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Ubersicht: Im vorliegenden Forschungsbericht wird eine Methode zur robusten Bahn-
verfolgungsregelung fiir elastische Roboter entwickelt. Damit werden sowohl die Ein-
fliisse der Unsicherheiten auf die starre, als auch auf die elastische Dynamik des Ro-
boters beriicksichtigt. Hierzu wird das Modell des betrachteten elastischen Roboters
zundchst in einer Singular-Perturbation-Standardform mit Parameterunsicherheiten dar-
gestellt. Dann wird das Robotersystem durch Verwendung der Multizeitenskalen-
Multiparameter-Singular-Perturbation-Methode in einer Gruppe ordnungsreduzierter Teil-
systeme mit Unsicherheiten zerlegt. Wihrend ein fiir starre Roboter entwickelter robuster
Bahnverfolgungsregler fiir das starre Teilsystem verwendet wird, wird ein Verfahren zum
Reglerentwurf fiir die schnellen Teilsysteme mittels robuster Polvorgabe vorgestellt. Die
resultierenden Regler fiir die schnellen Teilsysteme sind nicht nur gegen die Parameterun-
sicherheiten robust, sondern auch gegen die Anderung der Konfiguration des Roboters.
Die Ergebnisse der Simulationsstudien und experimentellen Erprobung zeigen, daf der
resultierende Regler effektiv ist.
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1 Einleitung

Im allgemeinen sind bei Handhabungsaufgaben von Robotern die tatséchlichen Werte
der Masse und des Trégheitsmoments der Nutzlast im voraus unbekannt oder wihrend
der Durchfithrung verédnderlich. Aus diesem und weiteren Griinden, die nicht erldutert
werden sollen, wird ein Roboter durch eine Gruppe nichtlinearer Differentialgleichungen
mit unsicheren Parametern modelliert. Fiir einen starren Roboter kann man eine nomi-
nale Eingangsmatrix auswihlen, so dafl die Unsicherheiten angepafit werden. Deshalb
sind die von Corless und Leitmann (1981), Gutman (1979), Leitmann (1979 und 1981)
und Chen (1986) erarbeiteten deterministischen Methoden verwendbar, um einen robu-
sten Regler fiir den starren Roboter auszulegen (Chen und Pandey 1990, Osman und
Roberts 1995, Shoureshi u. a. 1987, Spong 1992, Wang und Wend 1997a). Da die Anzahl
der verallgemeinerten starren und elastischen Koordinaten vom Modell eines elastischen
Roboters grofler als die Anzahl der Stellgréfen ist, konnen die Unsicherheiten im Modell
des elastischen Roboters im allgemeinen nicht mit einer nominalen Eingangsmatrix an-
gepaflt werden. Deshalb lassen sich die deterministischen Methoden dazu jedoch nicht
unmittelbar fiir einen elastischen Roboter verwenden.

Korolov und Chen (1989) haben ein Verfahren zum Entwurf eines robusten Reglers fiir
einen einachsigen elastischen Roboter mittels der von Barmish und Leitmann (1982) und
Chen und Leitmann (1987) erweiterten deterministischen Methoden vorgestellt. Obwohl
das erweiterte deterministische Reglerentwurfsverfahren manche nicht angepafite Unsi-
cherheiten ohne Verletzung der Stabilitéit des geregelten Systems tolerieren kann, ist die
erlaubte Grenze der nicht angepafiten Unsicherheiten im allgemeinen zu gering. Aufer-
dem haben sie nur ein lineares Modell des Roboters beriicksichtigt. Yuan u. a. (1990)
haben zuniichst jeden Arm eines zweigliedrigen elastischen Roboters als ein Teilsystem
betrachtet. Unter der Voraussetzung, dafl die Unsicherheiten der Teilsysteme mit einer
nominalen Eingangsmatrix angepafit werden kénnen, haben sie anschliefend ein Verfah-
ren mit Hilfe der deterministischen Methode zum Entwurf einer dezentralen Regelung
fiir diesen elastischen Roboter entwickelt. Da die Anzahl der verallgemeinerten starren
und elastischen Koordinaten der Teilsysteme immer noch grofler als die Anzahl der Stell-
grofen ist, kann diese Voraussetzung fiir die meisten elastischen Roboter offensichtlich
nicht erfiillt werden. Die von Nathan und Singh (1991 und 1992) vorgestellten Entwurfs-
verfahren robuster Regler werden in zwei Phasen unterteilt. Eine ist die Auslegung eines
starren robusten Reglers fiir die Gelenkbewegung. Die andere ist einen Regler fiir die
Dampfung der elastischen Schwingung mit Hilfe des Modells des durch den starren Regler
geschlossenen Gesamtsystems zu entwerfen. Bei der zweiten Phase werden die Einfliisse
der Unsicherheiten aber nicht beriicksichtigt.

Im Hinblick auf die Multizeitskalen elastischer Roboter werden die Singular-Perturbation-
Methode und das Verfahren mittels Integralmannigfaltigkeit als wirksame Werkzeuge zur
Analyse und zum Reglerentwurf fiir elastische Roboter betrachtet (Lin und Lewis 1994,
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Schoenwald und Ozgiiner 1996, Siciliano und Book 1988, Siciliano u. a. 1992, Wang und
Wend 1998a, Zaad und Khorasani 1996). Mittels der Singular-Perturbation-Methode
haben Siciliano und Book (1988) ein endlich dimensionales Modell eines elastisches Ro-
boters in zwei ordnungsreduzierte Teilsysteme zerlegt: Ein quasistationéres Teilsystem
und ein Grenzschichtteilsystem. Fiir das quasistationire Teilsystem ist ein nichtlinearer
Regler, dem die Dynamik des entsprechend starren Roboters zugrunde liegt, ausgelegt.
Zur Dampfung der elastischen Schwingung wird der Zustandsvektor des Grenzschichtteil-
systems iiber eine konstante Reglermatrix zuriickgefiihrt. Diese Arbeit wird in Siciliano
u. a. (1992) auf eine Riickfithrung des Ausgangsvektors des Grenzschichtteilsystems er-
weitert. Durch Verwendung der Multizeitskalen-Multiparameter-Singular-Perturbation-
Methode haben Wang und Wend (1998a) ein Verfahren zur Regelung elastischer Roboter
vorgestellt. In Khorrami (1989) wird die Singular-Perturbation-Methode zur Analyse ela-
stischer Robotersysteme, die in einem unendlich dimensionalen Modell dargestellt werden,
verwendet. Auf der Basis dieser Analyse wird eine Regelungsstrategie mit Hilfe eines ver-
teilten Stellglieds fiir die Ddmpfung der elastischen Schwingungen entwickelt (Schoenwald
und Ozgiiner 1996). Um das lineare Modell eines einachsigen elastischen Roboters in ex-
aktere Teilsysteme zu zerlegen, haben Zaad und Khorasani (1996) das Verfahren mittels
Integralmannigfaltigkeit verwendet. Dieses Verfahren ist besonders effektiv, wenn die
Singular-Perturbation-Parameter nicht klein genug sind. In Moallem u. a. (1997) wird
eine nichtlineare Regelungsstrategie zur Bahnverfolgung des Endeffktors eines multiach-
sigen elastischen Roboters vorgestellt. Dabei haben sie die gleichen Grundgedanken wie
die in Zaad und Khorasani (1996) verwendet; sie gehen aber von einem nichtlinearen
Modell aus. Auf der Basis einer Singular-Perturbation-Analyse haben Lucibello u. a.
(1997) eine lernende Regelung zur Positionierung eines zweigliedrigen Roboters, dessen
zweiter Arm elastisch ist, erarbeitet. Morita u. a. (1996) haben eine Schétzungsmethode
fiir die elastische Auslenkung die Singular-Perturbation-Methode zugrunde gelegt. Durch
Verwendung der Singular-Perturbation-Methode haben Lin und Lewis (1994) einen lang-
samen/schnellen Kalman-Filter mit einer verbesserten Leistung fiir elastische Roboter
entwickelt. Jedoch basieren alle diese Arbeiten auf der Annahme, dafl die betrachteten
elastischen Robotersysteme keine Unsicherheiten besitzen.

Obwohl es notwendig ist, die Unsicherheiten bei dem Entwurf robuster Regler fiir ela-
stische Roboter mittels der Singular-Perturbation-Methode mit zu beriicksichtigen, wird
dies nur sehr selten getan. Durch Verwendung des Verfahrens mittels Integralmannigfal-
tigkeit haben Morita u. a. (1997) das Modell elastischer Roboter in ein langsames und ein
schnelles Teilsystem zerlegt. Robuste Regler gegen die strukturierten und die unstruk-
turierten Unsicherheiten werden dann fiir das langsame bzw. das schnelle Teilsystem
ausgelegt. Zur Berechnung der Integralmannigfaltigkeit haben sie jedoch die nomina-
len Werte der physikalischen Parameter benutzt, d.h. die Einfliisse der physikalischen
Parameterunsicherheiten auf die Integralmannigfaltigkeit werden nicht beriicksichtigt.
Auflerdem haben sie angenommen, daf} die physikalischen Parameterunsicherheiten kei-
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nen Einflufl auf das schnelle Teilsystem haben. Dies stimmt mit den Tatsachen nicht
iiberein, da die Eigenfrequenzen und Eigenfunktionen der elastischen Schwingung eines
elastischen Roboters von deren Nutzlast und Konfiguration abhéingig sind. Wang und
Wend (1997b) haben ein Verfahren fiir robuste Regelung eines eingliedriegen elastischen
Roboters mit Hilfe der Singular-Perturbation-Methode fiir Systeme mit Parameterunsi-
cherheiten (Corless u. a. 1993) vorgestellt. Im vorliegenden Forschungsbericht wird ein
neues Entwurfsverfahren fiir die robuste Bahnverfolgungsregelung elastischer Roboter mit-
tels der Multizeitskalen-Multiparameter-Singular-Perturbation-Methode dargestellt. Da-
bei werden nicht nur die Einfliisse der Parameterunsicherheiten auf das langsame bzw.
die schnellen Teilsysteme, sondern auch die Einfliisse der Konfiguration des Roboters auf
die schnellen Teilsysteme beriicksichtigt.

