
Real-time applicable power management of multi-source fuel cell vehicles using
situation-based model predictive control

Ahmed M. Ali1,˚, Dirk Söffker1,
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Abstract

Power management in all-electric powertrains has a significant potential to optimally handle the limited capability of electric power
sources and to promote electromobility towards competitive performance levels. Real-time applicability of optimization-based
power management strategies (PMSs) is an open challenge, leading to increasing attention in recent literature. Situation-based
PMSs (SB-PMSs), defining optimized solutions related to specific vehicle situations, offer the ability to reduce computational
requirements and enhance the optimality of simple rule-based algorithms. However, the achievable optimality in such PMSs is
limited to local optimality in each situation. This degraded, yet improvable, optimality in SB-PMSs can be addressed by considering
online optimization of the situated solutions for limited horizons to approach the global optimal solution. In this context, model
predictive control is an efficient optimization method that suits real-time application. However, the availability of valid plant model
and a priori prediction of upcoming driving conditions are prerequisites for MPC. Finding suitable solutions to these challenges in
PMSs contributes to better control of hybrid electric vehicles. This papers presents a novel PMSs that implements situation-based
MPC to define optimal control strategies for fuel cell hybrid vehicles. Vehicle states are defined in terms of multiple characteristic
variables and power management decisions are optimized offline for each vehicle states. Prediction of vehicle states is performed
using statistical predictive model based on state transitions in a number of driving cycles. Pre-optimized solutions related to
predicted states are iterated online to achieve better optimality for the look-ahead horizon. Results analysis from online testing
revealed the ability of SB-MPC to reduce total energy cost in different driving cycles.
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1. Introduction

1.1. Background and motivation

Increasing concerns about pollutant emissions and deple-
tion of limited fossil fuel reserves motivated the pursuit to-
wards alternative clean transportation systems [1]. In the last
few years, all-electric vehicles (AEVs) proved competitive per-
formance levels compared to their counterparts, combustion
engine-based vehicles, at significantly reduced emissions [2, 3].
Moreover, the accelerating advances in fuel cell, battery, and
supercapacitors’ technologies fastened the pace towards fur-
ther hybridization paradigms offering more flexible power han-
dling [4]. Therefore, such electrified powertrains have moved
progressively from being short-term alternatives towards being
a promising state-of-the-art that receives increasing attention
from both researchers and automakers [5].

Power management strategies (PMSs) in hybrid powertrains
promote efficient operation of multiple power sources without
mitigating vehicle’s driveability. It is required from an efficient
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PMS to accommodate unscheduled loads and achieve maxi-
mum overall efficiency at different power split paradigms of the
vehicle [6]. Existing power management algorithms can be cat-
egorized into rule-based and optimization-based ones. In rule-
based algorithms, the control law is formulated using heuristics
and practical experience. Lack of solution optimality is a major
disadvantage of rule-based PMSs; however, such algorithms are
widely applied due to their simple implementation. Contrarily,
optimization-based algorithms are formulated to achieve global
optimal solutions in certain driving scenarios [7]. The obtained
optimal solutions are rather related to specific driving cycle for
optimization and hence can be used as a benchmark solution for
evaluation purposes [8].

To overcome the drawbacks in both categories and achieve
better optimality in real-time, many innovative attempts have
been made to define optimized situation-based solutions to
power management problem [9]. These solutions can be ap-
plied online according to the recognized situation, achieving
near optimal solutions at significantly reduced computational
load [10]. In this context, the definition of vehicle states
in terms of multiple characteristic variables (in situation-based
PMS) received further attention to develop situated prediction
models [11]. Such prediction models can be integrated to on-
line optimization algorithms such as model predictive control
(MPC), which has been widely and efficiently applied to opti-
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mal power management of hybrid powertrains [12].

Resolving the conflict between solutions’ optimality, robust-
ness, and computational load of optimization-based PMSs an
important aspect that contributes to the real-time applicability
of developed methods [13, 12]. Defining intelligent situation-
based solutions to online PMSs offers better solutions’ optimal-
ity and less computational requirements [9]. For online opti-
mization, MPC can significantly contribute to optimal control
decisions in real-time due to its ability to handle complex con-
straints of the power management problem. A brief survey on
the achievements in situation-based PMSs and MPC in hybrid
electric powertrains is given in the sequel, putting forth the re-
cent challenges and potential development aspects.

1.2. Previous work

1.2.1. Situation-based PM methods
The principle of a situation-based PMS (SB-PMS) is based

on implementing two main control layers to define power split
decisions: an online and offline one as shown in Fig. 1. Vehicle
states are typically defined in terms of characteristic variables,
i.a. the driver’s power demand, vehicle operating conditions,
and other external information (traffic, road grade, altitude, etc)
[14]. Theses information are used to generate database for
the offline layer, in which discrete vehicle states can be defined
[15]. Optimal combination of these variables at respective dis-
cretization levels is of particular importance in SB-PMS and is
separately discussed in the sequel. For defined vehicle states,
power handling strategies can be optimized offline. Driving in-
formation from the database are used to provide the character-
istics of driving cycles’ segments related to each vehicle state
(vehicle speed, power demand, distance, ...etc.). Such solutions
are be integrated to the online layer in LUTs’ form, to be ap-
plied when according vehicle states are recognized. This oper-
ating scheme offers the advantage of decoupling computational
loads of the optimization process from online control layer and
hence the ability to achieve near optimal solutions in real-time
[11, 16].
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Figure 1: Operating principle of situation-based power management system
(SB-PMS), defining optimal power split ratios (PSR) for vehicle states in real-
time.

