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Amajor aspect in the development of advanced driving assistance systems (ADASs) is
the research in developing human driving behavior prediction and recognition
models. Recent contributions focus on developing these models for estimating
different driving behaviors like lane or speed change. Thus, the models are
incorporated into the ADAS to generate warnings and hints for safe maneuvers.
Driving behavior recognition and prediction models are generally developed based
on machine learning (ML) algorithms and are proven to generate accurate
estimations. Previous review research contributions tend to focus on ML-based
models for the prediction and recognition of speed change, trajectory change, and
even driving styles. Due to high number of driving errors occurring during a lane
change, a state-of-art review of different ML-based models for lane-changing
behavior prediction and recognition is helpful to present a comparison between
different models in terms of structure, influencing input variables, and performance.
This enables the integration of the most efficient model for the development of
ADASs to avoid accidents during a lane change. First, definitions and terms related to
the model’s task and evaluation metrics used to evaluate the model’s performance
are described to improve the readability. Then, the different input variables of the
models affecting the lane-changing behaviors are presented. Next, a review of the
models developed based on well-known approaches, such as artificial neural
network (ANN), hidden Markov model (HMM), and support vector machine (SVM),
using different input variables is given. Three lane-changing behaviors are focused
on here: left/right lane change and lane keeping. The advantages and disadvantages
of the different ML models with a comparison are summarized as well. Finally, the
improvements required in the future are discussed.
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1 Introduction

According to the global status report by the Word Health Organization (WHO) in 2018,
fatalities from vehicle accidents account for approximately 1.3 million lives each year (Word
Health Organization, 2018). Hence, safety on the road is a major focus in recent years in many
countries. These accidents are often related to human driving behaviors, such as improper lane-
changing maneuvers, aggressive driving, or fatigue driving (Word Health Organization, 2018).
To tackle this problem, advanced driving assistance systems (ADASs) have been developed to
assist a driver by providing hints and warnings. The development and growth of ADASs is
reliant on driving behavior prediction and recognition models. Behaviors are individual, so

OPEN ACCESS

EDITED BY

Leise Kelli De Oliveira,
Federal University of Minas Gerais, Brazil

REVIEWED BY

Iman Abu Hashish,
American University of Madaba, Jordan
Jose Elievam Bessa Junior,
Federal University of Minas Gerais, Brazil

*CORRESPONDENCE

Ruth David,
ruth.david@uni-due.de

SPECIALTY SECTION

This article was submitted
to Transport Safety,
a section of the journal
Frontiers in Future Transportation

RECEIVED 22 May 2022
ACCEPTED 09 January 2023
PUBLISHED 24 January 2023

CITATION

David R and Söffker D (2023), A review on
machine learning-based models for lane-
changing behavior prediction
and recognition.
Front. Future Transp. 4:950429.
doi: 10.3389/ffutr.2023.950429

COPYRIGHT

© 2023 David and Söffker. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Future Transportation frontiersin.org01

TYPE Review
PUBLISHED 24 January 2023
DOI 10.3389/ffutr.2023.950429

https://www.frontiersin.org/articles/10.3389/ffutr.2023.950429/full
https://www.frontiersin.org/articles/10.3389/ffutr.2023.950429/full
https://www.frontiersin.org/articles/10.3389/ffutr.2023.950429/full
https://www.frontiersin.org/articles/10.3389/ffutr.2023.950429/full
https://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2023.950429&domain=pdf&date_stamp=2023-01-24
mailto:ruth.david@uni-due.de
mailto:ruth.david@uni-due.de
https://doi.org/10.3389/ffutr.2023.950429
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2023.950429


developing individualized models for ADAS enables estimations to be
provided on an individual level. Prediction and recognition models are
often developed based on machine learning (ML) approaches due to
its ability to learn and generate accurate estimations. Commonly used
ML approaches in developing these models are artificial neural
network (ANN), hidden Markov model (HMM), and support
vector machine (SVM). Thus, focusing on driving behavior
research is important.

A high proportion of the existing research focuses on developing
lane-changing prediction and recognition models, as improper lane-
changing behaviors are one of the major causes of accidents
(Statistisches Bundesamt, 2020). However, currently there are a
limited number of review papers that focus only on approaches
developed for the prediction and recognition of lane-changing
behaviors. Previous reviews within this field focused on estimations
of various driving aspects, such as speed, trajectory, driving styles, and
drowsiness, while driving usingML-based approaches (Lin et al., 2014;
Miyajima and Takeda, 2016; Kang, 2013). Kang (2013) discussed
different methods to detect drowsiness and distracted driving. On the
other hand, there are review contributions that focus only on one
specific ML-based approach for estimations of driving behaviors, as
described by Deng and Söffker (2022).

While many studies have developed models based on ANN,
HMM, and SVM algorithms, there are only a limited number of
studies that have compared them like Lin et al. (2014). Lin et al. (2014)
listed the advantages and disadvantages of four different algorithms.
The authors state that ANN has efficient pattern recognition ability for
large data sets. Here, HMM is stated to have good prediction and
recognition abilities of driving behaviors. The study also points out
HMM’s ability to deal with time series data, thus making it a suitable
choice for developing driving behavior estimation models. Upcoming
driving behaviors are stochastic and are determined based on the
current behavior; thus, HMM plays a significant role in predicting the
behaviors (Jiang and Fei, 2015; Zou and Levinson, 2006; Deng and
Söffker. 2022). There are some studies that have listed the advantages
of SVM for the identification of behaviors as described by Li et al.
(2017) and Wang et al. (2019), stating its ability to develop high
accuracy values and to handle high-dimensional feature space.
Although there are limited studies that have reviewed and
compared the three algorithms, many of these studies only
summarize other driving behaviors, such as driving styles as by
Martinez et al. (2018). While some review papers have summarized
methods for lane-changing prediction and recognition, these may not
review all the mentioned algorithms. Also, there is still a lack of
information in the literature examining different studies that have
developed lane-changing behavior prediction and recognition models
based on the three methods. In addition, many studies do not provide
a detailed overview of the different variable types used as inputs for the
prediction and recognition of models.

