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ABSTRACT In this research, a new performance assessment based on the Probability of Detection (POD)
reliability measure is developed integrating and discussing the effect of further parameters on classification
results and therefore establishing a new connection between relevant process parameters and the related
classifier evaluation. To illustrate the approach, machine learning-based recognition of complex driving
situations for human drivers is interpreted. Using sensor signals and a complex driving scenario, related
dynamical changes are classified and compared using the POD approach. Based on the POD-related
evaluation, different machine learning approaches can be clearly distinguished with respect to their ability
to predict the correct driver behavior as a function of time prior to the event itself. The introduced approach
allows a very detailed comparison of classifiers relative to the effects of parameters affecting the processes
to be classified. In addition to recently published results on this novel approach, an extension of the
POD approach by considering false positives and varying decision threshold in the comparison process is

proposed. Generalization of the introduced approach for binary and continuous data is presented.

INDEX TERMS Classification, machine learning, performance evaluation, probability of detection.

I. INTRODUCTION

Machine learning (ML) approaches are essential processes
or sets of procedures that helps a model adapt to given
data. These ML approaches use algorithms and statistical
models providing suitable processor hardware the ability to
perform tasks without specific instructions. The significance
of ML has been accepted and implemented in medical
diagnosis, cybersecurity, spam filtering, fraud detection, and
significantly in the field of computer vision [1], [2] [3].
The receiver operating characteristic (ROC) is among the
commonly used evaluation tools for ML algorithms. The
ROC has been used to evaluate edge detector performance [4]
and multi-class classification problems [5]. Other authors [6]
have improved image classification using an intermedi-
ate representation. The final evaluation process provides
a measure to select possibly optimal models discarding
properties related to process parameters [7]. This implies, the
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ROC cannot quantitatively relate detectability to a process
parameter [8], [9]. This limitation in verifying the effect
of process parameters on the classifier performance is
addressed in this research by extending the Probability of
detection (POD) metric.

Probability of detection has been implemented in the field
of nondestructive testing (NDT), radar systems, and lately
structural health monitoring (SHM) systems. The POD is a
probabilistic method that allows to compare the performance
of different monitoring techniques by estimating the sensi-
tivity and reliability of the inspection process. This allows
the quantification of the reliability of a procedure taking into
account statistical variability of sensor and measurements
properties [9], [10] [8]. Probability of detection is employed
in many industries nowadays. The aircraft industry, and
particularly in a military context, the POD information is used
for damage tolerance analysis of components and scheduling
of inspection intervals [11]. The pipeline industry has relied
on POD analysis to develop fitness for purpose acceptance
criteria for the construction of pipelines. Nuclear industries
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FIGURE 1. Classical POD approach.

are adopting this form of analysis to assess the reliability
of NDT to detect flaws in components during in-service
inspections [11]. The NDT/SHM fields utilize the POD curve.
The POD curve is constructed by plotting the accrual of
flaws detected against the varying parameter or producing a
response over a specified threshold [10], [11]. The statistical
and probabilistic assessments of a measurement procedure
are time-consuming and costly since several samples have
to be verified and compared using destructive methods. This
has given rise to Model-assisted POD (MAPOD) to improve
the effectiveness of POD models with little or no specimen
testing by utilizing model generated data [12]. Two MAPOD
methods are currently utilized. The first approach utilizes
physics-based models to propagate directly the uncertainty
of a given set of assessment parameters to another with
same parameters [13], [14]. The transfer function approach
is a physics-based method that transfers the computed
POD curve for a specific process to another with different
parameters. However numerical efforts and computational
time difficulties have to be solved for convenient application
in practice. A detailed explanation of best practices for the
use of simulation data in estimation POD curves is presented
in [15]. Classical POD approaches in the NDT field utilize
the approach indicated in Fig. 1.

