
Ein robuster Regler zur
Schwingungsd�ampfung elastischer

Roboter mittels Polvorgabe

Jianqi Wang

Forschungsbericht Nr� ����

Me��� Steuer� und Regelungstechnik

�Ubersicht� Im vorliegenden Forschungsbericht wird eine Methode zur robusten Bahn�

verfolgungsregelung f�ur elastische Roboter entwickelt� Damit werden sowohl die Ein�

	�usse der Unsicherheiten auf die starre� als auch auf die elastische Dynamik des Ro�

boters ber�ucksichtigt� Hierzu wird das Modell des betrachteten elastischen Roboters

zun�achst in einer Singular�Perturbation�Standardform mit Parameterunsicherheiten dar�

gestellt� Dann wird das Robotersystem durch Verwendung der Multizeitenskalen�

Multiparameter�Singular�Perturbation�Methode in einer Gruppe ordnungsreduzierter Teil�

systeme mit Unsicherheiten zerlegt� W�ahrend ein f�ur starre Roboter entwickelter robuster

Bahnverfolgungsregler f�ur das starre Teilsystem verwendet wird� wird ein Verfahren zum

Reglerentwurf f�ur die schnellen Teilsysteme mittels robuster Polvorgabe vorgestellt� Die

resultierenden Regler f�ur die schnellen Teilsysteme sind nicht nur gegen die Parameterun�

sicherheiten robust� sondern auch gegen die �Anderung der Kon
guration des Roboters�

Die Ergebnisse der Simulationsstudien und experimentellen Erprobung zeigen� da� der

resultierende Regler e�ektiv ist�

Gerhard�Mercator�Universit�at �GH Duisburg

Me��� Steuer� und Regelungstechnik

Prof� Dr��Ing� H� Schwarz



Inhaltsverzeichnis II

Inhaltsverzeichnis

Nomenklatur III

� Einleitung �

� Modell elastischer Roboter �

� Modell in Singular�Perturbation�Form mit Parameterunsicherheiten �

� Systemdekomposition mittels Singular�Perturbation�Methode 	

� Entwurf robuster Regler ��

��
 Entwurf robuster Regler f�ur das langsamste Untersystem � � � � � � � � � � 
�

��� Entwurf robuster Regler f�ur die Grenzschichtteilsysteme � � � � � � � � � � � 
�

��� Stabilit�at des geregelten Robotersystems � � � � � � � � � � � � � � � � � � � 
�


 Simulationsergebnisse �	

� Experimentelle Studien ��

��
 Versuchstr�ager � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Simulationsstudien � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Regelungsergebnisse � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Zusammenfassung und Ausblick �


	 Literaturverzeichnis ��



Nomenklatur III

Nomenklatur

Abk�urzungen

DMS Dehnungsme�streifen

Vektoren und Matrizen

A����x��t�� Systemmatrix

Aij����x��t�� i� j�te Untermatrix von A����x��t��

Ak
ij�����

k
�� Systemmatrix

A�
k Systemmatrix

A�
kc Systemmatrix

a Vektor der Reglerparameter

B����x��t�� Eingangsmatrix

Bi����x��t�� i�te Untermatrix von B����x��t��

Bk
i �����

k
�� Eingangsmatrix

B�
k Eingangsmatrix

Css����x
�
��� �x

�
��� Matrix

f����x��t��x��t�� Vektor

f i����x��t��x��t�� i�ter Untervektor von f����x��t��x��t��

fki �����
k
���

k
�� Vektor

fp���� Parametervektor

h�q�t�� �q�t�� Vektor der Coriolis� und Zentrifugalkr�afte

h���� q�t�� �q�t�� Vektor der Coriolis� und Zentrifugalkr�afte

In�n �n� n��Einheitsmatrix

K Reglermatrix

Kd Matrix der Di�erenzierbeiwerte

Ke Stei
gkeitsmatrix

Kk Reglermatrix

Kp Matrix der Proportionalbeiwerte

M�q�t�� Tr�agheitsmatrix

M���� q�t�� Tr�agheitsmatrix

M ss����x
�
���t�� Tr�agheitsmatrix des entsprechenden starren Roboters

P Permutationsmatrix

P i���� ��
i��
� � Matrix

Q Eingangsbelegungsmatrix

q�t� Vektor der verallgemeinerten starren und elastischen Koordinaten

r Reglervektor

u�t� Stellvektor

v Reglervektor

Xk Matrix

x�t� Zustandsvektor

xi�t� i�ter Untervektor von x�t�



Nomenklatur IV

xij�t� j�ter Untervektor von xi�t�

xkij�t� Zustandsvektor

Y �x�
��� �x

�
��� �x

�
��� Matrix

zij�t�� z
k
ij�t� Zustandsvektor


 Reglermatrix

�ki Matrix

�d�t� Sollbahnvektor

� �t� Gelenkmomentvektor

� i�t� Gelenkmomentvektor

� �
��t� Gelenkmomentvektor

�i i�ter Unsicherheitsvektor

�k
i � ��

k
i Vektor

Skalare Gr�o�en

bm Modellparameter

c�i Koe�zient von ��i�x�

d Dicke des Arms

EI Biegestei
gkeit

�EI�i Biegestei
gkeit des i�ten Arms

H�z� �Ubertragsfunktion des Filters

hi i�tes Element von h�q�t�� �q�t��

ia�t� Ausgangsstrom vom Verst�arker LC ����

Jh Tr�agheitsmoment der Nabe

Jhi Tr�agheitsmoment der i�ten Nabe

JLi nominaler Wert des Tr�agheitsmoments der Nutzlast des i�ten Arms

Jm Tr�agheitsmoment der Motorwelle

Jp Tr�agheitsmoment der Nutzlast

kDMS �
k�Faktor� des DMS

ke�i i�tes Diagonalelement von Ke

kM Drehmomentkonstante des Motors

l L�ange des Armes

lh L�ange der Nabe

li L�ange des i�ten Arms

lp Abstand vom Armende zum Schwerpunkt der Nutzlast

Mij i� j�tes Element vonM�q�t��

MLi nominaler Wert der Masse der Nutzlast des i�ten Arms

MR Reibungsmoment

MRv Moment der viskosen Reibung

MRC Moment der Coulomb�schen Reibung

m Anzahl der Ansatzfunktionen pro Glied

mhi Masse der i�ten Nabe



Nomenklatur V

mp Masse der Nutzlast

m�
p nominaler Wert der Nutzlastmasse

n Anzahl der Gelenke

ng� Untersetzungsverh�altnis des Getriebes

nZK Ausgang der Z�ahlerkarte

t Zeit

tid Zeit bis zum Erreichen einer Soll�Endposition des i�ten Gelenks

UB Br�uckenspeisespannung

Udi Ausgang des i�ten A�D�Wandlers

ua�t� Eingangsspannung vom Verst�arker LC ����

u��t���ui�t��uR�t� Stellgr�o�en

V � Vi Ljapunovfunktionen

vij Modellparameter

w��x� t� Auslenkung des Arms

�ij�t� j�te elastische Koordinate des i�ten Arms

�g� Wirkungsgrad des Getriebes

�i� �
�

i i�ter kleiner Konstante

�i�t� i�ter Gelenkwinkel

�di �t� Sollbahn des i�ten Gelenks

�if Soll�Endposition des i�ten Gelenks

�i�t� Moment des i�ten Gelenks

�i i�ter Singular�Perturbation�Parameter

	ij Frequenz der j�ten Ansatzfunktion des i�ten Arms

	kij Eigenwert


 kleiner positiver Parameter

� Masse pro L�angeneinheit des Arms

�i Masse pro L�angeneinheit des i�ten Arms

�� positiver Parameter

�F �Xk� Funktion


ki D�ampfungsrad

�ij�x� j�te Eigenfunktion des i�ten Arms

�ij�e Wert der j�ten Eigenfunktion des i�ten Arms am Armende

��ij�e Wert der Ableitung von �ij�e
�i kleiner positiver Parameter

�ki� Kreisfrequenz der elastischen Schwingung

Operatoren

j � j Betragsfunktion

k � k Frobenius�Norm

eig Eigenwerte

Im Imagin�arteil



Nomenklatur VI

O��� Ordung
�
gro� O�

o��� Ordnung
�
klein o�

���� zeitliche Ableitung

���� partielle Ableitung nach xP
SummationQ
Produkt

���� nominaler Wert oder langsamer Anteil
���� schneller Anteil
���� Abweichung

���� Umsortieren

Mengen

R Menge der reellen Zahlen



� Einleitung 


� Einleitung

Im allgemeinen sind bei Handhabungsaufgaben von Robotern die tats�achlichen Werte

der Masse und des Tr�agheitsmoments der Nutzlast im voraus unbekannt oder w�ahrend

der Durchf�uhrung ver�anderlich� Aus diesem und weiteren Gr�unden� die nicht erl�autert

werden sollen� wird ein Roboter durch eine Gruppe nichtlinearer Di�erentialgleichungen

mit unsicheren Parametern modelliert� F�ur einen starren Roboter kann man eine nomi�

nale Eingangsmatrix ausw�ahlen� so da� die Unsicherheiten angepa�t werden� Deshalb

sind die von Corless und Leitmann �
��
�� Gutman �
����� Leitmann �
��� und 
��
�

und Chen �
���� erarbeiteten deterministischen Methoden verwendbar� um einen robu�

sten Regler f�ur den starren Roboter auszulegen �Chen und Pandey 
���� Osman und

Roberts 
���� Shoureshi u� a� 
���� Spong 
���� Wang und Wend 
���a�� Da die Anzahl

der verallgemeinerten starren und elastischen Koordinaten vom Modell eines elastischen

Roboters gr�o�er als die Anzahl der Stellgr�o�en ist� k�onnen die Unsicherheiten im Modell

des elastischen Roboters im allgemeinen nicht mit einer nominalen Eingangsmatrix an�

gepa�t werden� Deshalb lassen sich die deterministischen Methoden dazu jedoch nicht

unmittelbar f�ur einen elastischen Roboter verwenden�

Korolov und Chen �
���� haben ein Verfahren zum Entwurf eines robusten Reglers f�ur

einen einachsigen elastischen Roboter mittels der von Barmish und Leitmann �
���� und

