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1 Einleitung

Um den Wirkungsgrad eines Roboters beziiglich Nutzlast und Eigengewicht zu verbessern,
konnen Roboter in Leichtbauweise gebaut werden. Das fiihrt zu strukturellen Elastizititen
des Robotersystems, die in manchen Fiéllen, z. B. bei Putzrobotern, auch erwiinscht
sind. Da die Elastizitdten des Robotersystems grofien Einflufl auf dessen Dynamik haben,
miissen sie bei der Modellbildung beriicksichtigt werden.

In der Literatur wird momentan eine Vielzahl von Berichten zum Thema Modellbil-
dung elastischer Roboter veroffentlicht (Ackermann 1989, Bai 1996, Bernzen u. a. 1998,
Book 1984, De Luca und Siciliano 1991, Hiller 1996, Yurkovich und Tzes 1990, Tzes und
Yurkovich 1991). Davon gibt es aber nur verhiltnisméfBig wenige Beitrige zum The-
menbereich experimenteller Modellbildung durch Parameteridentifikation (Yurkovich und
Tzes 1990, Tzes und Yurkovich 1991) und numerischer Modellbildung mit Hilfe von Pro-
grammsystemen zur Simulation (Bernzen u. a. 1998, Hiller 1996). Die meisten Arbeiten
behandeln die analytische Modellbildung elastischer Roboter.

Durch Unterteilung der einzelnen Ko6rper in endliche Abschnitte, die mit geeigneten
Federkriiften und -momenten miteinander verbunden sind, hat Ackermann (1989) das
Modellbildungsverfahren fiir starre Roboter direkt auf Systeme mit elastischen Kérpern
iibertragen. Ein solches Vorgehen wire als verallgemeinertes , diskretes Massenmodell“
(,lumped mass model“) zu verstehen. Verallgemeinert deswegen, da die Tréigheitseigen-
schaften der Einzelbauteile mit in die Betrachtung eingehen. Auf diese Weise wird das
elastische Mehrkorpersystem (MKS) vollstéindig als starres Mehrkorpersystem abgebildet.
Derartige Methoden, von denen in den sechziger Jahren vor allem fiir Raumfahrtanwen-
dungen héufig Gebrauch gemacht wurde, haben sich jedoch kaum bew&hrt. Der Grund ist
zum einen, dafl im allgemeinen eine grofie Zahl von Freiheitsgraden beriicksichtigt werden
muf}, dagegen sind z. B. bei Balkensystemen die Balkendynamik durch Bernoulli bekannt
und daher werden wenige Variablen benotigt. Zum anderen wird die Balkendynamik oh-
nedies benétigt, um die Federparameter zu bestimmen. Es gibt jedoch kritische Fille, bei
denen die Parameterzuordnung nicht eindeutig ist.

Da die Geometrie der betrachteten elastischen Roboter einfache Berechnungen zuldfit,
werden die elastischen Arme hiufig als Ganzes betrachtet. Die Arbeiten zu diesen The-
menbereichen unterscheiden sich in den folgenden Themengebieten: Beschreibung der ki-
nematischen Groflen, Diskretisierungsverfahren, Methode zur Aufstellung der Bewegungs-
gleichung. In den Arbeiten von Book (1984) und De Luca und Siciliano (1991) wird die
elastische Deformation in einem korperfesten Koordinatensystem definiert. Der Ursprung
des Koordinatensystems liegt am eingespannten Ende im Schwerpunkt des Querschnitts
befindet und dessen z-Achse in Richtung der Lingsachse des unverformten Balkens weist.
In diesem Fall haben die kinematischen Groflen physikalische Bedeutung. Das resultieren-
de Modell ist aber kompliziert. Zur Verringerung der Kompliziertheit des Modells werden



1 FEinleitung 2

verschiedene korperfeste Koordinatensysteme definiert. In Sunada und Dubowsky (1983)
und Gawronski u. a. (1995) wird das korperfeste Koordinatensystem des entsprechenden
starren Roboters ausgewéhlt. Chang und Hamilton (1991) und Giovagnoni (1994) haben
das korperfeste Koordinatensystem als das eines dquivalent starren Roboters (Equivalent
Rigid Link System) definiert. Die x-Achse des von Benati und Morro (1994) definierten
korperfesten Koordinatensystems weist in Richtung der Gerade durch die zwei Rénder
(virtual rigid link). Auflerdem haben Benati und Morro (1994) die starre Bewegung
direkt im Inertialkoordinatensystem definiert. In Simo und Vu-Quoc (1986) wird die ela-
stische Deformation direkt im Inertialkoordinatensystem definiert. Der Ursprung des von
Baruh und Tadikonda (1989) definierten korperfesten Koordinatensystems befindet sich
im Schwerpunkt des Arms.

Der Gestaltung entsprechend kann ein elastischer Arm als Euler-Bernoulli-Balken oh-
ne oder mit Lingsdehnung (De Luca und Siciliano 1991, Fraser und Daniel 1991, Choura
u. a. 1991), als Rayleigh-Bernoulli-Balken (Choura u. a. 1991) oder als Timoshenko-Balken
(Naganathan und Soni 1988) betrachtet werden. Fiir kleine elastische Verformungen
geniigt die lineare elastische Theorie (Book 1984, Cannon und Schmitz 1984, De Luca
und Siciliano 1991, Fraser und Daniel 1991, Choura u. a. 1991). Zur Modellierung elasti-
scher Roboter mit einer groflen Auslenkung soll aber die nichtlineare elastische Theorie
verwendet werden (Hu und Ulsoy 1994, Kane u. a. 1987, Simo und Vu-Quoc 1987).

Zur Diskretisierung der elastischen Auslenkung wird die Modalanalyse-Methode (Barbieri
und Ozgiiner 1988, Fraser und Daniel 1991), das Ritz-Verfahren (De Luca und Siciliano
1991, Fraser und Daniel 1991), das Galerkinsche Verfahren (Barbieri und Ozgiiner 1988),
die Finite-Element-Methode (Jonker 1990, Naganathan und Soni 1988) und die Kan-
torovich’sche Methode (Benati und Morro 1994) verwendet. Das dynamische Modell
eines elastischen Roboters kann beispielsweise mit Hilfe des Hamiltonprinzips (Barbieri
und Ozgiiner 1988, Benati und Morro 1994), des Lagrange-Verfahrens (De Luca und
Siciliano 1991), der Newton-Euler-Methode (Fukuda 1985, Sakawa u. a. 1985) oder der
Kane’schen Gleichung (Kane u. a. 1987) aufgestellt werden.

