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1 Einleitung

Inzwischen lassen sich viele systemtheoretische Zusammenh#nge bei nichtlinearen Syste-
men mit Hilfe der Differentialalgebra beschreiben. Die Differentialalgebra geht bei der
Systembeschreibung von Ein-/ Ausgangsdifferentialgleichungen aus (Fliess 1988), welche
rational beziiglich ihrer Argumente sein miissen. Aus diesen Ein-/ Ausgangsdifferenti-
algleichungen kann ein Zustandsmodell gebildet werden. Bei der physikalischen Modell-
bildung geht man normalerweise in der umgekehrten Reihenfolge vor. Dabei werden oft
nichtrationale Funktionen verwendet. Die fiir die Differentialalgebra notwendigerweise
rationalen Ein-/ Ausgangsdifferentialgleichungen stellen fiir die Modelle real existieren-
der Anlagen keine Einschrankung dar, da fiir sie ggf. ein entsprechendes Ersatzsystem
gefunden werden kann (Fliess 1987). Besitzt man allerdings kein solches Ersatzsystem,
ist es nicht moglich, die Differentialalgebra zur Systemuntersuchung heranzuziehen. Die
systematische Konstruktion des Ersatzsystems bildet den Gegenstand dieser Arbeit.

Grundlegende Uberlegungen wie ein solches Ersatzsystem aussehen kann, finden sich viel-
fach in der Literatur, wie z.B. bei Fortell (1995). Diese Grundgedanken ermdoglichen
jedoch noch keine automatisierte Anwendung. Der in dieser Arbeit vorgestellte Algorith-
mus liefert ein Ersatzsystem, welches den Anforderungen der Differentialalgebra geniigt.
Die Trajektorien der Losungen des ,,Originalsystems* stimmen mit den ersten Kompo-
nenten der Losungen des Ersatzsystems iiberein. Dieser Zusammenhang legitimiert die
weitere Untersuchung des Ersatzsystems anstelle des urspriinglichen Systems. Ferner ist
dieser Sachverhalt fiir spitere physikalische Interpretationen wichtig. Der Algorithmus ist
so formuliert, dafl eine direkte Umsetzung in ein Computer—Algebra—System moglich ist.

Der Inhalt dieser Arbeit gliedert sich wie folgt: In Abschnitt 2 finden sich einfiihrende
Uberlegungen in die Problematik hinsichtlich der Konstruktion eines Ersatzsystems. Des
weiteren sind dort die Grundideen des Ersatzsystemalgorithmus dargelegt. Der Abschnitt
3 beschreibt den kompletten Ersatzsystemalgorithmus. Es hat sich herausgestellt, daf
fiir alle nichtrationalen Funktionen eine gesonderte Untersuchung durchzufiihren ist. Es
wiirde den Rahmen dieser Arbeit sprengen, wollte man alle nur erdenklichen nichtratio-
nalen Funktionen beziiglich einer optimalen Konstruktionsanweisung untersuchen. Daher
wird hier nur fiir die, bei der Modellbildung géngigsten nichtrationalen Funktionen die op-
timale Konstruktionsanweisung vorgestellt. Als die wichtigsten nichtrationalen Funktio-
nen, beziiglich der Modellbildung, werden hier die trigonometrischen Funktionen (Sinus,
Kosinus, Tangens, Arcussinus, Arcuskosinus und Arcustangens), die Wurzelfunktion, die
Logarithmus- und die Exponentialfunktion angenommen. Als Anwendungsbeispiel dient
im Abschnitt 4 das analytische Modell des inversen Pendels. Den Abschluf} bildet eine
Zusammenfassung mit Ausblicken in dem Abschnitt 5.
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2 Grundidee des Ersatzsystemalgorithmus

Ist das Ziel der Modellbildung eines technischen Systems ein ALS der Form

z(t) = a(z(t)) + B(z(t))u(t) , x(t) € R, u(t) € R™,
y(t) = c(z(1)) , y(t) R,

fiihrt dies meist zu nichtrationalen Funktionen a, B und ¢, weshalb die Differentialal-

(2.1)

gebra zumeist nicht direkt zur Systemanalyse herangezogen werden kann. Wie bereits
erwihnt, gibt es fiir die Modelle real existierender Anlagen Ersatzsysteme (Fliess 1987).
Diese Ersatzsysteme verwenden nur rationale Funktionen zur Systembeschreibung. So-
mit ist es moglich, mit differentialalgebraischen Analysemethoden die Ersatzsysteme zu
untersuchen.

Zur Einfiihrung in die Problematik der Konstruktion eines Ersatzsystems dient das nach-
folgende Beispiel 2.1. In diesem wird ein skalares System mit einem trigonometrischen
Term durch Substitutionen und Zustandserweiterungen in ein ALS transformiert, welches
den Voraussetzungen der Differentialalgebra geniigt.

Im Anschlufl an das Beispiel wird die exemplarisch vorgefiihrte Ersatzsystemkonstruktion
ganz allgemein formuliert. Diese allgemeine Darstellung besitzt zwar eine sehr kompakte
Form, 148t sich aber noch nicht als programmierbarer Algorithmus auffassen. Aus diesem
Grund schlief3t sich der Abschnitt Ersatzsystemalgorithmus an, in dem die Thematik so
aufbereitet wird, dafl die Ersatzsystemkonstruktion programmiert werden kann.

Beispiel 2.1: Fiir das skalare System der Form (2.1) mit

1
alw) = sin(x)
B(z) = =z und (2.2)
c(x) = 2z

ist ein Ersatzsystem zu bestimmen. Dies ist notwendig, um die Differentialalgebra
anwenden zu kénnen, da die Funktion a(x) nichtrational ist. Um das Problem zu be-
heben, definiert man die Hilfsfunktion 7 (z) := sin(z). Mit dieser Hilfsfunktion 148t
sich das Zustandsmodell (x; := x) um eine neue Zustandsgrofie xo(t) := ri(x1(t))
erweitern. Die zeitliche Ableitung der neuen Zustandsgrofe ist folgendermaflen dar-

stellbar:
ialt) = %rl(xl(t)) = cos(aa (1) (1) = cos(i (1)) | s+ ()ulr)| - (23
_ cos(xl(t))x;(t) + cos(an(t) o1(t) u(t) - (2.4)
b > g =: Q1(z(t))
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Diese Erweiterung liefert das System
ot + u(t)
i (1) a@®) | | Qi) 22
y(t) = 2x(t)
i (1) L o (%)
= (1) + ult)
= | i cos(:cl(t))x;(t) cos(a (1)) 1 (1) (2:6)
y(t) = 2x(t) .

