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Adaptive Step Size Control of
Extended/Unscented Kalman Filter
Using Event Handling Concept
Fateme Bakhshande* and Dirk Söffker

Chair of Dynamics and Control, University of Duisburg-Essen, Duisburg, Germany

This paper presents a novel (Extended/Unscented) Kalman Filter by augmenting the

event handling procedure of Ordinary Differential Equation (ODE) solvers with the

predictor-corrector scheme of Extended/Unscented discrete Kalman Filter (EKF/UKF)

introducing a variable step size Kalman Filter. This innovation allows a new quality of

precision while operating Kalman Filters. The original Kalman Filter is based on a time-

discrete predictor-corrector scheme considering fixed step size. The main new idea is

to introduce and control step size handling not introduced before. Step size control of

EKF/UKF will increase the performance when applied to switching/stiff systems. The step

size is controlled based on the current performance (EKF/UKF innovation) and is adapted

during the estimation procedure based on an event handling algorithm. The proposed

event handling algorithm consists of two parts: relaxing sample time and restricting

sample time (ST). Relaxing procedure is used to avoid high computational time when no

rapid change exists in system dynamics. Restricting procedure is considered to improve

the estimation performance by decreasing the EKF/UKF step size in the case of fast

dynamical behavior (switching/stiff behavior). Effectiveness of the proposed approach

is verified considering the well-known Van der Pol oscillator as a common example of

stiff systems.

Keywords: Kalman Filter, extended Kalman filter, step size control, event handling, switching systems, stiff ODEs,

Van der Pol system, zero crossing

1. INTRODUCTION AND PROBLEM DEFINITION

Step size control normally contains event handling procedure to detect the moment in time of
specific event. Event handling and zero crossing detection are well-known and well established
approaches to handle numerical simulation (Watts, 1984; Zhang et al., 2008). The idea of improving
the performance by detecting the moment in time at which events take place is known in the field
of ODE solvers. In Esposito and Kumar (2007) an event detection algorithm is introduced for non-
smooth differential equations. In this paper an extrapolation polynomial is used for selection of the
integration step size to detect potential future events. This approaches has advantages especially in
the neighborhood of model singularities where the derivative function is undefined in state space.
Singular systems can be modeled as Markovian jump singular systems. Investigation of stability,
stabilization, control, and filtering of these systems are more complicated compared to the systems
modeled in state space (Wang et al., 2017).
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In Bernal (1991) the author addressed calculation of time-
step sizes to prevent interstep events in multilinear problems.
In this work an approach is introduced to locate the moment
in time when the stiffness changes in a non-linear system. This
approach can be considered as an interpolation scheme of the
time when events occur by using computed responses at the
end of corresponding linear step. In Wright and Pei (2012)
an explicit numerical method is proposed to solve differential
algebraic equations (DAE) considering low-order discontinuities
in the restoring force algebraic equations. The effectiveness of
this approach is verified for a specific class of problems namely
non-smooth DAE with discontinuities. The algorithm is able to
automatically detect each state event location.

In reality the system dynamics is modeled by linear or
non-linear ordinary differential equations. For example in
Bakhshande and Söffker (2015) an elastic beam is modeled
as a linear ODE. A high gain Proportional-Integral-Observer
(PIO) introduced in Söffker et al. (1995) is used to estimate the
node displacements of the elastic beam system as well as the
disturbance force affects the system dynamics. The dynamics of
system and observer are augmented and described in one linear
ODE form. The aforementioned example can be described by a
suitable initial value problem (IVP). In this case stiff solvers able
to handle stiff problems are used to avoid high computational
time by relaxing the integration step size when no rapid change
exists in system states and disturbance dynamics, as well as to
improve the estimation results by decreasing the integration step
size in the case of fast dynamical behavior related to disturbances
(stiff behavior). In Bakhshande and Söffker (2015) simulation
results are achieved using stiff ODE solver in Matlab (ode15s)
considering event handling and zero crossing procedures.