Im einzelnen gliedert sich der Inhalt der Arbeit wie folgt: Im Abschnitt 2 wird ein dy-
namisches Modell des betrachteten elastischen Roboters gegeben. Dieses Modell wird
in eine Singular-Perturbation-Standardform mit Parameterunsicherheiten im Abschnitt
3 dargestellt. Im Abschnitt 4 wird das Robotersystem mit Hilfe der Multizeitskalen-
Multiparameter-Singular-Perturbation-Methode in einer Gruppe von ordnungsreduzierten
Teilsysteme zerlegt. Auf der Basis der im Abschnitt 4 resultierenden Teisysteme wird ein
Entwurfsverfahren fiir die robuste Bahnverfolgungsregelung des elastischen Roboters im
Abschnitt 5 entwickelt. Fiir die Gelenkbewegung wird eine fiir starre Roboter entwickelte
robuste Regelung verwendet. Fiir die Didmpfungen der elastischen Schwingungen wird
eine Reglerentwurfsmethode mittels robuster Polvorgabe vorgestellt. Hier wird gleichzei-
tig die Stabilitit des geregelten elastischen Robotersystems beriicksichtigt. Abschnitt 6
zeigt Simulationsstudien. Im Abschnitt 7 wird das vorgestellte Verfahren experimentell
verifiziert. Der Bericht schliefit mit einer Zusammenfassung und einem Ausblick auf Ziele
zukiinftiger Forschungen ab.
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2 Modell elastischer Roboter

Betrachtet wird ein elastischer Roboter, der aus n elastischen Armsegmenten besteht,
die miteinander durch rotatorische Gelenke in einer Reihe verbunden werden. Wir be-
schrinken uns auf einen sich nur in der horizontalen Ebene bewegenden Roboter. Das
Moment des i-ten Gelenks wird mit 7;(¢) (i = 1,2,---,n) bezeichnet. Unter den vereinfa-
chenden Annahmen, daf:

e die Verformung jedes elastischen Arms nur durch reine Biegung hervorgerufen wird,
die in einer horizontalen Ebene ist und es sich bei den Armen um Euler-Bernoulli-
Balken handelt,

e die Deformation jedes elastischen Arms nach dem Ritzansatz diskretisiert werden
kann. Als Ansatzfunktionen werden die ersten m Eigenfunktionen eines nicht rotie-
renden, einseitig fest eingespannten Balkens, an dessen Ende eine Nutzlast befestigt
ist, gewdhlt. Zur Ermittlung der Ansatzfunktionen werden die nominalen Werte der
Masse und des Trégheitsmoments der Nutzlast verwendet,

e die Coulomb’sche und viskose Reibung in den Gelenken sowie die Strukturddmpfung
des Arms vernachldssigbar sind,

stellen sich die Bewegungsgleichungen dieses Roboters mit Hilfe des Lagrange-Verfahrens
zweiter Art wie folgt dar (De Luca und Siciliano 1991, Siciliano und Book 1988):

M(q(1))q(t) +h(q(1),q(t)) + Keq(t) = QT(?). (2.1)

q(t) ist dabei der Vektor der verallgemeinerten starren und elastischen Koordinaten und
ergibt sich zu

q(t) = [0:(2),05(2), -+, 0 (t), 611 (2), G12(t), -+, um (), Ga1 (£), 6 (1), - -+, Boma (£),
e 01 (£), B (), - -+ G (1]

0;(t) (i =1,2,---,n) sind die Gelenkwinkel, 6;;(¢) (i =1,2,---,n;5 = 1,2,---,m) sind
die j-ten elastischen Koordinaten des i-ten Armes. 7(t) = [11(t), 72(t), - -, Tn(t)]" ist der
Gelenkmomentvektor und die iibrigen Matrizen und Vektoren in Gl (2.1) sind wie folgt
definiert:

M(q(t)) : (m+1)n x (m + 1)n positiv definite, symmetrische
Trégheitsmatrix,

h(q(t),q(t)) : (m 4+ 1)n-Vektor der Coriolis- und Zentrifugalkrifte,

K, : (m+1)n x (m + 1)n Steifigkeitsmatrix,

Q =[I,4n,0,xm:)" : Eingangsbelegungsmatrix.
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3 Modell in Singular-Perturbation-Form mit Para-
meterunsicherheiten

Da die tatsdchlichen Werte der Masse und des Triagheitsmoments der Nutzlast im allge-
meinen im voraus unbekannt oder verdnderlich sind, sollen sie als unsichere Parameter
betrachtet werden. Die Grenzen, in denen die Parameterwerte variieren, kénnen aber als
bekannt angenommen werden. Wird der Vektor aus diesen unsicheren Parametern mit
oo bezeichnet, kann System aus Gl. (2.1) wie folgt dargestellt werden:

M (a0, q(t))q(t) + h(oo,q(1),4(1)) + K.q(t) = QT(1). (3.1)

Da die nominalen Werte der Masse und des Trigheitsmoments der Nutzlast zur Ermitt-

lung der Ansatzfunktionen verwendet werden, haben die Parameterunsicherheiten keinen
Einflu} auf K..

Gl (3.1) bildet ein nichtlineares Modell fiir elastische Roboter mit Parameterunsicher-
heiten. Das Anliegen des Beitrages besteht darin, einen robusten Regler fiir das System
(3.1) zu entwerfen, der die Stabilitéit des geregelten Robotersystems bei Anwesenheit von
Unsicherheiten gewihrleistet. Da die Anzahl der verallgemeinerten starren und elasti-
schen Koordinaten grofler als die Anzahl der Stellgr6fen ist, konnen die Unsicherheiten
im allgemeinen nicht mit einer nominalen Eingangsmatrix angepaft werden (mismatched)
(Chen 1986). Deshalb lassen sich die von Corless und Leitmann (1981), Gutman (1979),
Leitmann (1979 und 1981) und Chen (1986) erarbeiteten deterministischen Methoden
dazu nicht unmittelbar verwenden. Obwohl das von Barmish und Leitmann (1982) und
Chen und Leitmann (1987) erweiterte deterministische Reglerentwurfsverfahren manche
nicht angepafite Unsicherheiten ohne Verletzung der Stabilitit des geregelten Systems to-
lerieren kann, ist deren erlaubte Hochstgrenze im allgemeinen zu gering. Die sogenannte
Riccati-Gleichung-Reglerentwurfsmethode (Petersen und Hollot 1986, Schmitendorf 1988)
hat keine explizite Anforderung an die Erfiillung der anpassenden Bedingungen. Die Exi-
stenz von Losungen fiir die entsprechende Ricatti-Gleichung kénnen aber bei der Ver-
letzung dieser Bedingungen nicht gewéhrleistet werden. Wie von Wang (1998a) gezeigt,
kann das System (3.1) fiir viele elastische Roboter als ein System mit (m + 1)-Zeitskalen
betrachtet werden. Darauf basierend wird nun ein neues Verfahren zum Entwurf robuster
Regler fiir elastische Roboter entwickelt.

Wir fiihren einen neuen Vektor der verallgemeinerten starren und elastischen Koordinaten

q(t) = [00(0),02(8), -, 0,(), 81a(£), 8aa (), G (1), Bus(8), Bas(t), - -+ Gua (1),
e O1m (1), Oam (1), - -, B (B)]F

durch ein Umsortieren des Vektors q(¢) ein. Dabei sind g*(¢) und g(t¢) durch

q'(t) = P'q(1) (3.2)
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verkniipft, wobei P eine Permutationsmatrix ist. Entsprechend gilt

M*(00,q* ()" (t) + h* (o0, " (1), ¢* () + Kiq"(t) = QT (t). (3.3)
Dabei sind

M~ (o-an ( )) :PTM(O-Oapq ( ))P

h*(o0,q"(t), ¢*(1)) = P"h(oo, Pq*(t), PG (1)), (3.4)

K= PTKeP.

Das System aus Gl. (3.3) wird nun in Zustandsraumdarstellung iiberfiihrt. Der Zustands-
vektor x(t) des Systems wird aus g*(¢) und seiner ersten zeitlichen Ableitung ¢*(¢) gebil-
det:

2(t) = [ z1(0) ] — [ a() ] L @ e RO (= 1,92). (3.5)

(1)
Aus (3.3) und (3.5) folgt

a:l(t) = To (t),

&5(t) = £ (00, 21(1), 22(0)) + Ao, 21 (1)1 () + Bloo, @1 (1) 7 (¢) (3.6)

mit
floo,zi(t),22(t) = — [M* (00, 2:1(2))] "' B (00, 21 (2), 2a(2)),
A(og,z1(t) = — [M* (0o, z:1(t)] ' K, (3.7)
B(og, (1)) = [M* (o0, 21 (1) Q.

