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Abstract: Research in understanding human behavior is a growing field within the development of
Advanced Driving Assistance Systems (ADASs). In this contribution, a state machine approach is
proposed to develop a driving behavior recognition model. The state machine approach is a behavior
model based on the current state and a given set of inputs. Transitions to different states occur or
we remain in the same state producing outputs. The transition between states depends on a set
of environmental and driving variables. Based on a heuristic understanding of driving situations
modeled as states, as well as one of the related actions modeling the state, using an assumed relation
between them as the state machine topology, in this paper, a crisp approach is applied to adapt the
model to real behaviors. An important aspect of the contribution is to introduce a trainable state
machine-based model to describe drivers’ lane changing behavior. Three driving maneuvers are
defined as states. The training of the model is related to the definition/tuning of transition variables
(and state definitions). Here, driving data are used as the input for training. The non-dominated
sorting genetic algorithm II is used to generate the optimized transition threshold. Comparing the
data of actual human driving behaviors collected using driving simulator experiments and the
calculated driving behaviors, this approach is able to develop a personalized behavior recognition
model. The newly established algorithm presents an easy to apply, reliable, and interpretable
AI approach.

Keywords: state machine approach; modeling driving behaviors; environmental variables;
driving variables

1. Introduction

Traffic accidents within Germany have increased over the past few years. In the year 2019 alone,
the Department of Statistics in Germany recorded that 74.4 percent of accidents were related to human
driving error, such as inappropriate speed, insufficient space, and failure to yield the right of way [1].
Advanced Driving Assistance Systems (ADASs) have played an important role in assisting a human
driver on the road to minimize errors while driving in recent years. Thus, developing a driving
behavior prediction and recognition model is an important aspect in the development of ADASs.
To improve driving predictions, this can be done by understanding individual driving behaviors
to predict driving decisions in different environments. This improved ADAS model parameterized
to individual driving preferences can inform the driver about suitable moves or how to maneuver
accurately in different situations based on individual driving style by taking into account the safety
and environmental conditions.

Developing driving prediction and recognition models has been previously tackled in several
research works by using different machine learning algorithms such as in Gindele et al. [2],
where the Dynamic Bayesian Network (DBN) was used in the context of predicting traffic situations.
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Unlabeled observations are used to learn a continuous, non-linear, context dependent process model
for drivers. In Hurwitz et al. [3], empirical observed driving behaviors at a high speed signalized
intersection area were used to develop a Fuzzy Logic (FL) model. The Hidden Markov Model
(HMM) was used by Tran et al. [4] to predict different driving intentions such as changing lanes,
turning directions, and stopping or not stopping. There are two common approaches used in
this field: One combines two or more machine learning algorithms, such as in Mahajan et al. [5],
where density-based clustering was used to identify lane changing maneuvers and a Support Vector
Machine (SVM)-based model was then trained to label the new raw data automatically to predict the
lane changing maneuvers. The other approach requires finding suitable input features using feature
selection methods such as wrappers and filters, as done by Mostert et al. [6]. In previous works, related
driving behavior prediction approaches were given in Deng et al. [7,8]. In Deng et al. [7], the authors
used an improved HMM to predict the driving behaviors by introducing a prefilter. The comparison
between using a general and optimal prefilter to estimate the driving behaviors was done to analyze the
prediction accuracy. In [8], FL and HMM were combined to improve the driving prediction. A prefilter
was proposed to process and combine signals to form suitable input features. This approach focuses on
obtaining optimal prefilters of HMM and optimal thresholds of FL using the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) to improve the prediction performance. In this contribution, selecting
optimal variables like brake pressure or Time To Collision (TTC) are important as these parameters
affect the driving behavior prediction. Here, optimal denotes the solution idea solving the conflict
between the accuracy and the false alarm sensitivity by applying NSGA-II for training. The aim in this
research is to use a simpler method to produce similar results as previous works within this field.

In this contribution, a trainable and interpretable state machine-based approach is introduced for
the first time as a machine learning algorithm applied to situation recognition. One of the advantages
of this approach is that it is easy to track which event/data/condition is causing a change. The state
machine systems are easy to design; hence, a quick implementation and execution are enabled. This is
in contrast with other approaches (like Support Vector Machines (SVM)), whereby the final model
and weights may be hard to interpret. Another advantage is that the state machine-based approach is
flexible, enabling a finite state-based system using a topology. The state machine structure is able to
determine the next possible state easily based on a set of conditions. One of the disadvantages of a
state machine approach is that the approach may not be suitable to all types of dynamical systems;
it can be used when a system has different states with defined and crisp conditions for state transition.
This approach has already been applied in different research areas such as tribological experiments to
describe a lifetime model expressing the relationship between wear degradation and Remaining Useful
Lifetime (RUL) based on Acoustic Emission (AE) data for state selection [9]. In Jihin et al. [10], the state
machine approach was used to correlate a lifetime model and the degradation states of a plant. Optimal
parameters were defined using the NSGA-II for the optimization of the framework. The prediction of
leaf elongation was carried out using the established model for performance evaluation [10]. Thus,
here, the aim is to use this previously introduced approach as a simple, easy to understand new
approach, which is interpretable within the traffic/automation field.