In this research, the POD approach is adapted and extended
to evaluate the ability of classifiers to predict drivers’
intention as a function of remaining time to the predicted
event. Previously solved problems relating to evaluating the
performance of classifier using the POD will be introduced
for understanding. This serves as a prelude to the newly
developed procedure. The direct approach of comparing ML
algorithms based on the selection of a common decision
threshold [16] will be introduced and its merit over the
ROC demonstrated. The limitation of the common decision
threshold approach will be explained and an advanced
approach examining concurrently the detection probability,
false positive, decision threshold, and process parameter in
the comparison process will be presented. This new extended
proposal is relevant because it provides an approach to
additionally evaluate changes in the false positive rate when
varying a threshold value, which is not possible with the
conventional common threshold approach.

The article is organized as follows: in section II the
ML approaches used are briefly introduced, followed by
the developed POD reliability measure. The application
to driving maneuver prediction is detailed in section III.
An experimental validation of the proposed approach is
presented in section IV. Results, discussions, and compar-
isons between different classifiers are given in section V.
False positive analysis procedure and a trade-off between
probability of false positive and POD together with the
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generalization of the introduced approach are presented in
section VI and VII respectively. Conclusion finalizes the
contribution.

Il. MACHINE LEARNING ALGORITHMS

To illustrate existing challenges in evaluating ML approaches,
in this contribution eight ML algorithms are evaluated. The
comparison of the results will be additionally realized by
the POD approach which is the core illustration of the
new approach. In [17] an approach to improve training of
conventional algorithms is proposed. The authors showed
that usually a set of unknown classifier tuning parameters
are needed to be set manually before training when a
conventional algorithm is used. To improve the prediction
performance of the model, a prefilter is proposed to quantize
the signals into observed sequences with specific features.
Here optimality is defined as the optimal segments describing
a quantized prefilter mapping the vehicle’s environment to
quantized states. With the proposed training procedure, the
most suitable values of these unknown parameters can be
determined automatically to optimize the performance of
conventional algorithms. The ML approaches analyzed as
examples are conventional/improved ANN [17], conven-
tional/improved HMM [17], [18], conventional/improved
RF [19], and conventional/improved SVM. These classifiers
are selected to illustrate the proposed approach, and they are
not exhaustive and are meant only as examples. The proposed
approach can be extended to other classifiers.

A. CONVENTIONAL EVALUATION
To illustrate the conventional evaluation of ML approaches,
classical measures are first presented. These conventional
evaluation is applied to the ML approaches in their conven-
tional form (default implementation) and their improved form
(as published in [17]). The development of the improved
version is not part of this contribution, however the results
are evaluated to verify the correspondence with the POD.
The conventional and improved models are calculated in the
training phase. Based on these models, the driving behaviors
in the upcoming driving processes could be determined. The
measured and estimated driving behaviors are compared to
check the correspondence.

To evaluate the performance of classifiers, the detection
rate (DR) and false alarm rate (FAR) values are calculated
as shown in [20] as

TP
DR= ——— and (1
TP + FN
FP
FAR = ——— | 2)
TN + FP

IIl. POD ASSESSMENT OF ML ALGORITHMS

Probability of Detection is a certification tool [10]. Data
used in producing POD curves are categorized by the main
POD controlling factors/variables. These factors/variables
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are either discrete or continuous and can be classified as
shown in [9], [10] as
1) Hit/miss: produce binary statement or qualitative
information about the existence of targets.
2) Target-response: systems that provide quantitative
measure of targets.
The target-response approach is adapted and implemented
here in evaluating lane changing prediction capabilities of
different ML algorithms. A brief introduction to the POD
measurement is presented in preparation for the development
of an extended version of the approach.

A. TARGET-RESPONSE APPROACH TO POD

The target-response approach is used when there exists a
relationship between a dependent function and an indepen-
dent variable [9]. The characteristic parameter of the target
is usually used (size, length, etc). The response denotes the
measurement output of the target. In the derivation of the
POD curve, a predictive modeling technique is required. One
such method is regression analysis of the data gathered [8],
[21]. Ordinary Least Squares is a popular and often used
linear regression technique however it is ineffective in the
presence of censored data. In such situations, alternative
techniques like the Maximum Likelihood Estimation must be
implemented.