The selection of characteristic variables to define vehicle
states is a crucial point in SB-PMSs, that influences its ability to
recognize such states online and the potential of finding suitable
optimal solutions offline. A brief survey on pattern recognition
attempts for power management strategies gives the conclusion

Driving and trip variables

Driver-based Vehicle-based Traffic-based Route-based

- Power/speed [17]
- Brake usage [18]
- Lane change [19]
- Acceleration [18]

- Engine state [23]
- Gear no. [24]
- S oCb [20]
- S oCsc [21]

- Speed limit [25]
- Traffic light [26]
- Congestions [30]
- Stops [26]

- Grade [27]
- Distance [28]
- Refuelling [31]
- Altitude [29]

Figure 2: Classification of driving- and trip variables according to their depen-
dency reference.

that characteristic parameters can be related to variables from
four categories: driver-, traffic-, vehicle-, and route-based ones
as illustrated in Fig. 2 [11]. Power demand and vehicle speed
are implemented most frequently in SB-PMSs due to their di-
rect impact on power handling constraints [17, 18]. Informa-
tion about vehicle speed and power demand, combined with
accelerating behavior, lane change, and braking usage provide
essential knowledge of individual driving behaviors, which en-
ables determining specific power handling rules to avoid exces-
sive energy consumption due to abrupt or aggressive driving
[18, 19].

Characteristic parameters related to battery’s or supercapac-
itor’s state of charge (S oCb, S oCsc) are widely implemented
to represent on-board energy reserve in vehicle state defini-
tion [20, 21, 22]. Other variables with discrete values, i.e.
(gear numbers or engine status), are typically used in dynamic
programming to define state space of possible power handling
strategies for specific trips [23, 24]. The accelerating advances
in telematics offer useful information about speed limits and
traffic lights [25, 26]. Besides, in case of pre-known driven
routes, further information about road grade and trip distance
can be acquired [27, 28, 29]. Suck knowledge enables the PMS
to determine suitable strategies to avoid idling losses during
traffic congestion or repetitive stops [30, 26]. Moreover, spe-
cific regulations of power handling can be put forth targeting
low-cost power grids for recharging [31].

A significant application of multi-parametric definition of ve-
hicle situations is the development of state prediction models
[11, 32]. Typically, artificial neural networks, machine learn-
ing, or hidden Markov models are used to evaluate the impact of
different characteristic variables on the prediction accuracy of
vehicle situation [33]. Such prediction models can be used on-
line to define optimal power management strategies for upcom-
ing predicted horizon. However, the assessment between offline
optimized solutions, prediction accuracy, and online applicabil-
ity using certain constellations of characteristic variables is not
yet introduced in literature.

1.2.2. Model predictive control in HEVs
Model predictive control is an online optimization-based

method, that proved applicability in many fields, i.a. power
management of hybrid electric vehicles [12]. Attractive fea-
tures of MPC include the ability to perform in real-time and to
to handle complex constraints on inputs, outputs, and system
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Characteristics of MPC
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Figure 3: Summary of MPC characteristics considering modeling, design, and
prediction methods [12].

states to operate hybrid powertrains closer to system bound-
aries, which increases the optimality of provided solutions
[34, 12, 35]. Therefore, targeting solution’s optimality for an
extended time-horizon, MPC outperforms instantaneous opti-
mization methods, i.a. equivalent cost minimization (ECMS)
[36]. Given an accurate prediction of upcoming driving con-
ditions, MPC proved the ability to achieve 96 % of the global
optimality obtained by full-DP [37].

For MPC-based PMSs, a prediction of vehicle state is re-
quired beforehand, to which optimal control strategy can be it-
eratively searched [38, 39]. This prediction can be performed
using different approaches, i.a. stochastic models [40, 41], neu-
ral networks [42], fuzzy logic, [43], or by considering partic-
ular prescient assumption [37]. System response to proposed
control strategies can be anticipated using plant model. Such
model can be linear, non-linear, or hybrid models [44, 45, 46].
State prediction outside time-domain has been also introduced
based on route information only [47]. Other design parameters
of MPC are the length of prediction horizon, number of objec-
tives in the cost function, solver type, and number of iterations
per time step to meet the optimality criterion [12]. These char-
acteristic of MPC are summarized in Fig. 3.

Considering pre-optimized situation-based solutions in MPC
can significantly reduce the computational time to meet defined
optimality criteria [48, 49]. This offers the advantage of con-
sidering longer look-ahead horizons for optimization and hence
yield near-global optimal solutions [42, 50]. However, very few
attempts to realize this concept for PMSs of HEVs can be found
in literature [12].

1.3. Problem statement, contribution, and novelty

The introduced review about SB-PMSs and MPC in HEVs
gives an insight into the significance of both approaches to re-
alize optimal power management decisions in real-time. How-
ever, following aspects is less addressed in literature: First,
although selection of the characteristic variables and their re-
spective discretization has a significant impact on optimization
results in SB-PMSs, this aspect is not considered so far for op-
timization. Second, the integration of such multi-parametric
state-definition in the formulation of optimal control problem in
MPC-based PMSs has not been realized.These two aspects have
a significant potential to improve the applicability of MPC-
based PMSs in HEVs through precise definition of vehicle

states and the ability to sustain near-optimal solutions in real-
time.

This contribution proposes a novel SB-PMS that implements
MPC to define optimal control strategies for fuel cell elec-
tric vehicles. Vehicle states in each situation are optimally
defined in terms of multiple characteristic variables. Offline-
optimization of control decisions for each vehicle state is per-
formed using NSGA-II. The optimized solutions are online-
control as look-up tables. Optimal power management strate-
gies for upcoming vehicle states are iterated online based the
tabulated solutions using MPC. A state prediction model is
developed based on the selected characteristic variables using
Markov process. The introduced method is adapted to suit
real-time application in terms of maximum look-ahead size and
number of iteration per time step. Online testing using several
driving cycles is carried out to comparatively evaluate the de-
veloped PMS.

This paper is organized as follows: Vehicle model and su-
pervisory control are introduced in section 2. Problem formu-
lation in SB-PMS and MPC is explained in section 3. Online
application and results analysis are given in section 4. Finally,
conclusion and future work are presented in section 5.