Kalman Filter and its extensions (EKF and UKF) has the
same functionality as observers for discontinuous systems and
measurements containing statistical noise and other inaccuracies.
Different approaches have been introduced to improve the
performance of KF and EKF/UKF. For example iterated extended
Kalman filter (IEKF) (Bell andCathey, 1993) linearizes the system
non-linear equations iteratively to compensate the significant
non-linearities. In this algorithm an iterative procedure is
considered for measurements update (correction part). The
iterative procedure is stopped if the maximum number of
iterations is reached or the difference between two iterations
results is less than a pre-specified threshold. In Skoglund et al.
(2015) by assuming the EKF as an optimization problem,
different optimization algorithms (e.g., Line Search, Quasi-
Newton, and Levenberg-Marquardt) are considered to improve
the performance and robustness of estimation. In Havlík and
Straka (2015) an iterated extended Kalman filter with variable
step-length is introduced. In this approach the sample time is
considered as a fixed value. The measurement update step is
calculated based on the Gauss-Newton algorithm or Line Search
optimization procedure with variable step length. Here the step
size is considered as step size of optimization procedure to ensure
the convergence of a predefined criteria.

In Wang and Li (2008) an event-based Kalman Filter observer
is proposed to control the angular position of a rotary high speed
on/off valve. Measurements obtained at irregular time instants

and detected by an encoder. The uncertainty on transition
event occurrence time is considered as zero mean random
measurement noise acting on rotary position. This measurement
noise affected by the sampling time, is considered as part of
the system model to be used for Kalman Filter estimation. In
Chatzis and Chatzi (2017) a discontinuous Unscented Kalman
Filter (DUKF) is proposed as an modified version of the UKF.
This approach adapts the state space formulation, evaluates the
observability within each time step, and selects the suitable sub-
space that can be used by UKF. Consequently the unidentifiable
parameters (related to non-smooth behaviors) are detected and
excluded from the problem formulation.

An event triggered continuous discrete Kalman Filter is
introduced in Niu et al. (2018). The MSE of estimation is
controlled by detecting the event and taking a newmeasurement.
This approach decreases the sample time at each step to reach
the desired estimation error at the current sample time. The
next estimation starts by reinitializing the sample time to the
original one.

In all aforementioned approaches the sample time
of estimation results is defined constant (based on the
measurements) or is just reduced at the current step and is
reinitialized for the next time step. The goal is to achieve a
suitable estimation performance (in the case of event). None
of the mentioned approaches focus of sample time control
considering event detection by increasing and reducing the
sample time during the estimation procedure (like ODE solvers).
In this contribution the sample time is controlled based on
the estimation performance. It decreases in the case that
estimation error increases to achieve the desired performance.
Correspondingly it increases when the performance is suitable
enough to reduce the computational effort.

Event handling and zero crossing procedures have been
used and improved over the previous years for solving stiff
ODEs. The main objective of this paper is to integrate the
benefits of event handling and zero crossing procedures into
the discrete predictor-corrector scheme of Extended/Unscented
Kalman Filter to adaptively control the step size. Procedure of
KF starts from an initial set of Kalman parameters and system
states. The next estimation step is realized based on the current
step information (same concept as IVP). Generally the predictor-
corrector approaches are based on a pre-specified tolerance. To
use the KF for switching/stiff problems the algorithm should be
able to look back, execute the solution with smaller step size (stiff
problems), execute the solution at precisely defined moments in
time (switching problems), and reach the predefined tolerance.
Therefore, in this contribution a novel Extended/Unscented
Kalman filter is proposed by augmenting the variable step size
control in the predictor-corrector scheme for the stiff/switching
systems. The proposed variable step size Extended/Unscented
Kalman Filter is able to solve the state estimation of stiff problems
in discrete time to avoid unnecessary high computational load
if required and to increase estimation performance. Using the
proposed variable step size Extended/Unscented Kalman Filter
allows step size control inside the predictor-corrector procedure.
Sample time is adapted based on current estimation performance
(EKF/UKF innovation) of system states.
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This contribution is based on the previously published initial
research paper (Bakhshande and Söffker, 2018). In Bakhshande
and Söffker (2018) the first idea is presented for linear systems
and correspondingly Kalman Filter. Extending and detailing the
initial work, in this contribution an extended and improved
version of step size control is proposed for non-linear dynamical
behavior considering EKF and UKF. Furthermore, adjustment
of design parameters is investigated in this contribution to get
a suitable convergence rate and estimation error.