Wie Fraser und Daniel (1991), Wang (1996) sowie Zaad und Khorasani (1996) gezeigt ha-
ben, werden die Eigenwerte des linearisierten Modells des Systems (3.6) von Nullen und
rein imaginédren Zahlen gebildet, wenn oy den nominalen Wert annimmt. Diese Eigenwer-
iy 1=1,2,---,m;5 =0,1,---,m; k = 1,2} bezeichnet. Wir beschrénken
uns dabei auf den Roboter, der die folgende Annahme erfiillt.

te werden mit {\F

Annahme 3.1: Die Eigenwerte des linearisierten Modells des Systems (3.6) kénnen nach
dem Betrag ihres Imaginérteils in die folgenden m+1 Gruppen eingeteilt werden: {\§ i =
L2, mk =12} {\8, i =1,2,- - myk =1,2}, -, {NE i =12, msk = 1,2},
Die Betrége der Imaginérteile der verschiedenen Eigenwerte innerhalb einer Gruppe haben
die gleiche Groflenordnung, also:

k1

)\;121 = 0(1), iyt = 1,2, my ki, ke =1,2,5=1,2,- (3.8)

2]

Dabei heifit O(+) von der Ordnung ,,groff O“. Dagegen unterscheiden sich die Betriige der
Imaginérteile der Eigenwerte von verschiedenen Gruppen stark. Diese Gruppen sind so
angeordnet, dafl

AL

)\k;l] :O(]-)a ilaiQ:1727"'7n;k17k2:1’2;j:0’1’.-.7m_1' (39)

i2(j+1)
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o(-) bezeichnet die Ordnung ,klein o“.

Bemerkung 3.1: Wie Fraser und Daniel (1991), Wang (1996) sowie Zaad und Khorasani
(1996) gezeigt haben, ist diese Annahme bei vielen Robotern mit elastischen homogenen
Armen erfiillt.

Weil die Imaginérteile dieser Eigenwerte fiir die Schwingungfrequenz des Systems (3.6)
zusténdig sind, erkennen wir aus Chow u. a. (1978), daf§ das System (3.6) mittels der
Singular-Perturbation-Methode behandelt werden kann. Es handelt sich bei dem System
(3.6) um ein System mit m+1-Zeitskalen (Ladde und Siljak 1983). Nun wird dieses System
in einer Multiparameter-Multizeitskalen-Singular-Perturbation-Form dargestellt. Dazu
werden zunéchst p; (j = 1,2, -+, m) als der Kehrwert des geometrischen Mittels der Abso-
lutwerte der Imaginérteile der Eigenwerte von der Gruppe {)\if7 (1=1,2,---,n;k=1,2)}
definiert:

Hj = 1 ) j:1727"'7m

2n ﬁﬁ‘lm()\f])‘ (3.10)

i1=1 k=1

Fiir die folgenden Betrachtungen werden

o (t) = [®10(t), zu(t), -+, @it
xy(t) = [®a(t), xou(t), -+, @am(t)],

Foloo, i (t), z2(t))
Floo, 21 (1), To(1)) = (”O’mlz(t) @ (1) . Filoo, xi(t), 2o(t) € R, (3.12)

F(oo, zi(t), z2(1))

Ag (oo, @1(t)  Ao(oo,zi(t)) -+ Am(oo, 1(t))
A(O-O,ml(t)) _ AIO(UO; a:l(t)) AH(O'O,CL'l(t)) Alm(Uo,ml(t)) ,
Amo(Uo,ml(t)) Aml(O'(),CL'l(t)) s Amm(ag,ml(t))
Aij(O'g,iﬂl(t)) € Rnxn, (313)
By(og, z1(t))
- Bl(o-()aml(t)) nXn
B(oy, z:(t)) = : : B;(og,z:(t)) € R (3.14)

Bm(O'O., a:l(t))

angesetzt und es werden
21(t) = Lw(t), ,
i i=1,2,--,m (3.15)
z2i(t) = mwzi(t),
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eingefiithrt. Durch Einsetzen von (3.11) bis (3.15) in (3.6) lift sich System (3.6) in fol-
gender Multizeitskalen-Singular-Perturbation-Form darstellen:

T1o(t) = xa(t),
E(t) = foloo,o1,09) + > M?Aoj(o-ﬂa 01)z1;(t) + Bo(oo, 01)7(1), (3.16)
j=1
,U/zzlz(t) — z2i(t)7 1= 1727"'7m7
piza(t) = fi(o0,01,02) + > p5Aij(00,01)215(t) + Bi(og, o1)7(t) (3.17)
=1
mit
o1 = [x1(t), piz11(t), pszia(t), -, M?nzlm(t)]T,
. (3.18)
oy = [T20(t), p1z2a1(t), pozaa(t), -+, UmZom(t)]

Dabei werden A;y(og, x1(t)) =0 (i =0,1,---,m) verwendet.

Da die Parameter p; (i = 1,2) auf der linken Seite von Gl. (3.17) und auf der rech-
ten Seite von Gl. (3.16)-(3.17) stehen, ist das System nicht nur ein nichtsingulér gestortes
System, sondern auch ein singuldr gestortes System.
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4 Systemdekomposition mittels Singular-
Perturbation-Methode

Gestiitzt auf die Multiparameter-Multizeitskalen-Singular-Perturbation-Methode (Ladde
und Siljak 1983) wird der folgende rekursive Algorithums zur Dekomposition des Systems

aus Gl. (3.16) und (3.17) vorgestellt:

Algorithmus 4.1

1. Initialisierung:

k m,

O = zip(t), i=1,2,

Z;'?(t) = zij(t); 1=1,2;5=1,2,---,m,
T"(t) = (1),

o = 0o 1=1,2,

f (oo, 0™, 0)) = foloo,01,0), i=01,---,m,
AZ‘?("'O:‘TT) = ,M?Aij(ao,al), i=0,1,---,m;j=1,2,--
B} (o9, o) = Bj(oy,01), i=0,1,--,m.

2. Das System mit (k + 1)-Zeitskalen wird wie folgt dargestellt:

k

d’éo(t) = flg(UOv Ulfa OJZC) + Z Agj(UOv Ulf)zlfj(t) + BS(UOv Ulf)Tk(t)a

=1

2k () = 25 (t) i=1,2,---,k,

k
piz5;(t) = £i(o0, 01, 0%) + 2 Ajj(o0, o) 25;(t) + By (a0, o) 7" (t).
]:

(4.2)

(4.3)

3. Da A}, (oo, o) nicht singulir ist, kann das System aus Gl. (4.2) und (4.3) mit
Bezug auf die pui-Zeitskala mittels Singular-Perturbation-Methode, d.h. mit

i, = 0 anstelle des wahren Wertes, in die folgenden zwei Teilsysteme zerlegt werden

(Kokotovic u. a. 1986):

o das pi-Zeitskala quasistationédre Teilsystem:
iy ' (t) = @by (1),
k—1
45 (1) = £5 (o0, ot L oh ) + 3 Al o0, ok 2 )
]:

+BY (o, 0} (),

(4.4)
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pizy (1) = 257 (1),
w0 = £ Honot Lok )+ T AR en ot 0 (19
+Bf Yoo, e )T ’H(t),F i=1,2,--k—1,
Zlfk(t) = [Akk(o'oao'lf 1)] [flg(o'oao'lf ! 0']5 1)
+2Aky(<fo,0'f Nzy (1) +Bi(oo, o7 )TN D)],  (4.6)
zk (t) = 0.

e das yu-Zeitskala Grenzschichtteilsystem:

Lk A
lﬁkzllck(t) = ng(t)a (4.7)
pZa () = Ay (00, 07 )21, (1) + Bi(oo, ot )7H(1).
Dabei gilt:
k—1 k—1 k—1 2 k-1 4
o, = [3310 (t), pizii (1), ; ,uk—lzl(k—l)(t)ﬂ 0, 70] ; (4.8)
T .
o-'2“71 = [a:é“ol(t), M1z§f1(t), ; Mk—lzz(k—l)(t)’ 0, ’0] ’

Fi o0 or oy = filon, 017, 037) — (o0, 017)
: [‘4]Izlc(o-070-11C 1)] fﬁ(aﬂﬂallc 170-,2671)7
‘4?]‘_1(0-070-11C 1) Ak (0'070-]1C 1) ‘4£cllc(o-070'11C 1)
[Aﬁk(do,d'f H] Ao, ot ), (4.9)
Bi'cil(o-ﬂao-lf I)Z-Bi'c(a-OvoJlc 1) Aick(o-ﬂa . 1)
'[A]Zk(‘foﬂflf 1)] Bz(‘fo,alf 1)7
i=0,1,-k—1; j=1,2,--,k—1.

xh L (t) bzw. zk Y(t) (i = 1,2;5 = 1,2,-++,k — 1) bezeichnen den langsamen Teil
von xf (1) bzw. zk “(t). 7F1(t) und 7¥(t) bezeichnen den langsamen und schnellen
Teil von 7%(t). ka( ) und 2% () (i = 1,2) bezeichnen den langsamen und schnellen

Teil von 2% (t). Es ergibt sich (Kokotovic u. a. 1986):

alh(t) = @iy '(t) + Ofew), i=1,2,
k. = k-l ' —=1.2:7=1.2.--- k—1

Z;c](t) 'f;gj (t) —i:ko(gk)7 Z 45 ) <y 7k ) (410)

zi(t) = ZH(t) + 25(t) + O(er), i=1,2,

(1) 1) + 75 (1) + O(gp)

Dabei ist

M1, k= 17

%=1 we g _ga. . (4.11)
Hk—1° )y s .
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4. Setze k ==k — 1.
5. Wenn k£ > 0, dann gehe zu Punkt 2, sonst gehe zu Punkt 6.
6. Ende.