Trotz der umfangreichen Arbeiten werden nur wenige Modelle mehrachsiger elastischer
Roboter in der Literatur explizit angegeben. De Luca und Siciliano (1991) und Bai (1996)
haben zwei explizite dynamische Modelle fiir einen zweiachsigen elastischen Roboter an-
gegeben. Bei der Herleitung ihrer Modelle haben sie die Eigenfunktionen eines nicht
rotierenden, einseitig fest eingespannten elastischen Balkens, an dessem Ende eine Nutz-
last befestigt ist, als Ansatzfunktionen gewahlt. Die Masse und das Trigheitsmoment der
Nutzlast stehen nicht nur explizit in dem Modell, sondern haben auch implizit Einflufl auf
die Dynamik durch die Ansatzfunktionen. Deshalb sind ihre Modelle nicht fiir den robu-
sten Reglerentwurf geeignet. In der vorliegenden Arbeit wird die Modellbildung fiir einen
ein- und zweiachsigen elastischen Roboter zunéchst ausfiihrlich dargestellt, da diese Ro-
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boter spiter als Beispiel verwendet werden. Bei der Herleitung der Modelle werden auch
die Eigenfunktionen eines nicht rotierenden, einseitig fest eingespannten elastischen Bal-
kens, an dessem Ende eine Nutzlast befestigt ist, als Ansatzfunktionen gewéhlt. Diesmal
werden aber nur die nominalen Werte der Masse und des Trégheitsmoments der Nutzlast
verwendet. Anschliefend wird die Eigenschaft der Polstellen des linearisierten Modells
elastischer Roboter anhand mehrerer Beispiele analysiert. Mit einer Zusammenfassung
und einem Ausblick auf Ziele zukiinftiger Forschungen schliefit der Bericht ab.
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2 Modellbildung eines einachsigen Roboters

Ein einfaches Beispiel fiir einen elastischen Roboter ist, der in Bild 2.1 skizzierte, einachsi-
ge Roboter. Der homogene elastische Arm bewegt sich in der horizontalen Ebene. (ET),
p1 und [; bezeichnen die konstanten Werte von Biegesteifigkeit, Masse pro Lingeneinheit
und Linge des Arms. J; ist das Trégheitsmoment der Radnabe, 7;(¢) das Moment des
Gelenks. Die Masse und das Tridgheitsmoment der Nutzlast werden mit m, und .J, dar-
gestellt. Als Koordinatensysteme bieten sich das Inertialkoordinatensystem 0o-XoYp und

A m, J,

N
YO

N
0,0, Xo
Bild 2.1: Einachsiger elastischer Roboter

das korperfeste Koordinatensystem O;-X;Y; an. Durch die orthogonale Transformations-
matrix

cos(f1(t)) —sin(y(t))
sin(0;(t))  cos(01(t))
ist das korperfeste Koordinatensystem mit dem Inertialkoordinatensystem verkniipft, da-
bei ist 0, (t) der Gelenkwinkel.

T, = (2.1)

Unter der Annahme, dafl die Verformung des elastischen Arms nur durch reine Biegung
wi(x1,t) hervorgerufen wird, die sich in der horizontalen Ebene befindet und es sich bei
dem Arm um einen Euler-Bernoulli-Balken handelt, 148t sich der Ortsvektor p,(x1,t) ei-
nes Punktes des Armes an der Stelle xy zum Zeitpunkt ¢ mit Hilfe dieser orthogonalen
Transformationsmatrix als

pi(1,t) =Ty { wl(zlht) } (2.2)
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im Inertialkoordinatensystem darstellen. Daraus folgt die Geschwindigkeit

5 (1 _ —T sin 91 (t)gl (t) — W1 (.’L’l, t) COS 91 (t)gl (t) — ’U.}1 (.’L’l, t) sin 91 (t)
Py, 1) [ 2y ¢80y (0 (1) — 1, (00, 1) sim 0y (D)6 (£) + 1 (a1, £) cos b, (1) |~ )

Mit ,, " “ und

2

kinetische Energie ) und die potentielle Energie F, werden berechnet zu

., “werden die Differentiation nach ¢ und z; jeweils bezeichnet. Die gesamte

1. I . I :
Ek = §Jh19%(t) + —/ plplT(xl,t)pl(xl, t)dib'l + §mppip(l1,t)p1(l1, t)
0

2
+;@Pdﬂ+wﬂhﬂr, (2.4)
E, = %(El)l/olw;'(xl,t)dxl. (2.5)

Unter Verwendung des Ritz’schen Ansatzes gilt hierbei (Barbieri und Ozgiiner 1988):

wy (T, t) = Z¢1j($1)51j(t), (2.6)

wobei ¢y,(z1), j = 1,2 die gegebene Ansatzfunktionen und 6,;(¢), j = 1,2 die ver-
allgemeinerten elastischen Koordinaten sind. Hier werden nur zwei Ansatzfunktionen
beriicksichtigt. Als Ansatzfuntionen werden die Eigenfunktionen eines nicht rotierenden,
einseitig fest eingespannten Balkens, an dessem Ende eine Nutzlast befestigt ist, gewihlt.

Diese sind
¢1j (1'1) = dlj {COSh()\lj]Il) — COS()\ljl'l) — Clj [sinh()\ljxl) — Sin()\ljl'l)]}
= d1j¢1j0($1), J=12
dyj = o ok >
/ Pld)%jo(ﬂfl)dxl + Mm‘lﬁjo(ll) +J |:¢1j0(l1)] (2.7)
0 3
T3,

[COS()\ljll) + COSh()\ljll)] — P J [sin()\ljll) + Sinh()\ljll)]
_ 1

C14 =
J JLM%’ ,

[SiH(Aljll) + Sinh()\ljll)] — o [— COS()\ljll) + COSh()\ljll)]

mit den Werten fiir A,;, die sich aus der charakteristischen Gleichung

MrJ )\4' My J )\4'
(1 + #) + (1 - #) cos(Aily) cosh(Ay;lh)
pi P

Ao
_ (MLI —+ JLI)\%]‘) ﬁ sm()\ljll) COSh()\ljll)

)\ .
+ (Mpy = Ty % cos(Ay;l1) sinh(Ag;ly) = 0 (2.8)
1
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ergeben. Da die tatsdchlichen Werte der Masse und des Tridgheitsmoments der Nutz-
last im allgemeinen im voraus unbekannt oder verdnderlich wihrend der Durchfiihrung
einer Handhabungsaufgabe sind, werden deren nominalen Werte, die mit My, und Jp
bezeichnet werden, hierbei verwendet. Fiir die Ansatzfunktionen gelten die Orthogona-
litdtsbeziehungen (Fraser und Daniel 1991):

I
/ prou; (1) dur(w)day + Moy () dre(ln) + Joady; (L) dre(lh) = i, (2.9)
0

5
/ (ED)16y;(x1)dyp(21)day = plllw%jéjka J k=12 (2.10)
0

Hierbei ist 4, das Kronecker-Symbol. Mit w;; werden die Eigenkreisfrequenzen der j-ten
Eigenschwingung bezeichnet und es gilt

|ET
wiy = | — M. (2.11)
P1

Mit L = Ej— E, ergeben sich die Lagrange-Gleichungen 2. Art fiir den elastischen Roboter
zu

d (oL \_ oL _

dt (agl (t)) a0, (t) ~— ™ (t),

d oL oL .