2. Powertrain description

The implemented powertrain in this study is a hybrid all-
electric one, that comprises a fuel cell, battery, and supercapac-
itor (Fig. 4). These power sources are set up in a series-parallel
topology, whereby the fuel cell is the primary power source and
both the battery and supercapacitor are auxiliary ones. Each
power source is coupled with an inline DC/DC converter, sus-
taining a unified voltage ubus at the load side. This drive-line
topology is investigated to achieve an optimal performance for
fuel cell hybrid powertrains [51].

The power demand pd is calculated within using the vehicle
model as

pd “ fxv

“

¨

˚

˚

˝

ma`
AρCd

2
pv´ vdq

2

looooooomooooooon

Air drag

`mg sin θ
loomoon

Grade res.

` µmg cos θ,
loooomoooon

Rolling res.

˛

‹

‹

‚

v, (1)

where fx denotes traction force, mg vehicle curb weight, a lon-
gitudinal acceleration, ρ air density, A vehicle frontal area, Cd

air drag coefficient, vd wind speed, µ rolling resistance coef-
ficient, and θ the road grade. The power management system
(PMS) in Fig. 4 consists of two sub-modules: supervisory con-
trol and the situation-based MPC (SB-MPC). The latter module
is responsible of finding optimal power handling strategies in
real-time, to which a brief explanation is given in section 3.
The main task of the supervisory control module is to count for
the operating limits of individual powertrain components and
therefore override erroneous power handling strategies in case
of on-board charge depletion.
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Figure 4: Vehicle model and integrated HIL emulation test-rig of the multi-source electric powertrain (Chair of Dynamics and Control, University of Duisburg-Essen,
Germany).

The power demand from each source p f c, pb, and psc is de-
fined as

p f c “ u f c i f c, (2)
pb “ ub ib, and (3)

psc “ usc isc, (4)

where the bus voltage ubus is equalized through the inline
DC/DC converters as

u f c « ub « usc « ubus, (5)

implying that only desired output current from each source can
be used as control signal to respective DC/DC converter as
ri f c ib iscsT . The operation of DC/DC converter can be sim-
plified as

iin “ iout
c

uin

1
µconv

, (6)

where the subscripts in and out denote input and output volt-
age/current values, c is a constant representing desired bus volt-
age, and µconv is the tabulated conversion efficiency based on
experimental validation of the simplified model [51]. The out-
put iout of each DC/DC converter represents the control signals
i˚f c, i˚b , and i˚sc for the fuel cell, the battery, and the supercapac-
itor accordingly. The fuel cell voltage is calculated considering
activation-, ohmic-, and concentration-voltage losses as

u˚f c “ ncpuo
f c ´

´

c1 ` c2

´

1´ e´i˚f cc3

¯¯

looooooooooooomooooooooooooon

uact

...

´ i˚f c R f c
loomoon

uohm

...

´ i˚f c

˜

c4 i˚f c

imax

¸c5

looooooomooooooon

uconc

q, (7)

where nc denotes the number of cell in the stack, uo
f c the open

circuit voltage, c1, ..., c5 constants based on experimental vali-
dation, R f c the internal resistance of the fuel cell, and imax the

maximum delivery current. The battery is modeled based on
the equivalent RC circuit as

u˚b “ uo
b ´ Rb i˚b ´

1
Cb

ż t f

ti
i˚b dt, (8)

where uo
b is the open circuit voltage, Rb and Cb are battery’s ca-

pacitance and internal resistance accordingly, and ti and t f are
initial and final time of an infinitesimal simulation step. Simi-
larly, the supercapacitor is modeled as

u˚sc “ uo
sc ´ Rsc i˚sc ´

1
csc

ż t f

ti
i˚sc dt, (9)

where uo
sc is the open circuit voltage, Rsc and Csc are equiv-

alent capacitance and internal resistance of the supercapacitor
accordingly. Both Cb and Csc are statically modeled neglect-
ing the capacitance loss due to components’ aging and lifetime
degradation. The state of charge of (S oC) for either sources is
calculated as

S oC “ S oCi ´
1

Qnom

ż t f

ti
I dt, (10)

where S oCi is the initial state of charge, Qnom the rated capac-
ity, and I is either respective current (ib or isc). The actual power
delivery pa at motor terminals is calculated considering conver-
sion losses as

pa “ p f c ` pb ` psc

“ p˚f c ` p˚b ` p˚sc ` losses. (11)

so that p f c, pb, and psc are determined based on the split ratio
ψ “ rβ γs as

“

p f c pb psc
‰T
“
“

β γ 1´ pβ` γq
‰T pd, (12)

subjects to driveability constraint

β` γ ď 1, @ tβ, γu P r0, 1s. (13)

For the emulation test-rig, the traction motor is mechanically
coupled to a programmable load-motor emulating the rolling
resistance, road grade, and air drag according to the speed input
v and driving cycle information [51].

4



3. Situation-based model predictive control

3.1. Vehicle state definition

This contribution is focused to the implementation of MPC-
based power management based on the corporate definition for
vehicle states; in terms of multiple characteristic variables. Ve-
hicle states are linearly mapped into a multi-dimensional space,
referred to as grid-space (GS), where selected variables (vehi-
cle speed, power demand, ... etc.) can be depicted as axes. The
number of variables considered for state definition and their re-
spective discretization levels are two main aspects determin-
ing the ability of GS constellation to meet following objectives:
first, defining vehicle states, to which power handling decisions
can be optimized offline (see Fig. 1) Second, providing reusable
transition statistics between states to develop state prediction
models; which is a prerequisite to online optimization using
MPC. These aspects have been investigated in previous work
of the authors [52]. Relevant findings from [52] are briefly ex-
plained as required in the sequel.