Unscented Kalman Filter is used here as a non-linear discrete
filter which can be replaced by any other discrete filter for linear
or non-linear systems. The main contributions of this paper can
be summarized as follows:

• Introducing a novel event-triggered discrete EKF/UKF for
stiff/switching non-linear systems based on the event handling
procedure in ODE solvers.

• Adaptation of time step in EKF/UKF (discrete world) based on
the Kalman innovation as key contribution of this paper (step
size control in discrete world).

• Controlling the innovation of estimation error for EKF/UKF
and computational effort under designable thresholds (α
and β).

The paper is organized as follows: First a general definition of
stiff/switching systems is provided besides the common solutions
to solve stiff ODEs. In the second part main aspects of (Matlab-
based) ODE solvers are introduced e.g., zero crossing and event
handling procedures with the purpose of integration into the
structure of Extended/Unscented Kalman Filter. Subsequently,
the proposed variable step size Extended/Unscented Kalman
Filter is detailed considering the structure and procedure of well-
known discrete EKF/UKF. Furthermore, the proposed method is
evaluated using simulation results of the Van der Pol oscillator
(common example of switching/stiff system). The last section
finalizes the paper with a summary and conclusions.

2. STIFF/SWITCHING SYSTEM

Ordinary Differential Equation (ODE) contains derivative(s) of
a dependent variable (usually denoting as x and corresponding
derivative(s) as ẋ, ẍ, ...) with respect to a single independent
variable (usually referring to time t). The initial Value Problems

TABLE 1 | Comparison of KF, EKF, and UKF considering the main principles of

filtering.

Method Model Assumed

distribution

Computational cost

KF Linear Gaussian Low

EKF Locally

linear

Gaussian Low (if the Jacobians be computed

analytically)

Medium (if the Jacobians be

computed numerically)

UKF Non-

linear

Gaussian Medium

(IVP) are iteratively solved by assuming an initial condition
x(t0) = x0 and the time period of interest t = [t0, tf ]. At each
step the solver uses the results of previous step considering a
particular algorithm (Euler’s method, RungeKutta methods, etc.).
The final result is given as a vector of time steps t = [t0, t1, ..., tf ]
and corresponding sequence of values for the dependent variable
x = [x0, x1, ..., xf ]. Higher-order differential equations can be
reformulated at each step of iterative solving procedure of IVP as
a system of first-order equations:

ẋ(t) = f (t, x(t)), t0 ≤ t ≤ tf
x(t0) = x0,

(1)

with step size:

hn = tn+1 − tn, (2)

and corresponding solution:

x(tn+1) = x(tn)+
∫ tn+1

tn
f (τ , x(τ ))dτ . (3)

Generally even if function f is a continuous function there is no
guarantee that the IVP provides a unique solution. Considering
Picard’s theorem according to Süli (2001) and considering
Lipschitz condition for function f , it can be stated that a unique
solution exists for Equation (1).

In Atkinson et al. (2011) a linear approximation of the general
ODE (Equation 1) is introduced as:

ẋ(t) = Ax+ g(t), (4)

with A = fx(t0, x0) as m × m Jacobian matrix of f evaluated
at (t0, x0).

Definition 1. [According to Hairer and Wanner (1987)]: The
system ẋ(t) = f (t, x(t)) is called separably stiff at a position

(t0, x0) if the Jacobian J =
∂f

∂x
(t0, x0) possesses k < n eigenvalues

λ1, λ2, ..., λk such that,

min|λi|1≤i≤k >> max|λi|k+1≤i≤n. (5)

The eigenvalues λ1, λ2, ..., λk are called the stiff eigenvalues and,

µ = min|λi|1≤i≤k/max|λi|k+1≤i≤n, (6)

the relative separation.

Stiff/switching system equations contain some terms that
produce a fast variation in the solution. According to Hairer and
Wanner (1987) relative separation can define the stiffness level.
In other words, the eigenvalue responsible for the slowest rates of
change should be compared to those leading to the fastest rates
of change.

Considering non-linear systems the complexity increases
because in this case stiffness becomes a global property and
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FIGURE 1 | Event handling procedure of variable step size Kalman Filter.

