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Detection of Cracks in
Turborotors—A New Observer
Based Method |

The clear relation between shaft cracks in turborotors and vibration effects measured
in bearings can be established by modei-based methods very well. Here a new concept
has been presented, based on the theory of disturbance rejection control, extended
for nonlinear systems and applied on a turborotor. Simulations have been done,
showing the theoretical success of this method, especially for reconstructing dis-
turbance forces as inner forces caused by the crack. Caiculating the relative crack
compliance as the ratio of additional compliance caused by the crack and undamaged
compliance a clear about the opening and closing, and therefore for the
existence of the crack, and about the crack depth is possible. Theoretically it has
been shown that it is possible to detect a crack with very small stiffness changes

which corresponds to a crack depth of 5 percent of the radius of the rotor.

1 Introduction

Propagating fatigue cracks can have profound effects on
the reliability of rotating machinery. An early crack warning
can considerably extend the durability of these very expensive
machines, increasing their reliability at the same time. A de-
tailed study of the vibrational behavior of cracked rotating
shafts, therefore, is an important problem for engineers work-
ing in the area of the dynamics of machines.

Methods which are normally used for monitoring the ma-
chine and also for crack detection can be divided into classical
and modern methods.

The classical methods consist of measurements taken of oil
temperature in bearings or control the vibration peaks with
regard to maximum allowed values. Also coastdown-meas-
urements are done (Zimmer and Bently, 1985). For all these
ways the experience of the machine operator is very important,
because none of the classical methods provides an obvious
statement about the crack.

The modern methods for failure detection are called Vibra-

_tion Monitoring Systems (VMS). For these FFT- and Cepstrum
Analysis are done, also statistical methods and/or pattern rec-
ognition are used (Peter, 1985; Ericsson, 1985). These methods
have a great potential, because it is possible to use them without
dismounting any part of the machine or even stopping the
machine.

Through simulations and experiments, correlations between
the crack and the caused phenomena, i.e., vibrations of the
rotor or of the bearings which can be measured, are to be
found. It is very difficult to conclude the existence of a shaft
crack, because there is no clear relation between the crack and
the caused phenomena. In this way the main problem is es-
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tablishing a clear and unambiguous relation between the crack
and the caused phenomena.

There are a lot of crack models, but the typical effect of the
crack is already described by the simplest one. This typical
behavior is the breathing of the crack, and is modeled by the
‘Hinge-Mechanism’’of Gasch (1976). For the detection method
presented in this paper ‘‘real crack signals’’ can be used,
whereby for simulation purposes all crack models can be con-
sidered.

The incorporation of the stiffness change resuiting from a
crack into the equations of motion was dealt with in severai
papers. Gasch (1976) and Henry and Okah-Avae (1976) con-
sidered the nonlinear mechanism of a breathing crack with
different elasticities for open and closed crack, described in
body-fixed rotating coordinates. Mayes and Davies (1980) cor-
related some experimental results with their theoretical back-
ground and suggested a method for calculation of the changing
stiffness due to a crack. Grabowski and Mahrenholtz (1982)
used modal formulations to investigate the vibrational behav-
ior of realistic cracked rotor systems, developing a crack mech-
anism and using it in their dynamic rotor model. Bently (1981,
1982) and Muszynska (1982) investigated the dynamics of
cracked systems by the development of both demonstration
rigs and practicabie crack detection systems based on their own
theoretical work. In Muszynska (1982), both gaping and
breathing cracks were considered and modeled by local changes
in stiffness. Currently, the vibrations of cracked rotors and
the detection of cracks are active fields of research, e.g.,
Schmalhorst (1989), Wauer (1990), and Papadopoulos and
Dimarogonas (1983, 1987). In this way the system behavior
will be described and monitored well.