The characteristic variables for state definition are related
to vehicle speed v, power demand pd, and on-board states of
charge S oCb and S oCsc. Speed dynamics is also implemented
considering speed fluctuation (frequency), magnitude, and ac-
celeration to represent driver’s behavior in receding time hori-
zon. The vectors comprising discrete levels for the characteris-
tic variables are V , P, B, and S C, and D respectively. To exem-
plify how optimal values for the discrete levels are determined,
discrete levels for V can be defined as

Vn “ rV1,V2, ...,Vns , (14)

where n denotes the total number of discrete levels and is set
arbitrarily for each variable.

Numerical values for each discrete level are optimized to
achieve better representation of vehicle states in GS, i.e. less
number of missed states and maximum homogeneity of points
count. Driving history from 24 driving cycles (Fig. 5c), is used
to carry out the optimization task

minimize J1 “ f pNv,Vnq, (15a)
s.t.

Vnpiq P rvmin vmaxs, (15b)

where Nv denotes all sample points of v in database. The
throughput of f is the difference in points’ count between the
intervals from rVn

i : Vn
i`1s, for i “ 1, 2, ..., n. This optimiza-

tion task is solved offline using NSGA-II based on the work of
[53, 54]. The achievement of this step is shown in Fig. 5 for
both equally- and optimally-discretized GS-axes.

Based on the above-explained aspects, a total of 162 different
constellations for GS have been generated considering multiple
combinations of GS-axes and different discrete levels for each
variable. The total number of states in each constellation of GS
is related to its respective combination of axes as shown in Fig.
6. The axes configuration for constellation C3 is shown also in
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Figure 5: Optimal discretization of GS-axes: Defining points count for each
variable in gathered database (5a). Improving vehicle states representation in
GS using optimally-spaced axes in (5c) compared to equally-spaced ones in
(5b).
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the figure defining, illustrating how two arbitrary states s12 and
s38 out of total number of 60 states are defined [52].

Optimal power split for each state in GS is searched. The
control vector to be optimized is

Ψ “ rψ1 ψ2 ... ψms, (16)

where ψi denotes split ratio associated to respective vehicle
state si @ i P t1, 2, ...,mu. The optimization task is defined as

min J “ min
„

ob j1pu, x, tq
ob j2pu, x, tq



, (17)

for

ob j1pu, x, tq “
ż τ`T

τ

meq dτ and (18)

ob j2pu, x, tq “ α1 ∆S oCb |
t“τ`T
t“τ ` α2 ∆S oCsc |

t“τ`T
t“τ , (19)
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s.t.

S oCmin
b ă S oCb ă S oCmax

b , (20a)

S oCmin
b ă S oCb ă S oCmax

b , (20b)

pmin
f c ă p f c ă pmax

f c , (20c)

pmin
b ă pb ă pmax

b , (20d)

pmin
sc ă psc ă pmax

sc , and (20e)
β` γ ď 1, @ tβ, γu P r0, 1s, (20f)

where the superscripts min and max denote minimum and maxi-
mum limits for related variables and meq the function calculat-
ing equivalent fuel consumption of the fuel cell considering the
conversion ratio (33.7 kWh/GGE), according to [51]. Values
for weighting factors α1 and α2 are considered as 60 and 40 %
respectively to utilize the relative capability of battery and su-
percapacitor to take over dynamic power demand through fast
recharging/discharging better than the fuel cell. The optimized
solution vector u “ rΨs is integrated to the online application
using MPC.

3.2. State prediction model

State prediction models are prerequisite for real-time
optimization-based PMS. Accurate definition of vehicle states
in GS offers the ability to associate offline-optimized solution
to certain operating conditions and hence significantly narrow
down the online iteration process. Therefore, it is essential to
determine GS constellation, in which transitions between ve-
hicle states can be implemented to develop accurate prediction
models. In such models, vehicle state at a time instant k can be
defined as

S k P ts1, s2, ..., smu, (21)

where m is the total number of states in each constellation (see
Fig. 6). Markov property for an order-one chain can be defined
for the stochastic process χ as

Pr pχk`1 “ S k`1 | χk “ S k, χk´1 “ S k´1, ..., χ1 “ S 1q

“ Pr pχk`1 “ S k`1 | χk “ S k, χk´1 “ S k´1q . (22)

The transition probability Γh
i j to a next state S k`1 “ s j, in case

of having previous and current states as S k´1 “ sh and S k “ si

respectively can be calculated using driving database to obtain
the transition probability matrix

Γh “

»

—

–

Γh
11 ¨ ¨ ¨ Γh

1m
...

. . .
...

Γh
m1 ¨ ¨ ¨ Γh

mm

fi

ffi

fl
, (23)

repeatedly for h “ 1, 2, ...,m. Given the transition probabil-
ity matrix and according state space, Markov models can be
directly formulated as graphically shown in Fig. 7. The state
transition for existing three consequent states in the data history
is represented in Fig. 7.a, where respective transition probabil-
ities are shown in Fig. 7.b.

Figure 7: Transition patterns between vehicle states and according Markov
chains in an exemplified grid-space constellation.

Considering an arbitrary initial state S k “ si and preceding
state S k´1 “ sh, a transition probability vector can be extracted
as rΓh

i1,Γ
h
i2, ...,Γ

h
ims. In this contribution, only highest transition

probabilities at each time step are considered for MPC, i.e. gra-
dient weighting of stochastic Markov process is omitted. This
prediction step is repeated for the whole moving horizon k`N.

3.3. Model predictive control
Provided situation-based solutions from offline optimization

are only suitable to achieve local optimality at specific oper-
ating conditions. To approach global optimality, the full driv-
ing horizon can be broken down into smaller finite windows
of time; in which online optimization can be performed. The
longer these windows are, the closer the solution can get to
global optimality [42]. That comes at the price of increased
computational load and mitigated prediction accuracy for long
horizons [13]. These two aspects are particularly addressed in
the sequel.