Chen und Leitmann �
���� erweiterten deterministischen Methoden vorgestellt� Obwohl

das erweiterte deterministische Reglerentwurfsverfahren manche nicht angepa�te Unsi�

cherheiten ohne Verletzung der Stabilit�at des geregelten Systems tolerieren kann� ist die

erlaubte Grenze der nicht angepa�ten Unsicherheiten im allgemeinen zu gering� Au�er�

dem haben sie nur ein lineares Modell des Roboters ber�ucksichtigt� Yuan u� a� �
����

haben zun�achst jeden Arm eines zweigliedrigen elastischen Roboters als ein Teilsystem

betrachtet� Unter der Voraussetzung� da� die Unsicherheiten der Teilsysteme mit einer

nominalen Eingangsmatrix angepa�t werden k�onnen� haben sie anschlie�end ein Verfah�

ren mit Hilfe der deterministischen Methode zum Entwurf einer dezentralen Regelung

f�ur diesen elastischen Roboter entwickelt� Da die Anzahl der verallgemeinerten starren

und elastischen Koordinaten der Teilsysteme immer noch gr�o�er als die Anzahl der Stell�

gr�o�en ist� kann diese Voraussetzung f�ur die meisten elastischen Roboter o�ensichtlich

nicht erf�ullt werden� Die von Nathan und Singh �
��
 und 
���� vorgestellten Entwurfs�

verfahren robuster Regler werden in zwei Phasen unterteilt� Eine ist die Auslegung eines

starren robusten Reglers f�ur die Gelenkbewegung� Die andere ist einen Regler f�ur die

D�ampfung der elastischen Schwingung mit Hilfe des Modells des durch den starren Regler

geschlossenen Gesamtsystems zu entwerfen� Bei der zweiten Phase werden die Ein	�usse

der Unsicherheiten aber nicht ber�ucksichtigt�

Im Hinblick auf die Multizeitskalen elastischer Roboter werden die Singular�Perturbation�

Methode und das Verfahren mittels Integralmannigfaltigkeit als wirksame Werkzeuge zur

Analyse und zum Reglerentwurf f�ur elastische Roboter betrachtet �Lin und Lewis 
����



� Einleitung �

Schoenwald und �Ozg�uner 
���� Siciliano und Book 
���� Siciliano u� a� 
���� Wang und

Wend 
���a� Zaad und Khorasani 
����� Mittels der Singular�Perturbation�Methode

haben Siciliano und Book �
���� ein endlich dimensionales Modell eines elastisches Ro�

boters in zwei ordnungsreduzierte Teilsysteme zerlegt� Ein quasistation�ares Teilsystem

und ein Grenzschichtteilsystem� F�ur das quasistation�are Teilsystem ist ein nichtlinearer

Regler� dem die Dynamik des entsprechend starren Roboters zugrunde liegt� ausgelegt�

Zur D�ampfung der elastischen Schwingung wird der Zustandsvektor des Grenzschichtteil�

systems �uber eine konstante Reglermatrix zur�uckgef�uhrt� Diese Arbeit wird in Siciliano

u� a� �
���� auf eine R�uckf�uhrung des Ausgangsvektors des Grenzschichtteilsystems er�

weitert� Durch Verwendung der Multizeitskalen�Multiparameter�Singular�Perturbation�

Methode haben Wang und Wend �
���a� ein Verfahren zur Regelung elastischer Roboter

vorgestellt� In Khorrami �
���� wird die Singular�Perturbation�Methode zur Analyse ela�

stischer Robotersysteme� die in einem unendlich dimensionalen Modell dargestellt werden�

verwendet� Auf der Basis dieser Analyse wird eine Regelungsstrategie mit Hilfe eines ver�

teilten Stellglieds f�ur die D�ampfung der elastischen Schwingungen entwickelt �Schoenwald

und �Ozg�uner 
����� Um das lineare Modell eines einachsigen elastischen Roboters in ex�

aktere Teilsysteme zu zerlegen� haben Zaad und Khorasani �
���� das Verfahren mittels

Integralmannigfaltigkeit verwendet� Dieses Verfahren ist besonders e�ektiv� wenn die

Singular�Perturbation�Parameter nicht klein genug sind� In Moallem u� a� �
���� wird

eine nichtlineare Regelungsstrategie zur Bahnverfolgung des Ende�ktors eines multiach�

sigen elastischen Roboters vorgestellt� Dabei haben sie die gleichen Grundgedanken wie

die in Zaad und Khorasani �
���� verwendet� sie gehen aber von einem nichtlinearen

Modell aus� Auf der Basis einer Singular�Perturbation�Analyse haben Lucibello u� a�

�
���� eine lernende Regelung zur Positionierung eines zweigliedrigen Roboters� dessen

zweiter Arm elastisch ist� erarbeitet� Morita u� a� �
���� haben eine Sch�atzungsmethode

f�ur die elastische Auslenkung die Singular�Perturbation�Methode zugrunde gelegt� Durch

Verwendung der Singular�Perturbation�Methode haben Lin und Lewis �
���� einen lang�

samen�schnellen Kalman�Filter mit einer verbesserten Leistung f�ur elastische Roboter

entwickelt� Jedoch basieren alle diese Arbeiten auf der Annahme� da� die betrachteten

elastischen Robotersysteme keine Unsicherheiten besitzen�

Obwohl es notwendig ist� die Unsicherheiten bei dem Entwurf robuster Regler f�ur ela�

stische Roboter mittels der Singular�Perturbation�Methode mit zu ber�ucksichtigen� wird

dies nur sehr selten getan� Durch Verwendung des Verfahrens mittels Integralmannigfal�

tigkeit haben Morita u� a� �
���� das Modell elastischer Roboter in ein langsames und ein

schnelles Teilsystem zerlegt� Robuste Regler gegen die strukturierten und die unstruk�

turierten Unsicherheiten werden dann f�ur das langsame bzw� das schnelle Teilsystem

ausgelegt� Zur Berechnung der Integralmannigfaltigkeit haben sie jedoch die nomina�

len Werte der physikalischen Parameter benutzt� d�h� die Ein	�usse der physikalischen

Parameterunsicherheiten auf die Integralmannigfaltigkeit werden nicht ber�ucksichtigt�

Au�erdem haben sie angenommen� da� die physikalischen Parameterunsicherheiten kei�



� Einleitung �

nen Ein	u� auf das schnelle Teilsystem haben� Dies stimmt mit den Tatsachen nicht

�uberein� da die Eigenfrequenzen und Eigenfunktionen der elastischen Schwingung eines

elastischen Roboters von deren Nutzlast und Kon
guration abh�angig sind� Wang und

Wend �
���b� haben ein Verfahren f�ur robuste Regelung eines eingliedriegen elastischen

Roboters mit Hilfe der Singular�Perturbation�Methode f�ur Systeme mit Parameterunsi�

cherheiten �Corless u� a� 
���� vorgestellt� Im vorliegenden Forschungsbericht wird ein

neues Entwurfsverfahren f�ur die robuste Bahnverfolgungsregelung elastischer Roboter mit�

tels der Multizeitskalen�Multiparameter�Singular�Perturbation�Methode dargestellt� Da�

bei werden nicht nur die Ein	�usse der Parameterunsicherheiten auf das langsame bzw�

die schnellen Teilsysteme� sondern auch die Ein	�usse der Kon
guration des Roboters auf

die schnellen Teilsysteme ber�ucksichtigt�

Im einzelnen gliedert sich der Inhalt der Arbeit wie folgt� Im Abschnitt � wird ein dy�

namisches Modell des betrachteten elastischen Roboters gegeben� Dieses Modell wird

in eine Singular�Perturbation�Standardform mit Parameterunsicherheiten im Abschnitt

� dargestellt� Im Abschnitt � wird das Robotersystem mit Hilfe der Multizeitskalen�

Multiparameter�Singular�Perturbation�Methode in einer Gruppe von ordnungsreduzierten

Teilsysteme zerlegt� Auf der Basis der im Abschnitt � resultierenden Teisysteme wird ein

Entwurfsverfahren f�ur die robuste Bahnverfolgungsregelung des elastischen Roboters im

Abschnitt � entwickelt� F�ur die Gelenkbewegung wird eine f�ur starre Roboter entwickelte

robuste Regelung verwendet� F�ur die D�ampfungen der elastischen Schwingungen wird

eine Reglerentwurfsmethode mittels robuster Polvorgabe vorgestellt� Hier wird gleichzei�

tig die Stabilit�at des geregelten elastischen Robotersystems ber�ucksichtigt� Abschnitt �

zeigt Simulationsstudien� Im Abschnitt � wird das vorgestellte Verfahren experimentell

veri
ziert� Der Bericht schlie�t mit einer Zusammenfassung und einem Ausblick auf Ziele

zuk�unftiger Forschungen ab�



� Modell elastischer Roboter �

� Modell elastischer Roboter

Betrachtet wird ein elastischer Roboter� der aus n elastischen Armsegmenten besteht�

die miteinander durch rotatorische Gelenke in einer Reihe verbunden werden� Wir be�

schr�anken uns auf einen sich nur in der horizontalen Ebene bewegenden Roboter� Das

Moment des i�ten Gelenks wird mit �i�t� �i  
� �� � � � � n� bezeichnet� Unter den vereinfa�
chenden Annahmen� da��

� die Verformung jedes elastischen Arms nur durch reine Biegung hervorgerufen wird�
die in einer horizontalen Ebene ist und es sich bei den Armen um Euler�Bernoulli�

Balken handelt�

� die Deformation jedes elastischen Arms nach dem Ritzansatz diskretisiert werden

kann� Als Ansatzfunktionen werden die ersten m Eigenfunktionen eines nicht rotie�

renden� einseitig fest eingespannten Balkens� an dessen Ende eine Nutzlast befestigt

ist� gew�ahlt� Zur Ermittlung der Ansatzfunktionen werden die nominalen Werte der

Masse und des Tr�agheitsmoments der Nutzlast verwendet�

� die Coulomb�sche und viskose Reibung in den Gelenken sowie die Strukturd�ampfung
des Arms vernachl�assigbar sind�

stellen sich die Bewegungsgleichungen dieses Roboters mit Hilfe des Lagrange�Verfahrens

zweiter Art wie folgt dar �De Luca und Siciliano 
��
� Siciliano und Book 
�����

M�q�t���q�t� ! h�q�t�� �q�t�� !Keq�t�  Q� �t�� ���
�

q�t� ist dabei der Vektor der verallgemeinerten starren und elastischen Koordinaten und

ergibt sich zu

q�t�  "���t�� ���t�� � � � � �n�t�� ����t�� ����t�� � � � � ��m�t�� ����t�� ����t�� � � � � ��m�t��
� � � � �n��t�� �n��t�� � � � � �nm�t�#T �

�i�t� �i  
� �� � � � � n� sind die Gelenkwinkel� �ij�t� �i  
� �� � � � � n� j  
� �� � � � � m� sind
die j�ten elastischen Koordinaten des i�ten Armes� � �t�  "���t�� ���t�� � � � � �n�t�#T ist der
Gelenkmomentvektor und die �ubrigen Matrizen und Vektoren in Gl� ���
� sind wie folgt

de
niert�

M�q�t�� � �m! 
�n� �m! 
�n positiv de
nite� symmetrische
Tr�agheitsmatrix�

h�q�t�� �q�t�� � �m! 
�n�Vektor der Coriolis� und Zentrifugalkr�afte�

Ke � �m! 
�n� �m! 
�n Stei
gkeitsmatrix�
Q  "In�n� �n�mn#

T � Eingangsbelegungsmatrix�
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� Modell in Singular�Perturbation�Form mit Para�

meterunsicherheiten

Da die tats�achlichen Werte der Masse und des Tr�agheitsmoments der Nutzlast im allge�

meinen im voraus unbekannt oder ver�anderlich sind� sollen sie als unsichere Parameter

betrachtet werden� Die Grenzen� in denen die Parameterwerte variieren� k�onnen aber als

bekannt angenommen werden� Wird der Vektor aus diesen unsicheren Parametern mit

�� bezeichnet� kann System aus Gl� ���
� wie folgt dargestellt werden�

M���� q�t���q�t� ! h���� q�t�� �q�t�� !Keq�t�  Q� �t�� ���
�

Da die nominalen Werte der Masse und des Tr�agheitsmoments der Nutzlast zur Ermitt�

lung der Ansatzfunktionen verwendet werden� haben die Parameterunsicherheiten keinen

Ein	u� auf Ke�

Gl� ���
� bildet ein nichtlineares Modell f�ur elastische Roboter mit Parameterunsicher�

heiten� Das Anliegen des Beitrages besteht darin� einen robusten Regler f�ur das System

���
� zu entwerfen� der die Stabilit�at des geregelten Robotersystems bei Anwesenheit von

Unsicherheiten gew�ahrleistet� Da die Anzahl der verallgemeinerten starren und elasti�

schen Koordinaten gr�o�er als die Anzahl der Stellgr�o�en ist� k�onnen die Unsicherheiten

im allgemeinen nicht mit einer nominalen Eingangsmatrix angepa�t werden �mismatched�

�Chen 
����� Deshalb lassen sich die von Corless und Leitmann �
��
�� Gutman �
�����

Leitmann �
��� und 
��
� und Chen �
���� erarbeiteten deterministischen Methoden

dazu nicht unmittelbar verwenden� Obwohl das von Barmish und Leitmann �
���� und

Chen und Leitmann �
���� erweiterte deterministische Reglerentwurfsverfahren manche

nicht angepa�te Unsicherheiten ohne Verletzung der Stabilit�at des geregelten Systems to�

lerieren kann� ist deren erlaubte H�ochstgrenze im allgemeinen zu gering� Die sogenannte

Riccati�Gleichung�Reglerentwurfsmethode �Petersen und Hollot 
���� Schmitendorf 
����

hat keine explizite Anforderung an die Erf�ullung der anpassenden Bedingungen� Die Exi�

stenz von L�osungen f�ur die entsprechende Ricatti�Gleichung k�onnen aber bei der Ver�

letzung dieser Bedingungen nicht gew�ahrleistet werden� Wie von Wang �
���a� gezeigt�

kann das System ���
� f�ur viele elastische Roboter als ein System mit �m! 
��Zeitskalen

betrachtet werden� Darauf basierend wird nun ein neues Verfahren zum Entwurf robuster

Regler f�ur elastische Roboter entwickelt�

Wir f�uhren einen neuen Vektor der verallgemeinerten starren und elastischen Koordinaten

q��t�  "���t�� ���t�� � � � � �n�t�� ����t�� ����t�� � � � � �n��t�� ����t�� ����t�� � � � � �n��t��
� � � � ��m�t�� ��m�t�� � � � � �nm�t�#T

durch ein Umsortieren des Vektors q�t� ein� Dabei sind q��t� und q�t� durch

q��t�  P Tq�t� �����
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verkn�upft� wobei P eine Permutationsmatrix ist� Entsprechend gilt

M ����� q
��t���q��t� ! h����� q

��t�� �q��t�� !K�

eq
��t�  Q� �t�� �����

Dabei sind

M ����� q
��t��  P TM����Pq

��t��P �

h����� q
��t�� �q��t��  P Th����Pq

��t��P �q��t���

K�

e  P
TKeP �

�����

Das System aus Gl� ����� wird nun in Zustandsraumdarstellung �uberf�uhrt� Der Zustands�

vektor x�t� des Systems wird aus q��t� und seiner ersten zeitlichen Ableitung �q��t� gebil�

det�

x�t�  

�
x��t�

x��t�

�
 

�
q��t�

�q��t�

�
� xi � R

n�m��� �i  
� ��� �����

Aus ����� und ����� folgt

�x��t�  x��t��

�x��t�  f����x��t��x��t�� !A����x��t��x��t� !B����x��t��� �t�
�����

mit

f����x��t��x��t��  � "M �����x��t��#
��
h�����x��t��x��t���

A����x��t��  � "M �����x��t��#
��
K�

e�

B����x��t��  "M
�����x��t��#

��
Q�

�����

Wie Fraser und Daniel �
��
�� Wang �
���� sowie Zaad und Khorasani �
���� gezeigt ha�

ben� werden die Eigenwerte des linearisierten Modells des Systems ����� von Nullen und

rein imagin�aren Zahlen gebildet� wenn �� den nominalen Wert annimmt� Diese Eigenwer�

te werden mit f	kij� i  
� �� � � � � n� j  �� 
� � � � � m� k  
� �g bezeichnet� Wir beschr�anken
uns dabei auf den Roboter� der die folgende Annahme erf�ullt�

Annahme ���� Die Eigenwerte des linearisierten Modells des Systems ����� k�onnen nach

dem Betrag ihres Imagin�arteils in die folgendenm!
 Gruppen eingeteilt werden� f	ki�� i  

� �� � � � � n� k  
� �g� f	ki�� i  
� �� � � � � n� k  
� �g� � � �� f	kim� i  
� �� � � � � n� k  
� �g�
Die Betr�age der Imagin�arteile der verschiedenen Eigenwerte innerhalb einer Gruppe haben

die gleiche Gr�o�enordnung� also�

	k�i�j

	k�i�j
 O�
�� i�� i�  
� �� � � � � n� k�� k�  
� �� j  
� �� � � � � m� �����

Dabei hei�t O��� von der Ordnung
�
gro� O�� Dagegen unterscheiden sich die Betr�age der

Imagin�arteile der Eigenwerte von verschiedenen Gruppen stark� Diese Gruppen sind so

angeordnet� da�

	k�i�j

	k�
i��j���

 o�
�� i�� i�  
� �� � � � � n� k�� k�  
� �� j  �� 
� � � � � m� 
� �����
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o��� bezeichnet die Ordnung
�
klein o��

Bemerkung ���� Wie Fraser und Daniel �
��
�� Wang �
���� sowie Zaad und Khorasani

�
���� gezeigt haben� ist diese Annahme bei vielen Robotern mit elastischen homogenen

Armen erf�ullt�

Weil die Imagin�arteile dieser Eigenwerte f�ur die Schwingungfrequenz des Systems �����

zust�andig sind� erkennen wir aus Chow u� a� �
����� da� das System ����� mittels der

Singular�Perturbation�Methode behandelt werden kann� Es handelt sich bei dem System

����� um ein System mitm!
�Zeitskalen �Ladde und Siljak 
����� Nun wird dieses System

in einer Multiparameter�Multizeitskalen�Singular�Perturbation�Form dargestellt� Dazu

werden zun�achst �j �j  
� �� � � � � m� als der Kehrwert des geometrischen Mittels der Abso�
lutwerte der Imagin�arteile der Eigenwerte von der Gruppe f	kij �i  
� �� � � � � n� k  
� ��g
de
niert�

�j  



�n

vuut nY
i��

�Y
k��

��Im�	kij���
� j  
� �� � � � � m�

���
��

F�ur die folgenden Betrachtungen werden

x��t�  "x���t�� x���t�� � � � � x�m�t�#
T �

x��t�  "x���t�� x���t�� � � � � x�m�t�#
T �

xij�t� � R
n � ���

�

f����x��t��x��t��  

�
����
f �����x��t��x��t��

f �����x��t��x��t��
���

fm����x��t��x��t��

�
���	 � f i����x��t��x��t�� � R

n � ���
��

A����x��t��  

�
����
A������x��t�� A������x��t�� � � � A�m����x��t��

A������x��t�� A������x��t�� � � � A�m����x��t��
���

���
���
���
���

���

Am�����x��t�� Am�����x��t�� � � � Amm����x��t��

�
���	 �

Aij����x��t�� � R
n�n � ���
��

B����x��t��  

�
����
B�����x��t��

B�����x��t��
���

Bm����x��t��

�
���	 � Bi����x��t�� � R

n�n ���
��

angesetzt und es werden

z�i�t�  


��
i

x�i�t��

z�i�t�  


�ix�i�t��

i  
� �� � � � � m ���
��
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eingef�uhrt� Durch Einsetzen von ���

� bis ���
�� in ����� l�a�t sich System ����� in fol�

gender Multizeitskalen�Singular�Perturbation�Form darstellen�

�x���t�  x���t��

�x���t�  f ����������� !
mP
j��

��
jA�j�������z�j�t� !B��������� �t��

���
��

�i �z�i�t�  z�i�t�� i  
� �� � � � � m�

�i �z�i�t�  f i���������� !
mP
j��

��
jAij�������z�j�t� !Bi�������� �t�

���
��

mit

��  "x���t�� �
�
�z���t�� �

�
�z���t�� � � � � ��

mz�m�t�#
T
�

��  "x���t�� ��z���t�� ��z���t�� � � � � �mz�m�t�#T �
���
��

Dabei werden Ai�����x��t��  � �i  �� 
� � � � � m� verwendet�

Da die Parameter �i �i  
� �� auf der linken Seite von Gl� ���
�� und auf der rech�

ten Seite von Gl� ���
������
�� stehen� ist das System nicht nur ein nichtsingul�ar gest�ortes