The data distribution could be linear or not. A strategy to
linearize the data distribution is by plotting four models: X vs
Y, log Xvs Y, log Yvs X, and log X vs log Y. The model with
the best linearity and variance is used in the construction of
the POD curve [22]. The regression equation for a line of best
fit to a given data set is given by

y=>b+mx +e, 3)

where the regression coefficients m and b represent the
slope and intercept respectively and ¢ ~ N(0,71) is
the corresponding error term, with normal distribution and
having zero mean and a standard deviation t. The confidence
bounds are constructed to define a confidence interval that
contains 95 % of the observed data [22]. Here the 95 %
confidence bounds on y is constructed by

Ya=0.95 =y + 1.6457y, 4
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where 1.645 is the z-score of 0.95 for a one-tailed standard
normal distribution and 7, the standard deviation of the
regression line. The Delta method is a statistical technique
used to transition from regression line to POD curve [8], [9].
The confidence bounds are computed using the covariance
matrix for the mean and standard deviation POD parameters
1 and o respectively. To estimate the entries, the covariance
matrix for parameters and distribution around the regression
line needs to be determined. This is done using the Fisher’s
information matrix /. The information matrix is derived
by computing the maximum likelihood function f of the
standardized deviation z of the regression line values. The
entries of the information matrix are calculated by the partial
differential of the logarithm of the function f using the
parameters of ®(m, b, T) of the regression line.
From

5= Oi — (b + mxi)) %))
T
and
fi= 1_[ %e—%(a)z (6)

i=1

the information matrix / can be computed as

d
li = —E(————1 . 7
ij (8®,-8®j 0g(f)) (7N
The inverse of the information matrix yields ¢ as
obz OpOm  Op07
¢ = I~ = 0m0op on% ooz | . (8)
0:0p OOy 03

The mean p and standard deviation o of the POD curve are
calculated by p = 2 ”’,; b, where yy, is the decision threshold
and o = ... The decision threshold determines whether the
data are censored or observed and it is very useful in the POD
computation. The cumulative distribution & is calculated as

1 _
O 0) = 5 [1+en ] ©)
The POD as function of target a is derived as
POD(a) = @ [“L]. (10)

Using equation 10, the POD-curve can be set up for varying
parameters. In this article, the varying parameter is the time
t. Using the Maximum Likelihood Estimation approach the
prediction parameters for the intercept ,éo and gradient ,3 1 will
be estimated. Both parameters are statistically estimated from
the observations. [10].

IV. EXPERIMENTAL DESIGN

The experimental set-up and data acquisition process are
detailed in this section. The reliability of the outputs of
classifiers will be examined using the POD. Data resulting
from a professional driving simulator SCANeR™™ studio are
used in this work. The simulator uses virtual sensors such
as cameras, radar, and lasers to collect data. These sensors
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FIGURE 3. SCANeR™ studio, Chair Dynamics and Control, UDuE,
Germany.
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FIGURE 5. SCANeR™ studio simulation engine.
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provide a comprehensive understanding of the vehicle’s
environment. The obtained results and the analysis are
discussed in detail.

A. EXPERIMENTAL SET-UP
A driving simulator SCANeR™ studio (Fig. 3) is used to
perform the driving simulation.

A typical driving scenario is illustrated in Fig. 4 and
requires the ego driver (red vehicle) to make a decision.

The driving simulator simulation engine and correspond-
ing input sensors (Fig. 5) aid in decision making.