Here another principal way of crack detection is suggested.
Based on the theory of disturbance rejection control, developed
for linear control systems, an extension for reconstructing non-
linear signals as external disturbance forces is used (Muller,
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1990). In this way the crack is interpreted as an external dis-
turbance. According to the theory of estimating unknown dis-
turbantes of a control system, simple measurements of
displacements and/or velocities of the vibration system are
used to reconstruct these additional time signals by state ob-
servers to obtain estimates of the nonlinear effects. The state
observer is based on the known linear part of the vibration
system and a linear fictitious model, which approximates the
crack. The principle idea with a first application of this ob-
server based crack detection method is published by Soffker
and Bajkowski (1991).

2 Method

Usual crack detection methods are based on signal analysis.
As information only vibration signals are used. Further in-
formation about the mechanical system and about the fault
we are looking for are not used. The method suggested in this
paper is an observer-based method, so further information
together with the measurable signals are used, e.g., the me-
chanical model of the rotor and the characteristics of the typical
behavior of the crack.

The method of disturbance rejection contro} allows the re-
construction of disturbances, which cannot be measured
(Johnson, 1972; Miiller and Ltickel, 1977). As a typical ap-
plication the reconstruction of friction torques in robot joints
was done by Ackermann (1989). Only with the compensation
of friction effects it was possible to realize a highly accurate
position control for elastic robots with rotatory joints (Muller
et al., 1990). Other investigations were made to determine the
Coulomb friction curve (Muller, 1990; Stelter, 1990). For these
applications the mechanical system was of a low order. With
an extension of the method of disturbance rejection control it
is possible to reconstruct specific nonlinear crack forces.

Assume that the cracked mechanical system is described by

Mi+(D+G)'z+Kz=f(r)+N,,h(z(r),t) o)

with
2, z, Z = displacement vector and its time derivatives of
order n
M = mass matrix
D, G = matrices of damping and gyroscopic effects
K = stiffness matrix
f(t) = vector of unbalances
N, = input matrix of nonlinearities
h(z(),t) = vector of disturbances caused by the crack

The vector h(z(t),7) contains the specific forces caused by the
crack. To consider the crack influences in the equations of
motion (1) a crack model is needed in the way that it describes
the change in stiffness and/or damping coefficients e.g.,bya
crack element stiffness or damping matrix. Usual crack models
(Gasch, 1976; Schmalhorst, 1989) use the change in stiffness
coefficients, like Egs. (2)-(4),
h@z(0),0) =[01...0; hopr (B(1),0) Ojisp 07 (2)
with
beser Z(1),0) =Kl2i.. 24,7,

ay

(3)

© e,

K.= @

with g;;=a;,
Gegi * " Gepey

where K, (4) represents 'a general additional crack stiffness
matrix of order e,. Applying state space notation Eq. (1) is

described by
X =Ax+b(?)+Nn(x(1)), o
y =Cx. )
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Here x denotes the 2n-dimensional state vector (consisting of
displacement and velocity variables), A is the 2r x 2n system
matrix and b represents the 2n-dimensional vector of control
inputs and/or excitation functions. The 2n X / matrix N is the
input matrix of the nonlinearities into the linear dynamical
system. The vector n(x(¢),t) characterizes the f~dimensional
vector of nonlinear functions. The m-dimensional vector y
represents the measurements via the m x 2n-dimensional matrix
of measurements C. It is assumed that the system parameters
(A, N, C) as well as the input and output time signals (b, y)
are known. The task is to reconstruct the unknown nonlin.
earities (here the external disturbance forces of the crack)

n(x(£),1) =Rk (1))

by applying state observers.
For consideration of external disturbances, the state space
vector will be extended by a fictitious disturbance vector v(t),

(6)

n(x(?)) =Hv(?),
v(r)=Fv(1) +Gb(1), (@)
dimv=s,

to describe approximately the time behavior of the nonlinear-
ities. The model matrices F, G, and H must be chosen in
accordance with the technical background about the system.
Here NH couples the fictitious model (7) to the whole system.
Because of the periodic changes in element-stiffness matrix K,
(4) the time signals of the nonlinearities can be considered as
harmonic signais with corresponding frequencies. So the ap-
proximation of the disturbance forces can be modelled by
oscillators (r,, = 2). The matrices are of N [2n, f], Hf, (rae )1,
Flraef,rnef1 order.