The working principle of MPC illustrated in Fig. 8. Given a
state prediction for N upcoming steps as

u

kk-1 k+1 k+2 k+N-2 k+N-1... ... k+N

u (k|k)
i

u (k+  |k)
i

1 u (k+N-  |k)
i

1

i=3
i=1

i=4
i=2

u(k-1)

y y
i
(k|k) y

i
(k+  |k)1 y

i
(k+N-  |k)1 y

i
(k+N|k)

Figure 8: Different trajectories of predicted cost function
(yi p k ` 1 | Kq, ..., yipk ` N | Kq) for (N) look-ahead steps based on
respective iterations (i) of the future control strategy uipkq, ..., uipk`N´1 | Kq.

S̃ k`1:k`N|k´1,k “
“

S̃ k`1 S̃ k`2 ... S̃ k`N
‰

, (24)

where the manipulated variable ui at time instant k is defined as

uipkq “

»

—

–

uipk | kq
...

uipk ` N ´ 1 | kq

fi

ffi

fl
, (25)
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where i denotes current the iteration number of the initial vari-
able u1pkq defined as

u1pk`n´ 1 | kq “
#

ψi @S k “ si & n “ 1
ψ j @S̃ k`n´1 “ s j & n “ 2, 3, ...,N.

(26)

As no set-point control is required, the estimated system out-
put ỹipkq according to certain manipulated variable uipkq is for-
mulated to directly represent the cost function, as similarly ex-
plained in Eqn. (17)-(19) with

Jmpc “ ỹipui, x, tq “

»

–

ỹi
1pu

i, x, tq

ỹi
2pu

i, x, tq

fi

fl

“

»

–

řt“k`N
t“k m̃eq∆t

α1∆S oCb |
t“k`N
t“k ` α2 ∆S oCsc |

t“k`N
t“k

fi

fl , (27)

where the optimization task is to minimize Jmpc over the look-
ahead horizon subject to same constrains in Eqn. (20). These
constraints address the plausibility of online optimization, i.e.
sustaining the operating boundaries of individual powertrain
components. Here, local optimality of Jmpc refers to minimal
accumulated cost ỹ˚ over N time steps according to an optimal
manipulated vector u˚pk | kq. This control decision is applied
for the recent time step k, the moving horizon is swept for one
time step, and above-explained procedures are executed again
for the new horizon.

Vehicle state prediction and output estimation at each itera-
tion step are the main aspects determining the computational
load in SB-MPC. Implementing the detailed powertrain model
at each time steps for multiple iterations is computational ad-
verse to the real-time application of SB-MPC. Therefore, a
simplified powertrain model is essential to enable working on
longer prediction horizons and carry out multiple iterations to
approach global optimality. Operation of relevant powertrain
components, i.e. fuel cell, battery, supercapacitor, and the in-
line DC/DC converters, can be simplified for each power source
and respective converter linearly as a 3rd degree polynomial.
The simplified models are tuned using curve fitting tools based
on input/outputs data for each power source [55]. Simulation
results of both original and simplified models for each power
source including respective error are shown in Fig. 9. Sim-
plified power flow dynamics in each component stimulates un-
damped behavior of the output. However, for optimization pur-
pose over limited time horizons, this error is not significantly
relevant as long as both results show similar behavior.

In Fig. 10, the significant reduction of elapsed time in the op-
timization process is shown, considering different look-ahead
steps and number of iteration using the simplified powertrain
model. The computational time is retainedÆ 1 ms, considering
up to 15 steps ahead for optimization and 15 iterations per step
using the simplified model (Fig. 10b), compared to Ç 16 s
required for 3 steps ahead and 3 iterations per step using the
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Figure 9: Dynamic behavior of the fuel cell, battery, and supercapacitor using
the nonlinear and simplified HEV models over the NEDC driving cycle.

detailed powertrain model (Fig. 10a). Beside, the direct pro-
portionality of computational time to the number of iterations
is evidently larger than to the number of prediction steps in Fig.
10a. On the other side, in Fig. 10b, a quasi-homogeneous pro-
portionality of the computational time to both prediction steps
and the number of performed iterations is realized. The com-
putational time in the latter case suits the real-time applicability
for up to 10 input iterations for 10 steps ahead of state predic-
tion.
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Figure 10: Elapsed time for optimization considering different look-ahead steps
and iteration per steps in SB-MPC using detailed and simplified HEV models.
Computational time is calculated for workbench with an AMD 4.01 GHz 8-core
processor, 16 GB RAM operating a 64-Bit Windows professional. Real-time
compatibility is verified for a dSPACE ds-4504 platform.

To sum up the working steps of SB-MPC, all above-
explained steps are illustratively shown in Fig. 11. First, vehicle
speed, calculated power demand, and the feed back signals of
S oCb and S oCsc are linearly mapped to respective vehicle state
in GS. Second, information about previous and current vehicle

7



X1

X2

X3

X4

Y

SB-MPC

Driving	cycles

Desired	speedPower	demand

Vehicle	inverse	model

-T-

-T-

State	mapping

Supervisory	control

Optimal	solutions	LUTs

State	prediction	model To	test-rig

dS-1005	(output)

Sys	Input
Veh.	Speed
Measurements

Output

Driveability	control

From	test-rig

dS-1005	(input)
-T-

-T-

-T-

[Measurements]

-T-

-T-
-T-

-T-

-T-

PSR

Veh.	Speed Power	demand

Power	demand

SoC_b

SoC_sc

β

γ

Vehicle	state

GS	structure

p_fc

p_sc

p_b

Measurements

SoC_b
SoC_sc

<SoC_sc>

<SoC_b>

SoC_b

SoC_sc

Figure 11: Implementation of SB-MPC as a Simulink model.

state are given to the Markov prediction model to provide the
state prediction for upcoming horizon. Third, offline-optimized
solutions to the predicted states are iterated using MPC algo-
rithm to achieve near-global optimality of the cost function in
Eqn. (27) over the considered look-ahead horizon. Fourth, op-
timized control vector u is verified through the supervisory con-
trol w.r.t. the operating boundaries of powertrain components.
Finally, the control u is applied, the moving horizon is shifted
one step ahead, and the whole procedures is repeated again.