In total three participants with ages ranging from 25 to
38 years were recruited. They all held valid driving licenses.
The training dataset is related to each participant performing
40 minutes drive. Data from another 10 minutes drive are
used for the test. To evaluate the predicted performance,
a method [7] is used. Here, each lane change behavior is
defined as a separate event. From 7 seconds before to the
time of actual lane change (see Fig. 6) a DR value will be
calculated for performance evaluation. The time interval is
divided into 140 time points, i.e. every 0.05 s. These time
points are defined as “‘recognition time point”, and for each
time point, a DR value will be calculated for performance
evaluation.
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FIGURE 6. Time coordinate for lane change.

The earlier (with respect to the distance in time to the
event itself) the algorithm predicts the event, the better this
is. From Fig. 6, the ML approach that is able to predict at
time ¢1 corresponding to position X1 is better compared to
an approach that predicts at time ¢2 corresponding to position
X?2. This is because it is able to predict the event occurring at
7 s faster.

B. DATA ANALYSIS

In this contribution, four algorithms are selected to train
the driving behaviors prediction models. Each algorithm
is used to train a conventional and an improved model.
A conventional model can be determined using raw data and
default design parameters. To obtain improved models [17]
the unknown parameters are designed as design parameters
of a model, which has to be defined before training.
With the proposed training procedure [17], the optimal
design parameters can be determined automatically, then
the improved models can be trained. All mentioned models
use the same observation variables (26 total inputs). In the
training phase, all models for each test data set are calculated
and saved. Based on these models, the driving behaviors in
the test phase could be determined. Finally, the measured
(actual labels) and estimated driving behaviors are compared
to evaluate the model performance.

The driving behaviors prediction model based on the
classifiers is shown in Fig. 7. It consists of two important
processes namely driving behavior prediction and parameter
definition.

To demonstrate the new approach first classical evaluation
will be presented. Classical evaluation employs the use of
accuracy (ACC), detection rate (DR), false alarm rate (FAR)
among others to compute the suitability of an approach.
To evaluate the performance of driving behavior prediction
model, a common method [17] is used, in which the values of
ACC, DR, and FAR are calculated for the complete driving
sequence. The measured driving behaviors and the estimated
driving behaviors calculated by the model are compared to
check correspondence, then the performance measures of
each driving behavior are calculated. For illustration, the
evaluation values of the driver data using conventional and
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FIGURE 7. Test/training model.

TABLE 1. Conventional evaluation.

Right lane chane [%] Left lane change [%]

ACC DR I-FAR  ACC DR 1-FAR
ANN 98.27 68.55  99.82 97.57 60.64  99.78
ANN Imp 97.98 87.70  98.52 97.47 69.15  99.16
Difference ~ -0.29*  19.15 -1.30*  -0.10*  8.51 -0.61%
HMM 94.04 86.29 94.45 93.67 69.50 95.12
HMMImp 96.47 87.70  98.52 96.28 70.39  97.83
Difference ~ 2.43 4.23 2.34 2.61 0.89 2.71

RF 97.67 71.98  99.01 96.44 56.21  98.85
RF Imp 98.71 88.91  99.22 97.49 65.96  99.37
Difference  1.04 1694  0.21 1.05 9.75 0.53

SVM 85.94 33.67 88.67 96.06 60.64  98.18

SVM Imp 97.29 7097  98.66 96.38 60.99  98.50
Difference  11.35 37.30  9.99 0.32 0.35 0.32

Legend- Imp: improved, red: worse results, blue: improved results

improved algorithms are shown in Table 1. The difference
between the improved and conventional algorithms are also
calculated.

The results using improved algorithms are better relative
to conventional algorithms with the exception of ANN.
However, the presented results in Table 1 do not provide
a means to evaluate the effect of lane change time on the
classification results. This is confirmed by the ROC graph
(see Fig. 8) of the models. Figure 8 shows the best DR and
FAR results for the ML algorithms. However the ROC does
not provide a means to evaluate the classification results
at each time point. To integrate the effect of time on the
classification results, the POD approach is implemented on
the same data.