Durch den auftretenden Kosinusterm in i, geniigt das System (2.6) immer noch
nicht den Anforderungen der Differentialalgebra. Eine zusitzliche Hilfsfunktion
ro(21) 1= cos(xy) 16st jedoch dieses Problem. Mit dieser Hilfsfunktion wird erneut
eine Systemerweiterung iiber die ZustandsgroBe z3(t) := ro(z1(t)) durchgefiihrt. Die
zeitliche Ableitung der neuen Zustandsgrofie x3 148t sich, ganz analog zur Ableitung

von T, durch

_ d . : 1
3(t) = Fre(21(t)) = —sin(z.(t)) 41(8) = —22(t) erxl(t)U(t)
= L+ (CDm) n() (2.7)
=: q2( (1)) =: Qa2 (x(1))
ausdriicken.

Die beiden neuen Zustandsgrofien zo(t) und z3(t) liefern jetzt das Ersatzsystem

- - B 1 7 - -

(1) . (t)l 1 (1)
i) | = | s(t) n@ | | w®n@) | u®), (2.8)
| #3(t) | | e(z(t) | L QA2@) |
y(t) = 2x41(t)
— - B 1 7 — -
1(t) o t)l 1(2)
| d@ | = | ms®) n@ || wOn® |, (2.9)
| a3(t) | -1 | L m®n@)
y(t) 214 (t)
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Das Ersatzsystem (2.9) besitzt in x(t) die gleiche Losung wie das urspriingliche
System (2.2). Da nur noch rationale Funktionen verwendet werden, ist jetzt die
Anwendung der Differentialalgebra auf das Ersatzsystem (2.9) moglich. 0

Das im Beispiel 2.1 angesprochene Problem der Systemtransformation soll nun allgemein
geldst werden. Zunichst sind in a(x), B(x) und c(x) alle Terme, die eine Klassifikation

als rationale Funktion in @ verhindern, durch Hilfsfunktionen r;(x) (i = 1,...,0) zu
substituieren. Die sich daraus ergebenden Funktionen a(x,r(x),...,r.(2)),
B(z,r(x),...,ro(x)) und &z, r(z),...,r.(z)) sind rational in x und ri(x),...,r.(x).

Die Identitaten

fz(a:, ri(x),...,r.(x)) = a(x)
B(x,r(x),...,7.(x)) = B(x) (2.10)
c(x,ri(x),...,r.(x)) = c(x)

gelten fiir alle @ € R”, fiir die die Funktionen a, B und ¢ definiert sind.

Eine solche Substitution ist immer moglich, und die Losungen des Systems (2.1) sind
identisch mit denen des Systems

a::&(m,rl(m),...,r(,(a:))—i—B(a:,rl(a:),...,r(,(a:))u , zeR" uecR™, (2.11)

y = e(@, (@), ..., 75(2) - |

Im néachsten Schritt wird das Zustandsmodell um o Zustinde mittels der Vorschrift
Tnip =1e(x) , k=1,...,0 (2.12)

erweitert. Die zeitlichen Ableitungen der neu eingefiihrten Systemzusténde lassen sich
wie folgt darstellen:

d

Tpr = ET]C( x) = gk(:c,an, e ,xnw)l + Qk(:c,a:nH, e ,xnﬂ,)l u (2.13)
EVR c Iéfxm
fir ke {1,...,0}.
Die Definition der Funktionen ¢ und Qy (k € 1,...,0) soll so verstanden werden, daf} in

der zeitlichen Ableitung von rj(2) alle nichtrationalen Funktionen fiir die bereits Hilfs-
funktionen bzw. neue Systemzustinde eingefiihrt wurden, durch diese zu ersetzen sind.
Aus diesem Grund konnen die neu eingefiihrten Funktionen ¢, und Qy (k € 1,...,0) auch
von den soeben definierten Systemzustdnden x,41,...,2Z,+, abhdngen. Eine Aufteilung
der zeitlichen Ableitung der neuen Systemzustéinde, wie sie in (2.13) vorgenommen wird,
ist moglich, da ein ALS zugrundegelegt wird. Diese Voraussetzung ermdglicht ndmlich
die Substitution von &; in $r;(x) durch [a;(z) + Bi(z)u] (i € {1...,n}).
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Insgesamt ergibt sich das System

T a(T,Tpity. oy Tnto) B(z,Tpi1,- . Tnto)
:tn+1 q1($7xn+17"'7xn+0) Ql(maxn+17"'7xn+tr)

) = ) + ) u,
‘ (2.14)
Tnto qd(wa Tty --- 7xn+rf) Qa(ma Tpt1y- - - 7xn+rf)

Yy = é(ma Tp41ye - 7xn+0') )

welches in den ersten n Zustinden die gleichen Losungen wie das System (2.1) aufweist.
Damit jedoch eine Transformation entsteht, welche den Anforderungen der Differential-
algebra geniigt, miissen die zeitlichen Ableitungen der Hilfsfunktionen r(x),...,r,(x)
rationale Ausdriicke ergeben, d.h. es muf}

!
(T, Tpi1y - oy Tnyo) € Rl@,2p41,..., 2040 und (2.15)