This contribution realizes this approach to estimate driving behaviors. Three driving behaviors,
lane keeping, changing to the left, and changing to the right, are considered, defined as states.
The estimation of driving behaviors relies on related parameters (thresholds of variables) and the
conditions associated with them. One of the desired objectives of this contribution is to establish a
driving behavior recognition model with respect to a high Accuracy (ACC), Detection Rate (DR), and
low False Alarm Rate (FAR). Using the NSGA-II optimization framework, all parameters are defined
by optimization.

This contribution is organized as follows: In Section 2, an overview of the state machine concept
and the introduction and integration of the state machine approach in driving prediction experiments
are presented. Here, the driving prediction model and the objective to compare the real driving
behaviors and calculated driving behaviors using this model are described. In Section 2, the design
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of the experiment is shown. The results and evaluations are presented in Section 3. In Section 4,
a discussion about this research work is presented. Finally, the conclusions, a summary, and the future
work are provided in Section 5.

2. Materials and Methods

2.1. Methodology

To establish a driving behavior model, first the inputs and outputs of the considered system need
to be defined. Lane changing, as an example of a driving maneuver, is selected as a representative of
driving behaviors in this contribution. Three different driving maneuvers including Lane Keeping (LK),
Lane Changing to the Left (LCL), and Lane Changing to the Right (LCR) are modeled as the outputs
of the model. The variables affecting driver’s decisions are used as the inputs, assuming they are
measurable. In general, different states of the ego vehicle (position, speed, acceleration, steering wheel
angle, etc.) and information about surrounding vehicles are used as the inputs. The main aim is to
establish a suitable recognition performance with respect to the ACC, DR, and FAR.

2.1.1. State Machine Approach

A state machine, in the case of deterministic modeling, models behaviors based on a set of inputs.
Based on the inputs, the system dynamics are characterized by a sequence of transitions, whereby the
system can either remain in the current state or shift to another state. State machines are well known
approaches used for modeling, analysis, and control. In the classical approach, the parameters and
variables used for modeling are defined by designers or are related to processes to be modeled or
designed. The idea first published in Beganovic et al. [9] was using a state machine approach with
parameters defining states and transitions (so, only the topology was given by designers first) as part
of an optimization loop to develop models describing wear degradation behaviors. According to the
given objectives, these parameters of the optimization variables were to be defined (using the NSGA-II)
with the best/optimal parameters, using data from a tribological experiment.

2.1.2. Integration of the State Machine Approach in Driving Behavior Prediction

In this contribution, the state machine approach is assumed as given in Figure 1. Here, a state is
defined as a driving behavior like “lane keeping” or “lane changing”, whereby it is assumed that the
different states are connected by parameterized transitions. The topology shown consists of three states
(driving behaviors) transitioning from one state to another based on specific parameter/threshold
conditions generated by the NSGA-II. The parameters/thresholds are given in Table 1. The variables
used are the lane number (l), angle of the steering wheel (ast), accelerator pedal position (aacc), brake
pressure (abr), indicator (i), Time To Collision (TTC) with the vehicle in front (TTC f ), TTC with the
vehicle in the back (TTCb), TTC with the vehicle in the front left (TTC f l), TTC with the vehicle in the
front right (TTC f r), TTC with the vehicle in the back left (TTCbl), and TTC with the vehicle in the
back right (TTCbr). The variables used consist of environmental (TTC f , TTCb, TTC f l , TTC f r, TTCbl ,
and TTCbr) and operational (ast, aacc, abr, and i) variables. Driving behaviors highly depend on the
current environmental conditions and individual driving styles. The relationship between the ego
vehicle and surrounding vehicles affects the lane changing decisions; thus, the TTC variables are
taken into account as environmental variables to predict lane changing behaviors. While driving
environmental variables are used for predicting driving behaviors, drivers may make lane changes
with sudden acceleration. Hence, operation variables are considered as well. In this case, when the
vehicle is in State 2, denoted as Lane Keeping (LK), the model can switch to State 1, denoted as Lane
Changing to the Right (LCR), or to State 3, denoted as Lane Changing to the Left (LCL), if the model
satisfies a set of threshold conditions. When in State 1, the model can only switch to State 2. Similarly
when in State 3, the transition is only possible to State 2. State 1 and State 3 can only switch to State 2 if
the current lane is not the same as the previous time step. In Table 1, the first set of thresholds, for each
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variable, is used to define a transition from State 2 to State 1, while the second set of thresholds is
used to define a transition from State 2 to State 3. For a transition from State 2 to State 1, the values of
either one of the variables have to be within the first set of thresholds. For a transition from State 2 to
State 3 to occur, the values of either one of the variables generated should be within the second set
of thresholds. If these threshold conditions are not met, the state machine remains in the same state.
In Table 1, Tn denotes the threshold values, and the maximum number of thresholds/parameters is 40;
hence, n = 40. In Figure 2, the highway scenario, showing different vehicle maneuvers, is illustrated.
The figure shows that the vehicle is in a Lane Keeping state (LK) first, then the vehicle makes a Lane
Change to the Left (LCL) and continues LK. The time at which a lane change occurs is defined as tlane,
while tangle is defined as the start time of a lane changing behavior by determining the last significant
change of the angle of the steering wheel. The process of lane changing is defined as the time interval
between tlane and tangle.