a - =0 =1,2.
dt \ 9é,(t) 001 (%) ’ J=45

Aus dem Einsetzen von (2.3) bis (2.6) in (2.12) und durch Verwendung der Gl. (2.10)
folgen die Bewegungsgleichungen

(2.12)

Moo (811 (1), 312 ()1 (6) + 3 Moy (1)

1=

+ ho(611(t), 012(2), 01 (1), 011(£), 012(1)) = 71(2), (2.13)
Mo (t) + zij M;joy,(t) + ha(611(2), 612(2), 01 (1)) + kibii(t) =0, i =1,2

mit

2
1
Mao(0ua (1), 012(t) = T+ gl + myl + T, + >
=1

Z ¢1i(l1)51i(t)] ; (2.14)

Z 21ij01; (t)] d1i(t)

j=1

+my,

Mo = wii + mylidui(l) + Jpéys(h), =12, (2.15)
M;; = 215 + mypdri(L) (L) + Jyds (L), (L), 0yj = 1,2 (2.16)
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h0(511(t),512(t),91(t),511( t), 512 {Z [Z 213501, (1 ] 51z

=1

+my,

2

hi(011(8), 812(0), 01(8)) = = D [z1i + myra(l) i (1)] 815 (D63 (8), i = 1,2,

J=1

ki = prliwis, i=1,2,

l1
Wy; = Pl/ $1¢1i($1)d$1, 1=1,2,
0

l1

Rlij = P1 ¢1i(x1)¢1j($1)d$1, 1,7 =1,2.
0

Z¢lz ll 511 ] [Z d)lz ll 511 ] } 91(t)7 (218)

(2.19)

(2.20)

(2.21)

(2.22)
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3 Modellbildung eines zweiachsigen elastischen
Roboters

Bild 3.1 skizziert den schematischen Aufbau eines Roboters, der aus zwei sich in einer ho-
rizontalen Ebene bewegenden homogenen elastischen Armen besteht. Die Arme sind so
gestaltet, dafl die Verformung des i-ten elastischen Arms nur durch reine Biegung w;(x;, t)

Ny

N
0,0, Xo
Bild 3.1: Zweiachsiger elastischer Roboter

hervorgerufen wird, die sich in der horizontalen Ebene befindet und es sich bei den Armen
um FEuler-Bernoulli-Balken handelt. Die physikalischen Parameter des Roboters stellen

sich wie folgt dar:
l; Lange des i-ten Armes,

Pi Masse pro Léngeneinheit des i-ten Arms,
(ET); Biegesteifigkeit des i-ten Arms,

My Masse der i-ten Radnabe,

Jhi Tréagheitsmoment der i-ten Radnabe,

my Masse der Nutzlast,

Jp Tragheitsmoment der Nutzlast.
Zur Bestimmung der Lage des Roboters werden die folgenden Koordinatensysteme ein-

gefiihrt:
e das Inertialkoordinatensystem OO—XO%,
e die korperfesten Koordinatensysteme O;-X;Y; (i = 1,2),

e das mit dem ersten Armende verbundene Koordinatensystem OAI—)A(I}A/L
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Die Koordinatensysteme O;-X;Y; (i = 1,2) sind durch die orthogonale Transformations-
matrix

T, — {COS(@(t)) —sin(6;(1)) ] (3.1)

sin(0;(t))  cos(6;(t))

mit O;_1-X;_1Y;_; verkniipft. Dabei ist 0;(t) der i-te Gelenkwinkel. Unter der Annahme,
daB die elastischen Verformungen klein sind, erfolgt der Ubergang von dem Koordinaten-
system OAI—)A(IYI ins O;-XY; mittels

L —w(l) ] . (3.2)

T, = )
' [ wl(llﬁt) 1

Mit Hilfe dieser Transformationsmatrizen lafit sich der Ortsvektor p, (x1,t) eines Punktes
des ersten Armes an der Stelle x; zum Zeitpunkt ¢ im Inertialkoordinatensystem wie folgt
darstellen:

pi(e1,t) =Ty { wl(zlht) ] . (3.3)

Der Ortsvektor py(x2,t) eines Punktes des zweiten Armes an der Stelle x5 zum Zeitpunkt
t im Inertialkoordinatensystem lautet

py(z2,t) = T, {[ wl(lllht) ] + T T { wZ(Z,t) ]} (3.4)

Die gesamte kinetische Energie Ej und die potentielle Energie £, werden zu

1 . 1
Ek - §Jh19%(t)+_

I 1
5 / p1pt (21, 1)py (1, t)dwy + §mh2ﬁip(lla )P (1, 1)
0

1.7, g YRR Y A .
e [000) 4 300+ 8a)] 5 [ pab (o, 0 o )
0

2 2
1 . ) 1 : ot : iy 2
+§mpp§(l2, pa(le t) + 5Ty [91 (€) + 1y (11, 1) + Oa(F) + 1wy (l2, T) (3.5)
und
1 ll " 1 l2 "
E, = §(EI)1/ wy (zq,t)dxy + §(EI)2/ Wy (z9, t)dxs (3.6)
0 0

berechnet. Nach dem Ritz-Ansatz kénnen die elastischen Auslenkungen w;(z;,t) (1 = 1, 2)
diskretisiert werden (Barbieri und Ozgiiner 1988):

2
wiwi, ) =Y by (2:)655(1), i=1,2, (3.7)

j=1
wobei ¢;;(x;), (7,7 = 1,2) die gegebenen Ansatzfunktionen und 0;;(¢) die verallgemei-

nerten elastischen Koordinaten sind. Hier werden nur zwei Ansatzfunktionen fiir jeden
Arm beriicksichtigt. Als Ansatzfuntionen werden die mit den Gl. (2.7)-(2.8) dargestellten
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Eigenfunktionen eines nicht rotierenden, einseitig fest eingespannten Balkens, an des-
sem Ende eine Nutzlast mit der Masse Mp; und dem Trigheitsmoment .J;; befestigt ist,
gewdihlt.

Die Differentialgleichungen des elastischen Handhabungssystems werden nun mit Hilfe
der Gl. (2.12) ermittelt. Die resultierenden Bewegungsgleichungen werden in Matrixform
dargestellt

M(q(1))q(t) +h(q(1),q(t)) + Keq(t) = QT(?). (3-8)

Dabei ist q(t) = [0, (t), 05(t), 611(t), 612(t), 521 (t), 522()]" der Vektor der verallgemeinerten
starren und elastischen Koordinaten, M (q(t)) = [M;;(q(t)),i,7 =1,2,---,6] die positiv
definite, symmetrische Trigheitsmatrix, h(q(t),q(t)) = [h1(q(t), q(t)), h2(q(t), q(t)),- - -,
he(q(t),q(t))]" der Vektor der Coriolis- und Zentrifugalkrifte, K, = diag {0, 0, k.33, keas
kess, kess} die Steifigkeitsmatrix, @ = [I2X2,02X4]T die Eingangsbelegungsmatrix und
T(t) = [11(t), 72(t)]" der Gelenkmomentvektor.