In contrast, this contribution focuses on ML-based approaches,
namely, ANN, HMM, and SVM, for the prediction and recognition of
lane-changing behaviors. The study will also provide a review of the
different variables used as inputs for developing lane-changing
prediction and recognition models. Lane-changing behaviors
analyzed are lane change to the right (LCR), lane keeping (LK),
and lane change to the left (LCL). These models are developed
based on two methods: 1) combining two or more ML algorithms
and 2) defining suitable input features by using feature selection
techniques. An example of the first option is presented by Xiong

et al. (2018), whereby SVM is applied for the classification of leaving
and remaining in a lane scene based on trajectory of the vehicle; then, a
Gaussianmixture-based HMMmodel is trained to predict if a collision
can occur for each scenario. Feature selection techniques, such as the
filter and wrapper method, are applied by Liebner et al. (2013) and
Mostert et al. (2018). In research contributions, different metrics, such
as ACC, detection rate (DR), precision, false alarm rates (FAR), area
under the curve (AUC), and F1 score, are used to validate the
estimations by comparing the estimated and actual behaviors.

This contribution is organized as follows: first, definitions and
terms based on the model’s tasks and evaluation metrics to analyze the
model’s performance are given. Next, an overview of the different
input variable types used for the development of prediction and
recognition models is presented. Then, a review of different ML-
based approaches used to develop these models is summarized. The
advantages and disadvantages of each approach and a comparison
between the ML-based models are discussed as well. An outlook on
questions to be improved based on the limitations of the approaches is
discussed. Finally, a conclusion is given.

2 Definitions and criteria

To improve the readability of the review, relevant definitions and
terms are introduced before using them in a different context. The
terms are relevant for the review as a displaced introduction will affect
the readability. Here, the definitions of terms such as estimation,
prediction, and recognition are explained. Furthermore, definitions of
the different evaluation metrics used to evaluate the performance of
the machine learning-based approaches for driving behavior
estimations are explained. Commonly used metrics are ACC, DR,
precision, FAR, AUC, and F1 score which compares the estimated and
actual behavior for similarities (Powers, 2011).

In this study, the recognition of lane-changing behaviors is defined
as detection of behaviors performed by drivers, while prediction deals
with predicting the most probable behavior in the near future based on
a set of behaviors performed by the driver (Jardim et al., 2015).
Estimation of lane-changing behaviors is either prediction or
recognition of lane-changing behaviors. As for the metrics, ACC,
DR, precision, and FAR are defined using true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) values given
by Powers (2011).

ACC � TP + TN

TP + TN + FP + FN
, (1)

DR � TP

TP + FN
, (2)

Precision � TP

TP + FP
, and (3)

FAR � FP

TN + FP
. (4)

The TP describes the number of cases whereby the predicted and
actual behavior is positive, for example, the predicted and actual
behavior is lane change to the right. Alternatively, the FP describes
number of cases whereby the predicted behavior is positive, while
actual one is not. A similar idea is applied for TN and FN. The ACC
defines the percentage of correct predictions, while the DR (also
known as recall) defines the ratio of true positive (correctly
predicted as positive) cases to the number of actual positive cases.
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Precision defines the ratio of the true positive cases to the number of
predicted positive cases. On the contrary, the FAR describes the ratio
of false positive (incorrectly predicted as positive) cases to the actual
number of negative cases. Higher ACC, DR, and precision values and
low FAR values indicate better estimation performance of the
approaches. A commonly known property of ACC is that it
performs poorly with a non-balanced data set (López et al., 2013),
while DR and precision provide a better evaluation for non-balanced
data sets (Powers, 2011). The drawbacks of DR and precision are that
DR does not consider FP values, while precision does not consider FN
values (Sharath and Mehran, 2021). Another well-known metric is
AUC, which shows the relationship between recall and false positive
rate (FPR). The F1 score is also used, which defines the harmonic
mean of precision and recall given by Powers (2011).

F1 − score � 2 × precision × recall

precision + recall
. (5)

It realizes the difference between correctness and coverage
(Fernández et al., 2018). The F1 score and AUC with higher values
indicate a good estimation.

3 Input variables affecting driving
behaviors

Driving behaviors are the actions carried out while driving,
affected by environmental conditions and driver’s characteristics.
To analyze the behaviors, different variables (features) such as
environmental, eye tracking, head tracking, and physiological
variables are used. The variables provide information about the
driver’s, ego vehicle’s, and surrounding vehicle’s state. In research
contributions, these variables are used as inputs for prediction and
recognition models. For lane-changing prediction and recognition,
environmental variables are mainly used as the environmental
conditions generally influence the driver’s decision-making process.
However, the eye/head tracking and physiological variables also play a
role here. Feature selection techniques are used in some contributions
to select the most suitable variables, while others use automatic feature
selection process within the ML approach/deep learning methods.
Hence, in this section, the different input variables used for the
development of lane-changing prediction and recognition models
are summarized.