!
Qr(T,Tpi1y. o Tnro) € RlE,2pi, . Tnie] ,VEk=1,...,0

gelten. Ist die Bedingung (2.15) nicht erfiillt, kann dieses Problem oft durch die Einfiihrung

weiterer Hilfsfunktionen (r,,1(x),...,rs(x)) bzw. weiterer Systemzustinde behoben wer-
den (vgl. Beispiel 2.1). Sind keine weiteren Hilfsfunktionen notwendig, nimmt § den Wert
) =0 an.
Gilt jetzt
@ (T, Tnsts ooy Tngs) ? Rl@, #ni1,. ., onys] und (2.16)
Qk(maxn—l—la' .- 7xn+5) € R[maxn-i—la .- '71‘n+5] ) Vk= ]-7' . '76 )

so stimmen die Losungen der ersten n Zustinde des Systems

T a(T, Tty -y Tnis) B(x, Tty Tnyis)
Tpt1 (J1(33, Tp4ly--- ,$n+5) Ql(ma T4y - ,3Un+6)
. = . + . u
. (2.17)
Tn+6 qé(maxn—l—la---axn—l—&) Qé(maxn—l—la---axn—l—&)
Yy = é($,$n+1,...,l’n+5) y
N ¢ = a(@)+B@u , 2R yecR" (2.18)
|y (@) , ye R

mit denen des Anfangssystems (2.1) iiberein. Da die Funktionen a(&), B(&) und &(&) ra-
tional sind, ist die Anwendung der Differentialalgebra auf das Ersatzsystem (2.18) moglich.
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3 Ersatzsystemalgorithmus

Die im vorhergehenden Abschnitt dargestellte Idee zur Konstruktion eines Ersatzsystems
wird nun als Algorithmus formuliert, damit eine automatisierte Anwendung erfolgen kann.
Fiir die folgenden nichtrationalen Funktionen ist explizit angegeben, wie die optimalen
Konstruktionsanweisungen zu gestalten sind:

e Trigonometrische Funktionen (Sinus, Kosinus, Tanges, Arcussinus, Arcuskosinus und
Arcustanges),

e die Wurzelfunktion und
e die Logarithmus- und Exponentialfunktion.

Die Konstruktion des Ersatzsystems fiir ein ALS der Form (2.1) erfolgt iterativ in jeweils
drei Teilschritten: Im ersten Teilschritt werden die zur Zustandserweiterung benotigten
Hilfsfunktionen bestimmt (vgl. (2.10)). Der zweite Teilschritt erweitert das Zustands-
modell, wobei der Ubersichtlichkeit halber in diesem Teilschritt die konkreten Transfor-
mationsanweisungen einiger besonders wichtiger nichtrationaler Funktionen teilweise in
die Unterabschnitte 3.1, 3.2 und 3.3 ausgelagert werden. Der dritte und letzte Teilschritt
iiberpriift, ob das Ersatzsystem bereits den Anforderungen der Differentialalgebra geniigt.
Ist dies nicht der Fall, sind noch weitere Iterationsschritte erforderlich.

Im nachfolgenden Algorithmus werden diese Variablen verwendet:

nk—1 : Dimension des Systemzustandes im (k — 1)-ten Iterationsschritt (k € Ny).

or  : Anzahl der Hilfsfunktionen, die fiir die erste Zustandserweiterung im k-ten
Iterationsschritt notwendig sind.

dr  : Gesamtzahl der neuen Systemzustinde im k-ten Iterationsschritt. Dieser
Wert wird ggf. mehrfach in einem Iterationsschritt gesetzt bzw. erhoht.

Zur Initialisierung (k = 0) setze

‘a(z) = a(x) 0 n _:
Ble) — Blx) [ > d &:=0 . (3.1)
Oc(z) = c(x)

Der Transformationsalgorithmus wird mit k£ = 1 gestartet.

Iterationsschritt k, k > 1:

Teilschritt k£.1: Setze abkiirzend die Variable

k-1

Ng_1:=n+ Z 61 5 (32)

1=0
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und bestimme fiir das ALS *~'3 die Hilfsfunktionen ry(*~'x),... r, (*"'x), um

das System in der Form

Flp= gt te r (), () 5 B e, (P ), e, (P ) )u
y= le(*le, (), ..., (FlT))
mit (3.3)

F-lge RM-1, 4 € R™
ye RP

schreiben zu konnen (vgl. (2.11)).

Teilschritt k.2: Erweitere das Zustandsmodell =% anhand der Hilfsfunktionen

ri(*1z), ..., 1 (F'x) um o} Zustinde mittels

kilxnk,ﬁﬂ'(t) = Tj(kilm(t))ﬁ J=1..., 0. (34)

Die zeitlichen Ableitungen der mit (3.4) neu eingefiihrten Systemzustinde lassen
sich folgendermaflen aufteilen:

d
k-1, k—1
Tny = i)
= g] (k_lm,k_l xnk—l‘i‘l’ . ,k_l xnk—l+ak)J +
eR
+ Qj(kilm,kil xnk71+1, RN ,kil xnk71+o'k)1 u 9 (35)
€ H@m

ke{l,...,o}.

Die Definition der Funktionen ¢; und Q; (j € {1,...,04}) soll so verstanden wer-

den, dafl in der zeitlichen Ableitung von r;(z) (j € {1,...,0%}) alle nichtratio-
nalen Funktionen, fiir die bereits Hilfsfunktionen bzw. neue Systemzusténde ein-
gefithrt wurden, durch diese zu ersetzen sind. Aus diesem Grund konnen die neu
eingefiihrten Funktionen ¢; und Q; (j € {1,...,0%}) auch von den in (3.4) neu de-
finierten Systemzustinden abhéingen. Eine Aufteilung der zeitlichen Ableitung der
neuen Systemzustéinde wie sie in (3.5) vorgenommen wird, ist moglich, da ein ALS
zugrundegelegt wird. Diese Voraussetzung erméglicht ndmlich die Substitution von

g in Lr(F ) durch [Fle;(Fle) +57 Bi(Fte)u] (i€ {1 1)),
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Die Erweiterung des Systems '3 hat (vgl. (2.14)) die Gestalt

k=1 k=1 (k=1,. k—1 k—1
T a(" 'z, Ty 41 os Ty toy)
k-1 k1., k—1 k-1
Trj_1+1 ql( T, Tnp_q+15 -+ xnk—l-i-ok)
) = ) +
k-1 k-1, k—1 k-1
xnk_1+ak QUk( T, xnk_l-i-la B xnk_l-i-ak)
k-1 k-1 k—1 k—1
B( T, L1411y s xnk—1+0'k)
k=1, k—1 k—1
Ql( T, L1411y s xnk—l‘H"k)
) , (3.6)
k=1, k—1 k—1
fok( €T, Lrug_141se s xnk—1+0'k)
_ k—1~k—1,., k-1 k—1
y = e(" e, T 1 -s Ty top)
Ausgangsbelegung der Variable 0, fiir die erneute Systemerweiterung ist
(Sk = 0 - (37)

Die neuen Zustandsgrofien #=!