System� sondern auch ein singul�ar gest�ortes System�
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� Systemdekomposition mittels Singular�

Perturbation�Methode

Gest�utzt auf die Multiparameter�Multizeitskalen�Singular�Perturbation�Methode �Ladde

und Siljak 
���� wird der folgende rekursive Algorithums zur Dekomposition des Systems

aus Gl� ���
�� und ���
�� vorgestellt�

Algorithmus ���


� Initialisierung�

k  m�

xmi��t��  xi��t�� i  
� ��

zmij �t�  zij�t�� i  
� �� j  
� �� � � � � m�

�m�t�  � �t��

�m
i  �i� i  
� ��

fm
i �����

m
� ��

m
� �  f ������������ i  �� 
� � � � � m�

Am
ij �����

m
� �  ��

jAij�������� i  �� 
� � � � � m� j  
� �� � � � � m�

Bm
i �����

m
� �  Bi�������� i  �� 
� � � � � m�

���
�

�� Das System mit �k ! 
��Zeitskalen wird wie folgt dargestellt�

�xk���t�  x
k
���t��

�xk���t�  f
k
������

k
���

k
�� !

kP
j��

Ak
�j�����

k
��z

k
�j�t� !B

k
������

k
���

k�t��
�����

�i �z
k
�i�t�  z

k
�i�t� i  
� �� � � � � k�

�i �z
k
�i�t�  f

k
i �����

k
���

k
�� !

kP
j��

Ak
ij�����

k
��z

k
�j�t� !B

k
i �����

k
���

k�t��
�����

�� Da Ak
kk�����

k��
� � nicht singul�ar ist� kann das System aus Gl� ����� und ����� mit

Bezug auf die �k�Zeitskala mittels Singular�Perturbation�Methode� d�h� mit

�k  � anstelle des wahren Wertes� in die folgenden zwei Teilsysteme zerlegt werden

�Kokotovic u� a� 
�����

� das �k�Zeitskala quasistation�are Teilsystem�
�xk��
�� �t�  x

k��
�� �t��

�xk��
�� �t�  f

k��
� �����

k��
� ��k��

� � !
k��P
j��

Ak��
�j �����

k��
� �zk��

�j �t�

!Bk��
� �����

k��
� �� k���t��

�����



� Systemdekomposition mittels Singular�Perturbation�Methode 
�

�i �z
k��
�i �t�  z

k��
�i �t��

�i �z
k��
�i �t�  f

k��
i �����

k��
� ��k��

� � !
k��P
j��

Ak��
ij �����

k��
� �zk��

�j �t�

!Bk��
i �����

k��
� �� k���t�� i  
� �� � � � � k � 
�

�����

�zk�k�t�  � 
Ak
kk�����

k��
� �

��� 

fkk�����

k��
� ��k��

� �

!
k��P
j��

Ak
kj�����

k��
� �zk��

�j �t� !B
k
k�����

k��
� �� k���t�

�
�

�zk�k�t�  ��

�����

� das �k�Zeitskala Grenzschichtteilsystem�

�k ��z
k

�k�t�  �z
k
�k�t��

�k ��z
k

�k�t�  A
k
kk�����

k��
� ��zk�k�t� !B

k
k�����

k��
� ��� k�t��

�����

Dabei gilt�

�k��
�  

h
xk��
�� �t�� �

�
�z

k��
�� �t�� � � � � ��

k��z
k��
��k����t�� �� � � � � �

iT
�

�k��
�  

h
xk��
�� �t�� ��z

k��
�� �t�� � � � � �k��z

k��
��k����t�� �� � � � � �

iT
�

�����

fk��
i �����

k��
� ��k��

� �  fk
i �����

k��
� ��k��

� ��Ak
ik�����

k��
� �

� 
Ak
kk�����

k��
� �

���
fkk�����

k��
� ��k��

� ��

Ak��
ij �����

k��
� �  Ak

ij�����
k��
� ��Ak

ik�����
k��
� �

� 
Ak
kk�����

k��
� �

���
Ak

kj�����
k��
� ��

Bk��
i �����

k��
� �  Bk

i �����
k��
� ��Ak

ik�����
k��
� �

� 
Ak
kk�����

k��
� �

���
Bk

k�����
k��
� ��

i  �� 
� � � � � k � 
� j  
� �� � � � � k � 
�

�����

xk��
i� �t� bzw� zk��

ij �t� �i  
� �� j  
� �� � � � � k � 
� bezeichnen den langsamen Teil
von xki��t� bzw� z

k
ij�t�� �

k���t� und �� k�t� bezeichnen den langsamen und schnellen

Teil von � k�t�� �zkik�t� und �z
k
ik�t� �i  
� �� bezeichnen den langsamen und schnellen

Teil von zkik�t�� Es ergibt sich �Kokotovic u� a� 
�����

xki��t�  xk��
i� �t� !O��k�� i  
� ��

zkij�t�  zk��
ij �t� !O��k�� i  
� �� j  
� �� � � � � k � 
�

zkik�t�  �zkik�t� ! �z
k
ik�t� !O��k�� i  
� ��

� k�t�  � k���t� ! �� k�t� !O��k��

���
��

Dabei ist

�k  

�
��� k  
�

�k
�k��

� k  �� �� � � � � m�
���

�
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�� Setze k � k � 
�

�� Wenn k � �� dann gehe zu Punkt �� sonst gehe zu Punkt ��

�� Ende�

Durch Verwendung von Algorithmus ��
 wird das System ���
������
�� in m ! 
 Teilsy�

steme zerlegt� Die Dynamik der langsameren Teilsysteme hat Ein	u� auf die schnelleren

Teilsysteme� Dagegen beein	u�t die Dynamik der schnelleren Teilsysteme die langsame�

ren Teilsysteme nicht� F�ur k  
 stellt Gl� ����� das langsamste Systemverhalten vom

System ���
������
�� dar� Dies entspricht den Bewegungsgleichungen des entsprechen�

den starren Roboters� F�ur k  
� �� � � � � m beschreibt Gl� ����� das ���� ���� � � �� �m�
Zeitskala Grenzschichtteilsystem von System ���
������
��� welches lediglich grenzstabil

ist� Aus �zkik�t� und der durch ����� gegebenen �z
k
ik�t� k�onnen die elastischen Koordinaten

xik�t� �i  
� �� k  
� �� � � � � m� gebildet werden� Bei jedem Teilsystem ist die Anzahl der
Ausgangsgr�o�en gleich der Anzahl der Stellgr�o�en� deshalb k�onnen die Unsicherheiten an�

gepa�t werden� dies hat den Reglerentwurf vereinfacht� Auf der Basis dieser Teilsysteme

wird im n�achsten Abschnitt auf den Entwurf der robusten Regler f�ur den betrachteten

Roboter eingegangen�
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� Entwurf robuster Regler

Wie im letzten Abschnitt gezeigt� wird der Gelenkmomentvektor � �t� durch die System�

dekomposition mittels Multiparameter�Singular�Perturbation�Methode in �m!
��Anteile

aufgespalten� Aus ���
�� l�a�t sich eine einfache Gleichung f�ur den Gesamtregler angeben�

� �t�  � ��t� ! �� ��t� ! �� ��t� ! � � �! ��m�t�� ���
�

Nun wird der Entwurf der einzelnen Anteile genauer spezi
ziert� Es wird vorausgesetzt�

da� alle Zustandsgr�o�en vom System ����� f�ur die R�uckf�uhrung zur Verf�ugung stehen�

��� Entwurf robuster Regler f�ur das langsamste Untersystem

F�ur den Entwurf des Regleranteils � ��t� wird vom Untersystem ����� �f�ur k  
� aus�

gegangen� Dabei dient dieser Regleranteil zur Stabilisierung des starren Verhaltens des

Systems ���
�� und ���
�� und zur Verfolgung einer vorgegebenen Bahn des Gelenkwin�

kels� Es kann leicht best�atigt werden� da� das System ����� �f�ur k  
� ein Modell des

entsprechenden starren Roboters ist und sich ferner in der folgenden Form darstellen l�a�t�

M ss����x
�
���t���x

�
���t� !Css����x

�
���t�� �x

�
���t�� �x

�
���t�  �

��t� �����

mit

M ss����x
�
���t��  



B�

������
�
��
�
��

�

Css����x
�
���t�� �x

�
���t�� �x

�
���t�  � 
B�

������
�
��
�
��
f �
������

�
���

�
���

Da die Unsicherheiten im System ����� angepa�t werden k�onnen� lassen sich alle f�ur star�

ren Roboter entwickelten Entwurfsverfahren robuster Regler �Abdallah u� a� 
��
� zum

Entwurf robuster Regler f�ur das System ����� verwenden� Wegen ihrer Einfachheit wird

die von Spong �
���� vorgestellte Methode hier angewendet�

System ����� weist die folgenden zwei Eigenschaften auf �Spong 
�����


� Passivit�at� d�h� die Matrix �M ss����x
�
���t��� �Css����x

�
���t�� �x

�
���t�� ist schiefsym�

metrisch�

�� Das Modell aus Gl� ����� ist linear parametrierbar� d�h� es existiert eine Matrix

Y �x�
���t�� �x

�
���t�� �x

�
���t�� und ein Parametervektor fp����� mit denen sich das System

����� in die Form

M ss����x
�
���t���x

�
���t� !Css����x

�
���t�� �x

�
���t�� �x

�
���t�

 Y �x�
���t�� �x

�
���t�� �x

�
���t��f p����  � ��t� �����

�uberf�uhren l�a�t�
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�

Da der Unsicherheitsvektor �� beschr�ankt ist� existieren ��� und �� � R�� so da�

k�fk � kfp����� �f pk � �� �����

mit �fp  f p����� ist� Nach Spong �
���� wird der folgende robuste Regler ausgew�ahlt�

� ��t�  � �
��t� ! Y �x

�
���t�� �x

�
���t�� v�a�u�t�

 Y �x�
���t�� �x

�
���t�� v�a�



�f p ! u�t�

��Kr� �����

dabei bezeichnet � �
��t� den nominale Stellvektor und ergibt sich zu

� �
��t�  M ss�����x

�
���t��a !Css�����x

�
���t�� �x

�
���t��v �Kr

 Y �x�
���t�� �x

�
���t�� v�a�

�f p �Kr� �����

v� a und r werden de
niert als

v  ��
d
�t��
���t��

a  �v�

r  ����t� !
���t��
���t�  x�

���t�� �d�t��

�����

Hierbei ist �d�t�  


�d��t�� �

d
��t�� � � � � �dn�t�

�T
der vorgegebenen Bahnvektor� K und 
 sind

positiv de
nierte konstante Reglermatrizen� Der zus�atzliche nichtlineare Stellgr�o�enanteil

u�t� l�a�t sich mit

u�t�  


�
� ��� Y T �x�

���t�� �x
�
���t�� v�a�r

kY T �x�
���t�� �x

�
���t�� v�a�rk

f�ur kY T �x�
���t�� �x

�
���t�� v�a�rk � 


���

 Y

T �x�
���t�� �x

�
���t�� v�a�r f�ur kY T �x�

���t�� �x
�
���t�� v�a�rk � 


�����

berechnen� so da� die Robustheit des geregelten Systems gegen�uber den mit �f darge�

stellten Parameterunsicherheiten gew�ahrleistet ist� 
 � � ist eine vorgegebene positive

Konstante�

F�ur das System ����� mit dem Regelgesetz ����� existiert nun eine Ljapunovfunktion

V�  



�
rTM ss����x

�
���t��r !