3.1 Environmental variables

Environmental variables provide information that affects the
driver’s decision based on the relationship between the ego vehicle
and surrounding vehicle. The environmental variables are divided into
two categories: 1) variables related to the ego vehicle’s and
surrounding vehicle’s state and 2) variables related to the driver’s
operational information. The state of vehicle variables provides
information about the relationship between the different vehicles
and the driving environment. Typical vehicle state variables
considered in the literature are acceleration, vehicle speed, and
time to collision (TTC). When the driver realizes an unexpected
maneuver, driver’s operational variables are needed to provide
vehicle control information for a better understanding of the
maneuver. These include steering wheel angle, position of

acceleration/brake pedal, and engine speed. The variables are
collected using different sensors, such as controller area network
(CAN) bus and accelerometer. As mentioned, most literature
research studies use environmental variables for the prediction and
recognition of lane-changing behaviors. Tran et al. (2015) proposed an
HMM-based approach for predicting lane-changing intentions using
the driver’s operation variables (steering wheel, gas, and brake pedal
positions) and the vehicle state variables (acceleration, yaw rate, and
velocity). The maneuvers considered include left/right lane change,
turn right/left, and stop/non-stop on highway and urban
environments using a driving simulator. Han et al. (2019)
developed a framework for the prediction and recognition of lane-
changing behaviors. Here, the driver’s characteristics are first
estimated using an optimization-based technique. Then, based on
the estimated characteristics, lane-changing behaviors are predicted
using a neural network-based approach. Here, environmental
variables such as longitudinal position, velocity, and lane-number
are considered for the estimation of the driver’s characteristics and
lane-changing behaviors. A lane-change intention system is proposed
by McCall et al. (2005) using the Bayesian learning method by
considering environmental variables based on vehicle and lane
position data. A summary of the environmental variables and the
literature examples that use these variables are given in Table 1.

3.2 Eye- and head-tracking variables

Eye- and head-tracking variables are also used in studies related to
the estimation of lane-changing behaviors. Eye-tracking variables are
collected using an eye tracker device or cameras to provide
information on eye movements and gaze in different driving
situations. The main eye-tracking variables used in driving research
are eye fixations and saccades (Vetturi et al., 2020). Head-tracking
variables are based on the head poses and head movements of the
driver which are usually captured using camera sensors. Head-
tracking variables generally consist of head rotation, head angles,
and head positions. The aim of these devices is to monitor the behavior
of the driver so one can deduce the awareness and intent of the driver.
The eye- and head-tracking variables provide information on the
driver’s awareness of the surroundings/situation (such as maneuvering
at an intersection) and how the driver intends to proceed in a given
situation (Doshi and Trivedi, 2009). Evaluating the reliability of eye
gaze and head dynamics to determine the intention of the driver is
studied by Doshi and Trivedi (2009). Based on the results, head
dynamics are more useful than eye gaze information for the
intention determination.

Head-tracking variables are used by Leonhardt and Wanielik
(2017) to analyze the driving maneuver preparation for a lane-
change prediction based on ANN. Here, the head’s rotation around
the vertical axis, lateral movement, and head tracking’s confidence

TABLE 1 Summary of environmental variables.

Input variable Literature

Environmental: operational and vehicle state Tran et al. (2015)

Steering wheel, gas, and brake pedal position Han et al. (2019)

Lane position, longitudinal position, and velocity McCall et al. (2005)
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value are used as input variables. However, in certain models, the
inclusion of eye-tracking variables increases the estimation
performance. For example Li et al. (2016) proposed a Bayesian
network-based approach to predict lane-changing intentions. Here,
eye-tracking and vehicle data are collected to be used as inputs. The
performance of the model based on the fusion of both eye-tracking
and vehicle-related variables and individual variable sets are evaluated.
From the results, the Bayesian model using the fused set performs
better than when using the individual set. The usefulness of eye-
tracking information for designing a HUD-based warning indicator is
studied by You et al. (2017). Eye fixation areas and fixation moving
paths’ frequency are analyzed in the lane-changing situations. Deng
et al. (2020) evaluated the role of eye-tracking information for the
prediction of lane-changing behaviors based on CNN, HMM, random
forest (RF), and SVM to develop an assistance system. From the
results, it can be concluded that the performance of integrating the
eye-tracking data depends on the prediction ability and choice of the
machine learning algorithm. In addition, driver’s decisions are mainly
based on environmental factors. For example, using only eye-tracking
variables with the mentioned approaches produced poor ACC values.
On the other hand, CNN-, HMM-, and RF-based models produced
slightly better results when using a fusion of eye-tracking and
environmental variables. However, the SVM-based model performs
better when using only environmental variables (Deng et al., 2020). A
summary of the eye- and head-tracking variables is given in Table 2.

3.3 Physiological variables

Physiological variables provide information about the driver’s
characteristics, patterns, and mental state. Common physiological
variables in driving research include electrocardiogram (ECG),
electroencephalogram (EEG), pulse rate, and blood alcohol
concentration (BAC). Physiological information is mainly used as
input for the detection of fatigue driving and drunk driving. However,
in certain cases, it can be used for predicting lane-changing behaviors as
used by Murphey et al. (2015). The authors state that in previous studies
only environmental variables have been considered; thus, the aim is to use
physiological variables to study and evaluate the prediction performance.
In this novel approach, a Granger causality test is used as a feature
selection technique, and neural network is used for the classification of the
lane change. Here, only physiological variables such as ECG, galvanic skin
response (GSR), and respiration rate (RR) are considered as inputs. Based
on the results, a true positive rate (TPR) of 70% and a false positive rate

(FPR) of 10% are achieved for 30 lane-changing and 60 non-lane-
changing events. Li et al. (2019) also used physiological variables in
the context of lane-changing behaviors. While this study does not predict
lane changes, it considers predicting the risk during a lane change using an
HMM-based approach. The authors consider environmental, eye-
tracking, and physiological variables. The influence of eye movement,
heart rate variability, and vehicle dynamic variables on the driving risk are
evaluated using a two-factor indicator analysis technique. The HMM
results showed an ACC value of 90.67% between the predicted risk and
perception of the drivers. The summarized explanation of the variables is
given in Table 3.