C. EVALUATION OF ML APPROACHES BY THE COMMON
THRESHOLD METHOD

The POD is introduced to overcome limitations of the ROC
and other evaluation metrics like accuracy. The common
threshold approach for comparison of classifiers is illustrated
in Fig. 9.

The common threshold method compares the POD values
of the individual ML approaches from the built statistical
model. To illustrate the common threshold approach, graphi-
cal representation of the target-response method is presented.
Four models comprising combinations of logarithmic and
Cartesian scales (Fig. 10) are established for each classifi-
cation data to ascertain model with
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FIGURE 8. ROC results for all models; LCR: lane change to right and LCL:
lane change to left.
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FIGURE 9. Common threshold approach.

1 Linearity of the parameters: E(y;|X) = x;8, where x; is
the i — th row of X,

2 Uniform variance: var(y;|X) = 02i=1,2,3,...,n

3 Uncorrelated observations: cov(y;, y;j|X) = 0, (i # j).

The model that fits the aforementioned criteria best is
selected. From Fig. 10, model b satisfies all three conditions
and is therefore selected. Regression analysis is implemented
on the selected model and the decision threshold (red marked
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FIGURE 11. POD generation procedure.

line), the response value below which data is considered as
noise, is constructed as illustrated in Fig. 11.

The POD curve is generated using the area of the
cumulative density function above the decision threshold.
The generated curve is relative to a single threshold value.
Increasing the decision threshold results in the increase of
the POD value, thus the POD curve shifts to the right. Eight
PODs are constructed for left and eight PODs for right lane
changes. Three of the generated POD curves are illustrated in
Figures 12, 13, and 14.

The comparison of Fig. 12 - 14 is given in Fig. 15
using the common threshold approach [16]. The common
threshold approach ensures a fair comparison by using the
same decision threshold value for all classifiers. The process
is repeated for two more drivers resulting in 48[(8 + 8) x 3]
POD curves calculated as: 8 classifiers for left lane change
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FIGURE 12. Improved ANN POD for Right lane change of driver 1.
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FIGURE 13. SVM POD for right lane change of driver 1.
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FIGURE 14. Improved SVM POD for right lane change of driver 1.

and 8 classifiers for right lane change. The procedure is for 3
different drivers.

V. RESULTS AND DISCUSSION
The detailed analysis of the results is discussed in this section.
Based on the proposed approach, the POD curves of all
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FIGURE 15. Comparison of the agg 95 POD values for SVM, improved
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TABLE 2. Right lane change 90/95 POD.

Algorith Driver 1 Driver 2 Driver 3
gormtim  poph 5] POD[s]  PODs]

ANN 3.067 B <00

ANNImp 1.143 5.611 3.128

HMM 1.439 3.518 3.052

HMM Imp 2.801 2.853

RF 4.680

RF Imp 2.883 5.185 5.223

SVM 2.443

SVMImp  3.300 4.084 5412

Legend- Imp: improved *: best result **: worst results

classifiers are generated. The 90/95 certification standard is
used in this analysis. The 90/95 certification in this context
expresses the time required to predict complete lane change
with 90 % probability at 95 % confidence level. To explain the
results; with the lane change occurring at 7 s, the improved
ANN classifier is able to predict the impending lane change
at 3.679 s (see Fig. 12) with 90 % probability at 95 %
reliability level. Improved SVM (Fig. 13) and conventional
SVM (Fig. 14) does the prediction at 3.3 s and 2.443 s
respectively. This provides a means to compare the three
classifiers based on their 90/95 POD values. The earlier
the prediction time, the better the results. The introduced
approach incorporates a process parameter (here: time) and
provides a means to directly compare the prediction times
(as illustrated in Fig. 15). The 90/95 values of all classifiers
for right and left lane change estimations are illustrated in
Table 2 and 3 respectively.