Die Matrizen M (q(t)), K. und der Vektor h(q(t), ¢(t)) wurden mit Hilfe des Programm-
systems MAPLE®, einem Computer Algebra System (Char u. a. 1993), berechnet und
sind im Anhang A angegeben.
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4 Analyse von Eigenwerten elastischer
Robotersysteme

Betrachtet wird ein elastischer Roboter, der aus n elastischen Armsegmenten besteht, die
miteinander durch rotatorische Gelenke in Reihe verbunden werden. Wir beschrinken uns
auf einen sich nur in der horizontalen Ebene bewegenden Roboter. Das Moment des i-ten
Gelenks wird mit 7;(¢)(: = 1,2, - -, n) bezeichnet. Unter den vereinfachenden Annahmen,
daf:

e die Verformung jedes elastischen Arms nur durch reine Biegung hervorgerufen wird,
die in einer horizontalen Ebene ist und es sich bei den Armen um Euler-Bernoulli-
Balken handelt,

e die Deformation jedes elastischen Arms nach dem Ritzansatz beschrieben werden
kann, wobei als Ansatzfunktionen die ersten m Eigenfunktionen eines nicht rotie-
renden, einseitig fest eingespannten Balkens angesetzt werden,

e die Coulomb’sche und viskose Reibung in den Gelenken sowie die Strukturddmpfung
des Arms vernachldssigbar sind,

stellen sich die Bewegungsgleichungen dieses Roboters mit Hilfe des Lagrange-Verfahrens
zweiter Art auch in der Form von Gl. (3.8) dar (De Luca und Siciliano 1991, Siciliano und
Book 1988). In diesem Fall sind aber die Matrix Q sowie die Vektoren q(¢) und 7(¢) neu
wie folgt definiert:

Q = [Inxn; Onxmn]Ta

q(t) =[0:(t),02(1), -, 0 (1), 611(t), 612(t), - - -, G1m(2), 021 (1),
522(t)7 Tt 52m(t)v B 5n1(t)v 5n2(t)7 Tt 6nm(t)]T7
T(t) = [1(t), 72(t), - - -, T (B)]".

Dabeisind 0;(t) (i = 1,2, -+, n) die Gelenkwinkel und 6;;(¢)(: = 1,2,--+,n,j =1,2,---,m)
sind die j-ten elastischen Koordinaten des i-ten Armes. Die Dimension von M (q(t)), K.
sowie h(g(t), q(t)) ergeben sich zu (m+1)nx (m+1)n, (m+1)nx (m+1)n und (m+1)n.

(4.1)

Gleichung (3.8) ist stark nichtlinear. Um die Eigenwerte dieses Systems zu ermitteln, wird
zuerst das nichtlineare Systemmodell um den Arbeitspunkt q(t) = q°, q(t) = q(t) = 0
und 7(¢) = 0 linearisiert. Dies geschieht durch eine Taylorreihenentwicklung mit Abbruch
nach dem ersten Glied des Systems (3.8), die folgendes Ergebnis liefert (Wang 1996):

M(q°) A g(t) + K. A q(t) = Qu(t), (4.2)
mit

Aq(t) = q(t) — ¢°,

ult) = 7(t). (43)
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Das System aus Gl. (4.2) wird nun in Zustandsraumdarstellung iiberfiithrt. Der Zustands-
vektor x(t) des Systems wird aus Agq(t) und seiner ersten zeitlichen Ableitung Aq(t)
gebildet:

o(t) = [ 28 ] _ [ ~q(t) } L meR(=1,2). (4.4)

Aus (4.2) und (4.4) folgt

2B1(t) = 9 (t),

Xo(t) = Az, (t) + Bu(t) (4.5)

mit
A=-[M(q")] " K.
B=[M(¢")]" Q.

Die Eigenwerte {\¥, i =1,2,---,n;j=0,1,---,m;k = 1,2} des Systems lassen sich aus

> L)

der charakteristischen Gleichung ermitteln:
Anhand mehrerer Beispiele verdeutlichen wir nun die Eigenschaften der Eigenwerte ela-

(4.6)

0(m+1)n>< (m+1)n I(m+1)n>< (m+1)n

p( z]) ij 2(m+1)nx2(m+1) A 0(m+1)n><(m+1)n

stischer Robotersysteme.

Beispiel 1. Betrachtet wird der Canadarm (Zaad und Khorasani 1996). Unter der
Annahme, daf§ das 2. und 3. Gelenk in Strecklage festgehalten werden, kann der Cana-
darm als Beispiel fiir einen einachsigen elastischen Roboterarm (n = 1) betrachtet werden.
Nach Zaad und Khorasani (1996) wird m zu 2 gesetzt und die Matrizen sowie Vektoren
in Gl. (3.8) lassen sich wie folgt darstellen:

[ 196040 + 4000, 7(611(t) — 612(2))? 29022  —27688 ]
M(q(t)) = 29022 4985,5 —6633,4 |, (4.8)
[ —27688 —6633,4 13371 J

8001, 46, () (011 (t) — 612(t)) (011 — b12(t))
h(q(t),q(1)) = —4000, 703 () (311 (1) — 612(1)) : (4.9)
4000, 702(t) (811 (t) — 612(1))

0 0 0
K.=|0 123180 0 , (4.10)
0 0 4865200

Q=[135 0 0] . (4.11)
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Mit g° = [0, 0, 0]7 berechnen sich die Eigenwerte des linearisierten Modells zu Ak, = {0, 0},
Ab = £11,53385, Ak, = £217,37685 (k = 1,2). 0

Beispiel 2. Betrachtet wird das im Abschnitt 2 angegebene Modell eines einachsigen
Roboters. Die physikalischen Parameter des Roboters ergeben sich nach De Luca und
Siciliano (1993) zu:

ly = 0,5 m,

P1 = 1kg/m,
(EI); = 10 N-m?

Jhl = 0,1 kg-mZ,
my = 0,1 kg,

Jp = 00,0005 kg-m?2.

Mit My, =0, Ji1 = 0 und ¢° = [0,0,0]” berechnen sich die Eigenwerte des Systems GI.
(2.13)-(2.22) zu Ak, = {0,0}, ME, = £41,9778;, b, = £215,06255 (k = 1,2). 0

Beispiel 3. Betrachtet wird wieder das im Abschnitt 2 angegebene Modell eines ein-
achsigen Roboters. In diesem Fall werden aber die Parameter des im Fachgebiet Mef-,
Steuer- und Regelungstechnik der Gerhard-Mercator-Universitit-GH-Duisburg aufgebau-
ten Roboters verwendet, die wie folgt ermittelt wurde:

ly = 0,42 m,

P1 = 0,285 kg/m,
(EI); = 0,4158 N-m?
Jhl = 0,02 kg-m2,
my = 0 kg,

Jp = 0 kgm?

