fiir Roboter mit elastischen Armen
wesentlich erleichtert wird und der daraus resultierende Regler effektiv ist.

Obwohl die Strukturdidmpfung des Armes in dieser Arbeit nicht beriicksichtigt wird, kann
die vorgestellte Methode auch direkt fiir das Modell mit Strukturdimpfung verwendet
werden. Auflerdem kann die korrigierte Singular-Perturbation-Methode oder das Ver-
fahren mittels Integralmannigfaltigkeit zur Erh6hung der Genauigkeit verwendet werden,
wenn die Werte £; (i = 1,2,...,m) nicht klein genug sind.

Bisher wurde angenommen, daf} die Endmasse und das Massentriigheitsmoment des Robo-
ters bekannt ist und unverénderlich wihrend der Bewegung bleibt. Die Erweiterung dieser
Arbeit auf die unbekannte oder verénderliche Endmasse kann Gegenstand zukiinftiger For-
schung sein.

Der Verfasser dankt dem DAAD fiir seine Unterstiitzung.
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