
Heliyon 9 (2023) e15019

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Quantification of human behavior levels by extending 

Rasmussen’s SRK model and the effects of time pressure and 

training on the levels switching

Chao He ∗, Dirk Söffker
Chair of Dynamics and Control, University of Duisburg-Essen, Duiburg, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Human reliability analysis (HRA)

SRK model

Human behavior

Human error probability (HEP)

Quantification

Time pressure

Training

Human factor-related accidents account for an increasing portion of the total accidents through 
the advancing level of system automation. Human reliability becomes the key issue in human-

machine systems especially for safety-relevant tasks and operations. Rasmussen’s SRK (skill-rule-

knowledge) model is well known in the field of human factors. Likewise, it is well known that 
skill-based behaviors have the highest human reliability, while knowledge-based behaviors are 
associated with the lowest reliability scores. Although numerous studies exist on human error 
probability (HEP), correspondingly typically attributed directly or indirectly to these three levels 
of behavior, a coherent, consistent representation, especially using data sources, has not been 
available. In this contribution, the quantification of human behavior levels with Rasmussen’s SRK 
model is given based on three databases for the first time. Effects of time pressure and training 
on human reliability switching are also analyzed based on related publications. To determine the 
HEP of these three levels, three databases, technique for human error rate prediction (THERP), 
Savannah river site human reliability analysis (SRS-HRA) and nuclear action reliability assessment 
(NARA), from human reliability analysis (HRA) methods are used. The procedure contains 
identifying the tasks including the operator involved and the assumptions the analysts made and 
classifying the tasks into suitable cognitive behavior mode (CBM). In this case, the relationship 
between SRK levels and HEP is mapped. The effects of the two in automation context very 
relevant performance shaping factors (PSFs), time pressure and training/knowledge degradation, 
on human behavior levels switching are analyzed and the explanations of the SRK switching 
are presented. In this case, a more general structure is established to illustrate the dynamic 
behavior of levels switching with six directions under different conditions. From the results we 
conclude that skill, rule, and knowledge behavior levels are continuous in terms of HEP and 
therefore allow a new inside into this key aspect of human factor quantification. Based on this 
analysis the consequences of daily automation in the context of autonomous transport systems in 
combination with human qualification and reliability degrading are from this specific and in the 
current automation discussion very intensively discussed. The presented discussion linking SRK 
levels and HEP gives a new perspective on the foreseeable consequences of further automation 
in application areas with increasing automation of everyday tasks (like using a highly automated 
vehicle).
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1. Introduction

Automation has become increasingly common in a wide variety of fields due to the ongoing advancement of technology. Most 
safety-critical systems or fields such as power plants in energy production [70], guiding or flying aircrafts in aviation [11], or in 
transportation in general [65], automation is involved. Automation has profoundly influenced human behaviors in human-machine-

systems, as many repetitive, many mechanical tasks can now be left entirely to machines, humans mainly are related to supervisory 
control tasks. While in safety critical fields typical automation side-effects firstly very intensively discussed by [2] are considered and 
well-known this is not necessarily the case in other fields. At the same time, higher levels of automation are increasingly capable of 
performing tasks that were previously thought to be performed only by humans. Automation has been varied to different levels, with 
higher levels representing increased machine autonomy. In [54], the automation of decision and action selection is divided into ten 
levels where level 1 indicates no assistance from the automation and level 10 presents that the automation decides everything and 
human is ignored. Humans cannot be excluded except for the automation of level 10. From level 0 of no automation to level 5 of 
full automation, the society for automotive engineering (SAE) has defined six levels of automation for driving [55]. It demonstrated 
that, even with fully autonomous vehicles, the human driver cannot be separated from driving activities since driving situations 
are still required to be monitored and, in some cases, the vehicle needs to be controlled again. In high-risk environment, such as 
the prediction of air traffic conflicts, decision automation settings should be made to allow for human involvement. While waiting 
for humans to decide how to react to an automated scenario evaluation, dangerous occurrences could occur. For example, different 
takeover time is critical to the reliability of automated vehicle drivers in dealing with emergencies [65]. Automation can have both 
beneficial and negative effects on human performance [44]. When changes in environmental or system states are controlled by 
another agent, humans tend to be less aware of them indicating the operator’s situation awareness of the dynamic features of the 
working environment is reduced. If the system functions are consistently performed by automation, humans will not be as skilled in 
performing the functions which means skill degradation. In this contribution, a dynamic system is defined as the outside world of the 
interacting human in which the relevant variables are dynamic and therefore enforce a dynamic human interaction. This dynamic 
environment will result in the dynamic interaction, which will further include that the time variant changes are perceived by human 
cognition. It is known that human cognition is not only strictly linear or serial, but also involves parallel and cyclic processing. 
Cognition functions occur in a continuous loop and overlap. Operators in realistic contexts often need to accomplish most or all of 
these functions at the same time. Therefore, task performance normally requires a simultaneous consideration of all three cognitive 
control levels in the SRK model.

In human-machine systems, human error causes behaviors that can be considered non-optimal or, at worst, undesirable, and 
unacceptable. The role played by humans is of increasing importance, due to the fact that more accidents are related to human 
errors. In [72], about 80% of marine casualties are attributed, at least in part, to various types of human error, making human error 
the primary contributing cause for shipping accidents. Most experts in the field of aviation concur that human error accounts for 
between 60% and 80% of aviation accidents [52]. The national highway traffic safety administration (NHTSA) stated that human 
factors are to blame for 94% of traffic accidents [42]. Human error mechanisms are dependent on mental functions and knowledge 
that are sparked by subjective factors. The characteristics of the task and working environments can be used to infer these mental 
functions and knowledge, which cannot be directly observed [46]. With the development and refinement of research on human error 
mechanisms and failure modes, the study of human reliability analysis (HRA) has been formed.

Human reliability is a common used concept in probability assessment context. Human error probability (HEP), which is deter-

mined by the ratio of the frequency of errors to the number of possibilities for errors, is calculated using the sophisticated method 
known as human reliability analysis (HRA). For the analysis, forecasting, and prevention of human errors, methodologies for HRA 
have been presented. Generations are frequently used to categorize the modifications that HRA approaches have undergone over 
time. For the so called ‘first generation’ HRA methods, human is considered similar to a mechanical component, so all aspects of 
dynamical interactions with the working environment, both physical and social environment are not considered [12]. The basic as-

sumption which has been made in many of these methods such as technique for human error rate prediction (THERP) [34], accident 
sequence evaluation program (ASEP) [60] and human cognition reliability (HCR) [24] is that humans have natural weakness and 
logically fail to execute tasks, similar to mechanical or electrical components. With this assumption, based on the operator’s task 
characteristics, the HEP can be assigned by experts and can be modified by performance shaping factors (PSFs).