In this way the external forces caused by the crack are re-
constructed by the estimates of the disturbance vector v(z).
An approximation seems to be a disadvantage, but on the other
hand, this flexibility and robustness ‘“‘against’’ different crack
models for simulations or real crack behavior in practice char-
acterize this new crack detection method.

3 State Observers for Reconstruction of Nonlinear
Effects

Applying (7), the extended system is obtained with the new
system matrix A,,
A
0

x(t) NH| | x(1) 1
[m} F ] [vm] ' [G]""”
N

Ae

t
y(n=IC 0] [:;,;]

This extended system (8) with the new system matrix A,
could be observed by the extended state space observer if the
system is completely observable (Luenberger, 1971). This re-
quires a suitable choice of matrices F, G, and H and meas-
urements. The observability of the undamaged turborotor with
bearings as a linear mechanical system normally is given, be-
cause of non-existent decoupled sub-systems. To guarantee the
complete observability of the extended system (8), the follow-
ing condition must be fulfilled,

®)

My,-A -NH
rank 0 M,~F|=2n+s, )
C 0

with m=s, (s=f), this means that there must be equal or
more measurements than nonlinearities. The number of ap-
proximated nonlinearities mainly depends on the degrees of
freedom of the crack model used in Eq. (4).
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Fig. 2 Crack model of Gasch (1976)

The observer essentiaily consists of a simulated model with
a correction feedback of the estimation error between reat and
simulated measurements,

[i(z)} [A~L,C NHMM)] {1} [L]
. = + b+ y.
() -LC F ||vmn G L,

Ao
(10

The dynamical behavior of the observer is expressed by the
system matrix A,. Using an identity observer different methods
can be used like pole-placement or linear-quadratic optimal
observer etc. The asymptotic stability of the observer can be
guaranteed by a suitable design of the gain-matrices L,, L,.
For a successful estimation the observer has to be asymptot-
ically stable and usually the eigenvalues should be on the left
side of those of the observed system A. Furthermore the design
should consider that only approximations instead of the non-
linearities are used, cf. Section 4.

The general concept of crack detection by state observers is
shown in Fig. 1. With information about the mechanical system
the extended observer can be built. With measurements taken
only in bearings the observer reconstructs external forces caused
by the crack. These forces depend on the crack depth and can
be used for further calculations.

The approximation of the nonlinearities by linear fictitious
models in Egs. (7) has two different aspects:

* Instead of using nonlinear observers linear theory can be

used.

* The conditions for using this approximation for recon-
structing the signals of the nonlinear effects by state ob-
server methods are weak, and they are often fulfilled for
mechanical systems with band structure.

4 Application on a Simple Rotor Using the Crack
Model of Gasch

In the literature (Wauer, 1990) a lot of crack models are
mentioned, which are very sensitive, especially the FEM-crack
model of Schmalhorst (1989). But the typical behavior of the
crack, the ‘“breathing’’ of the crack under weight influence is
already described by the very simple model of Gasch (1976).

The crack model of Gasch, Fig. 2, is described in the rotating
coordinate system by

=L 2000

The compliance # in the crack direction £ will be increased
with an additional compliance #, in case of an open crack,

(1D
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eccentricity

Fig. 3 Simple rotor

which depends on the crack depth. The relative crack com-
pliance A, as the ratio

h

h=="1

h
is established by experimental investigafions of Mayes and
Davies (1984) for different crack depths. For very small cracks
the values are approximated. The opening-condition of the
crack can be formulated via the bending at the crack position
or approximately via the displacements near the crack

Ei—e,,+ Ei-u,,

12

&> 2 s 13
where e, =2.
Using the transformation matrix
’ _ [ cos(Qt+8)  sin(Qr+8) } (14
—sin(@+8) cos(Qr+8)

the element-stiffness-matrix K, (Z (¢),¢) for a discretized model
like an MBS-formulation in the inertial coordinate system looks
like

K= Ay sin®(Q¢ + B) sin(Q + B)cos(Qt + 8)
~ h(1 + h,) | sin(Qz+ B)cos(Qr + B) cos*(Qt + B)
(15)

where K, depends on the opening condition (13) for the crack
and on time, so the system in the inertial coordinates becomes
a nonlinear and parametricaily excited one.