From the results in Table 2, in estimating right lane
prediction capabilities of different classifiers for driver 1,
ANN predicts in 3.067 s, improved ANN in 1.143 s, HMM
in 1.439 s, improved HMM in 0.6355 s, RF in 4.219 s,
improved RF in 2.883 s, SVM in 2.443 s, and improved SVM
in 3.300 s. The least time values represent the best results.
This is because the algorithm is able to predict the complete
lane change within the shortest possible time. This implies
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TABLE 3. Left lane change 90/95 POD.

Algorithm Driver 1 Driver 2 Driver 3
POD[s] POD[s]  POD ]

ANN 3.325 5.605 4568

INNSII  PRPE 4302

HMM 1.204 3.352 3.593

e W

RF 3.354 3.974

RF Imp 3.181 B 5o

SVM 2,951 4.037 5.525

SVMImp  3.485 5.688 5.616

improved HMM has best results and RF worst results for
driver 1 right lane change estimation. Similar analysis can be
made for left lane change estimation for driver 1. The results
are extended to data from two other drivers and a summary
of the results is as follows.

In estimating right lane change:

1 For driver 1: HMM Imp produces the best results
(0.6355 s) and RF producing the worst results (4.219 s).

2 For driver 2: SVM produces the best results (2.548 s)
and ANN producing the worst results (6.383 s).

3 For driver 3: SVM produces the best results (1.182 s)
and RF producing the worst results (5.840 s).

In estimating left lane change:

1 For driver 1: HMM Imp produces the best results
(0.5748 s) and ANN Imp producing the worst results
(3.679 s).

2 For driver 2: HMM Imp produces the best results
(2.431 s) and RF Imp producing the worst results
(6.005 s).

3 For driver 3: HMM Imp produces the best results
(1.625 s) and RF producing the worst results (10.90 s).

Accordingly the following statements can be deduced for
the experimental results:

1 For this example task, the most suitable classifier is

improved HMM producing 4/6 best results.

2 The worst classifier for this example task is RF/ RF Imp
producing 4/6 worst results.

3 The application of prefilter to define features and
influence prediction performance generally results in an
improved POD except for SVM.

From the discussion it can be seen that the introduced
approach approach permits a new POD-based certification
and comparison method for binary classifiers based on a
common threshold value. The results from Table 1 show
the reliability as a percentage of correct prediction. Multiple
classifiers can be compared using the common threshold
approach provided that their false positive probabilities
are the same. However the common threshold method is
limited in evaluating the corresponding false positive vis-
a-vis the POD, decision threshold, and process parameter.
To overcome this difficulty, a noise analysis is undertaken in
section VI. This new insight extends the comparison of ML
approaches to include corresponding false positive values.
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FIGURE 16. Proposed evaluation approach.
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FIGURE 17. SVM data right lane change for driver 1.

The visual representation of how the aforementioned metrics
changes as the threshold is varied is presented.

VI. FALSE POSITIVE ANALYSIS

The POD depends on the selected decision threshold yy,.
Decreasing yy, will improve POD but at the cost of increasing
the probability of false positive (PFP). It is therefore useful
to evaluate the relationship between the POD and PFP using
the method described in Fig. 16. Here, noise analysis is
incorporated in the evaluation process.

The observed data aggregate the characteristics of the
target’s signature corrupted by aberrant signals generally
referred to as noise. Classical POD methods usually measure
noise components as part of experimental measurements,
however that is absent in the current work. Noise will be
inferred from the observed data. Noise in this context refers to
data with no useful target characterization information. Using
data from SVM right lane estimation of driver 1 as shown
in Fig. 17, the observed data up to the 0.45 s mark has a
zero POD value (as can be seen from the POD inset) and
therefore has no useful characterizing information. The data
up to 0.45 s time is extracted as noise as shown in Fig. 18 and
analyzed. The data beneath the decision threshold is censored
while those above is observed. The PFP for the extracted
noise data can be calculated as

PFP = P(ynoise > yth) (1D

Statistical x2 (Chi-squared) hypothesis test is undertaken
to identify the nature of noise distribution. Various dis-
tributions (Gaussian, Weibull, and Lognormal) are tested.
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FIGURE 19. Probability of false positive.