Durch Verwendung von Algorithmus 4.1 wird das System (3.16)-(3.17) in m + 1 Teilsy-
steme zerlegt. Die Dynamik der langsameren Teilsysteme hat Einflul auf die schnelleren
Teilsysteme. Dagegen beeinflufit die Dynamik der schnelleren Teilsysteme die langsame-
ren Teilsysteme nicht. Fiir £ = 1 stellt Gl. (4.4) das langsamste Systemverhalten vom
System (3.16)-(3.17) dar. Dies entspricht den Bewegungsgleichungen des entsprechen-
den starren Roboters. Fiir k = 1,2,---,m beschreibt Gl. (4.7) das pi-, po-, ***, fm-
Zeitskala Grenzschichtteilsystem von System (3.16)-(3.17), welches lediglich grenzstabil
ist. Aus 2% (t) und der durch (4.6) gegebenen 2z¥ () konnen die elastischen Koordinaten
xip(t) (i=1,2;k=1,2,---,m) gebildet werden. Bei jedem Teilsystem ist die Anzahl der
Ausgangsgrofien gleich der Anzahl der Stellgrofien, deshalb kénnen die Unsicherheiten an-
gepalit werden, dies hat den Reglerentwurf vereinfacht. Auf der Basis dieser Teilsysteme
wird im néchsten Abschnitt auf den Entwurf der robusten Regler fiir den betrachteten
Roboter eingegangen.
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5 Entwurf robuster Regler

Wie im letzten Abschnitt gezeigt, wird der Gelenkmomentvektor 7(¢) durch die System-
dekomposition mittels Multiparameter-Singular-Perturbation-Methode in (m+1)-Anteile
aufgespalten. Aus (4.10) 148t sich eine einfache Gleichung fiir den Gesamtregler angeben:

T(t) = 7(t) + 71 (t) + 72 () + - - + F7(1). (5.1)

Nun wird der Entwurf der einzelnen Anteile genauer spezifiziert. Es wird vorausgesetzt,
daB alle Zustandsgroen vom System (3.6) fiir die Riickfiihrung zur Verfiigung stehen.

5.1 Entwurf robuster Regler fiir das langsamste Untersystem

Fiir den Entwurf des Regleranteils 7°(¢) wird vom Untersystem (4.4) (fiir ¥ = 1) aus-
gegangen. Dabei dient dieser Regleranteil zur Stabilisierung des starren Verhaltens des
Systems (3.16) und (3.17) und zur Verfolgung einer vorgegebenen Bahn des Gelenkwin-
kels. Es kann leicht bestétigt werden, da8 das System (4.4) (fir £ = 1) ein Modell des
entsprechenden starren Roboters ist und sich ferner in der folgenden Form darstellen 148t:

M (00, 2o (t))&1o(t) + Cus(oo, 2ho(1), 1o (1)) &1 (1) = 7°(2) (5.2)

mit
M (00, 2%(t)) = [BS(0,09)] ",

Cs(ao, 2 (1), ()80 (1) = — [Bi(eo,09)] ™ fi(eo, 0%, o)),

Da die Unsicherheiten im System (5.2) angepafit werden konnen, lassen sich alle fiir star-
ren Roboter entwickelten Entwurfsverfahren robuster Regler (Abdallah u. a. 1991) zum
Entwurf robuster Regler fiir das System (5.2) verwenden. Wegen ihrer Einfachheit wird
die von Spong (1992) vorgestellte Methode hier angewendet.

System (5.2) weist die folgenden zwei Eigenschaften auf (Spong 1992):

1. Passivitiit, d.h. die Matrix M (o, 2% (1)) — 2C s (00, % (1), 2% (1)) ist schiefsym-
metrisch.

2. Das Modell aus Gl. (5.2) ist linear parametrierbar, d.h. es existiert eine Matrix
Y (xy(t), @}y (t), ]y (¢)) und ein Parametervektor f,(o), mit denen sich das System
(5.2) in die Form

M (00, @o(1))&10(t) + Cis(o0, (1), 1o (t)) 210 (1)
=Y (@ (t), 215(1), &1 (1)), (00) = T°(1) (5.3)

iiberfithren 1a3t.
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Da der Unsicherheitsvektor oy beschrinkt ist, existieren o und p, € R, so dafl

£]l = [1£,(00) = F,ll < po (5.4)
mit ]"p = f,(00) ist. Nach Spong (1992) wird der folgende robuste Regler ausgewdhlt:

(1) = To(t) + Y (1), &15(1), v, a)u(t)
= Y (y(t), (1), v, a) [fp —|—u(t)] - Kr, (5.5)

dabei bezeichnet 7)(#) den nominale Stellvektor und ergibt sich zu

To(t) = Ms(00, 20(t))a + Css(0, ) (t), &3 (t))v — K7
= Y(z (1)0(t) 3310( ), ’v7a’)}p - Kr. (5.6)

v, a und r werden definiert als

= 0"(t) — AB(D),

v,

0(t) + AB(t),
(t) = x}(t) - 0°(2).

Hierbei ist 0%(t) = [0{(t), 04(t), - -, Gg(t)]T der vorgegebenen Bahnvektor, K und A sind

positiv definierte konstante Reglermatrizen. Der zusétzliche nichtlineare Stellgrofenanteil
u(t) 148t sich mit

(5.7)

>3 R <
I

YT(a:(l’O(t) a'z(l’o(t) v,a)r . T/ 0o 0
s B0l 0O g 1y T (09, (1), 0, (1), 0, a)r]| > €
ul) = § IV 0. a0, 0] Y 58)
?UY (x5(1), £10(2), v, @)r fiir [ (20(2), 2)y(t), v,a)r|| <€

berechnen, so da} die Robustheit des geregelten Systems gegeniiber den mit f darge-
stellten Parameterunsicherheiten gewihrleistet ist. € > 0 ist eine vorgegebene positive
Konstante.

Fiir das System (5.2) mit dem Regelgesetz (5.5) existiert nun eine Ljapunovfunktion

1 ~ ~
Vo= 57" M(on zlo(t)r + 0" ()ATKB(1) (59)

mit der man beweisen kann, dafi die Systemantwort des mit (5.5) geregelten Systems
(5.2) in unmittelbare Nihe des Nullzustandes gefiihrt wird und dort bleibt (praktische
Stabilitit) (Spong 1992).

Bemerkung 5.1: Im Vergleich mit dem Riickfiihrgesetz mittels exakter Zustands-
linearisierung fiir das System 5.2 (Schwarz 1991) ist die Ermittlung der Reglermatrizen fiir
den nominale Regleranteil (5.6) viel schwieriger. Nun wird eine auf dem Riickfiihrgesetz
mittels exakter Zustandslinearisierung basierende Methode zur Ermittlung der Reglerma-
trizen fiir den nominale Regleranteil (5.6) entwickelt.
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Dazu werden die Matrizen der Proportional- und Differenzierbeiwerte des Riickfiihrgesetzes
mittels exakter Zustandslinearisierung zunéchst mit K, und K, bezeichnet. Dann wird
der Regler (5.6) in der Form

() = Mu(@0,%(1) |80 — Kb — K,B] + Cul(G0, 23(1), % (1) 2% (1

+ [Mss(o'oamlo(t))(Kd —A) — Css(&o,a:(l)o(t), 3'3(1)0(”) - K] é
+ M (00,20 (1) K, — Cys(ao, 25y (t), &9, (t))A — KA] 0 (5.10)

iiberfithrt. Gl. (5.10) stellt das Riickfithrgesetz mittels exakter Zustandslinearisierung dar,
wenn A und K so ausgewihlt werden, dafi die folgenden Gleichungen erfiillt werden:

A~ KA+ K, =0,

K = M (09,23 (t) (K4 — A) — Cyy(00, % (t), (1)) (5.11)

Bei der Ermittlung der Reglerparameter konnen %;(¢) und &%,(¢) in Gl. (5.11) zu den
Sollendwerten der Gelenkwinkel gesetzt werden.

5.2 Entwurf robuster Regler fiir die Grenzschichtteilsysteme

Die Regleranteile 7(t) (k = 1,2,---,m) haben die Aufgabe, die elastischen Schwin-
gungen von System (3.16) und (3.17) zu ddmpfen. Fiir den Entwurf der Regleranteile
a*(t) (k = 1,2,---,m) wird von den Untersystemen (4.7) ausgegangen. Da das Sy-
stem (3.16) und (3.17) vollsténdig steuerbar ist (Riege 1996), kénnen die Untersysteme
(4.7) (k=1,2,---, m) normalerweise auch als steuerbar angenommen werden (Kokotovic
u. a. 1986).