4 Machine learning-based models

4.1 Artificial neural network

Artificial neural network (ANN) is a well-known ML approach
developed for the classification and pattern recognition tasks in recent
years. The ANN model is designed based on the functionality of the
biological neural structure. The network consists of interconnected layers
of neurons that processes information from large data sets to produce
outputs to classify the data. A basic ANN consist of an input layer, hidden
layers, and an output layer. The data are given to the network in the input
layer. For the development of the models, each variable is represented as
an input neuron. This information is passed to the neurons in the hidden
layers for processing to produce outputs. In a driving behavior estimation
model, each neuron in the output layer represents a specific class of
driving behaviors, such as the different lane-changing behaviors. The
connection between the neurons in different layers have specific weights
associated with it, which are adjusted to minimize error margins. All
neurons have a bias value with the exception of the input-layer neurons.
In the output layer, the predicted probability of each class (each neuron) is
produced. The final result is determined based on the class with the
highest predicted probability. This predicted probability is determined
based on the input variables, biases, and weight parameters, given by

Y � f ∑N
i�1

wixi + b⎛⎝ ⎞⎠. (6)

Here, Y denotes the predicted probability; wi, the weight; b, the
bias value; xi, the input value; and f, the activation function. As
mentioned, for lane-changing behavior estimations, three classes
are distinguished as LCR, LK, and LCL.

TABLE 2 Summary of eye- and head-tracking variables.

Input variable Literature

Eye-tracking: eye fixations and saccades Vetturi et al. (2020)

Doshi and Trivedi (2009)

Li et al. (2016b)

You et al. (2017)

Deng et al. (2020)

Head-tracking: head’s rotation and lateral movement Doshi and Trivedi (2009)

Head-tracking’s confidence value Leonhardt and Wanielik (2017)
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An example of an ANN-based approach for developing the lane-
changing prediction model is developed by Leonhardt and Wanielik
(2017). The prediction is based on three consecutive phases: intention
to perform a lane change (describing the driving situation),
preparation of a lane change (describing the behavior), and the
lane change maneuver itself (describing the vehicle maneuver).
Three sets of variables, each corresponding to the three phases, are
defined. Environmental and head-tracking variables are used in this
model as inputs. The environmental variables considered are velocity,
yaw rate, gas pedal activation, and break pressure of the ego vehicle.
For the head-tracking variables, head rotation around the vertical axis,
lateral movement, and the confidence value of head tracking are
chosen as relevant variables. Two individual neural networks are
developed, each to predict the LCL and LCR, respectively. Here,
different time spans before a lane change (suggesting the latest
time for a prediction before a lane change) and different
configurations are analyzed to evaluate the effect on the model’s
performance. Hence, time spans of 2, 4, and 8 s before a lane
change with different configurations are selected for predictions.
The model is evaluated using the individual and fusion of the
variable sets as inputs. The results show that the model performed
better with the fused set in all the time spans. Based on the results, a
time span of 2 s produced the highest prediction performance with an
AUC value of 0.972 and a FAR of 0.018, followed by 4 s and 8 s.

Developing a model using only one ANN model may not be
sufficient to handle and interpret certain information to produce
optimal estimations. Hence, a method to solve this problem is to
combine ANN with another ML algorithm or to combine different
types of ANN. Griesbach et al. (2021) used a recurrent neural network
(RNN) in combination with long short-term memory (LSTM) for
lane-changing predictions. The RNN is implemented with LSTM cells,
based on the study of Su et al. (2018). Different combinations of
environmental input variables are tested to be chosen as the input
variables; however, the combination of steering wheel angle and
indicator produced the highest evaluation performance (AUC of
0.93). The outputs are LCR and LCL behaviors. Driving data from
57 drivers who drove a 40-km route in the urban area of Chemnitz,
Germany, are collected. The results based on this model are compared
with the results of an echo state network (ESN) model to evaluate the
performance. Based on the results, the RNN-based model performs
better in predicting LCRwith a perfect ACC of 100%, while the ACC of
the ESNmodel is 92%. However, the ESNmodel produces higher ACC
for predicting LCL. Dou et al. (2016) combined SVM and ANN to
develop a lane-changing prediction model. Here, the model predicts
the feasibility and suitability of a lane change based on environmental
variables such as speed difference, vehicle gap, and positions. By
comparing the proposed methods with the Bayes classifier and a
decision tree, the proposed method produced the best performance

with an ACC of 94% for non-merge and 78% for merge events.
Integrating the developed models mentioned in future developments
of ADAS or autonomous vehicles for behavior estimation can provide
new knowledge for better driving assistance or if intervention is
needed. This reduces mishaps between drivers and between driver
and the intelligent vehicle to maintain road safety. The summary of the
presented contributions, which include model types, literature, and
performances, is given in Table 4.

4.2 Hidden Markov model

The hidden Markov model was initially used for speech
recognition and biological-sequence analysis. An HMM defines the
stochastic process between a set of unobserved states (hidden) and a
set of observed states (Rabiner, 1989). In an HMM, the state at time t
depends on the state at time t − 1. The hidden state and observation
state sequences are labeled Q = {Q1, Q2, . . . , QL} and O = {O1, O2, . . . ,
OL}, respectively, whereby L is the length of the sequence. The hidden
state sequence can be determined through the observation sequence
using an HMM parameter. The Baum–Welch and Viterbi algorithms
are used to apply the HMM. The Baum–Welch algorithm is used to
estimate the HMM parameter when the HMM is trained. Thus, the
HMM parameter is evaluated to best fit a given observation sequence
O and the corresponding hidden state sequence Q. The most probable
hidden-state sequence can be determined using the Viterbi algorithm
based on the estimated HMM parameter. When applying HMM for
lane-changing behavior prediction as suggested by Deng et al. (2018),
the observation variables are the input variables, while the hidden
states are the different lane-changing behaviors. Hence, the most
probable driving behavior sequence is estimated with
environmental variables like distances and velocities used as
observation variables (Deng et al., 2018). A prefilter is introduced
to the HMM and optimized in this study. The aim of the prefilter is to
quantize the variables into the observation sequence. Comparisons of
the prediction performance are drawn using a general and the optimal
prefilter. The ACC and DR values increased when the optimal prefilter
was used, generally higher than 80% with a few exceptions.