With the criticism of absence of consideration on the dynamic aspects from the environment, researchers developed some new 
methods, such as a technique for human event analysis (ATHEANA) [9], and cognitive reliability and error analysis method (CREAM) 
[27]. These methods are so called ‘second generation’ HRA methods. The methods in this generation aspire to lean toward conceptual 
methods as cognitive models are proposed, while the so called ‘first generation’ methods are often behavioral approaches. The 
objective of ‘second generation’ HRA approaches is the qualitative evaluation of the operator’s behavior and the search for models 
that describe the synergy with the production process [12].

The shortcomings and restrictions of the ‘second generation’ HRA approaches serve as a catalyst for further advancements of 
the current ones. There are also studies that have concentrated on the lack of empirical data for the development and validation 
of an HRA model and are intended to define the database HRA. These studies may provide the methodological tools required to 
more intensively use different types of information in future HRA methods and reduce uncertainties in the information used to 
conduct human reliability assessments [12]. With the increased development of computer technology, several HRA methods are 
using artificial intelligence and simulation techniques to predict human error based on cognitive models. The cognitive simulation 
model (COSIMO) [5] based methods are defined as so called ‘third generation’ HRA methods [43]. The method now defined as ‘third 
2

generation’ is nuclear action reliability assessment (NARA) [12].
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Table 1

Human cognitive process and corresponding HRA methods (adapted from [43]).

Researcher Year Cognitive process HRA methods

Rasmussen 1979 Recognition, identification, decision, and planning THERP/HCR

Wreathall 1982 Detect, diagnose, and implement OAT

Woods 1987 Monitoring, explanation building, and response management CREATE

Reason 1990 Planning, storage, and execution GEMS

Cacciabue 1992
Cognitive filter, diagnosis, hypothesis evaluation,

and execution
COSIMO/DYLAM/HERMES

Wickens 1992
Perception, decision and response selection,

and response execution
ATHEANA/CREAM/ADS-IDAC

Cooper 1996 Monitoring, situation assessment, and response ATHEANA

Hollnagel 1998 Observation, interpretation, planning, and execution CREAM

Mosleh 2004
Information processing, problem solving and decision making,

and execution
ADS-IDAC

ATHEANA: A technique for human event analysis.

ADS-IDAC: Accident dynamics simulator with the information decision and action in a crew context operator model.

CREAM: Cognitive reliability and error analysis method.

COSIMO: Cognitive simulation model.

CREATE: Cognitive reliability assessment technique.

DYLAM: Dynamic logic analysis method.

GEMS: Generic error modeling system.

HERMES: Human error reliability methods for event sequences.

HCR: Human cognition reliability.

OAT: Operator action tree.

THERP: Technique for human error rate prediction.

The HRA methods use different cognitive explanatory models of the human behavioral process to explain the mechanisms by 
which human errors occur. Cognition is primarily concerned with memory judgment, interpretation, concept formation, decision 
making, and other mental activities prior to action execution in the environment. To characterize the human cognitive process and 
explain human thinking and behavioral modes, a cognitive model is developed. With the development on psychology, behavioral 
science, ergonomics, and other interdisciplinary, the understanding on human cognition becomes more detailed. At the same time, 
these cognitive models inspire HRA researchers to develop more comprehensive HRA methods on different human cognitive activities. 
The HRA methods with their adopted cognitive processes are listed in Table 1.

Among the listed cognition models, skill-rule-knowledge (SRK) model proposed by Rasmussen is well-known and wildly used. This 
model has been applied in many application fields in human-machine system [53]. In 1979, Rasmussen was able to distinguish human 
behavior into three levels including skill-based behavior, rule-based behavior, and knowledge-based behavior [69]. It is known that 
skill-based behavior corresponds to highest human reliability and knowledge-based behavior has the lowest human reliability from 
the consideration of cognition process, but this is only considered qualitatively [36]. Although human error probability (HEP) 
intervals of SRK model are estimated in [22], and modified in [71], the data are only taken within a THERP context. No quantitative 
results on the human reliability of these three different levels of behaviors using data from different generation of HRA methods exist 
in existing research. However, this is of increasing importance as automation in human-machine systems is becoming increasingly 
important. Human skills are changing from a fundamentally technical understanding of devices to abstract process management 
skills. The question arises whether humans can control automation in certain challenging situations (takeover situations or when the 
driving state abruptly changes), whether autonomous driving vehicles make human qualification for vehicle guidance superfluous? 
In addition to issues of disqualification [64] and training [10], the question arises in practice about the right time for the warning 
[62] or for suitable interfaces [65].

To answer these questions, the human reliability must be quantitatively evaluated to generate knowledge about the quantita-

tive knowledge about the human reliability within the context of new relations between human and machine. The goals of this 
contribution include:

1) Quantification of human behavior levels in SRK model;

2) Analysis of the effects of time pressure and training on SRK levels switching;

3) Establishment of a general framework to map the relation between HEP and SRK levels.

To determine HEP of these three levels, three databases (technique for human error rate prediction [34], Savannah river site human 
reliability analysis (SRS-HRA) [3], and nuclear action reliability assessment [33]) as HRA methods are used.

The structure of this contribution is organized as follows: in Section 2, the framework of SRK model is explained. The quantifica-

tion of SRK levels is described in section 3 including the introduction of databases, the procedure to determine the HEP of SRK levels. 
In section 4, the effects of two performance shaping factors (PSFs), time pressure and training, on human reliability is analyzed. 
Discussion related to a general framework to present the dynamic behavior of SRK levels switching and the expected application of 
3

the proposed framework on new assistance system is illustrated in section 5. This work is finally concluded in section 6.
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Fig. 1. Rasmussen’s SRK (skill-rule-knowledge) model (adapted from [46]).

2. Skill-rule-knowledge (SRK) framework

According to Rasmussen’s study [46], human behavior can be differentiated into categories according to different ways of repre-

senting the restrains in the behavior of a deterministic environment or system, three different kind of interaction with respect to the 
integration of human cognitive abilities can be distinguished with related different performance results: skill-, rule-, knowledge-based 
performance. Whether or not the operator is involved in problem solving at the time an error occurred is the key distinction based 
on SRK levels [48]. These levels and a brief illustration of their relations are shown in Fig. 1.

2.1. Skill-based behaviors

According to [68] the sensory-motor performance along with a statement of intentional acts or activities, development with 
noncognitive control as smooth, automated, and highly integrated patterns of behavior is an indication of skill-based behavior. These 
actions have more or less been trained by repetition, and they thereafter proceed in a continuous stream. The most efficient human 
behaviors in terms of effort and time are those based on such well-established skills. Routine, repeated works often involve skill-based 
behavior, even when there is opportunity for ancillary tasks that may not directly connected to the task at hand.