Unter der Annahme, daf alle langsameren Teilsysteme gut geregelt werden, sind a:fo_l(t)
und z’c ') (i =1,2, j =1,2,---,k — 1) beschriinkt. Nach Osman und Roberts (1991
und 1995) und Wang und Wend (1997&) kann o' in System (4.7) zusammen mit o als
Parameterunsicherheit betrachtet werden, deren oberen Schranken als bekannt angenom-
men werden konnen, d.h. Gl (4.7) stellt ein lineares System mit Parameterunsicherheiten
dar. Da Matrix B} (o, a™") die gleiche Dimension wie Matrix A}, (o, e™") hat, kann
man eine nominale Eingangsmatrix auswéhlen, so dafl die Unsicherheiten angepafit wer-
den konnen.

Da das Teilsystem (4.7) lediglich grenzstabil ist, muf} es mit Reglern ausgestattet werden,
um die im System (4.7) auftretenden dauerhaften Schwingungen zu dampfen. Wegen der
Unsicherheiten lassen sich die quasistationiiren Zusténde 2%, () nicht mit Gl. (4.6) berech-
nen. Dies deutet an, daB 2%, (¢) nicht fiir die Riickfiihrung zur Verfiigung stehen. Deshalb
konnen die determinstischen Methoden nicht zum Reglerentwurf fiir die Teilsysteme (4.7)
verwendet werden. Um dieses Problem zu losen, haben Garofalo und Leitmann (1988
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und 1990) den Begriff  ,nominale quasistationére Zusténde“ eingefiihrt. Unter den no-
minalen quasistationiren Zustidnden werden hier die quasistationiren Zustinde, wenn die
Unsicherheiten ihre nominalen Werte annehmen, verstanden. Durch Umkehrung der Rei-
henfolge von Systemdekomposition und Stabilisierung des Grenzschichtteilsystems haben
Corless u. a. (1989 und 1993) ein neues Verfahren entwickelt, d.h. sie haben das Grenz-
schichtteilsystem zunichst asymptotisch stabil gemacht, indem die schnellen Zustédnden
zk (t) (i = 1,2) vor der Systemdekomposition mittels Singular-Perturbation-Methode
zuriickgefiihrt werden.

Aus Gl (4.6) ist zu erkennen, da8 oy, o ' und o4 ' keinen Einfluf auf 2%, (¢) ha-
ben. Deshalb 18t sich 25, (t) mit G1. (4.10) berechnen und steht fiir die Riickfithrung zur
Verfiigung. Die Aufgabe des auszulegenden Reglers ist, die dauerhaften Schwingungen
von System (4.7) zu dampfen. Deshalb ist es verniinftig, den Regler als das folgende
lineare Dampfungsriickfithrungsgesetz auszuwéhlen:

(1) = —K 25, (1) = —K 2k, (1), k=1,2,---,m. (5.12)

Dabei ist K, eine konstante Reglermatrix, die durch Verwendung des folgenden Algorith-
mus fiir die robuste Polvorgabe bestimmt werden kann:

Algorithmus 5.1:

1. Die entsprechenden nominalen Systemmatrizen werden bestimmt:

0 I
0 nxn nxn
A= 25 g ] !
W _Tnen k=1,2,---,m, (5.13)
BO o 0n><n
k— k )
Bk

dabei sind A—l,’zk und B—],Z der nominale Anteil von A% (oo, 6% 1) bzw. Bf (o, ot 1),
die mit dem von Osman und Roberts (1991 und 1995) und Wang und Wend (1997a)
vorgestellten Verfahren ermittelt werden kdnnen.

2. Die Eigenwerte {+jwg10, Tjwi20, - -, £jwkno} von Matrix Ag werden berechnet.

3. Auswahl von 0 < &gq,&ko, -+, &n < 1. Als die Polvorgabe fiir das geschlossene
nominale Grenzschichtteilsystem werden {—gkiwkio + 51— Ewkio, 1 = 1,2, - -, n}
gewdhlt.

4. Das folgende Optimierungsproblem fiir K, (Byers und Nash 1989):

r?(in kr(Xk), (5.14)

k
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wird mit der Nebenbedingung

eig(Ay.) = {—gkiwkio +jy/1 = §wkio, i = 1,2, -,n} (5.15)

gelost. Dabei gelten

k(X)) = | Xkl pl| X5 r
0 0n><n In><n (516)

Mit X, wird eine Matrix, deren Spalten von den Eigenvektoren der Matrix A},
gebildet werden, bezeichnet. || - || ist als die Frobenius-Norm definiert.

5. Verifikation. Sind die Pole des geschlossenen Teilsystemes bei Anwesenheit aller
moglichen Parameterunsicherheiten in den vorgegeben Gebieten? Wenn ja, Ende;
sonst gehe zu 1 oder 3.

5.3 Stabilitidt des geregelten Robotersystems

Durch Einfiihren von Gl. (5.5) und (5.12) in GI. (5.1) und Ersetzung von % (t) (i = 1,2)
und 2%, (t) (k = 1,2,---,m) niherungsweise mit ihrem wahren Wert x;o(¢) (i = 1,2) bzw.
zop(t) (k=1,2,---,m) ergibt sich der Gesamtregler zu:

T(t) = Y (210(t), T20(t), v, @) [fp + u(t)] — Kr — ZKkZQk(t)' (5.17)

Fiir das mit (5.17) geregelte Robotersystem (3.16)-(3.17) gilt der folgende Satz:

Satz 5.1: Wenn K, A, e und Ky (k = 1,2,---,m) so gewéhlt werden, daf} die fol-
genden Forderungen erfiillt werden:

e Das mit (5.5) geregelte Teilsystem (4.4) (k = 1) ist praktisch stabil und die mit
k=

(5.12) geregelten Teilsysteme (4.7) (k =1,2,---,m) sind asymptotisch stabil.

e Die Zeitskalen des offenen Gesamtsystems werden beim iiber (5.17) geschlossenen
System beibehalten.

Dann existieren ¢ > 0 (i = 1,2,---,m) und fiir alle g; € (0,&f] ist das iiber (5.17) ge-
schlossene System (3.16) und (3.17) auch praktisch stabil. Q
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Beweis: Durch Einfiihren von Gl. (5.17) in (3.16) und (3.17) 148t sich das geschlossene
Gesamtsystem in der folgenden Form iiberfiihren:

T1o(t) = @20(t),
@(t) = foloo,&1,63) + Byloo,67) {Y (z10(t), 20(t), v, a)
[f, +u®)] = Kr} + fo(00,01,02) — fo(o0,67,55)

+ il/ﬁon]’(ao, 01)z1(t) — Bo(og, 01) ilszzj(t) (5.18)
j= j=
+ [Bo(oo, 1) — By(09,61)]
AY (z10(t), 20 (t),v,0) [f, + u(t)] — Kr},
,ulzu(t) = Zgl(t) 7 = 1,2,---,m,
,U/lZQl(t) = A (0’0,0'11 1) [zli( ) ﬁlz] _Bi(ao,&i_l)KiZQi(t)
+f@(00,01702)—f (0'0;0'1 ! 5’% 1)
+ Y (13 Aij(00, 01) — Ajj(00,677 )] z15(t)
j=1
- [Bi(ovon) — Biloo. 5t )] 3 K200 (>:19)
j=
+ Z 115 Aij(00, 01)215(t) — Bi(og,01) Z K jz5(1)
Jj=i+1 j=i+1
‘|‘[B (0'0,0'1) B(O'(), 11 ]
Dabei gilt
gk = 1P i=1,2, k=1,2,---,m und (5.20)
hy = — [Al (00,5171 " (Filoo, 6071 657
+ZA 0'0,0'1 le(t) 0'0,0'1 ZK ZQJ
+ BZ-(O'O,O'l ) {Y (z19(t), z20(t), v, @) [fp +u( )] - Kr}). (5.21)

Wegen der ersten Forderung von Satz 5.1 ist die Losung P;(a, &% ") der algebraischen
Riccati-Gleichung

Al (0o, 67 YPi(eg, 607" + Pi(oo, 6 ) Ai(00, 67 = —Togpom (5.22)

eine positiv definite, symmetrische Matrix und

- zik(t) — h
V= () ~ )" (0] Paton ot ) [ 0 B o )
ng(t)
bildet eine Ljapunovfunktion fiir die geschlossenen Teisysteme (4.7). A;.(0,6%") wird
dabei definiert als

(5.24)

~ O’I’L n ITL n
Ai(op, 67 = * * } :

A (0'0,0”1 1) B’(ao, = 1)KZ
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Aus der zweiten Bedingung ist zu erkennen, daf8 das System (5.18) und (5.19) (m + 1)
Zeitskalen besitzt. In Anbetracht der Arbeit von Spong (1992), ld8t sich Satz 5.1 mit
Hilfe der Ljapunovfunktion

Vo= (T=xm) {0 = xm){-{Q=x)Vo+xaVi} + x2Va} + -} + X Vi
xi € (0, 1) i=1,2,---,m (5.25)

und durch rekusive Anwendung der von Corless u. a. (1993) und Corless und Ryan (1991)
vorgestellten Argumente beweisen. a
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6 Simulationsergebnisse

Das im vorangegangenen Abschnitt entwickelte Reglerentwurfsverfahren wird mit Hilfe
von Simulationen eines zweiachsigen planaren elastischen Roboters verifiziert. Als Be-
schreibung des Roboters wird das Modell aus Wang (1998a) verwendet. Die physikali-
schen Parameter des Roboters ergeben sich nach De Luca und Siciliano (1993) zu:

[y = I = 0,5 m,

P1 = P2 = 1,0 kg/m,
(EI)y, = (EI); = 10 N-m?
mpr = myz = 1kg,

Jn1 = Juo = 0,1 kg-m?,
Jp = 00,0005 kg-m?,

m,, dndert sich im Intervall [0,05 kg, 0,15 kg] .