Mit My, =0, Ji1 = 0 und ¢° = [0,0,0]” berechnen sich die Eigenwerte des Systems GI.
(2.13)-(2.22) zu Ak, = {0,0}, AE, = 427, 84855, \b, = +£151,53695 (k = 1,2). 0

Beispiel 4. Betrachtet wird das von De Luca und Siciliano (1991) vorgestellte Modell des
im Abschnitt 3 dargestellten zweiachsigen Roboters. Die Belegung der Systemmatrizen in
Gl. (3.8) sind in De Luca und Siciliano (1991) im einzelnen angegeben. Die physikalischen
Parameter des Roboters ergeben sich nach De Luca und Siciliano (1991) zu:
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[y = I = 0,5 m,

p1 = P = 0,2 kg/m,
(EI)y = (EI); = 1Nm?
mpr = myz = 1kg,

Jhl == Jhg == 0,1 kg-mZ,
my = 0,1 kg,

J, = 0,0005kgm?.

Mit ¢° = [0,0,0,0,0,0]7 berechnen sich die Eigenwerte des resultierenden linearen Modells
zu \b = {0,0,0,0}, A = {4£8,83375,416,6208;5}, ¥ = {4101,2588;, +144,3649;}
(i,k =1,2). a

Beispiel 5. Betrachtet wird der im Abschnitt 3 dargestellte zweiachsige Roboter. Die
physikalischen Parameter des Roboters ergeben sich nach De Luca und Siciliano (1993) zu:

[y = I = 0,5 m,

P1 = P2 = 1,0 kg/m,
(EI);, = (EI); = 10 N-m?
mp = muz = 1lkg,

Jhl = Jhg = 0,1 kg-mZ,
my = 0,1 kg,

Jp = 0,0005 kg-m?.

Mit ML1 = MMh2 + p2l2 + my, ML2 = My, JL1 == Jh2 + %[bl% + mplg + Jp, JLQ = Jp und
q° =10,0,0,0,0,0]" berechnen sich die Eigenwerte des Systems zu Ak, = {0,0,0,0}, \¥ =
(427, 2612j, £45, 3302}, Ak = {212, 88095, +266, 34865} (i, k = 1,2). Q

Die Resultate der vorausgegangenen Beispiele legen das folgende Ergebnis nahe: Es gilt fiir
viele Roboter mit elastischen homogenen Armen, dafl die Eigenwerte des Systems Nullen
und rein imagindren Zahlen sind. Nach dem Betrag ihres Imaginérteils konnen die Eigen-
werte in die folgenden m + 1 Gruppen eingeteilt werden: {\& i =1,2,--- n;k = 1,2},
i =1,2-- mk = 1,2}, -, {NE i =1,2,--- njk = 1,2}. Die Betriige der
Imaginérteile der verschiedenen Eigenwerte innerhalb einer Gruppe haben die gleiche
Groflenordnung. Also:
k1
Aj;;j = 0(1), iyio =1,2, - nyky, kp=1,2,5=1,2,--- m. (4.12)

i2]

Dabei hei8t O(-) von der Ordnung , groff O“. Dagegen unterscheiden sich die Betriige der
Imaginérteile der Eigenwerte von verschiedenen Gruppen stark. Diese Gruppen sind so
angeordnet, dafl

e, - .
)\]?27:0(1)7 21722:1727"'7n;k17k2:172;]:0717"'7m_1' (413)

i2(j+1)
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o(-) bezeichnet die Ordnung ,klein o“.

Weil die Imaginéarteile dieser Eigenwerte zustidndig fiir die Schwingungsfrequenz des Sy-
stems (3.8) sind, erkennen wir aus Chow u. a. (1978), daf das System (3.8) mittels der
Singular-Perturbation-Methode behandelt werden kann. Es handelt sich bei dem System
(3.8) um ein System mit m + 1-Zeitskalen (Ladde und Siljak 1983).
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5 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wird zuerst eine Ubersicht iiber die Modellbildung elastischer
Roboter gegeben. Dann wird die Modellbildung fiir einen ein- und zweiachsigen elasti-
schen Roboter dargestellt. Die Masse und das Trégheitsmoment der Nutzlast stehen nur
explizit in den resultierenden Modellen, sie haben keinen impliziten Einflufl auf die Dyna-
mik. Deshalb sind diese Modelle fiir den Robustreglerentwurf geeignet. Auflerdem werden
nicht nur die linearen, sondern auch die nichtlinearen Glieder iiber die verallgemeinerten
elastischen Koordinaten in den entwickelten Modellen beibehalten. Darauf basierend wird
durch numerische Analyse der Eigenwerte mehrerer Beispiele verdeutlicht, daf ein elasti-
sches Robotersystem ein System mit Multizeitskalen ist.

Der Reglerentwurf fiir elastische Roboter mit Hilfe dieser Multizeitskalen-Eigenschaft kann
Gegenstand zukiinftiger Forschung sein.

Der Verfasser dankt dem DAAD fiir seine Unterstiitzung.
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A Elemente des Modells eines zweiachsigen
elastischen Roboters

Die Elemente der Matrix M (g(t)) vom Modell (3.8) ergeben sich zu:

My = my + mince + (migsty + mywte)ss
My = migr + migacy + (Magsty + miagls)ss
M3 = miz + migace + (Massta + Miza012)Se
My = miyg + misace + (Maagta + misadir)se
M5 = mus +misece + mysstise
Mg = mue + mueac2 + migstise
My = mgg
!
Moz = magy + mazace + (Magsts + maogawy,)ss
!

Moy = masr + masaco + (Maasts + masgwy,)ss
Mys = mgs
My = mos
Mss = mgs1 + mgsace + masgstase
My = mgg + maaaco + maastass

!
Mss = mgs1 + mgsace + masgw,,S2

!
Mss = mge1 + mgeac2 + Magzw,, 52
My = mug + myasce + magstess

!
Mys = must + musaca + massw, 52,

!
Mys = muer + mupac2 + Maggw,,S2
Mss = mss
Mss = mse
Mss = meea

mit
2 2

min = Jn + Jhe + Jp + o1 + 211107 + 22112011012 + 2122075

+ (mpa + ma + my) (l% + w%e)

+ [oz + 221105 + 22919091022 + 222205, + my, (12 + w3,)] (1 + wﬁ) ,
mie = 2 (mady + myly) (ll + wlew'le> + 241ty
myz = 2(mady + myly)

myyy = —2 (l1+wlew,13> )
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migr = Jpo+Jp + [Jo2 + 2211531 + 22912091022 + 2’222532 + mp(lg + wge)] (1+ wlli) )
Migy = (mady + myly) (ll + wlew'le) +tty

Mmig3 = Mady +myly

Mige = — <l1 + wlewlle> )

miz1 = wi + (Mpz +ma +mp) o1 + (Jnz + Jp) ¢I11,e
+ [Jo2 + 2211551 + 22912021092 + 2222532 + my (li + wge)] ¢’11,e )