The rotor used for theoretical investigations and simulations
is described by the following assumptions, cf. Fig. 3:

Rotor as a lumped-mass-model, 7 beam elements, length,
/=600 mm; radius, r= 140 mm; frequency, Q =100« rad/
s; eccentricity, e, =0.02 mm; stiffness of bearings, k, =750
kN/mm; damping as D= apeq M+ Bmod K, @moa=0,
Bmod = 0.00001; number degrees of freedom, n= 16; num-
ber of nonlinearities, f=2; number of measurements,
m=8, measurements only in bearings as displacements
and their velocities.

The system matrices are given in the Appendix.

According to the presented method the choice of the ficti-
tious model (7) is be effected, because the time signals of the
nonlinearities can be considered as harmonic signals with fre-
quencies w, ». Therefore the fictitious model makes sense:

b +wt v, =0, (16)
U+ wiv, =0, a7
ie.,
H=[1000]a, as)
0100

0 0 10 vy

0 0 01 v
F= » , v= 1B (19)

-wi 0 00 vy

0 -wi0O0 Vs
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where o denotes the related (2i,2i)-element of the matrix K.

The reconstruction of the characteristic relative crack com-
pliance #,, cf. Eq. (12), can be done by simple calculations
using the matrix T (14), the estimated disturbance forces ) 5
(20, 21), displacements at crack position Xois 1,241y (10) and
phase information 8. Because of the system order a Riccati
observer design was used, which fulfills the following require-
ment:

AP+PAI-PC'R™'CP+Q=0. 22)

Since using approximations instead of the real nonlinearities
the weighting matrices R and Q must be chosen specifically.
For this the weighting Q of the measurements is split up into
three blocks, like

ql, 0 0
Q=| 0 gf, 0 |, (23)
0 0 qgl,,,,.f

with ¢ =10, g,=1 and g;=(10°+ 10'). The weighting matrix
R in Eq. (22),

R=rl,
is used with r=0.01 to 0.0001.

(24)

S Simulations mid Results

All calculations are done in FORTRAN double precision on
a Control Data 4230 Workstation under BSD Unix V.3.2. For
integration a Runge Kutta-Gill algorithm of fourth order was
used, modified for consideration the switching condition for
the crack.

5.1 Bebavior of the Cracked Rotor. The simulations of
the cracked rotor show an interesting behavior. Dependent on
the relative crack depth

(25)

==

with
t: crack depth, and
r: radius of the rotor at crack position,
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Fig.5 Orbits and crack forces for ditferent relative crack compliances
h; (orbit: right bearing, crack forces: right bearing, i I di ion)

respectively, the relative crack compliance 4, (12), the time
behavior of the system changes in a special way.

For characterizing the behavior of the cracked rotor for
different relative crack compliance h, the phase plane plots
and FFT-analysis of the right bearing in horizontal direction
are shown in Fig. 4, the orbit of the right bearing and the
disturbance forces F, caused by the crack are shown in Fig.
S.

The linear behavior in undamaged case changes for greater
h,, i.e., for greater crack depths, to semiperiodic behavior.
Considerations in vertical direction would show the same re-
sult.