The Gaussian distribution emerging most plausible with a
p-value of 0.98. Analysis is carried out on the noisy data by
analyzing probability densities. By plotting the cumulative
density function, the mean i, and standard deviation
Onoise are computed including the critical target sizes (90%
and 90/95 POD values) are evaluated as shown in Fig. 18.
For a Gaussian distribution, the probability of false positive
is computed as

prp= [ L = d 12
= e noise .

/)’th ma’nuise Y ( )
The distribution with regards to false positive is illustrated
in Fig. 19 (shaded red area relative to the selected decision
threshold). From Fig. 17 and 19, it can be concluded that for
a selected decision threshold, a corresponding unique FAR
value exists however the detection probability varies relative
to a parameter (here: time). This implies, the premise for the
construction of the ROC/PR curve for applications requiring
the incorporation of process parameters is deficient. For a
selected cut-off point there is not one false positive to one
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detection rate value but one false positive to many detection
rate values. This consideration was not considered initially in
the ROC construction [9]. However modern applications are
concerned with how the characteristics of the target change
the probability of detecting it.

A. TRADE-OFF BETWEEN PROBABILITY OF FALSE
POSITIVE AND POD

From the noise analysis, it becomes possible to analyze the
trade-off between false positive and POD. To introduce the
novel approach, a single probability point is analyzed.

Here the 0.9 probability is used and drawn to intercept
POD and confidence curves. At the point of intersection:
the POD, false positive, threshold, and the process parameter
(here: time) are known. Changing the decision threshold
changes the probability of false positive and the target sizes.
A graph depicting the relationship between the POD, false
positive, threshold, and time is shown in Fig. 20. Using
the approach illustrated in Fig. 20 it becomes possible to
visualize and therefore demonstrate the relationship between
the POD, false positive, threshold, and process parameter.
This is unique due to the newly introduced extension which
is not possible using the common threshold approach or the
ROC curve. To analyze other probabilities requires evaluating
the specific points as is done for the 90 % probability.
The introduced method presents a novel and significant
approach to concurrently examine all properties affecting the
classification results.

B. COMPARISON OF CLASSIFICATION APPROACHES
INCORPORATING POD-BASED NOISE ANALYSIS

Applying the introduced POD-based noise analysis,
ML approaches can now be analyzed in more detail. For
a comprehensive comparison between the POD of two
classification approaches, their corresponding PFP needs to
be computed. A comparison is made between HMM (Fig. 21)
and HMM Imp (Fig. 22) left lane change to illustrate the new
approach.
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For a selected decision threshold of 10 corresponding
to point a, the HMM classifier (see Fig. 21) produces a
false positive of 0.066 while the improved HMM classifier
(see Fig. 22) produces a false positive value of 0.009
corresponding to point . The 90 % POD for HMM and
improved HMM are 2.8707 s (Fig. 21) and 2.096 s (Fig. 22)
respectively, corresponding to point ¢. The 90/95 POD for
HMM and improved HMM are 3.24 s (Fig. 21) and 2.341 s
(Fig. 22) respectively, corresponding to point d. Table 4
summarizes the 90 % and 90/95 POD and PFP values for
varying decision thresholds.

For a selected decision threshold of 2 (see Table 4) it
is seen that HMM Imp has a better 90/95 POD (1.333 )
compared to HMM (1.472 s). However HMM Imp has worse
PFP value (0.677 s) compared to HMM (0.660 s) for the same
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TABLE 4. POD and PFP values for different thresholds.