Figure 1. State machine topology for driving behavior prediction. TTC, Time To Collision.
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Figure 2. Driving scenario on the highway [11].
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Table 1. Description of the NSGA-II variables and related optimization thresholds.

Input Variables Design Parameters

ast Angle of steering wheel [T1..T2] [T3..T4]
aacc Accelerator pedal position [T5..T6] [T7..T8]

abrake Brake pedal pressure [T9..T10] [T11..T12]
i Indicator [T13..T14] [T15..T16]

TTC f Time To Collision (TCC) with the vehicle in front [T17..T18] [T19..T20]
TTCb TTC with the vehicle in the back [T21..T22] [T23..T24]
TTC f l TTC with the vehicle in the front left [T25..T26] [T27..T28]
TTC f r TTC with the vehicle in the front right [T29..T30] [T31..T32]
TTCbl TTC with the vehicle in the back left [T33..T34] [T35..T36]
TTCbr TTC with the vehicle in the back right [T37..T38] [T39..T40]

2.2. Driving Behavior Model Based on the State Machine Approach

The state machine model introduced here has two major components. The first part consists of
determining the thresholds (design parameters) through optimization. The second part focuses on
determining/recognizing the driving states based on the optimal thresholds. These thresholds of the
variables determine whether a state transition can occur. The driving behaviors determined using this
model and the actual driving behavior (by a human driver) will be compared to evaluate the accuracy
and reliability of this model.

2.2.1. Driving Behavior Prediction Problem

When driving on a highway, the driver’s decision is often based on the ego vehicle’s relationship
with the surrounding vehicles. Decisions rely on an individual perception of environmental variables
and their combination, like the velocity of the ego vehicle and the actual angle of the steering wheel.
The variables used here are given in Table 1. The states considered here were described in the previous
section. In this case, a four lane highway is considered. Since transitions from one state to another are
dependent on the optimized thresholds of variables, these thresholds are generated with respect to the
maximal DR, maximal ACC, and minimal FAR (or maximal 1-FAR) to evaluate the model. The ACC,
DR, and FAR are determined based on True Positive (TP), False Positive (FP), True Negative (TN),
as well as False Negative (FN) values. The True Positive (TP) is calculated based on the number of
events when an estimated maneuver is positive (right lane change) and the actual maneuver is positive
as well. The False Positive (FP) is based on the number of events when an estimated maneuver is
positive, but the actual driving behavior is not [12]. This concept is applied to the True Negatives (TNs)
and False Negatives (FNs) as well. Thus, this enables the evaluation of the well known metrics [13]
Accuracy (ACC), Detection Rate (DR), and False Alarm Rate (FAR), given as:

ACC =
TP + TN

TP + TN + FP + FN
, (1)

DR =
TP

TP + FN
, and (2)

FAR =
FP

TN + FP
. (3)

Suitable objective functions are selected to evaluate the optimization process by comparing the real
states (the real driving behaviors) and the calculated states at each moment. In the state machine model
introduced in this paper, the variables ACC, DR, and FAR are used to describe the objective functions
with respect to minimizing the deviation between measured and estimated driving behaviors. The aim
is to minimize the deviation between the calculated and real driving behaviors. The termination criteria
are based on the maximum generation. The optimal values of the parameters are generated when
the conditions are fulfilled, which will then be used to calculate the driving behaviors. The objective
functions are defined as:
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f1 = (1 − DRright) + FARright , (4)

f2 = (1 − DRkeep) + FARkeep , and (5)

f3 = (1 − DRle f t) + FARle f t. (6)

Equations (4)–(6) express the objectives in terms of the DR and FAR for each state.