FIGURE 2 | Estimation of Van der Pol oscillator first state x1 using fixed and variable step size Extended Kalman Filter.
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therefore cannot be reduced to a local problem by using a
solution in the neighborhood of single points. The non-linear
problem may start with non-stiff behavior and become stiff,
or vice versa. It may contain stiff and non-stiff intervals. In
Ashino et al. (2000) a comprehensive definition of stiff system is
introduced for linear and non-liner systems as the following.

Definition 2. If a numerical method is forced to use, in a certain
interval of integration, a step length which is excessively small in
relation to the smoothness of the exact solution in that interval,
then the problem is said to be stiff in that interval.

To solve the numerical integration of stiff ordinary differential
(Equation 1) a suitable small step size hn is required in the
case of fast variation in the solution and correspondingly the
step size has to be relatively large (relaxed) when the solution
is smooth. Consequently a perfect numerical solution is able to
solve the stiff and non-stiff ODEs denoted as step size control
(Watts, 1984). Stiff numerical methods have the ability to change
the step size during solving procedure. They take small steps to
obtain satisfactory results nearby solutions that vary rapidly. The

main advantage of stiff solvers is the low computational time
compared to non-stiff solvers. Non-stiff solutions can be used for
stiff problems with a proper small step size but it takes more time
to achieve the final solution because the step size is constant and
can not be adapted according to the actual results.

3. ZERO CROSSING AND EVENT
HANDLING PROCEDURES

In this section the main ideas of zero crossing and event handling
are repeated to be used later introducing the proposed algorithm.
Here they are briefly repeated because exactly these ideas will be
transferred to the finite difference scheme of calculation digital
filters like Kalman Filter.

As discussed in section 1, variable step size solvers increases
or decreases the step size to achieve error tolerances and required
or given performance. Selection of fixed or variable step size
depends on the dynamical model and implementation issues. The
fixed step size solver uses one step size for the whole simulation

FIGURE 3 | Estimation of Van der Pol oscillator second state x2 using fixed and variable step size Extended Kalman Filter.
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time and consequently the step size has to be small enough to
achieve the accuracy requirements.

Implicit variable step size solvers (stiff solvers) can be used
to solve stiff problems. The non-stiff solvers are ineffective on
intervals where the solution changes slowly because they use time
steps small enough to resolve the fastest possible change for the
whole estimation time. Furthermore, the step size of non-stiff
solvers has to be defined at the initialization level and can not
be changed during the solving procedure.

Event handling and zero crossing procedures are usually
considered in ODE solvers. Detecting the moment in time of
specific events in ODEs is referred to event handling procedure.
For example the exact time a ball hits the ground or the time
that the ODE solutions reaches a specific value is a very specific
moment. The event is detected from time step tn to tn+1 if the
conditional statement (event) becomes true. The zero crossing
detection algorithm is a procedure to capture and locate events
accurately. In the case of zero crossing for a predefined event,
the ODE solver can be terminated or continued with different
conditions according to demand. Event detection of ODE solvers
contains two functions f (t, x) and g(t, x), and an initial condition
(t0, x0). Using event handling procedure in the structure of ODE
solver means to numerically define themoment in time t∗ so that:

ẋ(t) = f (t, x(t)),
x(t0) = x0,
g(t∗, x(t∗)) = 0.

(7)

Here g(t, x) denotes the event condition which has to be defined
by the programmer according to the requirements.

4. EXTENDED/UNSCENTED KALMAN
FILTER

Filtering is an important and fundamental problem in the
discrete-time control field. For example in Wang et al. (2019) a
fuzzy filter is designed for discrete-time fuzzy descriptor systems
considering the limited unreliable communication links. One
of the most important filter structures in the field of control
is Kalman Filter. Principally, Kalman Filter can be used (i) for
system state estimation when it can not be directly measured or
(ii) for fusion of sensors information when measurements are
available from various sensors but might be subject to noise.
Although many applications can be considered for this filter,
these are two of the most important tasks and applications of
this filter.