Mize = (mady +myly) (¢11,e + l1¢’11,e) + <_¢11,e¢’12,g + ¢,11,e¢12,e> t2012
migs = — (¢11,e + l1¢,11,e) ;

mizs = (mady + myla) (_¢11,6¢,12,e + ¢,11,e¢12,@) ;

muy = Wiz + (Maz +mo +mp) o1 + (Jnz + Jp) ¢I12,e
+ [JOQ + 2211(531 + 22212(521(522 + 2222(5;2 + my (lg + ’Ujge)] ¢’12,e 5

mip = (mady +myla) (G100 + 161s,) + (B11.661m, = G111z t20hr
My = _<¢12,e+l1¢,12,6> ;

Migy = (mady +myly) (¢11,e¢,12,e - ¢,11,e¢12,e)

mist = Syt o+ (a1 + mplaghar o) (1 + wﬁ) ,

’
Mmisz = to1 <l1+wlewle> ;

mys3 = to1

Mmig1 = Jp¢;2,e + (w22 + Mmpladar e) <1 + wﬁ) ;

’
Mgz = too (l1+wlewle) ;

migs = ta

Mag1 = [Jm + Jp 4 Jo2 + 221105, + 2221209109 + 222205, + my (15 + wie)} (1+ wﬁ) )
_ 2 2 2 2 '

Moz = [Jm + Jp + Jo2 + 221105, + 22012001029 + 2222095 + My (12 + wZe)] Pr1e

Mogy = [(m2d2 + myly) — w;et2 Dile s

Mgz = —¢11,e )

Mazs = — (Mady +mypla) P11,



A Elemente des Modells eines zweiachsigen elastischen Roboters 22

Mma41

MmMa42
Mo43

MmMao44

masy

Mae1

ms331

ms332

m333

ms3q1

mM342

mM343

ms3s1
m3s2

m3s3

ms3e1

m3e2

ms3e3

myq

My42

My43

mys1
Mys52

My53

[JhQ + Jp + J02 + 2211(5;1 + 22212(521(522 + 2’222(5;2 + my (lg + wge)] ¢,12,e ,
[(m2d2 + myly) — wllet2] D126

_¢12,e )
— (mady +mpls) d12e

Jp¢,21,e + (w21 + mpl2¢21,e) (1 + w,ﬁz) )

Jp¢,22,e + (w22 + mpl2¢22,e) (1 + wlli) )

21 + (miz +ma + my) 81+ (Jn2 + ) 613,

+ [J02 + 2211531 + 22919021099 + 22225;2 + my (l§ + wge)] ‘15’121,@ )
2(mady + mpl2)¢11,e¢’11,e )

26110011,

2112 + (Mpg + My +Mmyp) P11.eP12,c + (2 + Jp) ¢,11,e¢112,e
+ [JOQ + 2211(531 + 22212(521(522 + 2222(5;2 + my (lg + ’Ujge)] ¢’11,e¢,12,e s

(mzdz + mpl2) (¢11,e¢,12,e + ¢,11,e¢12,e) )
- <¢11,6¢’12,e + ¢,11,e¢12,@) ;

[(wm + mplaor e + Jp¢l21’e) + (2211021 + 2212022 + My P21 cWae) w;e] ¢’11,e
P11,elo1
—Pr1eto1

[(w22 + myplaas e + Jp¢,22,e) + (2212091 + 2202092 + My P22 W2e) wlle] ¢I11,e
Pr1etor
—Pr1et2

2122 + (Mpz + 1o + my) @l + (Jn2 + ) 13

+ [Jo2 + 221105 + 22212621095 + 22220 + My, (13 + w3,)] 2.
2(mady + mp12)¢12,e¢’12,e )

~26126150

[(wm + mplaor e + Jp¢l21’e> + (2211021 + 2212022 + My P21 cWae) w;e] ¢’12,e
Proetor
—P12,elo1
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i i i
Myg1 = [(w22 + myplaas e + Jp¢22,e) + (2212021 + 2202022 + MypPoz Woe) Wy, Proe
Mags = Oizelr
Mgz = —Qraelor

mas = 0o + (2on +myshy) (14 02)
Ms61 = Jp¢;1,e¢;2,e + (2212 + MypP21,cPo2.c) (1 + w’l%g) ;

Moot = Jpbshe + (2222 + Mpd3y,) (1 + wﬁ)
Die Elemente des Vektors h(q(t), q(t)) vom Modell (3.8) ergeben sich zu:

ha

[(h1019'2 + h10a011 + hio3012 + higadar + h105522) o
hm@+hmarum@m+mwm+hm@gg
im¢ﬂ+hm@gsn+omﬁﬂ+hm&g&4@
@m%+hm&rwmﬁm+mwh+hm@ga
hm@+hmarumﬁm+mwm+hm@gg
Brasbor + hiaedn ) i1 + (Puzedon + huzsdin ) d1o] €2
hm&rwm@m+mwh+hm@gm

(
(
|
(
(
(
@m&rwmmm+mwh+hm@g@
(
(
(
(
(
(

+ o+ o+ o+ o+ o+ o+ o+

h137521 + h138522> 511 + <h139521 + h140522> 512 ;

ho 191 + h202511 + h203512) 9182
h20491 + h205511 + h206512) 9102
h2o7511 + h208512 + h209521 + h210522) 91

h211511 + h212512 + h213521 + h214522> 92

+ o+ o+ o+

h215521 + h216522> 511 + <h217521 + h218522> 512 )

hy = [(h30191 + h30292 + h303512 + h304521 + h305522> 91

(
(

h30692 + h307511 + h308512 + h309521 + h310522) 92

h311521 + h312522) 511 + (h313521 + h314522) 512] S92



A Elemente des Modells eines zweiachsigen elastischen Roboters

24

(h31591 4 arefs + hatrdio + harsdor + h319522) 0,
hasola -+ hasi 11 + hapabdia + hazsdor + h324522) 0 ] e
haosbi + hasgs + haardar + h,328522> 0,

hisagBa + hazodar + h331522) 0,

h332521 + h333522) 511 + (h334521 + h335522) 512 ;

+ o+ o+ o+ o+

(h40191 4 Tagols + haggbr1 + hagador + h405522) 0,
haosba -+ haordr1 + haosd1a + hagedar + h410522) b,
haiib1 + h,412522> S+ <h413521 + h,414522> 512] 59
(h41591 4 hargls + harrbiy + harsdor + h419522> 0,
oo + hap1011 + hasodis + hussdor + h424522) 9'2] Co
hassbh -+ hassBs -+ hassdor + h,428522) 6,

hasobs + hazodar + h431622) b,

|
(
(
(
(
[
(
(
|
(
(
(
(asabos + hassbn ) i1 + (Rugadon + husadin ) dro
(
(
(
(
(
(
(
(
(
(