4. Results analysis and discussion

Test procedures of developed SB-MPC comprise three steps:
First, to verify the robustness of SB-MPC, it has been applied to
a number of driving cycles including learned and non-learned
ones, i.e. driving cycles which have been considered in offline
optimization processes or not. Second, to obtain an insight to
achieved results, a non-learned driving cycles during offline op-
timization is selected for further analysis, considering energy
saving and operating efficiency. Third, a full-MPC solution is
introduced, using the detailed powertrain model, to evaluate the
impact of using simplified powertrain model on solution opti-
mality of SB-MPC.
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Figure 12: Cost function minimization results using situation-based RB method
and SB-MPC for learned driving cycles (1-6) and a non-learned cycle (7):
Top: objective functions ob j1 and ob j2 in figures (a) and (b) respectively,
Bottom: according percentual improvement in figures (c) and (d).

In Fig. 12, the results of both objectives functions ob j1 and
ob j1 using SB-MP and the conventional situation-based method

are illustrated. Seven driving cycles are considered for the
test, representing different urban and highway driving condi-
tions [56]. An evident reduction of ob j1, pertaining fuel cell
energy, is achieved using SB-MPC (Fig. 12.a.) This reduction
in ob j1 corresponds to an improvement of 9–29 % compared
to the conventional of situation-based solution (Fig. 12.c). Val-
ues of the contradictive objective ob j2, oppressing the depletion
of S oCb and S oCsc, reveal 1–3 % increase in deployed power
from the auxiliary sources using SB-MPC (Fig. 12.b and 12.d).
Driving cycle modemIM-TUV is selected for further analysis of
SB-MPC in the sequel, as it has not been considered for offline
optimization (non-learned driving conditions).

Current consumption from each power source, using differ-
ent control methods is shown in Fig. 13. Presented results
reveal different power handling strategies to meet the control
objective. For limited pre-knowledge of the future in SB-MPC,
the power synergy ratio has changed dynamically over the mov-
ing horizon to count for inaccurate predictions of the system
output. On the other, full-MPC has been more capable than
other methods to perform scheduled charging/discharging cy-
cles of the battery and supercapacitor to retain minimal fuel cell
load.

To obtain an insight into the working mechanism of SB-
MPC, the cost minimization process over the time horizon
50–63s is shown in Fig. 14. For each time step, 10 iterations
of the manipulated variable u are performed to minimize esti-
mated future cost for the upcoming time frame of 10s. Optimal
control strategy for this horizon is applied, the moving horizon
is shifted for one step, and the same optimization procedures
are performed again. A significant reduction in the total energy
consumption Etot can be realized considering the proposed op-
timization strategy. Moreover, accurate prediction of upcoming
vehicle states and future cost implies fast convergence to near-
optimal solution as shown for this time-window, otherwise the
control algorithm has to explore more value for u at each time
step.

An important performance measure for power management
methods is the ability to assign power synergy tasks to the bat-
tery and supercapacitor, reducing overall energy consumption,
yet not depleting the onboard charge at the end of the driving
cycle [57].The impact of assigned values for α1 and α2 in Eqn.
(19) is revealed through the largest drop of ∆S oCsc “ 36.41 %
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Figure 13: Current consumption of (a) fuel cell, (b) battery, and (c) supercapac-
itor over driving cycle modemIM-TUV.

using SB-MPC (Fig. 15.b). Final values of S oCb are approx-
imately similar for both SB-MPC and the classical situation-
based method (Fig. 15.a). Minimal drop of both S oCb and
S oCsc has been achieved using full-MPC as 17.9 and 2.02 %
respectively.

For objective evaluation of the proposed method, detailed
energy consumption facts for all methods are shown in Fig.
16. The online minimization of ob j1 and ob j2 considering
more weighting for the fuel cell energy E f c, results in more de-
ployed energy from the battery ans supercapacitor Eb and Esc to
achieve balanced synergy ratio among all sources SB-MPC and
full-MPC (16.a). The shifted loading of battery and superca-
pacitor is balanced using defined values for α1 and α2 to avoid
components degradation.

The defined optimization criterion for J met and improve-
ment in total energy minimization of 5 % up to 62 % using
SB-MPC and full-MPC respectively (16.b). The outperformed
optimality of SB-PMS puts forward the significance of accu-
rate, yet simple plant model in the proposed method. However,
the advantageous optimality of full-MPC is not realizable in
real-time.

The overall powertrain efficiency can be mitigated by energy-
saving strategies due to the necessity to operate the DC/DC
converters within certain bounds. The significant reduction of
fuel cell energy using full-MPC resulted in the largest drop of
the fuel cell efficiency η f c, considering DC/DC conversion ef-
ficiency. This effect is less for the battery and supercapacitor’s
efficiency ηb and ηsc (16.c).
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Figure 14: Cost minimization procedures over limited time horizon using SB-
MPC
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Figure 15: State-of-charge profiles for the battery and super capacitor S oCb
and S oCsc using different power management methods.

5. Conclusion and outlook

In this paper, a novel power management method using
situation-based MPC is presented. The proposed method im-
plements pre-optimized solutions related to vehicle states for
the online optimization using MPC. Vehicle states are defined
in terms of optimized discrete levels for the variables: vehicle
speed, power demand, speed dynamics, and battery- and su-
percapacitor state-of-charge. Optimization of control decisions
related to each vehicle state is performed offline. State predic-
tion models are developed based on transition statistics of ve-
hicle states in a number of driving cycles. The online applica-
tion comprises following steps: Anticipating upcoming vehicle
states for limited time horizon, assigning optimized solutions
to each predicted vehicle state, and iterating the local optimal
solutions to achieve better optimality for the considered look-
ahead window using MPC. The developed situation-based MPC
(SB-MPC) is adapted to suit real-time application, in terms of
prediction length and the number of iterations per step using a
simplified powertrain model.