Tp,_,+i, deren zeitliche Ableitung [¢; +Q;u] keinen ra-
tionalen Ausdruck darstellt, erfordern weitere Transformationsmafinahmen. In den
Unterabschnitten 3.1, 3.2 und 3.3 ist fiir die gebrduchlichsten nichtlinearen Funktio-
nen angegeben, wie die optimale Konstruktionsanweisung aussieht. Je nachdem wel-
che Mafinahme durchgefiihrt wird, erweitert sich ggf. nochmals das Zustandsmodell.
Eine Erweiterung des Zustandsmodells fiihrt zu einem neuen Wert in der Variable dy,
(0 > o). In einigen Féllen werden im Unterabschnitt 3.1 die neuen Funktionen ¢;
und Q;(i € {1,...,8;} gebildet. Alle Funktionen ¢; und Qj (7 €{1,...,0r}), welche
nicht in dem Unterabschnitt 3.1 explizit definiert wurden, sind iiber die Identitéiten

~ k=1, k— k— k=1, k- k—

qj( lm, lxnk_l-l-l? SRR ! xnk_1+5k) = QJ( lma ll'nk_1+1, ) ! xnk_1+5k)a

N (k— k— k— k— k— k—

Qj( 1$7 lxnk71+1, SRR ! xnk—1+5k) = Q]( lwa ll‘nk71+1, SRR ! xnk—1+5k)7
jefl,. .. 50 (3.8)

einzufithren. Insgesamt resultiert aus diesem Iterationsschritt (vgl. (2.17)) das
System
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k—1, k-1 (k—1 k—1 k—1

T a("tx, Tpp 1y e es Ty +6,)

-1, ~ o (k—1 k—1 k—1

Tng,_1+1 . QI( T, Tng 141y xnk,1+6k)
k—1, ~ k—1 k—1 k—1

L1406k, Q5k( T, Lrg_141s- - xnk—1+5k)

k-1 k-1 k—1 k—1
B( €T, l'nk_1+1, Ceey xnk—1+5k)

Ql(k_lma k_lxnk._l-i-l? LR 7k_1 xnk_1+6k)

~

Q‘Sk (k_lw’ k—lxnk71+1, s 7k_1 xnk71+5k)

Yy = k71~(k71$; kflxnk71+1, st 7k71 x”k*1+5k)
ki kg (k kB (k k k Rk —1+0k R™
& T ka(k“’)+ (") "u o e U € = £32 . (3.10)
y = ‘e(z) y ek

Teilschritt £.3: Der Ersatzsystemalgorithmus kann abgebrochen werden, wenn
i:(Fz) e RFz] A Qilfz) e R™™Fz] Vie {1,...,6)} (3.11)

gilt. Ist (3.11) nicht erfiillt, fihrt man mit dem Teilschritt £.1 fort. O

3.1 Trigonometrische Funktionen

Dieser Unterabschnitt ist als Teil des Ersatzsystemalgorithmus (Teilschritt £.2) zu se-
hen und nicht als autonome Konstruktionsanleitung. Im folgenden wird dargelegt, wie
die Zustandserweiterungen bzw. Substitutionen fiir die nichtrationalen Funktionen Sinus,
Kosinus, Tanges, Arcussinus, Arcuskosinus und Arcustanges vorzunehmen sind.

Sinus: Jede neue Zustandsgrofe * 'z, . (i € {1,...,8;}) in (3.4), die einem Sinus-
term der Form

k_137nk_1+i = Ti(k_lm) = Siﬂ(gi(k_lm)) )
gi € C®(R™',R), iec{l,...,6} (3.12)

entspricht und deren zeitliche Ableitung nichtrational ist, d. h.

d
k—1 _ k—1 k—1 k—1
dt Tnp_1+i = qz( T, Tnp 1415+ xnk,1+6k) +

k—1 k—1 k—1
+QZ( T, Tnp_1+1s -+ xnk—1+5k)u

¢ R[kilaz, kilxnkflﬂ, o ,kil Ty +0] 5 (3.13)
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erfordert eine weitere Hilfsfunktion und einen neuen Systemzustand. Jede neue
ZustandsgroBe der Form (3.12) erfordert eine Systemerweiterung. Die daraus resul-
tierenden Systemerweiterungen seien hier fiir eine Zustandsgrofe ¥z, 4,

(7 €{1,...,0x}), die die Bedingungen (3.12) und (3.13) erfiillt, dargestellt:
Eingefiihrt werden die neue Hilfsfunktion 75 1, und der neue Systemzustand

k—1
T, +o,+1 durch

k

1 (le) = cos(g; (M) 5 M e s = s (FlE) (3.14)