+ o+ o+ o+ + o+

>
o
|

hs 191 + h502511 + h503512) 9182
h50491 + h505511 + h506512) 9102
h5o791 + h50892 + h509511 + h510512) 9

h51192 + h512511 + h513512) 92

+ o+ o+ o+

h514521 + h515522> 511 + <h516521 + h517522> 512 ;

he h60191 + h602511 + h603512) 9182
h60491 + h605511 + h606512) 9102
he 791 + h60892 + h609511 + h610512) 9

h61192 + h612511 + h613512) 92

+ o+ o+ o+

h614521 + h615522> 511 + <h616521 + h617522> 512
mit

h101 = -2 (m2d2 + mplg) (ll + wlew;e) — 2t1t2 s
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h102
h103
h104
h105

h106

h107

h108

h109

2 (mady + myly) ty — 2 (¢111,ew1e + ¢11,ew,13) ty
2 (mady + myply) ty — 2 (¢’12,ew1e + ¢12,ewl16) ta
— 2ty (11 + wlew’le) :

—2ty (l1 + w1ewl1@) ;

— (mady + myly) (11 + wlew;e) — tity
—2[(madsy + mpls) [ + wiets] ¢’11,e ;

—2[(mady + myla) i + wieta] Bra,

— 2ty (11 + wlew’le) :

—2tg (l1 + w1ewl1@) ;

_211t21¢,11,e ;

_2llt22¢,11,e ;

2Lt By,
_211t22¢,12,e ;

2 (mgdg + mplg) tl -2 (ll + wlew;e) tQ s
2 (mady + myly) (¢'11,ew1e + ¢11,ew,16) + 2ty

2 (mads + myls) (qﬁlm,ewle n qﬁu,ew;e) 4 2oty
2t91t1

2t90ty

(mady 4+ myply) t) — (ll + wlew’le> t

2 [(mady + myla) wie — lits] ¢,11,e )
2 [(mady + myla) wie — l115] ¢,12,e )
2091ty

2090ty

20 ¢y, Wi

2t22¢,11wle ;

2916, W1e

’
2920,w1e

2 [z111011 + 2112012 + (Mp2 + Mo + my) P11 eWie
+2¢111,e [JOQ + 2211(531 + 22212(521(522 + 2222(532 + mp (lg + w%e)] ’Ujlle s

2 (2112011 + 2122012 + (Mp2 + Mo + my) P12 W1
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h131

h132

h133

h134

h135
h136
h137
h138
h139

h140

h201
h202

h203

h204
h205

h206

+26,, e [Joz + 221105, + 22212021000 + 222205, + my, (15 + w3,) ] wy,
2 (2911021 + 2912022 + M1 (Wae) (1 + w1e) )

2 (2212021 + 2222022 + MpPog cWoe) (1 + wlZ) ,
26y, o [Jo2 + 221105 4 22912021022 4 222205, + my, (15 + w3, )] wy,
26, o [Jo2 + 221105 4 22212021022 + 222205, + My, (15 + w3, )] wy,
2 (2211021 + 2212020 + MpP21 cWo) (1 + wle) ,

2 (2212021 + 2222020 + MpPag cWo) (1 + wlli) ;

i ’
2 | 2911021 + 2212022 + My P21 LW + (W21 + laMypdar e Uhe Pr1e

)

2 :2212521 + 2929029 + MpPaa cWae + (Waa + lomypPane) w ¢,11,e )
2 :2211521 + 2912022 + MpPa1 cWae + (W1 + lomypPar ) w ¢,12,e )
)

(
(
(
(

2 | 2212021 + 2920022 + My a2 (Wae + (W2 + loMy g e w1e ¢,12,e )
(m2d2 + mp12) (ll + wlew;e) + t1t2 R
2 |:(m2d2 + mpZZ) - w’lgt2:| ¢11,e )

2 [(mng + myly) — wllet2] D126

— (mady + mply) t + (ll + wlew’le) ta
2 |:(m2d2 + mplg) ’UJlle + t2:| ¢11,e )
2 |:(m2d2 + mplg) ’UJlle + t2:| ¢12,e )

2(1511 e [ 02 + 2’211621 + 22’212521622 + 2222622 + my (l2 + w2e)] wlle 5
261, e [Jo2 4 221105 + 22012021022 + 222205, + my, (15 + w3,)] wy,

2 (2211021 + 2212020 + MpP21 cWo,) (1 + wle) ;
2 (2212021 + 2222020 + MpPao cWo,) (1 + wlli) ;

2¢11 e [ 02 + 2211(521 + 22212(521(522 + 2222(522 + mp (l2 + UJQB)] wle 5
26, e [Jo2 + 2211035, + 22012021022 + 222205, + my, (15 + w3,)] wy,

2 (2211021 + 2212022 + Mpo1 (W) (1 + w1e) )
2 (2212021 + 2222020 + Moo (Woe) (1 + w,ﬁ;) )

2 [2211521 + 2912022 + MpPa1 cWae + (Wa1 + Myladar ) wlle:| ¢,11,e )
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h216
h217

h218

h315
h316

h317
h318
h319
h320
h321
h322

h323

h324

h325

2 | 2212091 + 2922092 + Mypag cWoe + (Waz + Mpladaa ) wlle

2 |2211021 + 2212022 + Mpo1 cWoe + (Wa1 + Myplada ¢) wlle

— (mady 4+ myly) tyy + (¢,11,ewle + ¢11,ew,13) ta
-2 [(m2d2 + myly) — wllet2] Dile s

—2 (mady + myly) (¢11,e¢,12,e - ¢12:8¢,11,e) ’
—20¢11,to1

—2¢11et22

- [(m2d2 + myly) — w;etz] P11e
—2 (mady + myly) ¢11,e¢,11,e )

—2 (mads + myls) ¢11,e¢,12,e ;
—2011,to1

—2¢11,l22

_2¢11,e¢,11,et21 ’

_2¢11,e¢,11,et22 J

—2¢11,e¢,12,e7521 ;

_2¢11,e¢,12,et22 ’

— (mady + myly) (¢,11,ew1e + ¢11,ew,13) —tuty
-2 [(mgdg + mplg) ’UJlle + t2] ¢11,e )

=2 (G111, — Di2ebine) to
_2¢11,et21w,16 ;

_2¢11,et22w,18 ;

- [(m2d2 +myla) wlle + tZ] P11e s
_2¢11,e¢,11,et2 ;

~2011,h1at2

_2¢11,et21w,16 ;

i
—2¢11 elowy,

— [z111011 + 2112012 + (Mp2 + Mo + M) P11 W1

1 !
¢11,e )
1 !
¢12,e ’
1 ’
¢12,e ’