2.2. Rule-based behaviors

In rule-based behavior, a memory-based stored rule or procedure that may have been derived empirically during prior experience 
or communicated from other operators’ know-how as an instruction or a handbook is used to consciously control the sequence 
architecture of subroutines in a well-known work situation.

From [47], the border between skill-based and rule-based behavior is ambiguous, and depends on the level of training and on 
individual attention. In general, the skill-based behaviors perform without conscious attention. The individual will be unable to 
explain how to control the performance and is unable to explain the information based on for the performance. Explicit know-how 
is referred to in a higher level of rule-based coordination. The rules used can be reported.

2.3. Knowledge-based behaviors

The performance which is goal-controlled during unfamiliar situations, which no know-how or rules for control are available 
from previous encounters, is known as knowledge-based level. This type of behavior can be described as a mental process in which 
the operator searches for problem-solving action options based on knowledge that is already known or that has still to be learned. In 
doing so, the operator checks whether the thought-out action routines are suitable for the goal-oriented management of the situation 
4

and finally applies the solution that seems to be the most effective. The process is thus highly individual and is always based on the 
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Table 2

Equations for HEPs in various HRA methods.

HRA methods Equations for HEP

THERP [61] 𝐻𝐸𝑃𝐹𝑖𝑛𝑎𝑙 = 𝐵𝐻𝐸𝑃𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 ⋅
∏𝑛

1 𝑃𝑆𝐹𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠,𝑖 +𝐵𝐻𝐸𝑃𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 ⋅
∏𝑛

1 𝑃𝑆𝐹𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛,𝑖

SLIM-MAUD [17] 𝑆𝐿𝐼 =
∑
(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑊 𝑒𝑖𝑔ℎ𝑡(𝑃𝑆𝐹𝑖) ⋅ 𝑆𝑡𝑎𝑡𝑒(𝑃𝑆𝐹𝑖)); 𝐿𝑜𝑔(1 −𝐻𝐸𝑃 ) = 𝑎 ⋅𝑆𝐿𝐼 + 𝑏

SPAR-H [21] 𝐻𝐸𝑃 =𝑁𝐻𝐸𝑃 ⋅
∏8

1 𝑆𝑖; 𝐻𝐸𝑃 =
𝑁𝐻𝐸𝑃 ⋅

∏8
1 𝑆𝑖

𝑁𝐻𝐸𝑃 ⋅ (
∏8

1 𝑆𝑖 − 1) + 1
HEART [67] 𝐻𝐸𝑃 =Nominal human unreliability⋅

∏
Assessed effect𝑖

ATHEANA [50] 𝑃 (𝐻𝐹𝐸|𝑆) =∑
𝑗

∑
𝑖(𝑗) 𝑃 (𝐸𝐹𝐶𝑖|𝑆)𝑥𝑃 (𝑈𝐴𝑗 |𝐸𝐹𝐶𝑖,𝑆)

HuRECA [37] 𝐻𝐸𝑃𝑑𝑖𝑎𝑔 =𝐵𝑎𝑠𝑖𝑐𝐻𝐸𝑃𝑑𝑖𝑎𝑔𝑥
∏
𝑤𝑖(𝑃𝑆𝐹𝑖); 𝐻𝐸𝑃𝑒𝑥𝑒𝑐 =

∑
[𝐵𝑎𝑠𝑖𝑐𝐻𝐸𝑃𝑒𝑥𝑒𝑐 (𝑖)𝑥𝐻𝐸𝑃𝑟𝑒𝑐 (𝑖)]

THERP: Technique for human error rate prediction; BHEP:Basic HEP.

SLIM-MAUD: Success likelihood index method using multi-attribute utility decomposition; a and b: Con-

stants that can be obtained by two sets of known HEPs.

SPAR-H: Standardized plant analysis risk HRA; 𝑆𝑖 : The multiplier associated with the value of correspond-

ing PSF levels; NHEP: Normal HEP, for diagnosis task is 0.01 and for action task is 0.001.

HEART: Human error assessment & reduction technique; Assessed effect=((Multiplier of EPC-1)xAssessed 
proportion of effect)+1; EPC: Error producing conditions.

ATHEANA: A technique for human event analysis; 𝑃 (𝐻𝐹𝐸|𝑆): Probability of the error for the HFE ap-

plicable to accident scenario (S); 𝑃 (𝐸𝐹𝐶𝑖|𝑆): Probability of accident contexts to the scene of accident 
including deviations and nominal context; 𝑃 (𝑈𝐴𝑗 |𝐸𝐹𝐶𝑖, 𝑆): Probability of failure of UA corresponding to 
each context evaluated; HFE: Human failure event; EFC: Error forcing context.

HuRECA: Human reliability evaluator for control room actions; 𝐵𝑎𝑠𝑖𝑐𝐻𝐸𝑃𝑑𝑖𝑎𝑔 : 
𝑓 (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡𝑖𝑚𝑒𝑓𝑜𝑟𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠); 𝐵𝑎𝑠𝑖𝑐𝐻𝐸𝑃𝑒𝑥𝑒𝑐 (𝑖): 𝑓 (𝑡𝑎𝑠𝑘𝑡𝑦𝑝𝑒(𝑖), 𝑠𝑡𝑟𝑒𝑠𝑠𝑙𝑒𝑣𝑒𝑙(𝑖)); 𝐻𝐸𝑃𝑟𝑒𝑐 (𝑖): 
𝑓 (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑡𝑖𝑚𝑒(𝑖), 𝑀𝑀𝐼(𝑖), 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦(𝑖)).

existing knowledge and cognitive abilities [57]. Otherwise, there will be no action usually because there is not enough time [68]. 
Successful solutions may be stored as rules for future challenges.

From the description of these three behavior levels, it can be found that these three levels could be interacted in between. The 
interaction is useful when a task performance needs to be analyzed, because the cognitive activities are not always at the same level, 
but will shift to another. When a disturbance occurs acting on the skilled performance from the environment, the attentive cognitive 
apparatus searches for suitable rules to adjust the performance. At knowledge-based domain, the attention is usually planning for 
future activities or improvement of rules from previous successful applications.

3. Quantification of human behavior levels with SRK model

3.1. Calculation of HEP

Human error probability (HEP) is a variable to characterize the probability of human error occurrence or briefly: the reliability of 
humans [13]. The definition of HEP could be summarized as the mathematical ratio between the number of errors occurring in a task 
and the number of tasks carried out with the opportunity for errors. The number of opportunities for error is generally the same as the 
number of times the task is carried out [66]. The HEP is the indicator for the relative occurrence of errors and subsequently faultless 
actions. In Table 2, how HEPs are calculated in some representative HRA methods is shown. It can be concluded that performance 
shaping factors (PSFs), which emphasize human error contributors and change basic human error probabilities, have a significant 
impact on the final HEP. In general, experience, complexity, stress, adequacy of procedure, human-system interface, and workload 
are adopted as PSFs in HRA [45].