Die zeitliche Ableitung der neuen Zustandsvariable ’“*Ixnk_ﬁgk“ definiert die Funk-
tionen ¢, +1 und @5, +1 durch

i s = — sin(g;("'e)) g;("e) = = a4 g, e
Q5k+1(k71$7 kilxnkf1+17 s 7k71 xnk—1+5k) +
+ Q(Sk-l-l(k_lm) k_lxnk_l-i-l) s 7k_1 xnk_1+6k) u . (315)
Der Kosinusterm in
i‘nk_l—i-j = qj(k_lma k_lxnk_l-i-l) s 7k_1 xnk_l—i—ék) +
+ Qj(kilwa kilxnkf1+17 S 7k71 xnk—1+5k)u
= cos(g;(" 'x)) g;(* ') (3.16)

ist durch kilxnk_ﬁ(;kﬂ zu ersetzen. Durch diese Substitution werden die Hilfsfunk-
tionen ¢; und (); eingefiihrt:

k—1, _ k-1 - (k—1
Tnp_1+j = Lng_146,+1 gj( iB)
.~ k—1 k—1 k—1
- q6k+1( m? xnk_1+17 sy xnk_1+6k+1) +
A k—1 k—1 k—1
+ Q5k+1( T, Tng_1+1 -+ xnk_1+6k+1) u . (317)

Insgesamt resultiert das System
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Fk—1, T rk—1g5(k—1 k—1 k—1 T
T a’( T, Tnj_1+1 -+ xnk_l-l-(ik.)
k—1, k—1 k—1 k—1
Trj_1+1 ql( T, Tng_1+1s -+ xnk—1+5k)
k—1, _ A~ (k—1 k—1 k—1
xnk_1+j - q]( T, xnk_l-i-l) B xnk_1+5k+1) +
k—1, k—1 k—1 k—1
Tnp_140; q5k( T, Tnp_141y -+ xnk_1+(5k)
k—1, k—1 k—1 k—1
L Tnp 1 +6,+1 L q5k+1( T, Tng 141y xnk,1+5k) i
(k-1 k-1, k-1 k-1 T
B( T, Tnp_1+1s -+ xnk_l-l-(ik.)
k—1 k—1 k—1
Ql( T, xnk_l-l-l? R xnk_1+6k)
A (k—1, k-1 k—1
+ QJ( T, Tnp_q+15 -+ xnk—1+5k+1) u (3 18)
R .
k—1 k—1 k—1
Q5k( T, Tnp_141y -+ xnk_1+(5k)
k—1 k—1 k—1
_Q5k( T, Tng_14+1r- - xnk,1+5k+1)_
_ k—140k—1 k—1 k—1
Yy = c( Z, Tng_1+15 -+ xnk—1+5k)

Pro Zustandsgrofe, die (3.12) und (3.13) erfiillt, mufl 0, um eins erhoht werden,
dies geschieht nach der jeweiligen Systemerweiterung (3.18).

Ganz analog zum Sinus wird der Kosinus transformiert:

Kosinus: Jede neue Zustandsgrofe 'z, 1 (1 € {1,...,0}) in (3.4), die einem Ko-
sinusterm der Form

i o= i le) = cos(gi(* )
gi € CR(RY%-1R), i€ {1,...,6,} (3.19)

entspricht und deren zeitliche Ableitung nichtrational ist, d. h.

d
k—1 _ k—1 k—1 k—1
& Tnp_1+i = Qi( T, Tnp_q+15- -+ xnk—1+5k) +
k—1 k—1 k—1
+QZ( €T, Trje_y+1y -5 xnk—1+5k)u
k—1 k—1 k—1
¢ R[ €T, Tnp_141y -+ xnk—l"‘(sk] s (320)

erfordert eine weitere Hilfsfunktion und einen neuen Systemzustand. Jede neue
ZustandsgroBe der Form (3.19) erfordert eine Systemerweiterung. Die daraus resul-
tierenden Systemerweiterungen seien hier fiir eine Zustandsgrofe ¥z, 4,

(7 €{1,...,0}), die die Bedingungen (3.19) und (3.20) erfiillt, dargestellt:
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Eingefiihrt werden die neue Hilfsfunktion 75,1, und der neue Systemzustand
kilxnk_l+5k+1 durch

k-1

ror1(Fra) = sin(g; () A Tyttt = 1o (FE) (3.21)

Die zeitliche Ableitung der neuen Zustandsvariable k’lxnkfﬁ(gk“ definiert die Funk-
tionen g5, +1 und @5, +1 durch

i rn = cos(gi (")) g;(F ) = a4y g(" )
= Q5k+1(k71$7 kilxnkf1+17 s 7k71 xnk—1+5k) +

S k=1, k-1 k-1

+ Q5k+1( Zz, Tng_141y- -+ xnk_1+6k) u . (322)
Der Sinusterm in
j:lnk—l‘Fj = qJ'(kilwa kilxnkf1+17 s 7k71 xnk—1+5k) +
+ Qj(k_1m7 k_lxnk—ﬁ-la s vk_l xnk—1+5k)'u'

— —sin(g,(* ")) 4;('2) (3.23)

ist durch kilxnk_ﬁ(;kﬂ zu ersetzen. Durch diese Substitution werden die Hilfsfunk-
tionen ¢; und (); eingefiihrt:

k-1, _ k-1 » (k-1
Tng 1+j = Lng_146,+1 gj( iB)
~ k—1 k—1 k—1
q5k+1( z, xnk_l-l—la IO xnk_l-l—(Sk—I—I) +
A k—1 k—1 k—1
+ Q5k+1( €T, Tnp_ 141y xnk71+5k+1) u . (324)
Insgesamt fiihrt dies zu dem System
Fk—1, 7 rk—15(k—1 k—1 k—1 ]
T a’( T, Tnj_1+1r -+ Ink-_l-l-(ik.)
k—1, k—1 k—1 k—1
Trj_1+1 ql( T, Trg_1+1s -+ xnk—1+5k)
k—1

. _ A (k—1 k—1 k—1
xnk_1+j - q]( T, Ink._l-i-l) R xnk_l—i—ék-i—l) +

k—1, k—1 k—1 k—1
Tnp_140; q5k( T, Tnp_141y -+ xnk_1+(5k)
k—1, k—1 k—1 k—1
L Tnp 1 +6,+1 L q5k+1( T, Tng 141y xnk,1+5k) i
(k-1 k-1, k-1 k-1 T
B( x€r, Tppe_q141y -+ xnk_l+5k)
k—1 k—1 k—1
Ql( T, xnk_l-l-l? R xnk_1+5k)
A (k—1, k-1 k-1
Q' €r Tnp 141y Ty 146,41
+ ]( ) ng—1+1y ’ Ng_1+0k+ ) u, (325)
k—1 k—1 k—1
Qﬁk( T, Tnp_141y -+ Ink_1+(5k)
k—1 k—1 k—1
_Q5k( T, Tng_14+1y -+ xnk,1+5k+1)_
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Fiir jede ZustandsgroBe, die (3.19) und (3.20) erfiillt, muf §; um eins erhht werden,
dies geschieht nach der jeweiligen Systemerweiterung (3.25).