2 | 2212091 + 2922092 + Mg (Wae + (Waz + Mypladan ) w;e
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_¢111,e [JOQ + 2211(531 + 22212(521(522 + 2222632 + my (lg + wge)} wlle y

h3se = —2¢,11,e [Jo2 + 291105 + 22212021022 + 222205 + My, (l§ + wie)] w;e ;
hsar = 2¢’11,e 2911021 + 2212022 + Moy (Woe — (Wa1 + Mpladay ) w;e )
hsog = 2¢’11,e 2912091 + 2922029 + Mg (Woe — (Waz + Mpladan ) w;e )
h329 = —(]5’11,8 [JOQ + 2211(5;1 + 22212(521(522 + 2’2225%2 + my (lg + wge)] ’LUlle y
hszy = 2¢’11,e 2911021 + 2212022 + Moy (Woe — (Wa1 + Mpladay ) w;e )
hsz1 = 2¢’11,e 212021 + 222202 + My eWae — (W + Mypladne) wy, |
h3zy = 2¢,121,e (2211021 + 2212022 + MpPo1 LWae)

hszs = 2¢,121,e (2212091 + 2920029 + Mypas (W)

hsss = 2¢I11,e¢l12,e (2211021 + 2212022 + MpGo1 cWae)

hsss = 2¢I11,e¢l12,e (2’212521 + 2992092 + mp¢22,ew2e) )

h401 = — (mZdZ + mpZZ) tio + <¢,12,ewle + ¢12,ew’13) ty

hay = —2 [(m2d2 + mply) — wllet2:| b12,e

haos = 2 (mady +myls) (¢11,e¢,12,e - ¢12,e¢,11,e)

haoa = —2¢126lo1

haos = —2¢12,6l22

has = — [(m2d2 + myly) — wllet2] b12,e

haor = —2(mady + myls) ¢12,e¢,11,e ;

haos = —2(mady + myly) ¢12,e¢,12,e )

hiay = —2¢12t21

haio = —2¢12,6l22

hay = —2¢12,e¢,11,e7521 ;

hye = _2¢12,e¢,11,gt22 ;

hayz = —2¢12,e¢,12,et21 ;

hayy = —2¢12,e¢,12,e7522 ;

has = — (mady + myls) <¢,12,ewle + ¢12,ew’13) — t12te

hae = —2 [(m2d2 + myls) w;e + 752] b12,e

har = 2 (¢11,e¢,12,e - ¢12,e¢’11,e) ta

’
hag = —2¢12ct01w,,

’
hag = —2¢12.tw,, ,
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hazo = — |(mady +myls) wlle + 2| 126

hiot = —201200.ts

hags = _2¢12,e¢’12,et2 ;

hasg = _2¢12,et21w,16 ;

hist = —2¢12t0w), |

hazs = — [z112011 + 2122012 + (M2 + Mo +my) Procwie]

—¢,12,e [Jo2 + 221105, + 22212091022 + 2222055 + My (l% + wge)] w’16 ,
hazs = _2¢,12,e [Jo2 + 2211531 + 22912021092 + 22225;2 + my, (l§ + wie)] w;e )
haor = 2¢’12,e -2211521 + 2912029 + Mp P21 cWae — (Wo1 + Myplodar ) w;e- )
hasg = 2¢’12,e —2212521 + 2999029 + MypP2a cWae — (Wag + Mplodan ) w;e- )
hasg = —G1oe [Joz + 221105, + 22212021000 + 222205, + my, (13 + whe) ] Wi,
hazy = 2¢’12,e -2211521 + 2912029 + Mp P21 cWae — (Wo1 + Mplodar ) w;e- ;
hazi = 2¢’12,e —2212521 + 2999029 + MpP2a cWae — (Wag + Mplodan ) w;e- )
hyza = 2¢I11,e¢l12,e (2211021 + 2212022 + MypPo1 cW2e)
hazs = 2¢’11,e¢’12,e (2212091 + 2222022 + Myag cWae)
hyss = 2¢’122,e (2211021 + 2212022 + Mpo1 (W)
hyzs = 2¢,122,e (2212021 + 2222022 + MpPoz cWae)

hsor =t (l1 + wlewlle) ,
hsoe = 2011,6lo1
hsos = 20¢12,lo1

hsos = —toity

hsos = 2¢11,et21w,18 ;

hsos = 2¢12,et21w,16 ;

hsor = — (2211021 + 2212022 + M2 Woe) (1 + wﬁ) ;

h508 = -2 (2211(521 + 2212(522 + mp¢21,ew26) (1 + wlli) ’

hso9 = —2¢,11,e [2211521 + 2212020 + My a1 eWoe — (W21 + Mylapar e) w;e] ;
hsi0 = —2¢,12,e [2211521 + 2212020 + My a1 eWoe — (W21 + Mylaar e) w;e] ;

hsin = — (2211091 + 2212022 + mp¢21,ew2e) (1 + w,ﬁz) )
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h512

h513

h514
h515
h516

h517

h601
h602

h603

h604
h605

h606

h607
h608
h609
h610
h611
h612

h613

h614
h615
h616

h617

—2¢,11,e [2211521 + 2912022 + MpPo1 cWae — (Wor + Myladar ) wlle] )

—2¢,12,e [2211521 + 2912020 + Myo1 cWae — (W1 + Mypladar ¢) wlle] ,

i 2 i
2¢11,e (2211 + mp¢21,e) Wye

i i
2011 (2212 + My P21 eP2e) Wy,
! 2 ’
2¢12,e (3211 + mp¢21,e) Wie

i i
2019, (2212 + MpP21 eP22.e) W1,

29 (l1 + wlewlle) )
2011,el22
2012,6t02

—tooly
!
2011 etoowy,

!
2012 ¢t22w;,

— (2212021 + 2222022 + MpPog cWae) <1 + wﬁ) ;

—2 (2912021 + 2222022 + MpP22 cWae) <1 + w’l%g) )

—2¢,11,e [2212521 + 2222022 + mp¢22,ew2e - (w22 + mpl2¢22,e) w;e] )
—2¢,12,e [2212521 + 2999029 + My Pog Wae — (Wag + Myladan ) w;e] )
— (2212021 + 2222092 + MpPon e Wae) <1 + wﬁ) ;

—2¢,11,e [2212521 + 2999022 + Mpog cWae — (Waa + Myladag ) w;e] )
—2¢,12,e [2212521 + 2222022 + mp¢22,ew2e - (w22 + mpl2¢22,e) w;e] )

! !
2011, (2212 + My P21 ePaze) Wi,

! ’
2¢11,e (3222 + mp¢§2,e) Wye

! !
2019, (2212 + MpP21 eP22.e) Wi,

i 2 i
2¢12,e (2222 + mp¢22,e) Wie

Die Elemente der Matrix K, vom Modell (3.8) ergeben sich zu:

ke33
ke44
ke55

keGG

2
2
2

2
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Dabei gelten fiir:

S92

Zijk

>

2

> el

sin(fy)

cos(f)

l5/2

pil; 1=1,2

Lpit? i=1,2

¢ij(li() ) 1=1,2,7=1,2

a¢ij T . Ci
1, . 1=1,2;5=1,2

®11,6011 + P12,6012

Oy 011 + Pra,.012

$21,6021 + P22,6022

t11011 + t12012

t21021 + t22022

br1e — Lty

b120 — Lidla,

Vo1 + MpPoie

Voo + MpProe

f()l2 paaj(T2)day J=12,

Sy piwidi(w)de;  i=1,27=1,2
o pitis(i)ban(xi)dz; i k=1,2 .