��
T
�t�
TK���t�� �����

mit der man beweisen kann� da� die Systemantwort des mit ����� geregelten Systems

����� in unmittelbare N�ahe des Nullzustandes gef�uhrt wird und dort bleibt �praktische

Stabilit�at� �Spong 
�����

Bemerkung ���� Im Vergleich mit dem R�uckf�uhrgesetz mittels exakter Zustands�

linearisierung f�ur das System ��� �Schwarz 
��
� ist die Ermittlung der Reglermatrizen f�ur

den nominale Regleranteil ����� viel schwieriger� Nun wird eine auf dem R�uckf�uhrgesetz

mittels exakter Zustandslinearisierung basierende Methode zur Ermittlung der Reglerma�

trizen f�ur den nominale Regleranteil ����� entwickelt�
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�

Dazu werden die Matrizen der Proportional� und Di�erenzierbeiwerte des R�uckf�uhrgesetzes

mittels exakter Zustandslinearisierung zun�achst mit Kp und Kd bezeichnet� Dann wird

der Regler ����� in der Form

� �
��t�  M ss�����x

�
���t��

h
��d �Kd

��� �Kp
��
i
!Css�����x

�
���t�� �x

�
���t�� �x

�
���t�

!


M ss�����x

�
���t���Kd �
��Css�����x

�
���t�� �x

�
���t���K

� ���
!



M ss�����x

�
���t��Kp �Css�����x

�
���t�� �x

�
���t��
�K


�
�� ���
��

�uberf�uhrt� Gl� ���
�� stellt das R�uckf�uhrgesetz mittels exakter Zustandslinearisierung dar�

wenn 
 und K so ausgew�ahlt werden� da� die folgenden Gleichungen erf�ullt werden�


� �Kd
!Kp  ��

K  M ss�����x
�
���t���Kd �
��Css�����x

�
���t�� �x

�
���t���

���

�

Bei der Ermittlung der Reglerparameter k�onnen x�
���t� und �x

�
���t� in Gl� ���

� zu den

Sollendwerten der Gelenkwinkel gesetzt werden�

��� Entwurf robuster Regler f�ur die Grenzschichtteilsysteme

Die Regleranteile �� k�t� �k  
� �� � � � � m� haben die Aufgabe� die elastischen Schwin�
gungen von System ���
�� und ���
�� zu d�ampfen� F�ur den Entwurf der Regleranteile

�uk�t� �k  
� �� � � � � m� wird von den Untersystemen ����� ausgegangen� Da das Sy�

stem ���
�� und ���
�� vollst�andig steuerbar ist �Riege 
����� k�onnen die Untersysteme

����� �k  
� �� � � � � m� normalerweise auch als steuerbar angenommen werden �Kokotovic
u� a� 
�����

Unter der Annahme� da� alle langsameren Teilsysteme gut geregelt werden� sind xk��
i� �t�

und zk��
ij �t� �i  
� �� j  
� �� � � � � k � 
� beschr�ankt� Nach Osman und Roberts �
��


und 
���� und Wang und Wend �
���a� kann �k��
� in System ����� zusammen mit �� als

Parameterunsicherheit betrachtet werden� deren oberen Schranken als bekannt angenom�

men werden k�onnen� d�h� Gl� ����� stellt ein lineares System mit Parameterunsicherheiten

dar� Da Matrix Bk
k�����

k��
� � die gleiche Dimension wie Matrix Ak

kk�����
k��
� � hat� kann

man eine nominale Eingangsmatrix ausw�ahlen� so da� die Unsicherheiten angepa�t wer�

den k�onnen�

Da das Teilsystem ����� lediglich grenzstabil ist� mu� es mit Reglern ausgestattet werden�

um die im System ����� auftretenden dauerhaften Schwingungen zu d�ampfen� Wegen der

Unsicherheiten lassen sich die quasistation�aren Zust�ande �zk�k�t� nicht mit Gl� ����� berech�

nen� Dies deutet an� da� �zk�k�t� nicht f�ur die R�uckf�uhrung zur Verf�ugung stehen� Deshalb

k�onnen die determinstischen Methoden nicht zum Reglerentwurf f�ur die Teilsysteme �����

verwendet werden� Um dieses Problem zu l�osen� haben Garofalo und Leitmann �
���
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�

und 
���� den Begri�
�
nominale quasistation�are Zust�ande� eingef�uhrt� Unter den no�

minalen quasistation�aren Zust�anden werden hier die quasistation�aren Zust�ande� wenn die

Unsicherheiten ihre nominalen Werte annehmen� verstanden� Durch Umkehrung der Rei�

henfolge von Systemdekomposition und Stabilisierung des Grenzschichtteilsystems haben

Corless u� a� �
��� und 
���� ein neues Verfahren entwickelt� d�h� sie haben das Grenz�

schichtteilsystem zun�achst asymptotisch stabil gemacht� indem die schnellen Zust�anden

zkik�t� �i  
� �� vor der Systemdekomposition mittels Singular�Perturbation�Methode

zur�uckgef�uhrt werden�

Aus Gl� ����� ist zu erkennen� da� ��� �
k��
� und �k��

� keinen Ein	u� auf �zk�k�t� ha�

ben� Deshalb l�a�t sich �zk�k�t� mit Gl� ���
�� berechnen und steht f�ur die R�uckf�uhrung zur

Verf�ugung� Die Aufgabe des auszulegenden Reglers ist� die dauerhaften Schwingungen

von System ����� zu d�ampfen� Deshalb ist es vern�unftig� den Regler als das folgende

lineare D�ampfungsr�uckf�uhrungsgesetz auszuw�ahlen�

�� k�t�  �Kk�z
k
�k�t�  �Kkz

k
�k�t�� k  
� �� � � � � m� ���
��

Dabei istKk eine konstante Reglermatrix� die durch Verwendung des folgenden Algorith�

mus f�ur die robuste Polvorgabe bestimmt werden kann�

Algorithmus ����


� Die entsprechenden nominalen Systemmatrizen werden bestimmt�

A�
k  

�
�n�n In�n

Ak
kk �n�n

�
�

B�
k  

�
�n�n

Bk
k

�
�

k  
� �� � � � � m� ���
��

dabei sind Ak
kk und B

k
k der nominale Anteil von A

k
kk�����

k��
� � bzw� Bk

k�����
k��
� ��

die mit dem von Osman und Roberts �
��
 und 
���� und Wang und Wend �
���a�

vorgestellten Verfahren ermittelt werden k�onnen�

�� Die Eigenwerte f�j�k����j�k��� � � � ��j�kn�g von Matrix A�
k werden berechnet�

�� Auswahl von � � 
k�� 
k�� � � � � 
kn � 
� Als die Polvorgabe f�ur das geschlossene
nominale Grenzschichtteilsystem werden

n
�
ki�ki� � j

p

� 
�ki�ki�� i  
� �� � � � � n

o
gew�ahlt�

�� Das folgende Optimierungsproblem f�ur Kk �Byers und Nash 
�����

min
Kk

�F �Xk�� ���
��
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�

wird mit der Nebenbedingung

eig�A�
kc�  

�
�
ki�ki� � j

q

� 
�ki�ki�� i  
� �� � � � � n

�
���
��

gel�ost� Dabei gelten

�F �Xk�  kXkkFkX��
k kF �

A�
kc  

�
�n�n In�n

Ak
kk �Bk

kKk

�
�

���
��

Mit Xk wird eine Matrix� deren Spalten von den Eigenvektoren der Matrix A
�
kc

gebildet werden� bezeichnet� k � kF ist als die Frobenius�Norm de
niert�

�� Veri
kation� Sind die Pole des geschlossenen Teilsystemes bei Anwesenheit aller

m�oglichen Parameterunsicherheiten in den vorgegeben Gebieten$ Wenn ja� Ende�

sonst gehe zu 
 oder ��

��� Stabilit�at des geregelten Robotersystems

Durch Einf�uhren von Gl� ����� und ���
�� in Gl� ���
� und Ersetzung von x�
i��t� �i  
� ��

und zk�k�t� �k  
� �� � � � � m� n�aherungsweise mit ihrem wahren Wert xi��t� �i  
� �� bzw�
z�k�t� �k  
� �� � � � � m� ergibt sich der Gesamtregler zu�

� �t�  Y �x���t��x���t�� v�a�


�f p ! u�t�

��Kr � mX
k��

Kkz�k�t�� ���
��

F�ur das mit ���
�� geregelte Robotersystem ���
������
�� gilt der folgende Satz�

Satz ���� Wenn K� 
� 
 und Kk �k  
� �� � � � � m� so gew�ahlt werden� da� die fol�
genden Forderungen erf�ullt werden�

� Das mit ����� geregelte Teilsystem ����� �k  
� ist praktisch stabil und die mit

���
�� geregelten Teilsysteme ����� �k  
� �� � � � � m� sind asymptotisch stabil�

� Die Zeitskalen des o�enen Gesamtsystems werden beim �uber ���
�� geschlossenen

System beibehalten�

Dann existieren ��i � � �i  
� �� � � � � m� und f�ur alle �i � ��� ��i # ist das �uber ���
�� ge�
schlossene System ���
�� und ���
�� auch praktisch stabil�
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Beweis� Durch Einf�uhren von Gl� ���
�� in ���
�� und ���
�� l�a�t sich das geschlossene

Gesamtsystem in der folgenden Form �uberf�uhren�

�x���t�  x���t��

�x���t�  f �
����� ��

�
�� ��

�
�� !B

�
����� ��

�
�� fY �x���t��x���t�� v�a�

� 
�f p ! u�t�
��Kr� ! f������������ f �

����� ��
�
�� ��

�
��

!
mP
j��

��
jA�j�������z�j�t��B��������

mP
j��

Kjz�j�t�

!