Zur Ermittlung der Ansatzfunktionen des ersten und zweiten Arms, werden die Werte
von My, Jr; und My, sowie Jp, wie folgt ausgewéhlt:

M,y = mpg + paly +my,
i1 = Iz + £ pol +mll3 + J,,
Mps = m?,,

Jio =y

(6.1)

Dabei bezeichnet mg den nominalen Wert von m,, und ergibt sich zu 0,1 kg. Somit lassen
sich p; = 0,028447 und py = 0,0042 berechnen, wenn das System (3.6) um den Arbeits-
punkt [g*(),q*(t)] = [0,0,0,0,0,0,0,0,0,0,0,0]” und 7(¢) = [0,0]” linearisiert wird.

Die Sollbahnen der Gelenkwinkel werden zu

6L _ 158 1108 )0, fiwr t<t
02(t) = 5 T oL TV O TS i=1,2. (6.2)
Hif fiir t > tid,

gewdhlt. Hier sind 6;; = n/6 rad (¢ = 1,2) die Soll-Endpositionen der Gelenkwinkel,
tia =5 s (1 = 1,2) sind die Zeiten bis zum Erreichen der Soll-Endposition. Die Matrix
Y (29,(t), &1y (t), v, @) und der Parametervektor f, im Regler (5.5) werden in der Form

[ a ay+as (201 + az) cos(fs(t)) — (019'2(15) +uabi(t) + 029'2(15)) sin(6(1)) ]
0 a1 +ay ay cos(fa(t)) + v160,(t) sin(Oy(t))

bzw.

" Jn1 + Jo1 + (mh2 + mg + mS) 1 -|
Ina + Joo + Jp +m)l3
\‘ (m2d2 + mglg) ll J
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dargestellt. Bei den Simulationen werden die Reglermatrizen in (5.5) wie folgt gesetzt:
pr = 0,02165, € = 0,05,

2 0 1,7208 0,4859
A‘{o 2}undK_{o,4859 0,3343]'

Zur Bestimmung der Reglermatrix K, wird angenommen, daf} f(t) sich auf das Intervall
[0, 7/6] beschréinkt. Somit lassen sich A}, und B; zu

A—h: —0,6793  0,6983 by -E}: —13,5077 —17,8049
0,0451 —1,6615 0,0610 —1,4754

berechnen. Fiir &7 = &2 = \/5/4 ergibt sich die Reglermatrix K zu:

K, - { ~0,0500 0, 7895 ]

0,0055 —0,5857

Fiir den Entwurf des robusten Reglers (5.12) (k = 2) wird angenommen, daf} 6,(¢) und
611(t) sowie dg1 () sich im Intervall [0, /6], [-0,005, 0,005] bzw. [-0,0002, 0,0002] &ndern.
Unter dieser Annahme werden A3, und B3 als

e —1,1346 —0,3607 und B2 — —5,0138 352, 1052
—0,0080 —0,8112 —0,0062  3,1212

bestimmt. Mit &y = 9o = \/5/4 gilt fiir die Reglermatrix K:

-~ 13,751
KF{ 0,0800 13,75 8]‘

0,0008 0,2313

Um die Robustheit des geregelten Systems gegeniiber der Anderung der Masse der Nutz-
last zu verifizieren, wird das geregelte System mit drei verschiedenen Massen der Nutz-
last: 0,05 kg, 0,1 kg bzw. 0,15 kg simuliert. Bei den Simulationen ist der verwendete
Regler fiir die drei verschiedenen Fille aber gleich. Die Zeitverldufe der verallgemeinerten
starren und elastischen Koordinaten, der Stellgré8en und der Sollbahnen der Gelenkwin-
kel des entworfenen robusten Reglersystems sind in den Bilder 6.1-6.2 fiir das Intervall
0 <t <10 s dargestellt.

Aus den Bildern 6.1 und 6.2 ist zu erkennen, dafl der Regler starke Robustheit gegeniiber
der Unsicherheit der Masse der Nutzlast hat. Fiir die drei verschiedenen Massen der Nutz-
last konnen die Gelenkwinkel des geregelten Roboters der vorgegebenen Bahn mit hoher
Genauigkeit folgen. Gleichzeitig werden die Anteile der elastischen Schwingungen mit den
Eigenfrequenzen der Arme sehr gut geddmpft. Der Betrag der elastischen Koordinaten
ist hauptséichlich der Beitrag des quasistationidren Anteils, der nur von der Bewegung
der Gelenke abhiingig ist und bei einer Regelung der Endeffektorposition des Roboters
leicht beriicksichtigt werden kann. AuBerdem hat die Anderung der Masse der Nutzlast
einen geringen Einflu} auf die verallgemeinerten Koordinaten und das Stellmoment des
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Bild 6.1: (a) Position des Schultergelenks 6, (¢); (b) Position des Ellbogengelenks 60 (t);
(c) Elastische Koordinate 611 (¢); (d) Elastische Koordinate d12(¢). (—) Sollbah-

nen; (---) m, = 0,05kg; (—) m, =0, 1kg; (——) m, = 0, 15kg.

geregelten Roboters. Eine stérkere Schwingung von dyq(t), d12(¢) und d2; () entspricht
einer schwereren Nutzlast. Dagegen entspricht eine schwiichere Schwingung von 09 (t)
einer schwereren Nutzlast. Da der von der Bewegung des Schultergelenks 6, (¢) verursach-
te Schwingungsanteil der elastischen Koordinaten d11(t), d91(t) sowie dg5(t) gleiche Phase
wie den von der Bewegung des Ellbogengelenks 65 (t) verursachte Schwingungsanteil hat,
besitzen 011(t), d91(t) und d9o(t) einen sinusformigen zeitlichen Verlauf. Dagegen, wie
im Bild 6.1c dargestellt, besitzt d12(f) einen komplizierteren zeitlichen Verlauf wegen des
Phasenunterschieds zwischen den von der Bewegung des Schultergelenks 6, (¢) und des
Ellbogengelenks 6 (t) verursachten Schwingungsanteilen.
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Bild 6.2: (a) Elastische Koordinate d9;(¢); (b) Elastische Koordinate §12(); (¢) Moment
des Motors im Schultergelenk 71 (¢); (d) Moment des Motors im Ellbogengelenk

7(t). (---) m, = 0,05kg; (—) m, =0, 1kg; (——) m, = 0, 15kg.
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7 Experimentelle Studien

In diesem Abschnitt wird das vorgestellte Reglerentwurfsverfahren mit Hilfe eines Labor-
versuchstrigers experimentell erprobt. Dies beginnt mit der Modellbildung des Versuch-
stragers. Im Abschnitt 7.2 wird die Giite des Modells iiberpriift. Die Regelungsergebnisse
wird im Abschnitt 7.3 angegeben.

7.1 Versuchstrager

Als Versuchstriger dient das in Wang (1998b) dargestellte elastische Handhabungssystem,
das aus einem sich in der horizontalen Ebene bewegenden elastischen Arm besteht. Alle
einzelne Elemente des Roboters, aufler dem Verstiarker LC 3002, dem elastischen Arm
und den Reibungen kénnen mit den in Wang (1998b) vorgestellten Modellen dargestellt
werden. Da der LC 3002 durch einen neuen Verstérker ersetzt wird und sich die Arbeits-
bedingungen des elastischen Roboters dndern, werden der LC 3002, der elastischen Arm
und die Reibungen neu wie folgt modelliert:

LC 3002

Der LC 3002 ist in der Betriebsart ,,Stomregelung® eingesetzt. Durch Verwendung des
Least-Squares-Verfahrens 148t sich ein Modell des LC 3002 aus Messungen wie folgt her-
leiten:

ia(t) = 0,379ua(t) — 0,0065 = 0, 379[ug(t) — 0,0171] A. (7.1)
Dabei entspricht i,(¢) dem Ausgangsstrom des LC 3002, seine Eingangsspannung wird
mit uy(t) bezeichnet.

Elastischer Arm

In dieser Arbeit wird angenommen, dafl am Ende des elastischen Arms eine Nutzlast
befestigt ist und die Masse und das Trégheitsmoment der Nutzlast unbekannt sind. Die
physikalischen Parameter des Arms sind:

I, = 0,03m,
J, = 0,00002 kgm?,
I = 0,39 m,

p = 0,285 kg/m,
FEI = 0,4158 N-m?,
[, = 0,02m,

m,, &ndert sich im Interval [0 kg, 0,211 kg],
J, dndert sich im Interval [0 kgm?, 0,000033kgm?].