The main goal of this filter is to achieve final estimation with
zero bias and minimum variance compared to the real value and
considering noisy measurements. Kalman filter is the optimal
linear filter in sense of minimizing the variance estimate of states
with the assumptions that the system model perfectly matches
the real system, the entering noise is white (uncorrelated),
and the covariances of the noise are exactly known (Anderson
and Moore, 2012). In other words, for systems fulfilling the
requirements, KF is the best choice. Kalman Filter is firstly
introduced in Kalman (1960) to formulate and solve the Wiener
Filter problem which is proper for filtering, smoothing, and

prediction of wide-sense stationary signals. It is worth noting that
Kalman Filter in discrete or continuous form and its extensions
(Bishop and Welch, 2001) are introduced as a fundamental
algorithm to solve a broad range of estimation problems.

Extended Kalman Filter (EKF) has been introduced for
non-linear systems by linearizing the estimation around
the current estimation and using partial derivatives of the
system/measurement equation (Sorenson, 1960; Costa, 1994).
In the presence of strong non-linearities, Extended Kalman
filter leads to poor estimation results because of propagation
of covariance from one measurement sample time to the next
through the linearization (Bishop and Welch, 2001). In other
words using of Jacobians, representing all partial derivatives
of the non-linear system (model), may lead to sub-optimal
performance and sometimes divergence of the extended Kalman
Filter. Therefore, Unscented Kalman Filter (UKF) is introduced
in Costa (1994) to improve the estimation performance as well
as to remove the requirement of Jacobians calculations. The UKF
exactly addresses the problem of EKF by using a deterministic
sampling approach. The UKF approximates the state distribution
by a GRV (Gaussian Random Variable) as well as EKF, but
it is represented by using a minimal set of carefully chosen
sample points.

FIGURE 4 | Phase portrait illustration of Van der Pol oscillator using fixed and

variable step size Extended Kalman Filter.
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The Extended Kalman Filter assumes that the state at time step
k is calculated from the previous state step xk−1 according to:

xk = f (xk−1, uk)+ wk,
zk = h(xk)+ vk.

(8)

In a general system either the state transition function f or the
measurement function h or both may be non-linear. Here the
process and measurement noises (wk and vk) enter the system
linearly but there may be systems for which the noise can not be
assumed as additive. They are assumed to be zero mean Gaussian
noises with covariance Q and R respectively. In the procedure of
EKF the non-linear functions are linearized around the mean of

current state estimation as:

JF =
∂f

∂x
|x̂k−1 ,uk ,

JH =
∂h

∂x
|x̂k .

(9)

At each time step the linearization is performed locally and
the resulting Jacobian matrices JF and JH are then used in the
prediction and correction steps of the KF algorithm. The system
and measurement noise respectively wk and vk are assumed to be
independent, white, and with normal probability distributions as:

p(w) ∼ N(0,Q),
p(v) ∼ N(0,R).

(10)

In practice, the noise covariance matrices might change during
the time, however they are often assumed to be constant. There

FIGURE 5 | Estimation error of Van der Pol oscillator state x1 using fixed and variable step size Extended/Unscented Kalman Filter.
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TABLE 2 | Performance comparison.

Performance measurement EKF VSEKF UKF VSUKF

RMSE 0.1532 0.0140 0.1531 0.0132

Mean absolute error 0.0856 0.0070 0.0859 0.0067

Maximum error 0.8026 0.0795 0.8027 0.0794

are two sets of equations for prediction and correction process.
The time update projects the current state estimation ahead
in time while the measurement update adjusts the projected
estimation by an actual measurement at that time. The procedure
of Extended Kalman Filter can be summarized as follows:
Prediction (time update)

(1) Project the state ahead
x̂−
k
= f (x̂k−1, uk)

(2) Project the error covariance ahead
P−
k
= JFPk−1J

T
F + Q

Correction (measurement update)

(1) Compute the Kalman gain
Kk = P−

k
JTH(JHP

−
k
JTH + R)−1

(2) Update the estimation with measurement
x̂k = x̂−

k
+ Kk(zk − hx̂−

k
)

(3) Update the error covariance
Pk = (I − KkJH)P

−
k

When the system is non-linear and can be well approximated by
linearization then the EKF is a good option for state estimation.
However it has the following drawbacks:

1. It may be difficult to calculate the Jacobians if they need to be
calculated numerically.

2. There are high computational costs when the Jacobians are
calculated numerically.

3. The EKF only works on systems that have a
differentiable model.

4. The EKF is not optimal if the system is highly non-linear
(linearization does not provide a good approximation for
highly non-linear systems).