HMM HMM Imp
90% 90095 90%  90/95
DT pop poo PP pop pop PFP

0.504 1.043 0814 0.775 1.084 0.879
0977 1472 0.660 1.039 1333 0.677
1.451 1905 0473 1304 1.584 0.400
1.924 2344 0292 1568 1.835 0.168
2397 2788 0.152  1.832 2.088  0.047
10 2.871 3241 0.066 2.096 2341  0.009
12 3344 3704 0.023 2360 259 0.001

Legend- DT: decision threshold, PFP: probability of false positive

0N O

threshold value of 2. Therefore comparing classifiers using
solely the 90/95 POD values (common threshold approach)
is not conclusive. A fair comparison will require comparing
the corresponding PFP values. For a threshold value of 4
and above, HMM Imp has a better POD and PFP value
compared to HMM. Also from this discussion it can be
seen that the new approach provides a more comprehensive
comparison detailing the associated false positive for any
selected decision threshold. The earlier comparison using
solely the 90/95 evaluation metric and a common threshold
does not allow this detailed analysis.

VII. GENERALIZATION OF THE POD APPROACH
The introduced approach is based on a linear regression
(eg: 11). However, not all data will assume a linear structure.
The data distribution can be binary or nonlinear. In such
situations different implementation strategies may apply but
the core idea remains. For binary data, the log-odds (logit)
distribution is found to be of good fit [10] by linking the
binary response to the explanatory variables through the
probability of either outcome, which varies continuously
from O to 1. The POD function for binary data can be
expressed as shown in [9] as
S HEEH
POD = ——— (13)

Ina—up ) :

1+e%( i

Equation 13 can be conveniently written in the form
e(o{+y Ina)

Here the parameters « and y are related to i and o by

o
p=-2 (15)

y
o= (16)

y/3

The POD function for discrete target response data can be
expressed as shown in [10] as

POD(a) = Probability(In(3) > In(y;)). (17)

Equation 17 represents the area contained between the
probability density function of In(y) and above the decision
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threshold In(ys;). The POD can be expressed as

POD(@) = 1 — @ | nw=tectpin) | (18)

24

For continuous data, a continuous random variable X can
assume any value in a particular interval rather than any value
from a set of discrete values. Therefore, for non-discrete data
it is necessary to define a continuous function to describe the
probability distribution of X. This function is the continuous
probability density function f(X) and it is defined within the
interval —oo < x < 0o. The random variable X is defined in
terms of f(x) as shown in [22] as

P(—oo<X<oo)=/oof(x)dx= 1. (19)

The cumulative distribution function (CDF) &(x) for
continuous data is calculated as

d(x) = /X f@®)dt = P(X < x) for (—oo < x < 00).(20)

The CDF function ®(x) can be substituted in equation 18 in
the case of a continues variable.

The outlined formulae are important to generate a POD
that accurately defines the data. The aim is to provide precise
information on POD curves, which will be useful for the
Machine learning community, particularly in safety-critical
applications.

VIIl. CONCLUSION

In this research, our recently proposed contribution for
certifying and comparing machine learning methods using
the common threshold approach is extended to assess the
effects of varying decision thresholds and false positives on
the likelihood of detection. The new approach is based on
the extension of the POD approach and is demonstrated on
experimental data from a driving simulator. The simulator
has sensor components providing aids for vehicles to measure
dynamical and complex driving environments. The data
from the multi-sensor system are fused by classification.
Applying ML algorithms decisions/statements about the lane
change intentions are made and subsequently evaluated using
the modified POD. The introduced approach permits the
comparison of different ML algorithms thereby aiding in
the selection of desirable approach for a specific task by
considering the detection probabilities and false positive
rates. To achieve this, a noise analysis procedure is developed
that simultaneously considers the trade-off between the
probability of false positive, POD, decision threshold, and
process parameter. Based on the new approach, improved
HMM and conventional HMM are compared, and a visual
representation of how the POD and PFP change with
varying thresholds is presented. The introduced approach
is an alternative to the ROC with the extra advantage of
additionally evaluating the effect of process parameter on
the classification results and therefore useful for sequence
problems requiring the evaluation of temporal dynamic
behavior.
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