Dabei bezeichnet [, den Abstand vom Schwerpunkt der Last zu ihrem Rand, der mit
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dem Armende verbundenen ist. Nach dem Ritz-Ansatz a8t sich die elastische Auslen-
kung wi(x,t) des Arms wie folgt beschreiben

w1 (l‘, t) == ¢11(l’)611(t) + (1512 (ZU)(slg(t) (72)
Dabei sind ¢q;(x) (i = 1,2) Ansatzfunktionen, die sich aus Wang (1998a) durch Setzung

von My, = 0 und Jz; = 0 wie folgt berechnen lassen:

di(x) = cosh(Ax) — cos(A;x) — ¢y [sinh(Ay;x) — sin(A;x)],
cos(Ay;l) 4 cosh(Ay;0) (7.3)
sin()\lil) + smh()\hl) '

C1;

A1 (i = 1,2) bezeichnen die Kreisfrequenzen der Ansatzfunktionen und sind die Losung
der Gleichung

1+ COS()\MZ) COSh()\lil) =0. (74)
Mit Hilfe von Gl. (7.2) ergeben sich die Elemente in Gl. (2.1) wie folgt:

2
My = J,+p [%13 +1 (lh + %) ] + pl[63,(t) + 075(1)]) + J,

my (I + 1+ 1,)2 + my [w (1) + Law, (1, 1)]7,
My = wvir+ Jpdyy (1) +my (I + 1+ 1) [6u (1) + Ly (1]

Mz = vy + Jyd1o(1) +my (In + 1+ 1) [fr2(1) + o) (75)
My, = pl +, Ip [Qélu(l)] +my [¢11( )+ lpd)ll(l)] ’ ,
My = Jp¢11(l)¢12(l) +my [¢11( + lp¢11 } [¢212 + ll’¢12(m ’
Mzz = pl+J, [Qs;z(l)] +my [P12(1) + lp¢12(l)] )
hl = 2 {pl [611(t)511( )—|— 612(t)(512(t):|
+my, [wl(la t) + lpwl( t)] [wl (l7t) +1 wll l t ]}91 (7.6)
hy = —{pldni(t) +m, [wi(l,t) + lpw,l(lﬂj)] (D1 () +1 pon(l ]} o1 (1),
hy = = {pldwa(t) +my [wi (L, 1) + Lwi (1, 1)] [dr12(D) + L1, (D)] } 6:(1),
keir = PZW%D
keio = leﬁ 0
mit
l .
- pfﬁﬂ U +a)ni()de, )y (7.8)
Alz?
Reibungen

Die im betrachteten Robotersystem auftretende Reibung wird wie folgt dargestellt:

Mg = Mg, + Mgc. (7.9)
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Dabei bezeichnet Mg, die viskose Reibung, Mg~ die Coulomb’sche-Reibung. Aus Erfah-
rungen mit diesem Versuchstriger werden

Mp, = 0,1460,(t) und (7.10)

sign (6, (1))0, 15b,, 0,4—|—0,66_0’2é%(t)] fiir 0,(t) # 0
Mpre = sign(uq(t))0,15b,,  fiir 6;(t) =0 und |ug(t) —0,0171] > 0,15 (7-11)
b [Ua(t) — 0.0171] fiir 6;(t) =0 und |ug(t) — 0,0171] < 0,15

mit
bm = 0, 3797791n91kM (712)

gewdihlt.

Durch Zusammenfassen der Modelle der einzelnen Elemente ergibt sich das Modell des
Versuchstriagers zu:

My 4 nginiyJm My Mg ] 91(t) hy + Mpg
M, My My S (t) | + ha
M3 Mys M3 12(1) h3
0 0 0 0t) 1 T bm
+ 10 kgy O o1(t) | = 0 [ug(t) — 0,0171], (7.13)
0 0 k'312 (512(t) | 0

mit den Mefigleichungen

_ 21
0 (t) = T100m,, 2K

" _ 4

wy(0,052.1) = — 5578 1000dR 05 L4 (7.14)
" . 4

w1 (0,2,0) = 5648 1000dk sl U2

Dabei bezeichnet Uy; (i = 1,2) das durch den i-ten A /D-Wandler gelieferte digitale Signal.

7.2 Simulationsstudien

Um die Giite des Modells (7.13) zu iiberpriifen, wird das Systemmodell mit drei verschie-
denen Eingangsspannungen

1. wa(t) = 0, 5sin(nt) +0,0171 V,
2. ug(t) =sin(27t) +0,0171 V,

3. ug(t) = 0,4square(m(t +1/2)) +0,0171 V
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Bild 7.1: (a) Eingangsspannung 1; (b) Gelenkwinkel; (c¢) Biegung am MeBpunkt z =
0,052 m; (d) Biegung am MeBSpunkt = 0,2 m (,——* gemessen; ,—-“ simu-

liert)

simuliert. Bei den Simulationen werden m, und .J, zu 0,106 kg bzw. 0,000014 kgm?
gesetzt. In Bild 7.1, 7.2 bzw. 7.3 werden die Simulationsergebnisse mit den am Versuchs-
triger gemessenen Ausgingen verglichen. Die gemessenen Ausgangsgrofien des Versuchs-
triigers sind die Gelenkwinkel 6, (¢) und die Biegung w (z,t) am MeBpunkt z = 0,052 m
sowie x = 0,2 m.

Es ist zu erkennen, dafl das Modell den Versuchstriger mit ausreichender Giite beschreibt.
Sowohl die Gelenkwinkel, als auch die Frequenzen der Schwingungen an den zwei MeR-
stellen stimmen mit den entsprechenden gemessenen Gréflen gut iiberein. Wegen des
Getriebespiels des Versuchstrigers besitzt der Gelenkwinkel eine gréfiere Beschleunigung
bei dem Wechsel der Bewegungsrichtung. Dies verursacht eine groflere elastische Schwin-
gung. Da das Getriebespiel bei der Modellbildung nicht beriicksichtigt wird, hat die
gemessene elastische Schwingung eine groflere Amplitude als die simulierte. Im Vergleich
zum Mefpunkt z = 0,052 m stimmt die simulierte Schwingungsamplitude am Mefipunkt



7 Experimentelle Studien 27

T 15 T 0,6
4
17 0
0,2
2 05 % o
F ol =-02
-04
-0,5 06
1o 2 4 6 8 10 08, 2 4 6 8 10
t/s — t/s —
@ (b)
3 1
Lol T
I S
s ! =
S0 N
S | S
e -1 B
= ol
30 2 4 6 8 10
t/s —
(©) (d)
Bild 7.2: (a) Eingangsspannung 2; (b) Gelenkwinkel; (¢) Biegung am MeBpunkt = =
0,052 m; (d) Biegung am MeBpunkt x = 0,2 m (,——* gemessen; ,—-“ simu-

liert)

x = 0,2 m mit der gemessenen besser iiberein. Aus Bild 7.1, 7.2 und 7.3 ist auch der
Einfluf} des Getriebespiels auf den Gelenkwinkel klar zu erkennen.

7.3 Regelungsergebnisse

Im Hinblick auf das Modell des Versuchstrigers wird der Regler in vier Anteile
ua(t) = u®(t) + 4 (t) + 42(t) + ug(t) (7.15)

aufgespalten. Die ersten drei Anteile sind fiir die Bahnverfolgungsregelung des Gelenkwin-
kels und fiir die Ddmpfung der elastischen Schwingungen zusténdig, der letzte Anteil ug(t)
beschreibt die Kompensation der trockenen Reibung und des Offsets des Motorverstérkers.
Um u°(t), 4'(t) bzw. 42(t) fiir den betrachteten Roboter mittels des im Abschnitt 5 vor-
gestellten Reglerentwurfsverfahrens auszulegen, werden die nominalen Werte der Masse
und des Triigheitsmoments der Nutzlast als m{ = 0,106 kg, J) = 0,000014 kg-m? gesetzt.
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Bild 7.3: (a) Eingangsspannung 3; (b) Gelenkwinkel; (¢) Biegung am MeBpunkt = =
0,052 m; (d) Biegung am Mefpunkt = 0,2 m (,——“ gemessen; ,—-“ simu-

liert)

Somit lassen sich p; = 0,0564 und gy = 0,0082 berechnen, wenn das System (7.13) um
den Arbeitspunkt [g*(¢),g* ()] =10 0 0 0 0 0] und u,(t) = 0 linearisiert wird.

Fiir den Regleranteil u°(¢) gelten M, (o) = 0,06289 und C,,(o) = 0,1865. Die iibrigen
Parameter dieses Regleranteils werden als A = 6, K = 0,1907, p, = 0,0599, ¢ = 0,1
gesetzt.

Zur Bestimmung der Reglerparameter K; werden A—h = —1,0793, B_l1 = —7,9339 aus-

gewdhlt. Mit &, = 4 ist K1 = —0, 1852 zu berechnen.

Bei dem Entwurf des robusten Reglers (5.12) (k = 2) wird angenommen, daf§ d1,(t)
sich im Interval [—0,07, 0,07] dndert. Ferner werden A3, = —0,9721 und B2 = —1,5499
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angenommen. Mit & = @ folgt Ko = —0,8996. Fiir ug(t) gilt:
Zur Realisierung des Reglers (7.15) lassen sich d14(¢) und 012(¢) zu

= [l o ] e | -

berechnen. 6;(t), 611(t) bzw. 615(t) werden durch numerische Differentiation von 6, (t),
011(t) bzw. d12(t) ermittelt. Da wegen der numerischen Differentiation das Rauschen der
MefBsignale einen stiirkeren EinfluB auf dy,(¢) als auf é15(¢) hat, wird der somit resultieren-
de 6y1(t) anschlieBend durch ein digitales Butterworth-TiefpaBfilter 2. Ordnung mit der
Ubertragungsfunktion

10,0201 + 0,04022~" + 0, 0201z~
- 1—1,56127" 40,6414z
gefiltert. Die Sperrfrequenz fiir dieses Filter liegt bei 10 Hz.