Unscented Kalman Filter (UKF) can be used to overcome the
last disadvantage of the EKF by approximating the probability
distribution instead of approximating the non-linear function. A
brief comparison of KF, EKF, and UKF is presented in Table 1

considering the main principles of filtering. The computational
cost of Kalman Filter depends also on the sample time of the
measurements which is the main focus of this paper.

5. VARIABLE STEP SIZE
EXTENDED/UNSCENTED KALMAN FILTER

In section 4 the procedure of standard Extended/Unscented
Kalman Filter and correspondingly predictor-corrector
scheme has been briefly explained. In the following section
variable step size (Extended/Unscented) Kalman Filter is
proposed and discussed in detail to enhance the performance
of (Extended/Unscented) Kalman Filter for stiff/switching

problems. The proposed approach consists of event handling
and zero crossing concepts according to ODE solvers with
variable step size integration. The main flowchart of variable step
size Kalman Filter is graphically and mathematically defined in
Figure 1 and Algorithm (1).

The algorithm starts by initialization of Kalman Filter
prerequisites e.g., initial states, covariance matrices, and initial
sample time (ST). At the first step (initialization level) or in the
case that an event is occurred and detected during the solving
procedure (ST is decreased or increased) the state space model
of the system is discretized based on the new ST. Since the
measurement vector is constant, interpolation is required to
define the measurement vector according to new sample time.
The Kalman Filter procedure is solved from the zero moment up
to the current time to find a suitable initial value for the upcoming
time. At each step of predictor-corrector scheme the Kalman
Filter innovation is used for event handling procedure (shown
in detail in Figure 1). The proposed event handling algorithm
consists of two main parts: restricting ST and relaxing ST. Four
parameters are considered as design parameters (Min. ST, Max.
ST, α, and β). The α and β parameters denote the upper and
lower thresholds of accuracy and are defining the compromise
between computational time and estimation accuracy. The Min.
ST andMax. ST are defined to show themaximum andminimum
possible sample time that should be defined according to the
desired performance.

When ST changes the predictor-corrector scheme is stopped.
According to Figure 1 the variable step size Kalman Filter
procedure is continued by applying a new discretization
of system model and new initialization using interpolated
measurement vector. The procedure is continued until the final
time of simulation and at each sample k the results are stocked to
be released at the end of simulation time.

6. NON-LINEAR EXAMPLE: VAN DER POL
OSCILLATOR

To verify the proposed approach, namely variable step size
EKF/UKF, the Van der Pol oscillator example is considered. The
Van der Pol oscillator is a highly non-linear system/oscillator
with non-linear damping. It can be considered as non-stiff or stiff
example considering the strength of damping. This system is used
in literature as a switching example to show the advantages of
event handling and variable step size ODE solvers (Khan et al.,
2011). Therefore, it is used here to illustrate the advantages of
proposed variable step size EKF/UKF including event handling
procedure. The dynamics of Van der Pol oscillator evolves in time
according to the following second-order differential equation:

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0, (11)

where x denotes the position coordinate as a function of time
and µ is a scalar parameter representing the non-linearity and
strength of damping. The equations become increasingly stiff as
µ increases and for µ = 0 the system becomes linear. The system
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Algorithm 1: Variable step size Extended Kalman Filter

1: procedure (System measurement vector y)
2: Initialization of estimated state vector x̂ and error covariance P
3: while Current time (t) ≤ Final time (TF) do
4: Compute the sample time ST = Initial ST/d (d : Restricting/Relaxing parameter)
5: Compute the sample numbers N = TF/ST
6: Compute the time vector T = 0 : ST :TF
7: Interpolation to find the artificial measurement vector Y considering the time vector t
8: Solve the EKF from beginning to the current time (t) by considering (T,Y)
9: to find the current initial value (t0, y0)
10: for time : = t to TF step ST do
11: Prediction step (Time update)

12: Project the state ahead x̂−
k
= f (x̂k−1, uk)