Berndt et al. (2008) used an HMM for continuous recognition of
lane-changing maneuvers. A total of 100 lane changes are performed
in the training data set, which are made up of 50 LCL and 50 LCR.
Each maneuver is tested with a few combinations of input variables,
HMM grammars, and sub-model configurations. Suitable model
grammars (number of states in the left–right Markov chain) and
sub-model dimensions are developed using the steering wheel angle.
Hence, model grammars with different number of states are tested.
Each model grammar is also tested with sub-models of different
number of states. Here, a sub-model of three states with a

TABLE 3 Summary of physiological variables.

Input variable Literature

Physiological: ECG, EEG, BAC, GSR, RR, pulse rate, and heart rate variability Vetturi et al. (2020)

Doshi and Trivedi (2009)

McCall et al. (2005)

Leonhardt and Wanielik (2017)
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grammar model of nine states is chosen as the best model. In addition,
the authors examine if additional input variables in combination with
the steering wheel angle increases the recognition performance. The
highest training performance is achieved with the addition of steering
wheel velocity, used as input variables (observation variables). The
performance results showed a sensitivity of 71% and 74% for the LCL
and LCR, respectively. As these models are widely applied in ADAS to
ensure that driving safety is adhered, a recent study that focuses on this
application is by Yuan et al. (2018). The prediction model is developed
to optimize the adaptive cruise system that evaluates the vehicle ahead.
Here, an HMM-based model is developed to estimate lane-changing
behaviors of the vehicle in front of the ego vehicle. Input variables used
are the distance between the ego vehicle and the front vehicle, the front
vehicle’s longitudinal velocity, and its lateral velocity. The model is
able to predict with a maximum ACC of 97% for straight roads and
96% for curved roads within a time window length of 4.5 s and 3.5 s,
respectively. An intention prediction method based on the HMM is
developed for autonomous vehicles to predict lane-changing
intentions of a human driver by Liu et al. (2020). The aim is to
predict the intention of the targeted vehicle based on environmental
input variables, such as vehicle velocities, accelerations, and offsets
between the lanes and vehicles. Two approaches are introduced,
whereby the HMM is trained with discrete and continuous
variables (either from the targeted vehicle or both targeted and
surrounding vehicles). The results show that the prediction of the
model trained with continuous variables produces higher ACC than
discrete variables. Furthermore, the ACC is slightly higher when the
model is trained using variables related to both the targeted vehicle
and surrounding vehicles with some exceptions, such as when the
prediction time is closer to the time of the actual intention. For
example, the ACC is less than 78% when only the targeted vehicle-
based variables are involved, while it is 80% when both variables are
considered.

Often, research contributions focus on combining the HMM with
other ML approaches/other mathematical methods to improve the
prediction and recognition performance of a model. In addition, if it is
unable to model certain information on its own, the HMM requires
the use of another algorithm. The HMM and the other ML algorithm
have different roles in the model. A Gaussian mixture hidden Markov
model is developed by Jin et al. (2020) to characterize lane-changing
behaviors for autonomous vehicles. The Gaussian mixture model aims
to extract variable values to characterize lane-changing behaviors,
whereby a probability density function is used to describe each variable
value. Then, the HMM is used to develop a relationship between the
hidden states (lane changing behaviors) and observed states (input
variables). A total of nine environmental input variables are
considered, consisting of speed and distances to surrounding
vehicles. The results showed that the highest ACC achieved is

95.4%. Deng and Söffker (2018) combined the HMM with fuzzy
logic (FL) to develop a lane-changing prediction model based on the
safety level. In this study, the safety level of a scene for a lane change is
defined using TTC and distances. Using these variables as input, FL is
used to classify the safety level of a scene into very safe, safe, and
dangerous. The HMM is used to estimate a lane change based on the
safety of the scene using environmental variables. The obtained ACC
and DR are higher than 80% for different lane-changing behaviors.
Klitzke et al. (2020) developed a novel approach based on HMM,
divisive hierarchical clustering (DHC), and dynamic time wrapping
(DTW) to identify lane changes on a highway. Driving maneuvers are
clustered using HMM and DHC into primitive driving actions. Based
on primitive actions and defined patterns, DTW is employed to
identify a lane change. An F1 score of 0.9801 for lane change
identifications is observed. Li et al. (2016) developed a lane-
changing intention recognition approach based on HMM and
Bayesian filter (BF) techniques. The HMM produces preliminary
behavior classifications, which is then used by the Bayesian filter
part to develop final lane-changing classifications. The input of the
model consists of steering angle, lateral acceleration, and yaw rate
obtained from the CAN bus. The model successfully recognizes LCR
and LCL behaviors with an ACC of 93.5% and 90.3%, which are better
than using only the HMM. Based on the contributions analyzed, the
results of other ML approaches/HMM can be used as input or
additional information for HMM/other approaches to be trained
and estimate lane-changing behaviors (Jin et al., 2020; Klitzke
et al., 2020; Li et al., 2016a). The other approaches can also be
used to distinguish different driving scenarios/styles, which are
then used to estimated lane-changing behaviors using the HMM
(Deng and Söffker, 2018). As previously stated, the incorporation
of these developed models into currently available ADASs (some
models have already been integrated) has the potential to improve
the traffic safety. A summary of the HMM-based models is presented
in Table 5.