Tangens: Wird der Tangens in (3.4) verwendet und haben die neuen Systemzustéinde
die Form
g o= n(tTe) = tan(g(*T'2)
gi € CO(R™',R), i € {1,...,04}, (3.26)

dann sind keine weiteren Transformationen erforderlich. Denn die Ableitung ergibt

d . - . ke
=" Ty 1i = [1+9z'2(k 135nk_1+i)} Ggi(" ) (3.27)

dt

was, von ¢;(*~'z) abgesehen, ein polynomialer Ausdruck ist. Im nichsten Iterati-

(k:—l

onsschritt muf} gepriift werden, ob ¢; x) einer Transformation bedarf.

Nun zu einem trigonometrischen Term, der fiir die Approximation der Reibung eine be-
sonders wichtige Rolle spielt, dem Arcustangens.

Arcustangens: Die Verwendung des Arcustangens im System (3.4) durch
kilxnk—rH = rdkilm) = aICtan(gAkilm))v
gi € C*(R™*1 R), i € {1,...,01} (3.28)

erfordert beziiglich des Arcustangens keine weiteren Transformationen. Denn die
Ableitung der neuen Systemzustidnde ergibt
d

1
-1 o s (k—1
a Tnp_1+i = W gi(" ), (3.29)

was, von ¢;(* 'x) und g;(* 'x)? abgesehen, ein rationaler Ausdruck ist. Im néichsten
Iterationsschritt mufl gepriift werden, ob die beiden eben genannten Terme einer
Transformation bediirfen.

Arcussinus: Wird der Arcussinus in den neu eingefiihrten Zusténden in (3.4) mit

k (kfl

r, 4 = m(*lz) = arcsin(g;("'z)),
gi € C¥(R™',R), i € {1,...,0%} (3.30)
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verwendet, so besitzt die Ableitung die Gestalt

d k—1 1 - (k—1
- Tnp_14+i = i ZI) . 3.31
e = s ') (331)

Dies ist zwar kein rationaler Ausdruck, es muf} jedoch nur die Wurzelfunktion ersetzt
werden, was im néchsten Iterationsschritt geschieht. Diese Transformation ist im
Unterabschnitt 3.2 beschrieben. Die Frage, ob g;(x) und g?(x) rational sind, wird
im néchsten bzw. {iberndchsten Iterationsschritt geklart.

Arcuskosinus: Der Arcuskosinus weist prinzipiell die gleichen Eigenschaften wie der
Arcussinus auf, d.h. sind in den neuen Systemzustinden Terme in (3.4) der Form

k (k—l

o, o= nfle) = arccos(g;(" ') ,

g; € C®(R%-1,R), i€ {l,...,04} (3.32)

enthalten, so ergibt sich als Ableitung

d _ -1 . k1
T Ty 4i = =y gi(" x) . (3.33)

Dies ist zwar kein rationaler Ausdruck, es mufl aber wie beim Arcussinus nur die
Wurzelfunktion ersetzt werden. Eine Aufgabe, die im néchsten Iterationsschritt
durchgefiihrt und im Unterabschnitt 3.2 behandelt wird. Die Frage, ob §;(x) und
gZ(z) rational sind, wird wie beim Arcussinus im néchsten bzw. iibernéichsten Ite-
rationsschritt geklart.

3.2 Wurzelfunktionen

Dieser Unterabschnitt ist wieder als Element des Ersatzsystemalgorithmus, Teilschritt
k.2, zu verstehen.

Bei der Verwendung der Wurzelfunktion ist genauso vorzugehen wie bei der Verwendung
des Arcustanges, denn alle neuen Systemzusténde in (3.4) der Form

T2 i = ni(tTe) = Vel

g; € C2(R™1 R), i € {1,...,0%} (3.34)

k

besitzen die zeitliche Ableitung

d 1 . (k=1

a Tmerti T kg gi(" ") (3.35)
Bis auf die an dieser Stelle noch ungeklérten Frage, ob g;(x) bzw. ¢;(x) rational sind,
ergibt % k’lxnkfﬁi einen rationalen Ausdruck und bedarf daher keiner weiteren Trans-
formation. g;(x) und ¢;(x) werden im néchsten Iterationsschritt untersucht.
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3.3 Logarithmus- und Exponentialfunktionen

Dieser Unterabschnitt ist als Teil des Ersatzsystemalgorithmus zu sehen, nicht als auto-
nome Konstruktionsanleitung, er bezieht sich auf den Teilschritt £.2.

Die Exponentialfunktion und die Logarithmusfunktion bereiten keine Schwierigkeiten,
denn die neuen Systemzusténde in (3.4), welche durch

k (Ic—l

g =t le) =90 ®) e C¥(R™LR), i€ {1,...,04) (3.36)

gegeben sind, besitzen die zeitliche Ableitung

d . _ b
dt * lxnk—ﬁ'i = F lxnk_lﬂ' gi(k 133) . (3.37)

Die neuen Zustandsvariablen in (3.4) mit

k—1 (k=1
Tnp_14i = Ti(

z) = In(g:(""'2)) , gi € CX(R™"R), i€ {L,....c}  (3.38)
weisen die Ableitung

d 1 c k-1
in Ty 14i = m Gi(" ) (3.39)

auf. In beiden Fillen ist in diesem Iterationsschritt keine Transformation notwendig. Der
néchste Durchgang zeigt, ob g;(x) und ¢;(x) weiter zu bearbeiten sind.