3.2. Determination of behavior levels

3.2.1. Databases

Three databases, including technique for human error rate prediction (THERP) from so called “first generation”, Savannah river 
site HRA (SRS-HRA) and nuclear action reliability assessment (NARA) from so called “third generation”, are selected to obtain 
operation tasks and corresponding HEPs. These three databases are mainly applied in the nuclear power plant (NPP) field. The 
data are generated from surveys on skilled operators, advice from HRA experts, and site visits. In recent years, SACADA (scenario 
authoring, characterization, and debriefing application) [73] and HuREX (human reliability data extraction) [32] are often referred 
within the NPP field. In this study, the three databases are selected which are based on a broad and widely representation of 
application fields.

The database of THERP is based on studies and observation from various kind of plants in the world. Besides that, it also obtained 
support and guidance from program managers at nuclear regulatory commission [61]. In THERP, 44 tasks are analyzed. For each 
task operation, a basic HEP and corresponding error factor (EF) exist, where the basic HEP denotes the probability of human error 
without considering the conditional influence of other tasks. The error factor is integrated for the variation in estimated HEP due to 
different operation conditions and modeling uncertainty. For operation at different conditions or environments, HEP will be various. 
The upper bound of the estimated HEP is the product of basic HEP and EF, while the lower bound of the estimated HEP is the result 
5

of dividing HEP by EF.



Heliyon 9 (2023) e15019C. He and D. Söffker

Table 3

Summarized distinctions between skill-based, rule-based and knowledge-based errors (adapted from [48]).

Dimension Skill-based errors Rule-based errors Knowledge-based errors

Type of action Routine actions Problem-solving activities with rules or knowledge

Focus of attention
On something other than

the task in hand
Directed at problem-related issues

Control mode
Mainly controlled by automatic processors

Limited, conscious processes
(Schemata) (Stored rules)

Predictability Largely predictable “strong-but-wrong” errors Variable

(Actions) (Rules)

Ratio of error to

opportunity for error

Though absolute numbers may be high, these constitute

a small proportion of the total number of opportunities

for error

Absolute numbers small,

but opportunity ratio high

Influence of

situational factors

Low to moderate; intrinsic factors (frequency of prior

use) likely to exert the dominant influence
Extrinsic factors likely to dominate

Ease of detection
Detection usually fairly

rapid and effective
Difficult, and often only achieved through external intervention

Relationship to

status change

Knowledge of change not

accessed at proper time

When and how anticipated

change will occur unknown

Changes not prepared

for or anticipated

Table 4

The meaning of branches in Hanaman decision tree (adapted from [31]).

Branches
Operation

type

Crew’s

understanding

of situation

Requirement of

procedure

Availability of

procedure

Crew’s

understanding

of procedure

Crew’s

familiarity

of procedure

Upper Routine Understanding Not required Available Understanding Familiar

Lower Non-routine Not understanding Required Unavailable Not understanding Unfamiliar

The SRS-HRA database is developed from generic models and SRS-specific data, surveys from department of energy sites, THERP, 
human cognitive reliability (HCR), and actual national or regional data for transportation accidents and expert judgment [3]. In this 
database, 35 human error events with 3 different failure probabilities: low, nominal and high are considered. The nominal or low 
HEP is chosen for a situation with normal operation, planned process transients, and frequent minor abnormal occurrences. Nominal 
or high HEP is selected when the situation is less frequent, more significant abnormal occurrence. High HEP is applied when the 
effects are directed on personnel (e.g., personal well-being threatened).

The database from NARA comes from computerized operator reliability and error data (COREDATA) which are supported by a 
wide range of information, thus understanding of HEP in its practical and methodological context becomes possible [33]. The generic 
task types in NARA are divided into four sections including task execution, ensuring correct plant status and availability of plant 
resources, alarm or indication response, and communication.

With the HEP data collected in these three databases, human behavior levels in SRK framework could be quantified when the 
potential human errors described in these databases are reasonably identified and classified.

3.2.2. Identification and classification of human errors

The identification of human errors is an important phase in HRA. It breaks down the human activities into a more detailed level 
by task analysis, so that the identification of human errors becomes possible. It could be either a quantitative or qualitative analysis. 
The quantitative task analysis requires sufficient data to quantify the probability of errors. The qualitative task analysis could assist 
in understanding potential human errors.

In [48], the SRK framework combining with human error theory distinguishes human errors into skill-based errors (slips and 
lapses), rule-based mistakes as well as knowledge-based mistakes. Eight dimensions are discussed to distinguish these three level 
errors. The distinctions are summarized in Table 3 providing suitable references. Operation errors can be classified from the eight 
dimensions listed in Table 3. These eight dimensions of errors contribute to the establishment of the generic error modeling system 
(GEMS), which is a structured map for detailed examination of the types of errors applicable to the task [58].

Furthermore, Hanaman decision tree could be adopted as the joint approach to classify human operation errors into SRK levels 
[31]. In the Hanaman decision tree, six influence factors (operation type, crew’s understanding of situation, requirement of procedure, 
availability of procedure, crew’s understanding of procedure, crew’s familiarity of procedure) are selected to determine human 
operation error levels. The structure of Hanaman decision tree is shown as Fig. 2. From Fig. 2, it is clear that Hanaman decision 
tree collects the relationship between influence factors and SRK framework. The meaning of the branches in Hanaman decision tree 
is explained in Table 4. In this case, with Hanaman decision tree, the human error levels could be determined when the states of 
influence factors are known.
6

As a short summary, the steps to classify human errors from the three databases into SRK levels are as follows:
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Fig. 2. Hanaman decision tree (adapted from [31]).

Table 5

HEP intervals for three level errors.

Databases Skill-based error Rule-based error Knowledge-based error

THERP 1 × 10−4 - 5 × 10−3 1 × 10−4 - 5 × 10−2 1 × 10−3 - 1.0
SRS-HRA 3 × 10−5 - 5 × 10−3 3 × 10−3 - 3 × 10−2 3 × 10−3 - 3 × 10−1

NARA 1 × 10−4 - 6 × 10−3 1 × 10−3 - 2 × 10−2 6 × 10−3 - 2 × 10−1

Mean 7 × 10−5 - 5.3 × 10−3 1 × 10−3 - 3.3 × 10−2 3 × 10−3 - 5 × 10−1

Fig. 3. The relationship between human behavior levels and HEP.

1) Understanding the environment of the operation scenario and the characteristics of the operation behavior, identification of 
the operation tasks including the specific operation steps, working conditions, the time budget for the task, and number of 
simultaneous actions, etc.