H(z) (7.18)

Mit drei verschiedenen Nutzlasten:
1. my=0kg und .J,=0 kgm?
2. m,=0,106 kg und J,=0,000014 kgm?,
3. m,=0,211 kg und .J,=0,000033 kgm’
wird der Regler (7.15) am Versuchstréiger fiir drei verschiedenen Sollbahnen angewendet:

1. Sprungsfunktion von 1 rad (siehe Bild 7.4a),

2

0.27 40,47 (612 — 158> + 10E2) firt <2
2. 04(t) = _’”’”(ﬁ_ ot ) He=as
0,2m fiir t > 2 s,

3. 01 — 0,27 sin(0, 5rt) fiir t < 8 s,
0 fiir ¢t > 8 s.

Die experimentellen Ergebnisse sind in Bild 7.4 bis 7.9 dargestellt. Daraus ist zu erkennen,
dafl der Regler eine grofie Robustheit fiir den Roboter gewéhrleistet. Trotz einer 100%
Abweichung der Masse und des Trégheitsmoments der Nutzlast von ihren nominalen Wer-
ten funktioniert der Regler fiir die drei Sollbahnen sehr gut. Das Gelenk kann den drei
Sollbahnen mit hoher Genauigkeit folgen, obwohl die Sollbewegungen sehr schnell sind.
Gleichzeitig werden die elastischen Schwingungen gut geddmpft. Ferner 148t sich erken-
nen, daf eine stirkere elastische Schwingung einer schwereren Nutzlast entspricht. Dies
ist identisch mit den Ergebnissen aus den Simulationen. Aus Bildern 7.5b, 7.7b und 7.9b
ist zu erkennen, dafl der Rauschen der Meflsignale, der durch die digitale Differentiation
verstarkt wird, ein groflen Einflufl auf die Stellgr6fle hat, besonders wenn die elastische
Schwingung klein ist.
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Bild 7.4: (a) Gelenkwinkel; (b) Biegung am Mefipunkt # = 0,052 m (,——* gemessen;

,—-“ Sollbahn).



7 Experimentelle Studien

31

T 0,4 -

s 027

S-02

;H _0,4 L

064 2 4 6 8 10
t/s —
m,=0kg, J,=0 kgm?
1 r -

o
ol

<
ol

w,'(0,2,6)/1/m —»
o

1
=

2 4 6 8 10
t/s —>
m,=0,106 kg , J,=0,000014 kgm?

o

w,;"(0,2,t)//m —
o 8 =

o
3]

N —»

29 2 4 6 8 10
t/s —>
m,=0kg, J,=0 kgm?

unN  —>

0 2 4 6 8 10
t/s —>
m,=0,106 kg , J,=0,000014 kgm?

1 0 2 4 6 8 10 0 2 4 6 8 10
t/s —> t/s —>
m,=0,211 kg , J,=0,000033 kgm? m,=0,211 kg , J,=0,000033 kgm?
(a (b)
Bild 7.5: (a) Biegung am Mefpunkt x = 0,2 m; (b) Eingangsspannung (,, ——* gemessen;

,—“ Sollbahn).



7 Experimentelle Studien

32

=

ot)irad —»
S o
T © !

1
=

0 2 4 6 8 10
t/s —
m,=0kg, J,=0 kgm?

=

o0)rad —»
& o o

1
-

0 2 4 6 8 10
t/s —>

m,=0,106 kg , J,=0,000014 kgm?

=

o,(t/rad —»
o) o
o © wu»

2 4 6 8 10
t/s —
m,=0kg, J,=0 kgm?

2 4 6 8 10
t/s —>
m,=0,106 kg , J,=0,000014 kgn?

o

1 . . . . . . .
0 2 4 6 8 10 4 6 8 10
t/s — t/s —
m,=0,211 kg , J.=0,000033 kgm? m,=0,211 kg , J.=0,000033 kgm?
@ (b)
Bild 7.6: (a) Gelenkwinkel; (b) Biegung am Mefipunkt x = 0,052 m (,——* gemessen;

»,—-“ Sollbahn).



7 Experimentelle Studien 33

T 0,1 T 2
E 0,05 1r
E Z iy Ll w L
= 0 . ‘ " - =0 s s L
S S
—-0,05 -1
=
01, 2 4 6 8 10 20 2 4 6 8 10
t/s —> t/s —>
m=0kg, J,=0 kgm? m,=0kg, J,=0 kgm?
T 0,2 ' ' T 2 ' '
g 01 1r
| 2 . k
= 07 s €0 " i
N >
S-01f 1
=
-0,2 - - - - -2 - - - -
0 2 4 6 8 10 0 2 4 6 8 10
t/s — t/s —>
m,=0,106 kg , J,=0,000014 kgm? m,=0,106 kg , J,=0,000014 kgm?
T 0,2 T 2
= 0,1 i 1t
2 0f 2 i —
3 S0 "
g'oyl :ns 1 |
= -0,2
03 0 2 4 6 8 10 2 0 2 4 6 8 10
t/s —> t/s —»>
m,=0,211 kg , J,=0,000033 kgm? m,=0,211 kg , J,=0,000033 kgm?
@ (b)
Bild 7.7: (a) Biegung am Mefpunkt x = 0,2 m; (b) Eingangsspannung (,, ——* gemessen;

»—-“ Sollbahn).



7 Experimentelle Studien

34

o,t)rad —»

)
3

0 2 4 6 8 10
t/s —>
m=0kg, J,=0 kgm?

o,t)rad  —»

0 2 4 6 8 10
t/s —>

m,=0,106 kg , J,=0,000014 kgm?

o()irad —>
_—

S
ol

o
ul

w,'(0,052,8)/1/m —»
o

S
ol

2 4 6 8 10
t/s —>
m=0kg, J,=0 kgm?

o

o
o P

I
ol

w,'(0,052,8)/1/m—»
o

1
=

2 4 6 8 10
_>

t/s
m,=0,106 kg , J,=0,000014 kgm?

o

o
3

S
ol

w,'(0,052,8)/1/m —»
o

1 - - - - 1 - - - -
0 2 4 6 8 10 0 2 4 6 8 10
t/s —> t/s —
m=0,211 kg, J,=0,000033 kgm? m=0,211 kg, J,=0,000033 kgm?
@ (b)
Bild 7.8: (a) Gelenkwinkel; (b) Biegung am Mefipunkt x = 0,052 m (,——* gemessen;

»,—“ Sollbahn).



7 Experimentelle Studien

35

T 0,2 T 2
E 0,1 I 1 -
S0 2!
3-01 EN
= -0,2
0,3 ' ' ' ' -2 ' ' ' '
0 2 4 6 8 10 0 2 4 6 8 10
t/s —> t/s —>
m=0kg, J,=0kgm? m,=0kg, J,=0 kgm?
T 0,4
€ 02
E L
S 0
o
2-0,2
=
04 . —
0 4 6 8 10 0 2 4 6 8 10
t/s — t/s —>
m,=0,106 kg , J,=0,000014 kgm? m,=0,106 kg , J,=0,000014 kgm?
e 027 1
=
s 0 20
% -0,2 =
= -1
06 - - - - ; - - - -
0 2 4 6 8 10 2 0 2 4 6 8 10
t/s —> t/s —>
m,=0,211 kg , J,=0,000033 kgm? m,=0,211 kg , J,=0,000033 kgm?
(@) (b)
Bild 7.9: (a) Biegung am Mefpunkt x = 0,2 m; (b) Eingangsspannung (,, ——* gemessen;

,—-“ Sollbahn).



8 Zusammenfassung und Ausblick 36

8 Zusammenfassung und Ausblick

In diesem Forschungsbericht wird eine Methode zur robusten Bahnfolgeregelung fiir ela-
stische Roboter entwickelt. Dabei werden sowohl die Einfliisse der Unsicherheiten auf
die starre Dynamik als auch auf die elastische Dynamik des Roboters beriicksichtigt.
Hierzu wird das Modell des betrachteten elastischen Roboters zunéchst in einer Singular-
Perturbation-Standardform mit Parameterunsicherheiten dargestellt. Dann wird das Ro-
botersystem durch Verwendung der Multizeitenskalen-Multiparameter-Singular-Pertur-
bation-Methode in eine Gruppe ordnungsreduzierter Teilsysteme mit Unsicherheiten zer-
legt. Wéhrend ein fiir starre Roboter entwickelter robuster Bahnverfolgungsregler fiir das
starre Teilsystem verwendet wird, wird ein Verfahren zum Reglerentwurf fiir die schnel-
len Teilsysteme mittels robuster Polvorgabe vorgestellt. Die resultierenden Regler fiir die
schnellen Teilsysteme sind robust, nicht nur gegen die Parameterunsicherheiten, sondern
auch gegen die Anderung der Konfiguration des Roboters. Die Ergebnisse der Simulation
und der experimentellen Erprobung zeigen, dafl der resultierende Regler effektiv ist.

Diese Arbeit hat vorausgesetzt, dafl die Singular-Perturbation-Parameter klein genug
sind. Wenn diese Voraussetzung nicht erfiillt ist, kann diese Arbeit auf die korrigierte
Singular-Perturbation-Methode oder das Verfahren mittels Integralmannigfaltigkeit er-
weitert werden, um die Genauigkeit zu erhohen.

Der Verfasser dankt dem DAAD fiir seine Unterstiitzung.
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