Analogously to the investigations of Fritzen (1990), who
found chaos in a cracked Laval rotor, the possibility of chaos
here may also exist. Dependent on the system parameters, i.e.,
crack or damping coefficients, we can obtain different types
of motions; periodic, almost-periodic, sub- or ultraharmonic,
and either chaotic one. To classify the system behavior Lya-
punov exponents can be calculated. They provide a qualitative
and quantitative characterization of dynamical behavior and
they are related to the exponentially fast divergence or con-
vergence of nearby orbits in phase space. There are thirty three
Lyapunov exponents (2r + 1), and their sum should be negative
since the system (1) is dissipative. One exponent corresponds
to the direction parallel to the trajectory and its corresponding
Lyapunov exponent is zero. The remaining exponents are neg-
ative or zero in the periodic states, whereas in the chaotic state
at least one Lyapunov exponent is positive (Lichtenberg and
Lieberman, 1983). As an indicator for chaos only the greatest
Lyapunov exponent ¢ was calculated as a function of A, from
a single time series (Wolf et al., 1985). The results are shown
in Fig. 6. The regions of chaotic behavior (¢ > 0) are interrupted
by intervais of periodic behavior (0 <0).

For the illustration of chaotic vibrations only Poincaré maps
and phase planes of the damaged rotor are presented. Figure
7 shows Poincaré maps and the projection of the trajectory
(c) onto [Lx(16), Lx(32)}-phase plane for several values of 4,,
in which (a) corresponds to point ““1,”” (b) corresponds to
point 2" and (c) corresponds to point ‘3"’ in Fig. 6, re-
spectively. In this space periodic motion (c) appears as one
dimensional closed orbit and its Poincaré section is zero-di-
mensional (two points), while chaotic orbits form complicated
sets containing an infinite number of points ( (@) and (b))
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5.2 Crack Detection by State Observers. Crack detection
by state observers means a procedure with two steps:
¢ Estimation of crack forces ¥ (#) via the extended state space
observer.
¢ Recalculating the coefficients of K, (2(¢),t) (4) or e.g.,
beer (Z(2)) (3) for each time step and representing them
in a favorable manner, e.g., dividing trough the nominal

values of the undamaged case. Therefore phase infor-

mation is useful.

Figures 8 (a) and 9 (a) show the crack forces F, in horizontal
direction for different crack depths. The observer estimates
the signal very well, only in a few points the dynamic of the
observer can not follow the real simulated signal. The external
signal only exists if the crack opens, the maximal values de-
pends on the crack depth. Using this estimation and the es-
timation about the displacements the normally unknown ratio
h.=h,/h in (12) can be recalculated, Figs. 8(b) and 9(b). As
a function of time this ratio describes the variable compliance
or stiffness depending on the phase angle in the rotating co-
ordinate system. Hence it will be a clear indicator for cracks.
Here the opening and closing of the crack is shown very ciear
and unambiguous. For both crack depths of 20 and 5 percent
itis very clear to see: opening and closing of the crack in Gasch
crack'model. In contrast to this, calculations of undamaged
rotor results in a ratio about 0.001.

5.3 Additional Remarks

® In this way it is not important that the crack model used
for simulations possibly could not describe such minimal
stiffness changes correctly. The proposed method is in-
dependent from crack models. In spite of using an ap-
proximation this scheme can be used to reconstruct minimal
stiffness changes, independent from specific characteris-
tics.

The assumptions for using the new model-based method
consist of the knowledge of the mechanical system param-
eters and the vector of unbalances. The mechanical pa-
rameters are normally known and are used for example
for vibration calculations. The parameters of the vector
of unbalances is normally identified by balancing as the
rest vector of unbalances.

For this crack detection method the crack location is sup-
posed as to be known and is determined in the matrix NH
of the observer scheme. To locate a real crack a series of
observers has to be arranged. This means that for some
possible and possibly for all possible locations different
observers should be built. This task can be done by a
parallel or a sequential working scheme. With regard to
the slow growth of the crack and the possibly early in-
dication of a sequential off-line application seems to be
sufficient.