2) Matching the operation behavior characteristics with the listed dimensions in Table 3 and the influence factors in Table 4

3) Determination of the behavior level of the analyzed task

4) Calculation of the HEP of operation behavior with the consideration of operating environment and working conditions

5) Summarizing the HEP intervals of SRK levels of each database

6) Based on the HEP intervals of SRK levels obtained from the databases, a final HEP intervals table is obtained by calculating the 
mean HEP of the same level behaviors from the three databases.

The summarized HEP intervals of each task from three databases are listed in the Appendix. With these three Tables A.1–A.3 in 
Appendix, the HEP intervals for skill-based, rule-based, and knowledge-based behaviors can be summarized as Table 5. Therefore, 
the behavior levels in SRK framework can be characterized quantitatively. To visually represent the relationship of HEP between 
different behavior levels, the principal relations based on numerical values from literature based on the HEP (Table 5) are illustrated 
as shown in Fig. 3, where x-axis is indicating HEP values and y-axis is presenting cognitive behavior mode (CBM).

3.3. Case illustration

For better illustration how human errors are identified and classified into SRK framework and how HEPs of tasks in databases are 
determined, case illustration from THERP [61] is presented.

For demonstration, the selected task is chosen as administrative plant control. It refers to the extent the plant is run in conformance 
to the guidelines by which it was designed to operate, reflects the type of structure inherent in a plant, and reinforces the lines of 
7

responsibility. The human operators involved are responsible for the performance of certain tasks necessary to reliable and safe plant 
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Table 6

Estimated HEPs related to failure of administrative control (adapted from [61]).

Item Task HEP EF

(1)
Carry out a plant policy or scheduled tasks such as periodic tests or

maintenance performed weekly, monthly, or at longer intervals
1 × 10−2 5

(2) Initiate a scheduled shiftly checking or inspection function 1 × 10−3 3

Use written operation procedures under

(3) Normal operating conditions 1 × 10−2 3

(4) Abnormal operating conditions 5 × 10−3 10

(5) Use a valve change or restoration list 1 × 10−2 3

(6) Use written test or calibration procedures 5 × 10−2 5

(7) Use written maintenance procedures 3 × 10−1 5

(8) Use a checklist properly 5 × 10−1 5

Table 7

Determination of error level with eight dimensions for item (1) and its explanation.

Dimension Item (1) Explanation

Type of action Routine actions

Plant policy is described fully in a formal set of written

instructions that operators need to follow in the

operation procedures.

Focus of attention
On something other than the task

in hand

The related errors in item (1) as described include the

operator’s attention may be drawn away from the tasks

at hand by another, more compelling demand for action.

Control mode
Mainly by automatic

processors (stored rules)

Operators need to follow the rules for operation. They are

not always check the steps with the checklist, most of

the steps are memorized.

Predictability of

error types

Largely predictable

“strong-but-wrong” errors (rules)

The errors of plant policy or scheduled tasks are predictable

as the operations are followed by controlled rules and the

steps are clear.

Ratio of error to

opportunity for error

Absolute numbers may be high, but

constitute a small proportion of total

number of opportunities for errors

The absolute numbers may be high because they are daily,

weekly operations, when considering the error rate, it is low

as the operation frequency is high in daily, weekly working.

Influence of

situational factors

Low to moderate; intrinsic factors

likely to exert the dominant influence

Not following the plant policy or did not have the periodic

tests may have low effect on the safety production of plant,

but when the error at some part is not detected because

lack of periodic tests, which leads to large failures or

accidents, it will exert the dominant influence.

Ease of detection
Detection usually fairly rapid and

effective

The errors can be detected when checking the taggings

and checklists, or discuss with the responsible operators

to know his familiarity on the duties.

Relationship to

status change

When and how anticipated change

will occur unknown

Due to the lack of periodic tests, it is known that status

change will happen, but when and how it will happen

is unknown.

Rule-based errors

operation in both normal and abnormal situations. The possible failures in administrative control with the estimated HEPs are listed 
in Table 6.

For item (1), plant policy refers to a set of operating requirements that plant management generally expects to be followed. These 
structured requirements are described in a formal set of written instructions that are available to all operation staffs in relevant 
positions. The estimated HEP is assigned to be 0.01 (EF = 5). In this case, the upper bound of HEP of task item (1) is 0.05, while 
the lower bound of which is 0.002. Therefore, the HEP of task item (1) can vary within the range between 0.002 to 0.05. With the 
description of tasks item (1), the error level of this item could be classified by the joint approaches of eight dimensions in Table 3, 
and the information from the Hanaman decision tree. The determination of error level with eight dimensions for item (1) and its 
explanation is presented in Table 7. Next the Hanaman decision tree is applied for the double check. The operation type is ‘routine’, 
so it is the upper branch; the requirement of procedure is ‘required’, so it goes to the lower branch; the availability of procedure is 
‘unavailable’ because operators did not follow the procedures, so it is the lower branch. In this case, the item (1) is ‘rule-based error’ 
from the Hanaman decision tree. So the HEP of item (1) belongs to ‘rule-based level’. In this study, the effect of EF on HEP is not 
considered as EF represents the upper and lower bound of HEP for special cases, and the nominal HEP is for most of the common 
cases.

The results from the eight dimensions approach and Hanaman decision tree are almost identical but have to be adapted in detail 
in some cases when the results are different. In this case the results from eight dimensions will be mainly adopted because this 
8

approach has more degrees of freedom to be adapted.



Heliyon 9 (2023) e15019C. He and D. Söffker

As a final result, the new introduced Fig. 3 illustrates the relationship between cognitive behavior modes and HEP values. For the 
first time here the SRK levels are mapped with HEP values. This builds now the base for consideration of additional effects related 
to time pressure and training levels (chapter 4 following).

4. Analysis of the effects of time pressure and training on SRK levels switching

4.1. Switching between SRK levels

In [63], the effect of switching behavioral levels was investigated. Knowledge-based activities can be executed ‘online’ and 
synchronously, which means that the whole process is realized ‘online’ using skills or rules (or as a tool). For example, a pilot manually 
controls an aircraft using skill-based behaviors while simultaneously applying knowledge-based behaviors to decide whether the 
target inclination is appropriate [20].

It should be recognized that the switching between SRK levels can be identified as short or long time scaled. Switching between 
SRK levels can be realized in short time (some activities mainly refer to the ‘online’ activities which require real-time feedback). 
The time scale could be seconds, minutes, or hours, depending on the situations. The skill-based behaviors related to highly routine 
activities in familiar environment. Rule-based behaviors are involved when attention checks upon progress and detects a deviation 
from the planned-for conditions. When operators realize that their rule-based solutions are not able to cope with the problem, 
knowledge-based performance is engaged. The activities of knowledge-based levels can be stopped when adequate plans for problem 
are acquired, which leads to the rule-/skill-based behaviors again.