Online testing of SB-MPC is performed considering seven
different driving cycles. Moreover, the proposed method is
evaluated compared to the original situation-based PMS. Re-
sults analysis reveal the ability of SB-PMS to achieve robust
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improvement of defined cost function for all driving cycles.
The evaluation regarding energy consumption results shows the
ability of SB-PMS to realize balanced power split among the
fuel cell, battery, and supercapacitor and to achieve up to 5 %
reduction in total energy. However, considering detailed vehi-
cle model in the optimization process, 62 % reduction of total
energy in offline simulation can be achieved. These results put
forward the significance of accurate plant model to define op-
timal power management strategies using SB-MPC. Next steps
of this work includes the improvement of an accurate, yet real-
time-applicable plant models for SB-MPC.
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[13] S. Kutter, B. Bäker, Predictive online control for hybrids: Resolving the
conflict between global optimality, robustness and real-time capability, in:
2010 IEEE Vehicle Power and Propulsion Conference, IEEE, 2010 (Sep.
2010). doi:10.1109/vppc.2010.5729231.

[14] J. Soon-il, J. Sung-tae, P. Yeong-il, L. Jang-moo, Multi-mode driving con-
trol of a parallel hybrid electric vehicle using driving pattern recognition,
Journal of Dynamic Systems, Measurement, and Control 124 (1) (2000)
141–149 (2000). doi:10.1115/1.1434264.

[15] H. Hongwen, G. Jinquan, P. Jiankun, T. Huachun, S. Chao, Real-time
global driving cycle construction and the application to economy driving
pro system in plug-in hybrid electric vehicles, Energy 152 (2018) 95–107
(Jun. 2018). doi:10.1016/j.energy.2018.03.061.

[16] S. Zhang, R. Xiong, Adaptive energy management of a plug-in hy-
brid electric vehicle based on driving pattern recognition and dy-
namic programming, Applied Energy 155 (2015) 68–78 (Oct. 2015).
doi:10.1016/j.apenergy.2015.06.003.

[17] Y. Zou, Z. Kong, T. Liu, D. Liu, A real-time markov chain driver model
for tracked vehicles and its validation: Its adaptability via stochastic dy-
namic programming, IEEE Transactions on Vehicular Technology 66 (5)
(2017) 3571–3582 (May 2017). doi:10.1109/TVT.2016.2605449.

[18] C. M. Martinez, M. Heucke, F. Wang, B. Gao, D. Cao, Driving style
recognition for intelligent vehicle control and advanced driver assistance:
A survey, IEEE Transactions on Intelligent Transportation Systems 19 (3)
(2018) 666–676 (Mar. 2018). doi:10.1109/TITS.2017.2706978.

[19] J. Nilsson, M. Brännström, E. Coelingh, J. Fredriksson, Lane change
maneuvers for automated vehicles, IEEE Transactions on Intelli-
gent Transportation Systems 18 (5) (2017) 1087–1096 (May 2017).
doi:10.1109/TITS.2016.2597966.

[20] M. Montazeri-Gh, Z. Pourbafarani, Near-optimal soc trajectory for
traffic-based adaptive PHEV control strategy, IEEE Transactions
on Vehicular Technology 66 (11) (2017) 9753–9760 (Nov. 2017).
doi:10.1109/TVT.2017.2757604.

[21] Y. Han, Q. Li, T. Wang, W. Chen, L. Ma, Multisource coordination energy
management strategy based on soc consensus for a pemfcbatterysuper-
capacitor hybrid tramway, IEEE Transactions on Vehicular Technology
67 (1) (2018) 296–305 (Jan.. 2018). doi:10.1109/TVT.2017.2747135.

[22] H. Li, A. Ravey, A. N’Diaye, A. Djerdir, A novel equivalent consumption
minimization strategy for hybrid electric vehicle powered by fuel cell,
battery and supercapacitor, Journal of Power Sources 395 (2018) 262 270
(2018). doi:https://doi.org/10.1016/j.jpowsour.2018.05.078.

[23] Z. Chen, Y. Wu, N. Guo, J. Shen, R. Xiao, Energy management for plug-
in hybrid electric vehicles based on quadratic programming with opti-
mized engine on-off sequence, in: IECON 2017 - 43rd Annual Confer-
ence of the IEEE Industrial Electronics Society, IEEE, 2017 (Oct. 2017).
doi:10.1109/iecon.2017.8217248.

[24] M. Li, H. He, M. Yan, J. Peng, Variable horizon MPC for energy man-
agement on dual planetary gear hybrid electric vehicle, Energy Proce-
dia 152 (2018) 636 642, cleaner Energy for Cleaner Cities (2018).
doi:https://doi.org/10.1016/j.egypro.2018.09.223.

[25] S. Kelouwani, N. Henao, K. Agbossou, Y. Dube, L. Boulon, Two-layer
energy-management architecture for a fuel cell HEV using road trip infor-
mation, IEEE Transactions on Vehicular Technology 61 (9) (2012) 3851–

10



3864 (Nov. 2012). doi:10.1109/TVT.2012.2214411.
[26] L. Guo, B. Gao, Y. Gao, H. Chen, Optimal energy management for HEVs

in eco-driving applications using bi-level MPC, IEEE Transactions on In-
telligent Transportation Systems 18 (8) (2017) 2153–2162 (Aug. 2017).
doi:10.1109/TITS.2016.2634019.

[27] H. He, J. Guo, C. Sun, Road grade prediction for predictive energy man-
agement in hybrid electric vehicles, Energy Procedia 105 (2017) 2438–
2444 (May 2017). doi:10.1016/j.egypro.2017.03.700.