4 Anwendungsbeispiel: Inverses Pendel 16

4 Anwendungsbeispiel: Inverses Pendel

Im Fachgebiet Mef3-, Steuer- und Regelungstechnik der Gerhard-Mercator-Universitét
Duisburg ist der Versuchsstand inverses Pendel vorhanden (vgl. Bild 4.1).

»

Y

Bild 4.1: Versuchsstand inverses Pendel

In dem schematischen Versuchsaufbau (Bild 4.2) sind die auftretenden physikalischen
Krifte eingetragen. Die Modellbildung wurde aber in den Anhang ausgelagert.
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Bild 4.2: Skizze des Versuchsauftbaus

Das inverse Pendel 1483t sich, wie im Anhang A beschrieben, durch ein Zustandsmodell
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z(t) = a(z(t)) + B(z(t))u(t), x(t) € R, u(t) € R,

4.1
y(t) = (1)) y(t) € R (1)
beschreiben. Darin sind
_ . -
JK1 K2 i) JF,»(JL‘Q) fR Ty COS(IL’g) . Jl'42 Sin(.’L'g)
~Rar? L a2 ~Ea T a + g cos(x3) sin(xs) — —a
J
e cos(x3)?
a(x):= ;
Ty
K| K. F, . i
B f32x42 K 233; cos(x3) B cos(x3) Fr.(z2) _ 242 cos(w3) sin(z3) + gsin(zxs)
mp?a Rary?> mpa mpa mpa
J
L mp?a? cos(z3)” |
_ . -
J K,
Ra 9 mp? a? (mP2 i cos(x3)2>
B(g_'g) = und (42)
0
K cos(z3)
J 2
_ Rarg mpa P cos(x3) —

c(x(t)) = z3(t) .
Dieses Modell ist aufgrund der nichtrationalen Funktionen nicht direkt mit differentialal-

gebraischen Methoden analysierbar. Aus diesem Grund wird auf das Zustandsmodell der
Ersatzsystemalgorithmus angewendet.

Zur Initialisierung setze mit den Bezeichnungen aus (4.1):

Oq(x) i a(x)
'B(z) := B(z) ;= OZ und 6o :=0 . (4.3)
Oc(x) = c(x)
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Iterationsschritt 1

1.1: Esist ng = n = 4 und m = 1. Das Ausgangssystem °Y enthilt als nichtrationale

Terme nur die trigonometrischen Funktionen sin(°z3) und cos(’z3) in den Funktio-

nen ’a(°zy) und °B(°z). Die Funktion Fg(z,) kann zwar nichtrational sein, wird

aber zundchst formal als nicht niher spezifizierte Funktion Fr(x9) mitgefiihrt. Aus
diesem Sachverhalt ergeben sich die beiden Hilfsfunktionen

ri(°z) = sin(’z3) und

ro("z) = cos(®x3) ,
d.h. o; nimmt den Wert o; = 2 an.

1.2 Erweitere das Zustandsmodell °Y anhand der Hilfsfunktionen r{(°z) und r5(°x) um
o1 = 2 Zustinde mittels

2y (0) =y (1), =12 (4.6)

Die zeitlichen Ableitungen der neu eingefiihrten Systemzustinde definieren die Funk-
tionen ¢; und Q; (i = 1,2):

: d :
01'n+1 = Erl (0])3) = COS(O.'L'g)OIL'g
= cos(®z3) x4 +  cos(®x3)-0-u
Oxn+2 024 + 0-u

= (h(OiB,O In+1,0 $n+2) + Q1(093,0 $n+1,0 35n+2) u und

(4.7)
: d : :
Oy = E?"Q(Ol'g) = —sin(®x3)%is
= —sin("z3) %z4 —  sin(®z3)-0-u
—Oxn+2 024 + 0-u

= (h(OiB,O In+1,0 $n+2) + Q1(0€B,0 In+1,0 35n+2) u.

Die Transformation des Systems °Y hat gemiify Gleichung (3.6) allgemein die Gestalt

k—1, k=15 (k—1 k—1 k—1

T a’( T, Tnp_1+1s- - xnk,1+ak)
k—1, k—1,, k—1 k—1

Trj_1+1 . ql( T, Tnp_q+15 -+ xnk—1+0'k) i
k—1, k—1,, k—1 k—1

xnk_1+ak qak( T, xnk_l—l—la B xnk_l-i-ak)

k-1 k-1 k—1 k—1
B( T, L1411y s xnk—1+0'k)
k—1,, k—1 k—1
Ql( T, L1411y s xnk—1+0'k)

QUIC (k_lic7k_1 "I/"I'L]c,1+17 st 7k_1 "I"’I'L]c,1+0'k)
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—1 k—1
T, Tng_y1+1y - xnk—l‘ka)

In diesem Fall erhilt man

= q

‘a (033, T4+1 0954+2) ‘B
1 033 Tp+1, xn—l—?) + Q
T, Tpil, xn+2) Q2

( T, l‘4+1 ) 01‘4-1-2)
I(Om Tn+1; 1'n+2) U, (49)
(OCL‘ Tnt1, «Tn+2)

(
(0

q2

= 05(01,7 01‘4-1-1 ) 01‘4-1-2)

%a(°z, %75 , Q) °'B(%z, %25 , %)
O26 Oy + 0 u, (4.10)
—01'5 01’4 0
UE(O:C, O , 01‘6).

Dadurch, daf§ der Sinus und der Kosinus gleichzeitig im urspriinglichen System ent-
halten sind, entfillt eine weitere Transformation dieser trigonometrischen Funktio-

nen (die notwendigen Hilfsfunktionen fiir das Ersetzen in den zeitlichen Ableitungen

der neuen Systemzustinde sind bereits im ersten Schritt eingefiihrt worden).