B���������B�

����� ��
�
��
�

��Y �x���t��x���t�� v�a�


�fp ! u�t�

��Kr� �

���
��

�i �z�i�t�  z�i�t�� i  
� �� � � � � m�

�i �z�i�t�  Ai
ii���� ��

i��
� �



z�i�t�� �h�i

��Bi
i���� ��

i��
� �Kiz�i�t�

!f i����������� f i
i���� ��

i��
� � ��i��

� �

!
iP

j��



��
jAij��������Ai

ij���� ��
i��
� �

�
z�j�t�

� 
Bi��������Bi
i���� ��

i��
� �

� iP
j��

Kjz�j�t�

!
mP

j�i��

��
jAij�������z�j�t��Bi�������

mP
j�i��

Kjz�j�t�

!


Bi��������Bi

i���� ��
i��
� �

�
��Y �x���t��x���t�� v�a�



�f p ! u�t�

��Kr� �

���
��

Dabei gilt

��k
i  �ij�k����k��������m�� i  
� �� k  
� �� � � � � m und ������

�h�i  � 
Ai
ii���� ��

i��
� �

�
�� �

f i
i���� ��

i��
� � ��i��

� �

!
i��X
j��

Ai
ij���� ��

i��
� �z�j�t��Bi

i���� ��
i��
� �

i��X
j��

Kjz�j�t�

! Bi
i���� ��

i��
� �

�
Y �x���t��x���t�� v�a�



�f p ! u�t�

��Kr�� � ����
�

Wegen der ersten Forderung von Satz ��
 ist die L�osung P i���� ��
i��
� � der algebraischen

Riccati�Gleichung

AT
ic���� ��

i��
� �P i���� ��

i��
� � ! P i���� ��

i��
� �Aic���� ��

i��
� �  �I�n��n ������

eine positiv de
nite� symmetrische Matrix und

Vk  


�z�k�t�� �h�k�

T zT�k�t�
�
P k���� ��

k��
� �

�
z�k�t�� �h�k

z�k�t�

�
k  
� �� � � � � m ������

bildet eine Ljapunovfunktion f�ur die geschlossenen Teisysteme ������ Aic���� ��
i��
� � wird

dabei de
niert als

Aic���� ��
i��
� �  

�
�n�n In�n

Ai
ii���� ��

i��
� � �Bi

i���� ��
i��
� �Ki

�
� ������
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Aus der zweiten Bedingung ist zu erkennen� da� das System ���
�� und ���
�� �m ! 
�

Zeitskalen besitzt� In Anbetracht der Arbeit von Spong �
����� l�a�t sich Satz ��
 mit

Hilfe der Ljapunovfunktion

V  �
� �m� f�
� �m��� f� � � f�
� ���V� ! ��V�g! ��V�g! � � �g! �mVm

�i � ��� 
� i  
� �� � � � � m ������

und durch rekusive Anwendung der von Corless u� a� �
���� und Corless und Ryan �
��
�

vorgestellten Argumente beweisen�
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� Simulationsergebnisse

Das im vorangegangenen Abschnitt entwickelte Reglerentwurfsverfahren wird mit Hilfe

von Simulationen eines zweiachsigen planaren elastischen Roboters veri
ziert� Als Be�

schreibung des Roboters wird das Modell aus Wang �
���a� verwendet� Die physikali�

schen Parameter des Roboters ergeben sich nach De Luca und Siciliano �
���� zu�

l�  l�  ��� m�

��  ��  
�� kg�m�

�EI��  �EI��  
� N�m��

mh�  mh�  
 kg�

Jh�  Jh�  ��
 kg�m��

Jp  ������ kg�m��

mp �andert sich im Intervall "���� kg� ��
� kg# �

Zur Ermittlung der Ansatzfunktionen des ersten und zweiten Arms� werden die Werte

von ML�� JL� und ML� sowie JL� wie folgt ausgew�ahlt�

ML�  mh� ! ��l� !m�
p�

JL�  Jh� !


���l

�
� !m�

pl
�
� ! Jp�

ML�  m�
p�

JL�  Jp�

���
�

Dabei bezeichnet m�
p den nominalen Wert von mp und ergibt sich zu ��
 kg� Somit lassen

sich ��  �� ������ und ��  �� ���� berechnen� wenn das System ����� um den Arbeits�

punkt "q��t�� �q��t�#  "�� �� �� �� �� �� �� �� �� �� �� �#T und � �t�  "�� �#T linearisiert wird�

Die Sollbahnen der Gelenkwinkel werden zu

�di �t�  


�
�
�
� t

	

t	id
� 
� t


t
id
! 
� t

�

t�id

�
�if f�ur t � tid�

�if f�ur t � tid�
i  
� �� �����

gew�ahlt� Hier sind �if  ��� rad �i  
� �� die Soll�Endpositionen der Gelenkwinkel�

tid  � s �i  
� �� sind die Zeiten bis zum Erreichen der Soll�Endposition� Die Matrix

Y �x�
���t�� �x

�
���t�� v�a� und der Parametervektor

�fp im Regler ����� werden in der Form�
a� a� ! a� ��a� ! a�� cos����t���

�
v� ����t� ! v� ����t� ! v� ����t�

�
sin����t��

� a� ! a� a� cos����t�� ! v� ����t� sin����t��

�

bzw� �
� Jh� ! Jo� !

�
mh� !m� !m�

p

�
l��

Jh� ! Jo� ! Jp !m�
pl
�
��

m�d� !m�
pl�
�
l�

�
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dargestellt� Bei den Simulationen werden die Reglermatrizen in ����� wie folgt gesetzt�

��  �� ��
��� 
  �� ���


  

�
� �

� �

�
und K  

�

� ���� �� ����

�� ���� �� ����

�
�

Zur Bestimmung der ReglermatrixK� wird angenommen� da� ���t� sich auf das Intervall

"�� ���# beschr�ankt� Somit lassen sich A�
�� und B

�
� zu

A�
��  

� ��� ���� �� ����

�� ���
 �
� ��
�
�
bzw� B�

�  

� �
�� ���� �
�� ����
�� ��
� �
� ����

�

berechnen� F�ur 
��  
��  
p
��� ergibt sich die Reglermatrix K� zu�

K�  

� ��� ���� �� ����

�� ���� ��� ����
�
�

F�ur den Entwurf des robusten Reglers ���
�� �k  �� wird angenommen� da� ���t� und

����t� sowie ����t� sich im Intervall "�� ���#� "������� �����# bzw� "�������� ������# �andern�

Unter dieser Annahme werden A�
�� und B

�
� als

A�
��  

� �
� 
��� ��� ����
��� ���� ��� �

�

�
und B�

�  

� ��� �
�� ���� 
���

��� ���� �� 
�
�

�

bestimmt� Mit 
��  
��  
p
��� gilt f�ur die Reglermatrix K��

K�  

� ��� ���� 
�� ��
�

�� ���� �� ��
�

�
�

Um die Robustheit des geregelten Systems gegen�uber der �Anderung der Masse der Nutz�

last zu veri
zieren� wird das geregelte System mit drei verschiedenen Massen der Nutz�

last� ���� kg� ��
 kg bzw� ��
� kg simuliert� Bei den Simulationen ist der verwendete

Regler f�ur die drei verschiedenen F�alle aber gleich� Die Zeitverl�aufe der verallgemeinerten

starren und elastischen Koordinaten� der Stellgr�o�en und der Sollbahnen der Gelenkwin�

kel des entworfenen robusten Reglersystems sind in den Bilder ��
���� f�ur das Intervall

� � t � 
� s dargestellt�

Aus den Bildern ��
 und ��� ist zu erkennen� da� der Regler starke Robustheit gegen�uber

der Unsicherheit der Masse der Nutzlast hat� F�ur die drei verschiedenen Massen der Nutz�

last k�onnen die Gelenkwinkel des geregelten Roboters der vorgegebenen Bahn mit hoher

Genauigkeit folgen� Gleichzeitig werden die Anteile der elastischen Schwingungen mit den

Eigenfrequenzen der Arme sehr gut ged�ampft� Der Betrag der elastischen Koordinaten

ist haupts�achlich der Beitrag des quasistation�aren Anteils� der nur von der Bewegung

der Gelenke abh�angig ist und bei einer Regelung der Ende�ektorposition des Roboters

leicht ber�ucksichtigt werden kann� Au�erdem hat die �Anderung der Masse der Nutzlast

einen geringen Ein	u� auf die verallgemeinerten Koordinaten und das Stellmoment des
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Bild 
��� �a� Position des Schultergelenks ���t�� �b� Position des Ellbogengelenks ���t��

�c� Elastische Koordinate ����t�� �d� Elastische Koordinate ����t�� �%� Sollbah�

nen� �� � �� mp  �� ��kg� ���� mp  �� 
kg� ���� mp  �� 
�kg�

geregelten Roboters� Eine st�arkere Schwingung von ����t�� ����t� und ����t� entspricht

einer schwereren Nutzlast� Dagegen entspricht eine schw�achere Schwingung von ����t�

einer schwereren Nutzlast� Da der von der Bewegung des Schultergelenks ���t� verursach�

te Schwingungsanteil der elastischen Koordinaten ����t�� ����t� sowie ����t� gleiche Phase

wie den von der Bewegung des Ellbogengelenks ���t� verursachte Schwingungsanteil hat�

besitzen ����t�� ����t� und ����t� einen sinusf�ormigen zeitlichen Verlauf� Dagegen� wie

im Bild ��
c dargestellt� besitzt ����t� einen komplizierteren zeitlichen Verlauf wegen des

Phasenunterschieds zwischen den von der Bewegung des Schultergelenks ���t� und des

Ellbogengelenks ���t� verursachten Schwingungsanteilen�
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Bild 
��� �a� Elastische Koordinate ����t�� �b� Elastische Koordinate ����t�� �c� Moment

des Motors im Schultergelenk ���t�� �d� Moment des Motors im Ellbogengelenk

���t�� �� � �� mp  �� ��kg� ���� mp  �� 
kg� ���� mp  �� 
�kg�
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	 Experimentelle Studien