When the time is stretched to weeks, months or years, the SRK level of operator behaviors could be switched depending on their 
experience regarding the situations they encountered. Operators who have continuous training on specific situations will increase 
their experience, which lead to behavior level switch from knowledge-based to skill-/rule-based. Meanwhile, after a long period of 
no training, the experience that operators previously occupied may be lost, thereby changing their behaviors from skill-/rule-based 
to knowledge-based.

4.2. Why time pressure and training are selected?

Two performance shaping factors (PSFs) namely time pressure and training are selected for the analysis of SRK level switching as 
these two PSFs affect SRK level switching and human reliability of operators significantly from short time scale and long time scale, 
respectively.

4.2.1. Time pressure

Time pressure has strong effects on human judgment and decision making as the strategies of coping with situations under time 
pressure are changed comparing with non-time pressure situations [39]. For example, the strategy of acceleration may be adopted 
with a faster rate of information processing and/or reducing pause and other interruptions in task-related activities. Filtering (pro-

cessing some parts of the information more, and others less), acceleration, and omission (ignore particular parts of the information) 
are mostly employed strategies by human operators to deal with time pressure situations [59]. The relationship between time pres-

sure and human performance is in inverted U-shape (increasing time pressure could induce to better human performance up to a 
certain point). After this point, human performance is decreasing with more time pressure [30]. In different application fields, time 
pressure is a key factor affecting human reliability, which often cause premature decision making, increased risk tolerance, and 
impaired cognitive performance and health [26]. In transportation, time pressure is regarded as the most hazardous task character-

istics of emergency vehicle driving [29]. In aviation maintenance, time pressure is the most frequently mentioned factor leading to 
incidents from a survey as maintenance operators tempt to take shortcuts to get an aircraft back into service more quickly [49]. Air 
traffic control (ATC) is characterized by time pressure, multiple tasks and goals, and high error consequences because continuous 
increasing in the volume of air traffic imposes more demands on air traffic controller [35].

4.2.2. Training

Training helps to enhance human operator performance, so to reduce human errors. Whenever a human operator’s ability to 
perform a task is limited by lack of knowledge or skill, it is making sense to bridge the gap by training [56]. Training is one of the 
essential constituents of a quality system process, delivering qualified operators to meet the demands of exacting roles. A significant 
latent failure in the chain of events leading up to an accident is ineffective or detrimental training [51]. From [4], it can be identified 
that sub-optimal training is one of the two most critical flight hazards in aviation, with the other one being a shortage of experienced 
operators. Training of control room operating crews in nuclear power plant consists of two stages: one is a lengthy process of initial 
training in which acquiring knowledge on appropriately carrying out the tasks to be performed in the control room, the other is 
a continuous training aimed maintaining and improving the knowledge and skills on operation [14]. Training standards need to 
be established for partially automated vehicles as driver assistance systems (ADAS) become standard equipment for lower-priced 
vehicles [7]. Hence, the effects of training on operator performance should be monitored and measured to identify the effectiveness 
9

on human reliability enhancement.
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Fig. 4. The effects of time pressure (a) and training (b) on levels switching (in combination with the numerical values for T𝑖 and P𝑖).

Table 8

Explanation of SRK levels switching with time pressure.

Item Explanation References

[P1], [P2]

In routine tasks and very familiar environment, HEP of operator may

decrease if time pressure is at less/appropriate degree ([P1]), or it

may increase if time pressure is at appropriate/greater degree ([P2]).

[30], [8]

[P4], [P5]

In rule-based tasks, human operator may take the strategies of

acceleration or omission with highly time pressure, which will

increase HEP ([P5]); when less time pressure imposed, operator has

more time to follow the established rules, so to reduce HEP ([P4]).

[30], [23]

[P8], [P9]

In knowledge-based tasks, human operator may not able to search for

additional solutions for the problem as there is not enough time ([P9]);

when operator is with less time pressure, some solutions may be found ([P8]).

[30], [23]

[P3], [P6]

With appropriate time pressure not exceeding the inverted U-shaped

top point, human behavior could switch between skill-based level and

rule-based level. For routine tasks in familiar situations, when appropriate

time pressure is imposed, rule-based behaviors could move to skill-based

as human performance is increasing ([P3]); while skill-based behaviors will

move to rule-based with little time pressure ([P6])

[30], [8]

[P7], [P10]

With appropriate time pressure not exceeding the inverted U-shaped

top point, human behavior could switch between rule-based level and

knowledge-based level. When appropriate time pressure is imposed,

knowledge-based behaviors could move to rule-based because of

increased performance ([P7]). Rule-based behaviors will move to

knowledge-based with less time pressure ([P10])

[30], [1]

4.3. Effects analysis

It is mentioned that time pressure and training as two PSFs deeply affect human reliability. When SRK framework is considered 
in the effects analysis of time pressure and training on SRK levels switching, the map (Fig. 3) generated in this work could be applied 
to visualize the effects. In Fig. 4 (a), the effects of time pressure on SRK levels switching are indicated. The detailed explanation of 
the switching behaviors is presented in Table 8. The effects of training on SRK level switching is presented in Fig. 4 (b). The detailed 
explanation of switching behaviors is shown in Table 9. It is obtained from Fig. 4 that human performance could be switched not 
only among the same level, but also between levels with different extent of training.

5. Discussion

5.1. Framework of the SRK levels switching

Although autonomous and semi-autonomous systems are applied to different application fields, human operators are still the 
center for human-machine systems regarding safety issues. Even the most advanced automated systems still need humans to monitor 
the situations and takeover or stop the system when emergencies occur. At the same time, high automation may increase boredom 
and decrease vigilance which affects the ability to takeover control of the system [40]. Therefore, quality of human performance 
is critical to the reliability of human-machine systems. Many measures have been developed to monitor human performance in 
human-automation systems, especially human-driving system. In [15], five types (subjective report measures, driver biological mea-

sures, driver physical measures, driving performance measures, and hybrid measures) of driver inattention monitoring measures are 
summarized. In [19], human factors regarding automated vehicles, such as the workload, distraction, situation awareness (SA) and 
driver trust, are discussed. The ultimate question to be answered by these studies of human factors is the monitoring and evaluation 
of human reliability. The quantitative study of human behavior reliability of different levels in SRK framework discussed in this 
10

contribution provides possibilities for the evaluation of human errors and human reliability. Meanwhile, the study of the effects of 
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Table 9

Explanation of SRK levels switching with training.

Item Explanation References

[T1], [T2]

Human operator may be more skilled on routine tasks with continuous

training ([T1]), or the familiarity on skilled tasks decrease because of

short time leaving the tasks ([T2]).