It was assumed that the system behavior can be observed
by measurements in the bearings. But it is well-known that
the observability depends on the type of support. For

.
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Fig.7 Poincaré sections and phase planes for several values of A, (right
bearing, horizontal direction) (a): h,=0.100, (b): h,=0.107, {c): h,=0.111
{t, = 2xn/w, w = 1007, n=50000)

example, if the rotor is modelled as a clampedjala'n'lped
or clamped-pinned beam, no motion along the rotor can
be observed when measurements are taken at the sup-
porting end. Therefore, we have to be aware of the dif-
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compliance caused by the crack and undamaged compliance
a clear statement about the opening and closing, and therefore
for the existence of the crack, and about the crack depth is
possible. Theoretically it has been shown that it is possible to
detect a crack with very small stiffness changes which corre-
spond to a crack depth of 5 percent of the radius of the rotor.
To what extent this success can be transferred into practice
has to be analyzed by further investigations and experiments.
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APPENDIX
The matrices used in Egs. (1) and (5) are as follows,
M: Mass matrix of order (16 x 16),
) . |mm mm
M—dlag[z 2 m......m 2 2],
umes
where m = x*lp, p="7860 kg/m’,
K: Stiffness matrix of order (16 x 16),

—k, 0 k3 0 0 0 --v «on vne 0]
0 ki O k3 0 0 «-v «vv ... 0
ky 0 k3 0 ky O --v «vt ... 0
0 k3 0 kZ 0 ky <o oee o 0

K=

0 «-¢ cao oul ky 0 k, 0 ks 0
0 «ev oo . 0 k3 0 kz 0 k3
QO -0 oo e 00 k} 0 kl 0

L Q0 -« v .. 00 0 k3 0 kl_‘

' (26)

@7

where k= 12EJ/I°, E=2.1+10° N/mm?, k,=7.5-10° N/mm,

ki=k+k;, ky=2k, ky= —k,

D: Damping matrix of order (16 x 16),
D =Bmnoa*K, Bmoa=0.00001,

f: Vector of unbalances of order (16 x 1),
=0, i=1,2, ..., 8, except
Ji=fis=—-mg/2,
Si=fs=fi=fs=fis=fis=-mg,
Su=—mg+e,Qm,sin(@+8),
Ji2=en @M, sin(Q1 + 8- 90 deg),

where m,..=7 m—the mass of eccentricity, =0 deg,
N,: Matrix of nonlinearities of order (16 x 2),

Np7y =gz =1,
the remaining elements are zero,
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(28)

(29)

(30)

: Vector of the crack forces of order (2x 1),
in the case of the ““closed”’ crack, i.e., if £ =0in Eq. (13),
then h=0.
in the case of the “‘open’ crack, i.e., if £>0in Eq. (13),
‘or in the inertial coordinate frame
27c0s(Rt + B) + zgsin(Q + B)

> [(zs + z9)cos(Qt + 8) + (Z +230)8in(01 + )]
2 s
than the elements of the (2 1) vector h are as follows:

@31

hy=[—z;c08%(Qt + B) — 7, sin(Q7 + B)cos(Qt + 8)) lfi-'—;’-

hy={—24sin%(@ + B) — 2, sin(Qr + B)cos( + 8)] %

(32)
all other elemerits are zero,
A: The system matrix of order (32 x 32),

0 I,
A= -1 e
-M"K -M™"'D

b: Vector of excitation of order (32x 1),

L)

N: Matrix of nonlinearities of order (32x 2),

v )

n: Vector of nonlinear functions of order (2x 1),
in the case of the “‘closed” crack n=0,
in the case of the ““open’’ crack,

(33)

(34)

(35)

kyh,
1+h,’
ky h,
1+A,

ny=[— X7 co8(Q1 + B) — x5 sin(R1 + B) cos(Re + 8)]

ny= [ — Xy sin*(Q1 + B) — Xy sin(Q¢ + B) cos(@t + 8)]

(36)

C: Measurement matrix of order (8x32),

=0, i=1,2,...,8, j=1,2,..,32 except (37)

CU=Cn=C315=C416=C517=C5,18=C731 =Cs,32=1.
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