In diesem Abschnitt wird das vorgestellte Reglerentwurfsverfahren mit Hilfe eines Labor�

versuchstr�agers experimentell erprobt� Dies beginnt mit der Modellbildung des Versuch�

str�agers� Im Abschnitt ��� wird die G�ute des Modells �uberpr�uft� Die Regelungsergebnisse

wird im Abschnitt ��� angegeben�

��� Versuchstr�ager

Als Versuchstr�ager dient das in Wang �
���b� dargestellte elastische Handhabungssystem�

das aus einem sich in der horizontalen Ebene bewegenden elastischen Arm besteht� Alle

einzelne Elemente des Roboters� au�er dem Verst�arker LC ����� dem elastischen Arm

und den Reibungen k�onnen mit den in Wang �
���b� vorgestellten Modellen dargestellt

werden� Da der LC ���� durch einen neuen Verst�arker ersetzt wird und sich die Arbeits�

bedingungen des elastischen Roboters �andern� werden der LC ����� der elastischen Arm

und die Reibungen neu wie folgt modelliert�

LC ����

Der LC ���� ist in der Betriebsart
�
Stomregelung� eingesetzt� Durch Verwendung des

Least�Squares�Verfahrens l�a�t sich ein Modell des LC ���� aus Messungen wie folgt her�

leiten�

ia�t�  �� ���ua�t�� �� ����  �� ���"ua�t�� �� �
�
# A� ���
�

Dabei entspricht ia�t� dem Ausgangsstrom des LC ����� seine Eingangsspannung wird

mit ua�t� bezeichnet�

Elastischer Arm

In dieser Arbeit wird angenommen� da� am Ende des elastischen Arms eine Nutzlast

befestigt ist und die Masse und das Tr�agheitsmoment der Nutzlast unbekannt sind� Die

physikalischen Parameter des Arms sind�
lh  �� �� m�

Jh  �� ����� kgm��

l  �� �� m�

�  �� ��� kg�m�

EI  �� �
�� N �m��

lp  �� �� m�
mp �andert sich im Interval "� kg� ���

 kg#�

Jp �andert sich im Interval "� kgm
�� ��������kgm�#�

Dabei bezeichnet lp den Abstand vom Schwerpunkt der Last zu ihrem Rand� der mit
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dem Armende verbundenen ist� Nach dem Ritz�Ansatz l�a�t sich die elastische Auslen�

kung w��x� t� des Arms wie folgt beschreiben

w��x� t�  ����x�����t� ! ����x�����t�� �����

Dabei sind ��i�x� �i  
� �� Ansatzfunktionen� die sich aus Wang �
���a� durch Setzung

von ML�  � und JL�  � wie folgt berechnen lassen�

��i�x�  cosh�	�ix�� cos�	�ix�� c�i "sinh�	�ix�� sin�	�ix�# �
c�i  

cos�	�il� ! cosh�	�il�
sin�	�il� ! sinh�	�il�

�
�����

	�i �i  
� �� bezeichnen die Kreisfrequenzen der Ansatzfunktionen und sind die L�osung

der Gleichung


 ! cos�	�il� cosh�	�il�  �� �����

Mit Hilfe von Gl� ����� ergeben sich die Elemente in Gl� ���
� wie folgt�

M��  Jh ! �

�



� l

� ! l
�
lh !

l
�

���
! �l "�����t� ! �����t�# ! Jp

!mp �lh ! l ! lp�
� !mp



w��l� t� ! lpw

�

��l� t�
��
�

M��  v�� ! Jp�
�

���l� !mp �lh ! l ! lp�


����l� ! lp�

�

���l�
�
�

M��  v�� ! Jp�
�

���l� !mp �lh ! l ! lp�


����l� ! lp�

�

���l�
�
�

M��  �l ! Jp


�

�

���l�
��
!mp



����l� ! lp�

�

���l�
��
�

M��  Jp�
�

���l��
�

���l� !mp



����l� ! lp�

�

���l�
� 

����l� ! lp�

�

���l�
�
�

M��  �l ! Jp


�

�

���l�
��
!mp



����l� ! lp�

�

���l�
��
�

�����

h�  �
n
�l
h
����t� �����t� ! ����t� �����t�

i
!mp



w��l� t� ! lpw

�

��l� t�
� 

�w��l� t� ! lp �w

�

��l� t�
��
����t��

h�  ���l����t� !mp



w��l� t� ! lpw

�

��l� t�
� 

����l� ! lp�

�

���l�
��
�����t��

h�  ���l����t� !mp



w��l� t� ! lpw

�

��l� t�
� 

����l� ! lp�

�

���l�
��
�����t��

�����

ke��  �l��
���

ke��  �l��
��

�����

mit

v�i  �
R l
�
�lh ! x���i�x�dx�

��i  
q
EI
� 	��i�

i  
� �� �����

Reibungen

Die im betrachteten Robotersystem auftretende Reibung wird wie folgt dargestellt�

MR  MRv !MRC � �����
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Dabei bezeichnet MRv die viskose Reibung� MRC die Coulomb�sche�Reibung� Aus Erfah�

rungen mit diesem Versuchstr�ager werden

MRv  �� 
� ����t� und ���
��

MRC  


��
��
sign� ����t���� 
�bm

h
�� � ! �� �e���� ���

�
�t�
i
f�ur ����t� � �

sign�ua�t���� 
�bm f�ur ����t�  � und jua�t�� �� �
�
j � �� 
�
bm "ua�t�� ���
�
# f�ur ����t�  � und jua�t�� �� �
�
j � �� 
�

���

�

mit

bm  �� ����g�ng�kM ���
��

gew�ahlt�

Durch Zusammenfassen der Modelle der einzelnen Elemente ergibt sich das Modell des

Versuchstr�agers zu��
� M�� ! �g�n

�
g�Jm M�� M��

M�� M�� M��

M�� M�� M��

�
	
�
� ����t�
�����t�
�����t�

�
	!

�
� h� !MR

h�
h�

�
	

!

�
� � � �

� ke�� �

� � ke��

�
	
�
� ���t�

����t�

����t�

�
	  

�
� bm
�

�

�
	 "ua�t�� �� �
�
# � ���
��

mit den Me�gleichungen

���t�  
��

� � 
��ng�nZK�
w

��

� ��� ���� t�  � �
���� � � 
���dkDMSUB

Ud��

w
��

� ��� �� t�  
�

���� � � 
���dkDMSUB
Ud��

���
��

Dabei bezeichnet Udi �i  
� �� das durch den i�ten A�D�Wandler gelieferte digitale Signal�

��� Simulationsstudien

Um die G�ute des Modells ���
�� zu �uberpr�ufen� wird das Systemmodell mit drei verschie�

denen Eingangsspannungen


� ua�t�  �� � sin��t� ! �� �
�
 V�

�� ua�t�  sin���t� ! �� �
�
 V�

�� ua�t�  �� �square���t ! 
���� ! �� �
�
 V
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Bild ���� �a� Eingangsspannung 
� �b� Gelenkwinkel� �c� Biegung am Me�punkt x  

�� ��� m� �d� Biegung am Me�punkt x  �� � m �
�
��� gemessen�

�
��� simu�

liert�

simuliert� Bei den Simulationen werden mp und Jp zu ��
�� kg bzw� ������
� kgm
�

gesetzt� In Bild ��
� ��� bzw� ��� werden die Simulationsergebnisse mit den am Versuchs�

tr�ager gemessenen Ausg�angen verglichen� Die gemessenen Ausgangsgr�o�en des Versuchs�

tr�agers sind die Gelenkwinkel ���t� und die Biegung w
��

� �x� t� am Me�punkt x  �� ��� m

sowie x  �� � m�

Es ist zu erkennen� da� das Modell den Versuchstr�ager mit ausreichender G�ute beschreibt�

Sowohl die Gelenkwinkel� als auch die Frequenzen der Schwingungen an den zwei Me��

stellen stimmen mit den entsprechenden gemessenen Gr�o�en gut �uberein� Wegen des

Getriebespiels des Versuchstr�agers besitzt der Gelenkwinkel eine gr�o�ere Beschleunigung

bei dem Wechsel der Bewegungsrichtung� Dies verursacht eine gr�o�ere elastische Schwin�

gung� Da das Getriebespiel bei der Modellbildung nicht ber�ucksichtigt wird� hat die

gemessene elastische Schwingung eine gr�o�ere Amplitude als die simulierte� Im Vergleich

zum Me�punkt x  �� ��� m stimmt die simulierte Schwingungsamplitude am Me�punkt
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Bild ���� �a� Eingangsspannung �� �b� Gelenkwinkel� �c� Biegung am Me�punkt x  

�� ��� m� �d� Biegung am Me�punkt x  �� � m �
�
��� gemessen�

�
��� simu�

liert�

x  �� � m mit der gemessenen besser �uberein� Aus Bild ��
� ��� und ��� ist auch der

Ein	u� des Getriebespiels auf den Gelenkwinkel klar zu erkennen�

��� Regelungsergebnisse

Im Hinblick auf das Modell des Versuchstr�agers wird der Regler in vier Anteile

ua�t�  u��t� ! �u��t� ! �u��t� ! uR�t� ���
��

aufgespalten� Die ersten drei Anteile sind f�ur die Bahnverfolgungsregelung des Gelenkwin�

kels und f�ur die D�ampfung der elastischen Schwingungen zust�andig� der letzte Anteil uR�t�

beschreibt die Kompensation der trockenen Reibung und des O�sets des Motorverst�arkers�

Um u��t�� �u��t� bzw� �u��t� f�ur den betrachteten Roboter mittels des im Abschnitt � vor�

gestellten Reglerentwurfsverfahrens auszulegen� werden die nominalen Werte der Masse

und des Tr�agheitsmoments der Nutzlast alsm�
p  �� 
�� kg� J

�
p  �� ����
� kg �m� gesetzt�



� Experimentelle Studien ��

0 2 4 6 8 10
-0,4

-0,2

0

0,2

0,4

0,6

t/s

u a
(t

)/
V

0 2 4 6 8 10
-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-1,5

-1

-0,5

0

0,5

1

1,5

2

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

t/s

w
1" (

0,
2,

t)
/1

/m

(a) (b)

(c) (d)

Bild ���� �a� Eingangsspannung �� �b� Gelenkwinkel� �c� Biegung am Me�punkt x  

�� ��� m� �d� Biegung am Me�punkt x  �� � m �
�
��� gemessen�

�
��� simu�

liert�

Somit lassen sich ��  �� ���� und ��  �� ���� berechnen� wenn das System ���
�� um

den Arbeitspunkt "q��t�� �q��t�#  "� � � � � �#T und ua�t�  � linearisiert wird�

F�ur den Regleranteil u��t� gelten Mss����  �� ����� und Css����  �� 
���� Die �ubrigen