4.3 Support vector machine

SVMs are supervised machine learning algorithms initially
developed for the classification of two classes by finding an optimal
hyper plane that separates the data points from both classes (Cortes
and Vapnik, 2004). SVM supports both linear and non-linear
separable data. The aim of SVM in a linear separable data set is to
find the best hyper plane position such that the margin of separation
between both classes is maximized. When data cannot be separated
linearly, a non-linear SVM is used instead through the application of a
kernel function, which is the case in most real-world applications. A
lane-changing behavior prediction model is based on non-linear data

TABLE 4 Summary of ANN-based models for lane-changing estimations.

Model Literature Performance measure

Individual ANN Leonhardt and Wanielik (2017) AUC: 0.972 and FAR: 0.018

Combined ANN

LSTM-RNN Griesbach et al. (2021) ACC (LCR): 100%

SVM-ANN Dou et al. (2016) ACC (merge): 94% and ACC (non-merge): 78%
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as it has more than two classes. Here, the inputs are transformed into a
higher dimension input vector using the kernel function. This multi-
class classifications are usually realized using one-against-all and one-
against-one approach.

An SVM-based model is developed for the detection of lane-
changing intentions by Mandalia and Salvucci (2005). Different
combinations of window sizes, overlapping vs. non-overlapping,
and input variable sets are evaluated to analyze which combination
resulted in the best classification performance. Environmental
variables are extracted from the driving data for detecting the
intentions. Five sets of variables are selected to validate the set that
produced the best classification performance. In set 1, acceleration,
lane positions, and heading are included. In set 2, the importance of
the lead car distance is considered, while set 3 considers the effect of
longitudinal and latitudinal variables. Set 4 examines the influence of
the steering wheel angle. Finally, only lane positions are included in set
5 (Mandalia and Salvucci, 2005). Based on the performance, set
5 produced the best classification results in all time windows in the
over-lapping representation. The authors specify that the model has a
good performance, whereby the highest ACC obtained is 97.9% in a
1.2-s time window.

Similar to previously introduced ML-based models, combining
SVM with another ML algorithm is a common approach to obtain
extra information and to produce a better performance. Izquierdo
et al. (2017) combined ANN and SVM to develop a lane-changing
prediction model. Two types of ANN (non-linear auto regressive
neural network (NARNN) and feed-forward neural network (FFNN)
are used to predict the trajectory of the vehicle (lateral position), a few
seconds ahead of the ego vehicle. The NARNN is used for predicting
time series data, while the FFNN (the simplest form of ANN) is used
for the mapping of the input and output. An SVM is then used to
predict whether a lane change will occur. The environmental feature
variables extracted for the trajectory and lane-changing predictions are
lateral position, lateral speed, and heading error. The NARNN uses the
same variable to predict an input (here the lateral position), while the
FFNN uses any variable as input to predict an output that could be
same or different to the input. For the SVM, the estimations of ANN is
used as an extra variable for better classification of lane changes. From
the prediction of the ANNs, the NARNN does not show an improved
prediction when compared with a baseline method; however, the

FFNN is able to improve this by reducing the error values. Based
on the SVM classification, it is able to predict a lane change 3 s prior to
a lane change; however, no evaluation metric scores are provided here.
Probabilities of a situation-based approach and an SVM-based
movement approach are combined to predict LCR, LK, and LCL
by Wissing et al. (2017). The situation-based probability is based on
the current traffic situation to predict a possible lane change, while the
movement-based probability is defined using SVM based on vehicle
movements in the lane. Both probabilities are fused to estimate an
upcoming lane change. The situation-based approach considers
environmental variables that describe the inter-vehicle relation to
analyze the current traffic situation, while the movement approach
considers environmental variables related to the vehicle movements in
the lane, such as distances and velocities. The presented approach is
able to predict LCR with a recall value of 0.93 and LCL with a recall
value of 0.72. Kumar et al. (2013) combined SVM and Bayesian filter
(BF) to develop a lane-changing intention prediction model. A
multiclass SVM is used for the classification of the trajectories that
belong to three different classes, namely, LCR, LK, and LCL. The SVM
outputs arethen used as inputs for the Bayesian filter for developing an
improved prediction result. The Bayesian filter aims to provide a
smoothing effect to reduce FAR and missed detections in contrast to
the SVM-based results. Hence, a comparison of the prediction
performance between the combined SVM and BF model and only
SVM is presented. Environmental variables such as lane information,
speed, and steering wheel angle are considered as inputs for the SVM.
The results show the average precision increases from 0.2857 to
0.7154 when using the combined model instead of the individual
SVM model. Similar precision values are obtained when the model is
trained and tested with different combination of drivers’ data, with the
highest precision at 0.8235, proving its robustness. In Table 6, the
summary of the SVM-based models is given.

5 Discussion

The main focus of this contribution is to analyze and compare
different lane-changing behavior recognition and prediction models
based on ANN, HMM, and SVM. Each of the mentioned ML-based
approaches have their advantages and disadvantages, thus having

TABLE 5 Summary of HMM-based models for lane-changing estimations.

Model Literature Performance

Individual HMM Deng et al. (2018) ACC: higher than 80%

Berndt et al. (2008) Sensitivity (LCL and LCR): 71% and 74%

Yuan et al. (2018) ACC (straight roads and curved roads): 97% and 96%

Liu et al. (2020) ACC (targeted vehicle’s variables): 78%

ACC (targeted and surrounding vehicles’ variables): 80%

Combined HMM

Gaussian-HMM Jin et al. (2020) ACC: 95.4%

Fl-HMM Deng et al. (2018) ACC and DR: higher than 80%

DHC-DTW-HMM Klitzke et al. (2020) F1 score: 0.9801

BF-HMM Li et al. (2016a) ACC(LCR and LCL): 93.5% and 90.3%
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different performances based on different factors. Some of the factors
that affect the performance include the structure of the model,
properties of the ML approaches, input variable types, data size,
and complexity of the data. The advantages and disadvantages of
the different approaches are described in this section. Comparisons
between different ML-based approaches for lane-changing behavior
detection in terms of features, driving scenarios, and performances are
displayed in Table 1.