Das System (4.10) besitzt wieder die Form eines ALS und definiert das Zustands-

modell
{ le la(lz) +! B(lz)u, 'z ecRY*2 ueR } oy (4.11)
1,.(1 1 - 1 :
Y C( 33) ) Yy € R
mit
T2
1 1 1. 1 1,.2 1
T JFR( 1'2) fR Ty "Tg 1 1 J Ty Ts
N 2,2 2 2,2 9 T Ty -
Rarg*m%a mp? a mp a mpa
J 12
2 2 6
mpca
Ty
11 N
a("x):= )
1, 1 1 1 1
Ky Ky “wy “xg xo Fr(*za) 1 51 g s
— 5 — — 14" Txe X5+
Rary>mpa mpa mpa
J 1,2
2,2 Le
mp-a
Lge 124
P
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- 0 -
J K,
Ra ryg mp? a? (m}i i lx%)
'B('z) = ’ und
K, lxe
Rarympa (mP2 — - 1x§>
0
L 0 .
e(le) = lay.
1.3 : Die Abbruchbedingung
G('z) e R'e] A Q;(‘w) e R™*'['x], Vie{l,...,0)} (4.12)
ist erfiillt, da
q('e) = ‘wg lwy, (') =0,
() =—"os 'z, und  Qy('z) =0 (4.13)

rationale Funktionen darstellen.
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5 Zusammenfassung und Ausblick

Um differentialalgebraische Methoden zur Systemanalyse heranziehen zu kénnen, miissen
die zugrundeliegenden Zustandsmodelle bestimmten Voraussetzungen geniigen. So diirfen
bei der Systembeschreibung nur rationale Funktionen Verwendung finden. Bei der phy-
sikalischen Modellbildung werden meist aber auch nichtrationale Funktionen, wie etwa
trigonometrische Funktionen, bendétigt. Daher ist es nicht mdglich, auf diese Modelle
direkt differentialalgebraische Methoden anzuwenden. In diesen Féllen ergibt sich die
Notwendigkeit, ein Ersatzsystem zu konstruieren, welches statt dessen analysiert wird.

Ersatzsysteme miissen zwei Eigenschaften besitzen: Zum einen muf} sich bei einer physika-
lischen Interpretation der Dynamik das gleiche Verhalten wie bei dem ,,Originalsystem “
ergeben, zum anderen miissen die Voraussetzungen der Differentialalgebra erfiillt sein.
Diese Anforderungen erfiillen alle Ersatzsysteme, die mit dem hier vorgestellten Ersatz-
systemalgorithmus bestimmt werden. Es ist jetzt also moéglich, systematisch, und ohne
,,herumzuprobieren“, fiir die iiberwiegende Mehrzahl der praxisrelevanten Modelle ein
Ersatzsystem zu bestimmen.

Der Ersatzsystemalgorithmus ist so formuliert, dafl er mit einem Computer—Algebra—
System, wie z. B. MAPLE©, programmiert werden kann. Diese programmtechnische
Umsetzung soll Gegenstand einer weiteren Arbeit sein.
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Die Bewegungsgleichungen des Wagens mit dem Pendel konnen iiber die Lagrangeschen
Gleichungen zweiter Art (A.1) hergeleitet werden. Eine ausfiihrliche Beschreibung dieser
Vorgehensweise findet sich in diversen Studien- und Diplomarbeiten, u. a. in Sossna
(1990).

%<%>_%:Qj ji=1,...,n , (A.1)
mit
n : Anzahl der Freiheitsgrade,
T : kinetische Energie des mechanischen Systemanteils,
qj : verallgemeinerte Koordinate und
Q); : verallgemeinerte Kraft beziiglich dieser Koordinate,

fiir dle gilt:
- Z P (A.2)
= 04

Dabei ist N die Anzahl der am System angreifenden dufleren Krifte.
Die kinetische Energie ergibt sich zu

1 1
T = §mj:2 —mp a T p cosp + §ng2 (A.3)
mit
m = My +my,
A4
J = mpa®+J;. (A.4)

Insgesamt folgen aus den Lagrange Gleichungen (A.1) die gesuchten Bewegungsgleichun-
gen

mi(t) — mpa (§(t) cos p(t) — ¢*(t) sinp(t)) = F(t) — Fr(i(t)) , (A.5)
J(t) — mya (E(t) cos p(t) + gsing(t)) = —Mr(p(t)) '
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mit den Konstanten

m=m, +mp : gesamte bewegte Masse,

mp : Masse des Pendels,

a . Abstand zwischen Dreh- und Schwerpunkt des Pendels,
J : Massentriagheitsmoment beziiglich des Drehpunktes sowie
g : Schwerkraft

und den geschw1nd1gke1tsabhang1gen Grofien Reibkraft F((t)) und Reibmoment Mg (o(t)).
Die eingehende Kraft F'(t) des Seilzuges 148t sich iiber die Differentialgleichung des Elek-
tromotors

K
Raro

KK,

F(t) = R, r?
alp

uq(t) —

0 (A.6)

berechnen.
Das Differentialgleichungssystem (A.1) ist mit den Zusténden

x1(t) = x(t) Schlittenposition,

zo(t) = &(t) Schlittengeschwindigkeit,
x3(t) = p(t) Pendelwinkel und

x4(t) = p(t) Winkelgeschwindigkeit

in das dquivalente System der Form

£(1) = a(e(t) + Ble()u(t), () € R u(t) ¢ B o
y(t) = c(z(t)) , y(t) eR
transformierbar.
Hier:
_ . -
J K, Ky x5 JF.(xs)  frxycos(z3) , J 42 sin(x3)
Rary?m%a?  mp2a? mp a + g cos(ws) sin(ws) mp a
J
Tt cos(x3)?
a(z) = :
Ty
K| K F, i
B frxy4 KKy cos(x3) B cos(z3) Fr(z2) _ 1,2 cos(ws) sin(zs) + gsin(xs)
mp?2 a? Rarg?2mpa mp a mp
J
i P cos(x3)? |
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0

J K,

Ra ry mp?a? (

mp2 a?

0

- Cos($3)2>

K cos(z3)

Rarygmpa <7

c(x(t)) = z3(t) .

mp2 a?

- Cos(x3)2)

und