[16]

[T4], [T5]
For rule-based tasks, human performance may be improved with more

training ([T4]), and may be reduced with less training ([T5]).
[6]

[T8], [T9]

For unknown situations with no know-how or rules for tasks, human

reliability is increased with training on knowledge-based tasks ([T9]),

and is decreased with less training ([T8]).

[6]

[T3], [T6]

Human performance may be switched from skill-based to rule-based

when lack of training ([T6]); with more training, rule-based behaviors

could be moved to skill-based ([T3]).

[38]

[T7], [T10]

With more knowledge and training with operation situations, human

performance could be moved to rule-based level from knowledge-based ([T7]);

when leaving the tasks for long time, human’s experience may be lost,

so the performance may be switched from rule-based to knowledge-based ([T10]).

[38], [6]

Fig. 5. Analysis of the dynamic behavior of SRK levels switching.

time pressure and training on the levels switching demonstrates the dynamic changes of SRK framework for environment. Hence, a 
more general structure to illustrate the dynamic behavior of levels switching could be established which is illustrated in Fig. 5.

From Fig. 5, it can be obtained that six directions are used to indicate the relationship between HEP and human behaviors.

Directions I/II mean that the quality of the tasks is different but HEP is identical. The typical example for this case is that a 
very experienced operator is in process of tasks in familiar environment, although some rules are available or situations need to be 
diagnosed and new plan should be generated, human reliability is identical as the solutions could be found easily.

Directions III/IV indicate that the quality of tasks is identical, while human operators’ experience level is varying. As the experi-

ence levels of human operators on situations are different, their human performance ability regarding the same task is also different, 
which induces the HEP varying.

Directions V/VI present loosing experience (V) and typical learning process (VI). As learning continues, operators become more 
familiar with the situations and more proficient in the process, so the behavior level switches from knowledge-based level and 
eventually to skill-based level. Meanwhile, after long time of decoupling from the operation loop (due to automation) or specific 
tasks (due to tasks changing), human operators will loose abilities for the tasks, so their experience on tasks is gradually fading away 
(knowledge degradation) and the behaviors finally reach knowledge-based level.

5.2. Expected application

Many approaches and techniques have been developed for human performance assistance to reduce risks in application fields. In 
[41], the technologies for driver assistance system (ADAS) driven solutions are summarized, the eye-gaze and head pose estimation in 
vision intelligence are reviewed and the development of learning algorithms makes it possible to develop a real-time recommendation 
system for autonomous vehicle. In aviation, the human performance model is used to improve predictions of situation awareness of 
pilots [28]. In [18], the impact of seafarers’ emotion on their performance is investigated with electroencephalogram (EEG) and self 
rating. In the previous work of the authors, human driver reliability is evaluated using a modified fuzzy-based CREAM approach with 
the data collected from driving simulator [25]. The approach of estimation of human reliability could be developed into a real-time 
monitoring system for human driver. When the driver displays low human reliability in some situations, the system could issue alerts 
to bring the driver’s attention and ability back to the driving operation. In some critical situation, when human driver reliability is 
extremely low, and the vehicle cannot be controlled at all, the system could directly takeover the vehicle from the driver. Hence, the 
work of quantification of human behavior levels regarding SRK model lays the foundation of evaluation between automation and 
11

operator’s takeover.
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The framework of SRK levels switching considering the effects of time pressure and training provides the idea for evaluation of 
simulator training for daily tasks for individuals. When simulator training data are collected, human operators’ reliability could be 
estimated based on the approach proposed in [25], which could be quantified into points mapping into Fig. 5. In this case, the actual 
training status of individuals could be recognized and training suggestions for further steps could be made. Meanwhile, the error 
types could be also identified by the map, which helps to analyze and improve human performance during training.

6. Summary and conclusion

Humans are always somewhere integrated in the loops although the automation level in human-machine systems is getting higher 
with the development of technology. Human error is causing an increasing proportion of total accidents. With the research on human 
error mechanisms and failure modes, the study of human reliability analysis (HRA) has been formed. Many cognitive process models 
have been established to explain human performance. Among these models, skill-, rule-, knowledge-based behavior (SRK) model is 
wildly used. In this contribution, human behavior levels of SRK framework are quantified and the effects of two performance shaping 
factors, time pressure and training, on levels switching are analyzed. Based on the analysis a new graphical summary is developed 
to illustrate the effects. The main work could be summarized as follows:

1. The HRA methods, including the so called ‘first generation’, ‘second generation’ and ‘third generation’, are briefly discussed, the 
cognition process in these HRA methods are summarized, and SRK model is selected in this contribution to characterize human 
behavior.

2. Three level behaviors in SRK model are illustrated. With the description of three levels, it could be concluded that skill-based 
behaviors relate to the higher human performance reliability and knowledge-based behaviors correspond to the lowest, but the 
defining of HEP values of each level need human reliability data research.

3. Human error probabilities (HEP) from three databases (THERP, SRS-HRA and NARA) are collected to quantify human behavior 
levels in SRK model. The detailed procedures for the identification and classification of human errors are illustrated. A case 
study regarding classifying the task of administrative control in plants into SRK levels is presented to explain how the procedure 
works. Finally, the HEP intervals of SRK levels are summarized and a graphical framework presenting the relationship between 
human behaviors and HEP is generated.

4. The effects of time pressure and training on SRK levels switching are analyzed and the switching behaviors are explained. Human 
behavior levels in SRK model can switch in several ways. The switching behaviors could be identified as short time scale and 
long time scale. Short time scale switching mainly refers to the ‘online’ activities where real-time feedback is required. Human 
behavior levels of the SRK framework can be switched depending on experience regarding the tasks and environment for the 
long time scale. Two performance shaping factors including time pressure and training are selected for analysis of SRK levels 
switching. It is obtained that human behaviors can be switched between levels with time pressure and training. It can be stated 
that the established visual connections show the effects with respect to time pressure and additional training. Furthermore, it 
becomes clear that from the HPE point of view, the SRK levels roughly correlate but in detail overlap.

5. A general map describing SRK levels switching with six different directions is generated, the explanation of each direction 
is presented. The new graphical illustration allows: i) a human performance reliability monitoring system to be established 
combining with the fuzzy-based modified CREAM approach from the previous works of authors; ii) the individual recognition 
and evaluation system of training status to be generated with collected operator training data.
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Appendix A

Table A.1

Summary of skill-based errors and corresponding HEP.