5.1 Advantages and disadvantages

As mentioned, the advantages and disadvantages of the approaches
affect the prediction/recognition performances. One of the advantages of
ANN is its ability to handle multi-class problems, in contrast to SVM,
whereby the performance decreases with increasing number of classes
(Liang et al., 2007). The contribution by Leonhardt and Wanielik (2017)
shows this and its ability to combine different types of information. Here,
the different driving features describing the driving phases of a lane
change are combined for estimations. Another advantage, particularly
with deep neural network, is its ability to extract features automatically.
However, a major disadvantage of ANN is its tendency to overfit.
Increasing the number of neurons in the hidden layer shows a low
performance due to overfitting; hence, Leonhardt and Wanielik (2017)
limited the hidden layers neurons to three. On the contrary, the SVM
possesses certain advantages over ANN. For example, SVM does not have
the tendency to overfit, by choosing a hyperplane which minimizes the
distance between the hyperplane and the nearest training sample point
(Liang et al., 2007). To avoid overfitting, Dou et al. (2016) also combined
ANN with the SVM. In the reviewed paper (Kumar et al., 2013), this
advantage takes effect as it is able to accurately classify trajectory belonging
to different classes. Another observed advantage is its ability to transform
a low-dimension non-linear classification problem into a high-dimension
linear classification problem by mapping input data from a low-
dimensional space to a lane-changing behavior in a high-dimensional
space. Moreover, training of SVM models only requires few samples in
high-dimensional spaces compared to training ANN (Liang et al., 2007).
Mandalia and Salvucci (2005) chose an optimal data representation of the
input features which is challenging in the SVM. Rather than using the
original values, variance of features over others are used to solve this,
reducing the input size whilst extracting the change in features.
Nevertheless, the SVM possess certain drawbacks. As stated by Kumar
et al. (2013), an extra BF is needed to improve the performance of the
SVM. While the authors state that the false detection rates are mainly
caused by lane tracker inaccuracies, there could be reasons related to the
SVM model and its parameters. A possible reason is the development of
optimal weights and kernel function is challenging when applying the

SVM individually. Advantages of HMM are its stochastic properties, the
ability to manage time series data (Lin et al., 2014) (Jiang and Fei, 2015),
and the ability to deal with temporal pattern recognition (Meyer-Delius
et al., 2009). These benefits make it feasible for the prediction of driving
behaviors, since future driving behaviors are described as stochastic and
dependent on the current behavior (Jiang and Fei, 2015). However, the
HMM has several limitations as described by Deng and Söffker (2018),
whereby models with different parameterizations are required for
different drivers to generate accurate estimations as driving behaviors
are individual. Thus, the HMM has poor generalization capabilities. The
HMM approach is also not suitable for long-term prediction as the
number of hidden states must be specified prior to training as observed by
Deng and Söffker (2022). Liu et al. (2020) observed the limitations of using
discrete characterization features in comparison to continuous
characterization with HMM, as the performance is reduced due to
information loss. A major disadvantage of the reviewed methods is
that the methods are often combined with another method for an
improved performance, which only increases the complexity.

5.2 Summary of results and comparisons

In Table 1, a comparison of machine learning-based approaches
for the estimation of lane-changing behaviors in terms of variables,
traffic environment, and contributions are presented. The approaches
compared are ANN, CNN, HMM, SVM, DBN (dynamic Bayesian
network), and RF-based approaches. Based on the comparisons of
different models discussed in this study and illustrated in Table 1, the
following conclusions are summarized. Table 7.

1) Environmental variables have the highest influence on developing
machine learning-based models for the estimations of lane-
changing behaviors (all the contributions listed in Table 1),
followed by head/eye-tracking variables (Leonhardt and
Wanielik, 2017; Deng et al., 2020), and physiological variables
(Murphey et al., 2015; Wang et al., 2016). The eye-tracking and
physiological variables do not significantly contribute to the
prediction and recognition of lane-changing behaviors as stated
in the study of Doshi and Trivedi (2009). Deng et al. (2020)
produced poor ACC values and estimation models using only
eye-tracking variables. As mentioned, a reason for this is because
decision making is mainly based on environmental information,
which describes the relationship between the ego vehicle and
surrounding vehicles. Only a small number of contributions
consider the role of physiological variables.

2) Combined ML approaches often have better performance than
using a single approach by itself. The purpose of using more than

TABLE 6 Summary of SVM-based models for lane-changing estimations.

Model Literature Performance

Individual SVM Mandalia and Salvucci (2005) ACC: 97.9%

Combined SVM

ANN-SVM Izquierdo et al. (2017) Able to predict three prior to lane change

Situation-based SVM Wissing et al. (2017) Recall (LCR and LCL): 0.93 and 0.72

BF-SVM Kumar et al. (2013) Precision: 0.7154
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one algorithm is to employ the advantages from different
approaches and to achieve different tasks which cannot be done
by using a single approach. In lane-changing estimation models,
the outputs of one approach can be used as input for another as
extra information for predicting the behaviors. Also, one approach
can be used to recognize driving patterns, styles, and scenarios
which are then used with another approach to estimate the lane-
changing behaviors.

3) To evaluate the performance of lane-changing behavior models,
common metrics used in contributions are ACC, DR, precision,
FAR, AUC, and F1 score. These metrics produce the most accurate
evaluation between the estimated and actual behaviors. However,
different metrics place varying levels of importance on the different
classes, depending on the classification problem. The metric best
focusing on the importance of each class should be selected to
evaluate the lane-changing behavior classifications. For example in
an imbalanced data set, the metric accuracy tends to attach more

significance to the majority class than the minority class, making it
difficult to show good performance in the minority class. This is
known and avoided by more suitable metrics like F1 score.