[28] Z. Chen, C. C. Mi, J. Xu, X. Gong, C. You, Energy management for a
power-split plug-in hybrid electric vehicle based on dynamic program-
ming and neural networks, IEEE Transactions on Vehicular Technology
63 (4) (2014) 1567–1580 (May 2014). doi:10.1109/TVT.2013.2287102.

[29] X. Zeng, J. Wang, A parallel hybrid electric vehicle energy management
strategy using stochastic model predictive control with road grade pre-
view, IEEE Transactions on Control Systems Technology 23 (6) (2015)
2416–2423 (Nov. 2015). doi:10.1109/TCST.2015.2409235.

[30] B. Geng, J. K. Mills, D. Sun, Two-stage energy management control of
fuel cell plug-in hybrid electric vehicles considering fuel cell longevity,
IEEE Transactions on Vehicular Technology 61 (2) (2012) 498–508 (Feb.
2012). doi:10.1109/TVT.2011.2177483.

[31] C. Zhang, A. Vahidi, P. Pisu, X. Li, K. Tennant, Role of terrain pre-
view in energy management of hybrid electric vehicles, IEEE Transac-
tions on Vehicular Technology 59 (3) (2010) 1139–1147 (Mar. 2010).
doi:10.1109/TVT.2009.2038707.

[32] D. Zhou, A. Al-Durra, F. Gao, A. Ravey, I. Matraji, M. G. Simes, Online
energy management strategy of fuel cell hybrid electric vehicles based on
data fusion approach, Journal of Power Sources 366 (2017) 278 – 291
(2017). doi:10.1016/j.jpowsour.2017.08.107.

[33] R. Zhang, J. Tao, H. Zhou, Fuzzy optimal energy management for fuel
cell and supercapacitor systems using neural network based driving pat-
tern recognition, IEEE Transactions on Fuzzy Systems (2018) 1 (2018).
doi:10.1109/TFUZZ.2018.2856086.

[34] S. Xie, X. Hu, T. Liu, S. Qi, K. Lang, H. Li, Predictive vehicle-following
power management for plug-in hybrid electric vehicles, Energy 166
(2019) 701–714 (Jan. 2019). doi:10.1016/j.energy.2018.10.129.
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[39] M. Ławryńczuk, Computationally Efficient Model Predictive Con-
trol Algorithms, Springer International Publishing, 2014 (2014).
doi:10.1007/978-3-319-04229-9.

[40] L. Li, S. You, C. Yang, B. Yan, J. Song, Z. Chen, Driving-
behavior-aware stochastic model predictive control for plug-in hy-
brid electric buses, Applied Energy 162 (2016) 868–879 (Jan. 2016).
doi:10.1016/j.apenergy.2015.10.152.

[41] S. D. Cairano, D. Bernardini, A. Bemporad, I. V. Kolmanovsky,
Stochastic MPC with learning for driver-predictive vehicle control and
its application to HEV energy management, IEEE Transactions on
Control Systems Technology 22 (3) (2014) 1018–1031 (May 2014).
doi:10.1109/tcst.2013.2272179.

[42] T. Li, H. Liu, D. Ding, Predictive energy management of fuel cell su-
percapacitor hybrid construction equipment, Energy 149 (2018) 718–729
(Apr. 2018). doi:10.1016/j.energy.2018.02.101.

[43] M. Esfandyari, V. Esfahanian, M. H. Yazdi, H. Nehzati, O. Shekoofa,
A new approach to consider the influence of aging state on lithium-ion
battery state of power estimation for hybrid electric vehicle, Energy 176
(2019) 505–520 (Jun. 2019). doi:10.1016/j.energy.2019.03.176.

[44] F. Yan, J. Wang, K. Huang, Hybrid electric vehicle model predictive con-
trol torque-split strategy incorporating engine transient characteristics,
IEEE Transactions on Vehicular Technology 61 (6) (2012) 2458–2467

(Jul. 2012). doi:10.1109/tvt.2012.2197767.
[45] G. Ripaccioli, A. Bemporad, F. Assadian, C. Dextreit, S. D. Cairano, I. V.

Kolmanovsky, Hybrid modeling, identification, and predictive control:
An application to hybrid electric vehicle energy management, in: Hybrid
Systems: Computation and Control, Springer Berlin Heidelberg, 2009,
pp. 321–335 (2009). doi:10.1007/978.3.642.00602.9.23.

[46] M. Back, M. Simons, F. Kirschaum, V. Krebs, Predictive control of
drivetrains, IFAC Proceedings Volumes 35 (1) (2002) 241–246 (2002).
doi:10.3182/20020721-6-es-1901.01508.

[47] M. Koot, J. Kessels, B. deJager, W. Heemels, P. vandenBosch, M. Stein-
buch, Energy management strategies for vehicular electric power systems,
IEEE Transactions on Vehicular Technology 54 (3) (2005) 771–782 (May
2005). doi:10.1109/tvt.2005.847211.

[48] G. Jinquan, H. Hongwen, P. Jiankun, Z. Nana, A novel MPC-based adap-
tive energy management strategy in plug-in hybrid electric vehicles, En-
ergy 175 (2019) 378–392 (May 2019). doi:10.1016/j.energy.2019.03.083.

[49] J. Kuhn, C. Reinl, O. von Stryk, Predictive control for multi-robot ob-
servation of multiple moving targets based on discrete-continuous linear
models, IFAC Proceedings Volumes 44 (1) (2011) 257–262 (Jan. 2011).
doi:10.3182/20110828-6-it-1002.00274.

[50] S. Xie, X. Hu, S. Qi, X. Tang, K. Lang, Z. Xin, J. Brighton, Model pre-
dictive energy management for plug-in hybrid electric vehicles consider-
ing optimal battery depth of discharge, Energy 173 (2019) 667–678 (Apr.
2019). doi:10.1016/j.energy.2019.02.074.
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