Databases Skill-based errors HEP

THERP

Preparation of written material 3 × 10−3

Initiate scheduled shiftly checking in administrative control 1 × 10−3

Using written operation procedures in administrative control 5 × 10−3 - 5 × 10−2

Omission of item when procedure with checkoff provision use correctly 1 × 10−3 - 3 × 10−3

Recalling oral instruction items ont written down 1 × 10−3

Selection of unannunciated displays for quantitative or qualitative readings 5 × 10−4 - 3 × 10−3

Reading and recording from various numerical indicators 1 × 10−3 - 6 × 10−3

Check-reading from various types of displays 1 × 10−3 - 6 × 10−3

Inadvertent activation of a control 3 × 10−2

Turn a rotary control or two-position switch with common stereotype in wrong direction 1 × 10−4 - 5 × 10−4

Set rotary control to an incorrect setting 1 × 10−3

Fail to complete change of state of a component which must be held until

change is complete
3 × 10−3

Improperly mate a connector 3 × 10−3

Selection in changing or restoring a locally operated valve from a group of

unambiguously labeled valves which are set apart from similar looking valves
1 × 10−3 - 3 × 10−3

Detect stuck locally operated valves with indications are available 1 × 10−3 - 5 × 10−3

Resume attention to a legend light within 1 minute after an interruption 1 × 10−3

SRS-HRA

Communication error 5 × 10−2

Incorrect labeling or tagging 5 × 10−3

Failure to lock out 5 × 10−4

Chemical addition or elution error 3 × 10−3

Transfer error 3 × 10−6∕𝑡𝑎𝑛𝑘− ℎ
Overfilling of a tank 5 × 10−6∕𝑡𝑎𝑛𝑘− ℎ
Laboratory analysis error 3 × 10−4

Random actuation/shutdown of system 5 × 10−6∕ℎ
Vehicle collision with stationary object 1 × 10−6∕𝑚𝑖𝑙𝑒𝑠
Single vehicle accident 1 × 10−6∕𝑚𝑖𝑙𝑒𝑠
Vehicle collision with another moving vehicle 1 × 10−6∕𝑚𝑖𝑙𝑒𝑠
Dropping of load when using forklift 5 × 10−5

Puncturing of load when using forklift 3 × 10−5

Dropping of load when using crane/hoist 1 × 10−4

Crane/hoist strikes stationary object 3 × 10−4

NARA

Carry out simple single manual action with feedback 5 × 10−3

Perform completely familiar, well designed highly practiced, routine task 1 × 10−4

Set system status as part of operations using strict administratively controlled procedures 7 × 10−4

Calibrate plant equipment using procedure 3 × 10−3

Simple response to a range of alarms or indication providing clear indication of situation 4 × 10−4

Verbal communication of safety-critical data 6 × 10−3
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Table A.2

Summary of rule-based errors and corresponding HEP.

Databases Rule-based errors HEP

THERP

Rule-based actions by control room personnel after diagnosis of an abnormal event 2.5 × 10−2 - 5 × 10−2

Carry out a plant policy or scheduled task 1 × 10−2

Use a valve change or restoration list in administrative control 1 × 10−2

Use a written test or calibration procedure in administrative control 5 × 10−2

Omission per item when procedure without provision are used or incorrectly used 3 × 10−3 - 1 × 10−2

Arithmetic calculation errors 1 × 10−2 - 5 × 10−2

Selection of control on a panel from an array of similar-appearing controls 5 × 10−4 - 3 × 10−3

Turn rotary control or two-position switch with unusual stereotype in wrong direction 1 × 10−2 - 5 × 10−1

Select wrong circuit breaker in a group of circuit breaker 3 × 10−3 - 5 × 10−3

Selection in changing or restoring a locally operated valve from group of ambiguously

labeled and similar appearance of valves
5 × 10−3 - 1 × 10−2

Checker checks non-routine task or involve active participation 1 × 10−2 - 5 × 10−2

Checking the status of equipment if that status affects one’s safety either by checker

or maintainer
5 × 10−4 - 1 × 10−3

Response to multiple annunciators alarming closely in time 1 × 10−4 - 5 × 10−2

SRS-HRA

Failure of administrative control 5 × 10−3

Failure to verify within control room 1 × 10−2

Failure to verify outside control room 3 × 10−2

Error in selecting control within control room 1 × 10−2

Error in selecting control outside control room 1 × 10−2

Incorrect reading or recording of data 1 × 10−2

Miscalibration 5 × 10−3

Failure to restore following test 1 × 10−2

Failure to restore following maintenance 5 × 10−3

Failure to verify parameter with calculation 3 × 10−2

Excavation error 1 × 10−2

Failure of long-term accident recovery 3 × 10−3

NARA

Start or reconfigure a system from the main control room following procedures,

with feedback
1 × 10−3

Start or reconfigure a system from a local control panel following procedures,

with feedback
2 × 10−3

Routine check of plant status 2 × 10−2

Restore a single train of system to correct operational status after a test,

following procedures
4 × 10−3
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Table A.3

Summary of knowledge-based errors and corresponding HEP.

Knowledge-based errors HEP

THERP

Diagnosis of the abnormal events within certain time 5 × 10−1

Rule-based actions by control room personnel after diagnosis of an abnormal event 1.0
Perform the task without using written maintenance procedures or checklist 3 × 10−1 - 5 × 10−1

Written procedures are available and should be used but not used 5 × 10−1

Reading and recording from various large number of parameters recorder and graphs 1 × 10−2 - 5 × 10−2

Recognize that an instrument being read is jammed without indicators to alert the user 1 × 10−1

Detect stuck locally operated valves when indications are not available 1 × 10−2

Checker checks routine tasks with or without written materials 1 × 10−1 - 2 × 10−1

Checker notices the locally operated valve is not completely opened or closed after

the valve is checked
1 × 10−1 - 9 × 10−1

Checking the task in a two-man team 5 × 10−1

Respond to a legend light if more than 1 minute elapses after an interruption 9.5 × 10−1

Respond to a steady-on legend light at initial audit or hourly scans 9 × 10−1 - 9.5 × 10−1

Fail to detect unannunciated deviant display 9.5 × 10−1 - 9.9 × 10−1

Fail to detect multiple unannunciated deviant displays 1 × 10−3 - 9.9 × 10−1

Daily walk-around inspection 5.2 × 10−1

SRS-HRA

Failure to respond to compelling signal 1 × 10−2

Checker verification error 1 × 10−1

Supervisor verification error 3 × 10−1

Diagnosis error 1 × 10−2

Failure of visual inspection 1 × 10−1

Failure of manual fire detection 1 × 10−1

Failure of manual fire suppression by occupant 3 × 10−1

Failure of manual fire suppression by non-occupant 3 × 10−1

Failure of long-term accident recovery 3 × 10−3

NARA

Judgment needed for appropriate procedure to be followed based on

interpretation of a situation
6 × 10−3

Carry out analysis 3 × 10−2

Identification of situation requiring interpretation of complex patter of

alarms or indications
2 × 10−1
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