4) From the results of different contributions, the performance values
of different approaches do not differ much. For example, most
models tend to have good ACC and DR values which are higher
than 80% with low FAR values. High AUC and F1 scores are also
achieved ranging from 0.8 to 0.98.

6 Conclusion

In this paper, an overview of different ML-based approaches,
namely ANN, HMM, and SVM, for lane-change prediction and
recognition is presented. These approaches are selected because
these approaches are the most developed in the literature. Lane-
changing behavior is considered in depth in this literature because

TABLE 7 Comparisons between different models for lane-changing behavior prediction and recognition.

Algorithm ANN/combined HMM/
combined

SVM/combined CNN/combined DBN/combined RF/combined

Reference examples ANN: Leonhardt and
Wanielik (2017),
Leonhardt and
Wanielik (2018),
Griesbach et al.
(2021), Su et al.
(2018), Dou et al.
(2016)

HMM: Deng et al.
(2018), Berndt et al.
(2008), Yuan et al.
(2018), Deng et al.
(2020), Liu et al.
(2020), Jin et al.
(2020), Deng et al.
(2018), Klitzke et al.
(2020), Li et al.
(2016a)

SVM: Mandalia and
Salvucci (2005), Deng
et al. (2020), Tomar
et al. (2011), Izquierdo
et al. (2017), Wissing
et al. (2017), Kumar
et al. (2013)

CNN: Díaz-Álvarez
et al. (2018), Wang
et al. (2016), Izquierdo
et al. (2019), Deng
et al. (2020)

DBN: Ulbrich and
Maurer (2015),
Kasper et al. (2011),
Koenig et al. (2017),
Weidl et al. (2016)

RF: Schlechtriemen
et al. (2015), Deng
et al. (2020), Gu et al.
(2019)

Input variables

Environmental state of
vehicle (acceleration,

vehicle speed, trajectory,
and yaw rate TTC)

Yes Yes Yes Yes Yes Yes

Environmental
operational information
(angle of steering wheel,
brake pressure, gearbox,

and indicator) Yes Yes Yes Yes Yes Yes

Eye/head- tracking (eye
gaze, blink frequency,
PERCLOS, and head

movements – yaw, pitch,
and roll)

Yes Yes Yes Yes — Yes

Physiological (ECG, GSR,
and RR)

Yes - - yes — -

Traffic environment

Highway (traffic) Yes YES Yes Yes Yes Yes

Urban/city (traffic) Yes — — Yes — —

Result AUC: 0.972, FAR:
0.018–0.095,
Leonhardt and
Wanielik (2017)

F1 score = 0.9801,
Klitzke et al. (2020)

Precision:
0.55–0.8235, Kumar
et al. (2013)

Recall: 0.67, Izquierdo
et al. (2019)

AUC: 0.986, recall:
0.927 Koenig et al.
(2017)

ACC: 0.9772, Gu et al.
(2019)
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of its safety significance during a lane change. Each approach has its
advantages and disadvantages, depending on the specifications of the
approaches, the behavior type, and input variables for the model.
Thus, a comparison between the different approaches for lane-
changing prediction based on different input variables, structure of
the model, traffic environment, and performance evaluations has been
developed and presented comparatively. This allows readers to select
the appropriate approach from the existing methods to develop new
ML-based models. The performance of the existing models is also
given in this review, which helps with the selection of the appropriate
method when developing the new models.

The lane-changing behaviors considered in the different
contributions constitute of LCR, LK, and LCL. The environmental
variables are mainly used as inputs in the models as these variables
provide state of the ego/surrounding vehicle’s and operational
information which affect the driver’s decision to change lanes. The
eye-tracking/head-tracking are also used in some approaches to
estimate a lane change. Based on different contributions, it can be
concluded that, in general, eye-tracking data do not significantly
contribute to providing better estimations of lane-changing
behaviors, with the exception of a selected few. While physiological
variables have been used in very few contributions; the results based on
incorporating these variables show their potential in future studies.
The performance values of the models reviewed are within the same
range; thus, it cannot be concluded that one approach outperforms the
other. Also, the performance based on combined approaches is better
than using an approach by itself. However, limitations still exist in the
approaches as discussed. For example, ANN-based models require a
higher volume of data to train effectively, while the SVM tends to
underperform when there are a large number of classes. On the other
hand, the HMM-based model is not generalizable and requires a
number of hidden states to be selected prior to training, limiting the
performance of the model. Therefore, future research should develop
ways to effectively tackle these problems.

7 Ongoing development and
recognizable future trends

Improvements to the ML-based models are necessary to bridge the
limitation gap. The limitations and improvements required in the
future are described in this section.

ANN: ANN often requires a lot of data to be able to learn
effectively and recognize patterns accurately. Thus, it can take a
longer time to reach an optimal output. Combined with another
approach, ANN can tackle this problem in certain cases; however,
this is time consuming and computationally costly. Hence, a method
needs to be developed to improve the computational load and produce
an optimal network at the same time.

HMM: Models with different parameters are needed for different
drivers, making it laborious and not generalizable. Thus, a method to
define the model with optimal parameters that is generalizable with
different driving data sets is necessary. In addition, as mentioned, the

HMM requires hyperparameters, such as the number of hidden states
to be defined prior to the training, making it unsuitable for long-term
predictions. Therefore, an effective way to handle this should be
researched in the future.

SVM: Support vector machines show low performance when the
number of classes increases or the number of input variables are more
than that of the samples. While existing literatures incorporate
another ML-based approach to solve this problem, the complexity
and the computational time increase. Thus, future research should
find an effective way to handle this drawback.

In addition, the future research studies that deal with developing
models for the prediction and recognition of lane-changing behaviors
can use this contribution as a guide to select the most appropriate
model/combined model and driving features (as input variables) for
an improved performance, thus enabling the improvement of existing
ADAS for improved driving behavior predictions to avoid road
accidents.
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