Parameter dieses Regleranteils werden als &  �� K  �� 
���� ��  �� ����� 
  �� 


gesetzt�

Zur Bestimmung der Reglerparameter K� werden A�
��  �
� ����� B�

�  ��� ���� aus�
gew�ahlt� Mit 
��  

p
�
� ist K�  ��� 
��� zu berechnen�

Bei dem Entwurf des robusten Reglers ���
�� �k  �� wird angenommen� da� ����t�

sich im Interval "������ ����# �andert� Ferner werden A�
��  ��� ���
 und B�

�  �
� ����
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angenommen� Mit 
��  

p
�
� folgt K�  ��� ����� F�ur uR�t� gilt�

uR�t�  MRC�bm ! �� �
�
� ���
��

Zur Realisierung des Reglers ���
�� lassen sich ����t� und ����t� zu�
����t�

����t�

�
 

�
�

��

����� ���� �
��

����� ����

�
��

����� �� �
��

����� ��

��� �
w

��

� ��� ���� t�

w
��

� ��� �� t�

�
���
��

berechnen� ����t�� �����t� bzw� �����t� werden durch numerische Di�erentiation von ���t��

����t� bzw� ����t� ermittelt� Da wegen der numerischen Di�erentiation das Rauschen der

Me�signale einen st�arkeren Ein	u� auf �����t� als auf �����t� hat� wird der somit resultieren�

de �����t� anschlie�end durch ein digitales Butterworth�Tiefpa�
lter �� Ordnung mit der
�Ubertragungsfunktion

H�z�  
�� ���
 ! �� ����z�� ! �� ���
z��


� 
� ��
z�� ! �� ��
�z�� ���
��

ge
ltert� Die Sperrfrequenz f�ur dieses Filter liegt bei 
� Hz�

Mit drei verschiedenen Nutzlasten�


� mp � kg und Jp � kgm
��

�� mp ��
�� kg und Jp ������
� kgm
��

�� mp ���

 kg und Jp �������� kgm
�

wird der Regler ���
�� am Versuchstr�ager f�ur drei verschiedenen Sollbahnen angewendet�


� Sprungsfunktion von 
 rad �siehe Bild ���a��

�� �d��t�  

�
��� �� ! �� ��

�
� t

	

�	
� 
� t


�

! 
� t

�

��

�
f�ur t � � s�

�� �� f�ur t � � s�

�� �d�  

�
�� �� sin��� ��t� f�ur t � � s�
� f�ur t � � s�

Die experimentellen Ergebnisse sind in Bild ��� bis ��� dargestellt� Daraus ist zu erkennen�

da� der Regler eine gro�e Robustheit f�ur den Roboter gew�ahrleistet� Trotz einer 
��'

Abweichung der Masse und des Tr�agheitsmoments der Nutzlast von ihren nominalen Wer�

ten funktioniert der Regler f�ur die drei Sollbahnen sehr gut� Das Gelenk kann den drei

Sollbahnen mit hoher Genauigkeit folgen� obwohl die Sollbewegungen sehr schnell sind�

Gleichzeitig werden die elastischen Schwingungen gut ged�ampft� Ferner l�a�t sich erken�

nen� da� eine st�arkere elastische Schwingung einer schwereren Nutzlast entspricht� Dies

ist identisch mit den Ergebnissen aus den Simulationen� Aus Bildern ���b� ���b und ���b

ist zu erkennen� da� der Rauschen der Me�signale� der durch die digitale Di�erentiation

verst�arkt wird� ein gro�en Ein	u� auf die Stellgr�o�e hat� besonders wenn die elastische

Schwingung klein ist�



� Experimentelle Studien ��

0 2 4 6 8 10
-0,5

0

0,5

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-1

-0,5

0

0,5

1

1,5

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-0,5

0

0,5

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-3

-2

-1

0

1

2

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-4

-2

0

2

4

t/s

w
1" (

0,
05

2,
t)

/1
/m

mp=0,106 kg , Jp=0,000014 kgm2 mp=0,106 kg , Jp=0,000014 kgm2

mp=0,211 kg , Jp=0,000033 kgm2mp=0,211 kg , Jp=0,000033 kgm2

mp=0 kg , Jp=0 kgm2 mp=0 kg , Jp=0 kgm2

(a) (b)

Bild ���� �a� Gelenkwinkel� �b� Biegung am Me�punkt x  �� ��� m �
�
��� gemessen�

�
��� Sollbahn��



� Experimentelle Studien �


0 2 4 6 8 10
-0,6

-0,4

-0,2

0

0,2

0,4

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

mp=0 kg , Jp=0 kgm2 mp=0 kg , Jp=0 kgm2

mp=0,106 kg , Jp=0,000014 kgm2 mp=0,106 kg , Jp=0,000014 kgm2

mp=0,211 kg , Jp=0,000033 kgm2 mp=0,211 kg , Jp=0,000033 kgm2

(a) (b)

Bild ���� �a� Biegung am Me�punkt x  �� � m� �b� Eingangsspannung �
�
��� gemessen�

�
��� Sollbahn��



� Experimentelle Studien ��

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-0,1

-0,05

0

0,05

0,1

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-0,4

-0,2

0

0,2

0,4

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-0,4

-0,2

0

0,2

0,4

t/s

w
1" (

0,
05

2,
t)

/1
/m

mp=0 kg , Jp=0 kgm2 mp=0 kg , Jp=0 kgm2

mp=0,106 kg , Jp=0,000014 kgm2 mp=0,106 kg , Jp=0,000014 kgm2

mp=0,211 kg , Jp=0,000033 kgm2 mp=0,211 kg , Jp=0,000033 kgm2

(a) (b)

Bild ��
� �a� Gelenkwinkel� �b� Biegung am Me�punkt x  �� ��� m �
�
��� gemessen�

�
��� Sollbahn��



� Experimentelle Studien ��

0 2 4 6 8 10
-0,1

-0,05

0

0,05

0,1

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

0 2 4 6 8 10
-0,2

-0,1

0

0,1

0,2

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

0 2 4 6 8 10
-0,3

-0,2

-0,1

0

0,1

0,2

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

mp=0 kg , Jp=0 kgm2 mp=0 kg , Jp=0 kgm2

mp=0,106 kg , Jp=0,000014 kgm2 mp=0,106 kg , Jp=0,000014 kgm2

mp=0,211 kg , Jp=0,000033 kgm2 mp=0,211 kg , Jp=0,000033 kgm2

(a) (b)

Bild ���� �a� Biegung am Me�punkt x  �� � m� �b� Eingangsspannung �
�
��� gemessen�

�
��� Sollbahn��



� Experimentelle Studien ��

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-0,5

0

0,5

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

w
1" (

0,
05

2,
t)

/1
/m

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

θ 1
(t

)/
ra

d

0 2 4 6 8 10
-1

-0,5

0

0,5

1

t/s

w
1" (

0,
05

2,
t)

/1
/m

mp=0 kg , Jp=0 kgm2 mp=0 kg , Jp=0 kgm2

mp=0,106 kg , Jp=0,000014 kgm2 mp=0,106 kg , Jp=0,000014 kgm2

mp=0,211 kg , Jp=0,000033 kgm2 mp=0,211 kg , Jp=0,000033 kgm2

(a) (b)

Bild ���� �a� Gelenkwinkel� �b� Biegung am Me�punkt x  �� ��� m �
�
��� gemessen�

�
��� Sollbahn��



� Experimentelle Studien ��

0 2 4 6 8 10
-0,3

-0,2

-0,1

0

0,1

0,2

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

0 2 4 6 8 10
-0,4

-0,2

0

0,2

0,4

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

0 2 4 6 8 10
-0,6

-0,4

-0,2

0

0,2

0,4

t/s

w
1" (

0,
2,

t)
/1

/m

0 2 4 6 8 10
-2

-1

0

1

2

t/s

u a
(t

)/
V

mp=0 kg , Jp=0 kgm2 mp=0 kg , Jp=0 kgm2

mp=0,106 kg , Jp=0,000014 kgm2 mp=0,106 kg , Jp=0,000014 kgm2

mp=0,211 kg , Jp=0,000033 kgm2 mp=0,211 kg , Jp=0,000033 kgm2

(a) (b)

Bild ��	� �a� Biegung am Me�punkt x  �� � m� �b� Eingangsspannung �
�
��� gemessen�

�
��� Sollbahn��



	 Zusammenfassung und Ausblick ��


 Zusammenfassung und Ausblick

In diesem Forschungsbericht wird eine Methode zur robusten Bahnfolgeregelung f�ur ela�

stische Roboter entwickelt� Dabei werden sowohl die Ein	�usse der Unsicherheiten auf

die starre Dynamik als auch auf die elastische Dynamik des Roboters ber�ucksichtigt�

Hierzu wird das Modell des betrachteten elastischen Roboters zun�achst in einer Singular�

Perturbation�Standardform mit Parameterunsicherheiten dargestellt� Dann wird das Ro�

botersystem durch Verwendung der Multizeitenskalen�Multiparameter�Singular�Pertur�

bation�Methode in eine Gruppe ordnungsreduzierter Teilsysteme mit Unsicherheiten zer�

legt� W�ahrend ein f�ur starre Roboter entwickelter robuster Bahnverfolgungsregler f�ur das

starre Teilsystem verwendet wird� wird ein Verfahren zum Reglerentwurf f�ur die schnel�

len Teilsysteme mittels robuster Polvorgabe vorgestellt� Die resultierenden Regler f�ur die

schnellen Teilsysteme sind robust� nicht nur gegen die Parameterunsicherheiten� sondern

auch gegen die �Anderung der Kon
guration des Roboters� Die Ergebnisse der Simulation

und der experimentellen Erprobung zeigen� da� der resultierende Regler e�ektiv ist�

Diese Arbeit hat vorausgesetzt� da� die Singular�Perturbation�Parameter klein genug

sind� Wenn diese Voraussetzung nicht erf�ullt ist� kann diese Arbeit auf die korrigierte

Singular�Perturbation�Methode oder das Verfahren mittels Integralmannigfaltigkeit er�

weitert werden� um die Genauigkeit zu erh�ohen�

Der Verfasser dankt dem DAAD f�ur seine Unterst�utzung�
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