13: Update the Jacobians JF and JH
14: Project the error covariance ahead P−

k
= JFPk−1J

T
F + Q

15: Correction step (Measurement update)

16: Compute the Extended Kalman gain Kk = P−
k
JTH(JHP

−
k
JTH + R)−1

17: Update the estimation via measurement x̂k = x̂−
k
+ Kk(zk − hx̂−

k
)

18: Update the error covariance Pk = (I − KkJH)P
−
k

19: Calculate the EKF innovation innovk = zk − hx̂−
k

20: if β ≤ |innovk| ≤ α then
21: Stock the estimation results for the current sample k in the draft data
22: Go to the next step k+ 1
23: else if |innovk| > α then
24: if ST > Min.ST then
25: Increase the value of d parameter (Restricting ST)
26: Save the draft data in the final data
27: Break, go to line 39
28: else
29: Stock the estimation results for the current sample k in the draft data
30: Go to the next step k+ 1
31: end if
32: else if |innovk| < β then
33: if ST < Max.ST then
34: Decrease the value of d parameter (Relaxing ST)
35: Save the draft data in the final data
36: Break, go to line 39
37: else
38: Stock the estimation results for the current sample k in the draft data
39: Go to the next step k+ 1
40: end if
41: end if
42: end for
43: end while
44: return x̂
45: end procedure

(Equation 11) can be rewritten in state space form as:

[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)

µ(1− x21(t))x2(t)− x1(t)

] [

x1(t)
x2(t)

]

, (12)

with state vector [x1 x2]
T describing the first and second states

of the Van der Pol system. Accordingly a first-order Euler
discretization of the equations of motion of Van der Pol oscillator

is calculated as:

xk+1 = f (xk), (13)

with,

xk = [x1,k x2,k]
T ,

f (xk) =

[

x1,k + hx2,k
x2,k + h(µ(1− x2

1,k
)x2,k − x1,k)

]

,

(14)
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FIGURE 6 | Root mean square error (RMSE) of EKF/UKF and VSEKF/VSUKF

considering different level of system and measurement noise.

where h denotes the assumed sample time for
discretization procedure.

The Van der Pol oscillator is driven by the system and
measurement noise according to Equation (8) with zero
mean white Gaussian noise for system and measurement
with covariances Q in R2×2 and R > 0. In this paper
it is assumed that for k ≥ 0 both states are available
as measurements. The objective is to obtain the estimation
x̂k using the measurements considering different approaches
namely EKF, UKF, VSEKF, and VSUKF and to compare the
estimation performance.

7. NUMERICAL RESULTS AND
DISCUSSION

To investigate the performance of proposed improved EKF/UKF
using the variable step size algorithm, introduced in this
paper, simulation results were carried out using the Van der
Pol oscillator system. The system parameters used in this
simulation study, the KF covariances, and the noise parameters
are considered identical for all simulations. Simulation results
are illustrated as estimation of x1 in Figure 2, estimation
of x2 in Figure 3, and respectively the phase portrait in
Figure 4 for EKF and VSEKF. The performance is measured
based on estimated states and related comparison with real
ones. From the results it can be concluded that using the
variable step size algorithm in combination with EKF produces
better performance in estimation task especially nearby rapid
behavior of the system (stiff behavior). In other words,
the proposed solution improves the estimation results by
decreasing the step size in the procedure of predictor-corrector
scheme and in the case of fast dynamical behavior (time
∈ [0.2, 0.4]). On the other side by relaxing the step size
when no rapid change exists, the proposed approach decreases

the high computational time of predictor-corrector scheme
(time ∈ [0.6, 1.6]).

In Figure 5 the estimation performance (estimation error
of the first system state namely e = x1 − x̂1) is illustrated
for EKF, UKF, VSEKF, and VSUKF. In the right figure the
results are achieved considering that the sample time is known
for EKF and UKF while the left figure is the results related
to unknown sample time. From the results it can be stated
that even if the sample time is known for the procedure
of EKF and UKF, the proposed VSEKF and VSUKF reach
better estimation performance namely almost zero median
error and improved minimum and maximum error values.
The estimation results are summarized in Table 2. It is evident
from the numerical results that using the proposed variable
step size algorithm leads to less RMSE and MAE for VSEKF
and VSUKF.

In the next simulation part the measurement and system
noise variance is changed and the RMSE is calculated for all
filters. The results are illustrated in Figure 6 with logarithmic
axis for noise variance. From the results it can be concluded
that the proposed approach produces more robust estimation
results especially in the presence of measurement noise. The
RMSE increases for EKF and UKF by increasing the noise
variance while it has more or less no influence on the
estimation results of VSEKF and VSUKF. As conclusion it
can be stated that the proposed approach outperforms up-
to-date solutions with respect to the different dimensions
worth to consider while working with non-linear and or
stiff systems.

8. CONVERGENCE RATE AND
PARAMETER SELECTION OF
VSEKF/VSUKF

As mentioned in section 5 the design parameters α and
β are defined as upper and lower thresholds to control
the innovation of estimation error and the computational
effort correspondingly. In Figure 7 RMSE of the proposed
approach is shown for variation of design thresholds α and
β . In Figure 7A the total estimation time is considered
while in Figure 7B the estimation error in the first 3 s is
shown to evaluate the convergence rate of the proposed
approach. From the results it can be concluded that
the upper threshold α has the main influence on the
estimation performance and by increasing the value of α

the performance decreases. Furthermore, it can be concluded
that increment of β threshold has less influence on the
estimation error and convergence rate. The worse performance
is related to the case that both thresholds are increased
(as expected).

Next analysis is related to the influence of restricting/relaxing
parameter d (which is considered to change the step size) on
the estimation performance. According to Figure 8 the RMSE
generally decreases by increasing the d parameter and it increases
when d > 1.
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FIGURE 7 | Root mean square error (RMSE) of VSEKF considering different parameters α and β, (A) RMSE of total error of the estimation, (B) RMSE of convergence

error in the first 3 s.

In Figure 9 the influence of system and measurement
noise covariances on the estimation performance is illustrated.
According to the result the performance decreases for system
noise covariance 0 < Q < 100 and measurement noise
covariance 250 < R < 800 (this area is illustrated with red arrows
in Figure 9).

9. SUMMARY, CONCLUSIONS, AND
OUTLOOK

Variable step size (Extended/Unscented) Kalman Filter algorithm
(VSEKF/VSUKF) proposed in this paper is based on event
handling and zero crossing concepts involved in the structure

of ordinary differential equation solvers. At each step of
predictor-corrector scheme the Extended/Unscented Kalman
Filter innovation is used to detect the events considering
the predefined low and upper boundaries (α and β). In the
case that an event is occurred and detected, the sample time
is increased (relaxing procedure) or decreased (restricting
procedure), the predictor-corrector scheme is stopped,
and the procedure is continued by new discretization of
system model and new initialization using interpolated
measurement vector. In the case that no event is detected,
the predictor-corrector scheme can be continued with the
current considered ST. The design parameters α and β are
considered to control and influence the performance and
computational time.
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FIGURE 8 | Root mean square error (RMSE) of VSEKF considering variation of

parameters d (Restricting/Relaxing parameter).

FIGURE 9 | Root mean square error (RMSE) of VSEKF considering variation of

system and measurement noise covariances.

The Van der Pol example is used as a common example
for stiff systems to illustrate advantages of the proposed
approach compared to standard discrete Exteneded/Unscented

Kalman Filter. Simulation results clearly demonstrate the
effectiveness of proposed estimation approach especially close
to the rapid changes in the system dynamics (stiff behavior).
In other words, the proposed solution improves the estimation
performance by decreasing the step size in the procedure
of predictor-corrector scheme according to current estimation
accuracy and in the case of fast dynamical behavior. From the
simulation results it can also be concluded that the proposed
variable step EKF/UKF is more robust in the presence of
high level of system/measurement noise compared to the
standard EKF/UKF.

What is not covered and can be possibly detected as
limitation of this work is the computational effort. Investigation
of the computational effort related to the proposed step
size control and its consequences are not considered in this
contribution. The computational time needs for the proposed
approach is more than standard EKF/UKF by reducing
the step size. On the other side, in the relaxing procedure,
computational time decreases. Therefore, investigation of
parameter and thresholds definition regarding real-time
implementation seems to be useful and can be considered as
future work.
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