2.2.2. State Machine-Based Problem Description

Optimal values of the variables and related optimization thresholds are generated using the
NSGA-II. The NSGA-II model used in this contribution was proposed by Song et al. [14], which is used
for multi-objective optimization consisting of three main features. The model uses an elitist preserving
method and a diversity preserving method, which involves crowding distance, and highlights the
non-dominated results [12,15,16]. Due to the conflicting objectives, the NSGA-II is used to handle the
multi-objective problem presented. In Table 2, the list of arguments/inputs required for the NSGA-II are
shown. The design parameters generated by the NSGA-II are used to minimize the objective function.

Table 2. Description of the NSGA-II options.

Parameter Value

Maximum population 20
Maximum generation 50

Crossover fraction 10
Mutation fraction 1/number of variables = 1/40

Crossover variable Intermediate 1.2
Mutation variable Gaussian, 0.1, 0.05

2.3. Application of the New Approach

In this section, the experimental setup, training, and testing of the data are suitably tuned. The optimal
design parameters from the NSGA-II to develop the driving recognition model will be discussed.

2.3.1. Design of Experiment

A driving simulator SCANeRTM studio (Figure 3) was used to perform driving simulations
to generate driving data. The simulator is equipped with five monitors, a base-fixed driver seat,
a steering wheel, and pedals. The simulator also consists of three rear mirrors, which are essential to
decide on a lane change. The mirrors are displayed on the corresponding positions of the monitors.
The driving scenario is a highway with four lanes with two directions and a simulated traffic
environment. During the driving, the participant can perform an overtaking maneuver when the
preceding vehicle drives slowly. After overtaking, the driver can maneuver back to the initial lane.
The time points of changing the lane to the left and right were decided by the participant. Following the
traffic rules in Germany, it is only allowed to overtake from the left lane. The participants were allowed
to make lane changes based on their choice and their assessment of the traffic situation. No further
instructions were given such as the maximum number of vehicles they should overtake.

For the proof of concept, three datasets from three driving participants were used for training and
testing. Each dataset (training and test) corresponds to a driver performing a driving scenario using
the driving simulator. The training dataset is based on a forty minute drive by a participant, while the
testing dataset is based on another ten minute drive by the same participant [8]. The training datasets
and testing datasets contain different maneuvers. The current lane of the ego vehicle is determined
through the vehicle’s center point. It is also worth mentioning that the driving and environmental
conditions are normal (no fog, no rain, etc.). The driving and traffic conditions, as well as the scenarios
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are the same for all the drivers. The traffic condition are defined by the existence of different vehicles
in the lane, and no further problems are generated.
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Figure 3. State Machine topology for the driving behavior prediction [Chair of Dynamics and Control,
U DuE, Germany].
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Figure 3. State machine topology for the driving behavior prediction (Chair of Dynamics and Control,
U DuE , Germany).

2.3.2. Training and Test Procedure

Training phase: As mentioned previously, three different datasets are used. Further analysis has to
be done to extend the approach to possibly structurally different driving behaviors. The datasets contain
information about the current lane at each moment. The model is trained in the following manner:

1. The NSGA-II generates transition parameters used in this experiment by using the training datasets.
2. Based on the transition parameters, the driving behavior at each time point can be calculated

based on the topology.
3. Next, the calculated driving behaviors and the measured driving behaviors from the dataset are compared.
4. This can be used to derive the ACC, DR, and FAR based on the calculated driving behavior.
5. The values of the objective functions are derived.
6. Processes (1) to (5) are repeated until convergence and the optimal model is obtained.

The training of datasets on a standard office PC (2.6 GHz) took around 26–68 s. The saved training
results were then used for testing. The test process only took around 3–5 s for the algorithm to predict
the driving behavior for different datasets. Based on the exemplary observed time, this is a very fast
algorithm to execute. In addition, the training time is not linear to the dataset size, as each data point
goes through (50 × 20) (population × generation) iterations in the NSGA-II optimization. In the test
data, however, every data point is evaluated with a parameter generated from the training; hence,
here, we have a linear relationship between the test time and the size of the data.

Test phase: The corresponding testing datasets are used here. The optimal values of the thresholds
calculated from the training phase are used here to determine the driving behavior based on the test
driving data. The ACC, DR, and FAR are determined by the calculated and actual driving behaviors.

3. Results

In this section, the results are presented. The driving behaviors generated using the state machine
model will be shown and compared with the measured driving behaviors to check for similarities.

Figures, Tables, and Schemes

Here, results based on three datasets from three participants are shown. The datasets are generated
from driving simulator experiments conducted in the driving simulator laboratory at the Chair of
Dynamics and Control at University of Duisburg-Essen. As mentioned previously, the training dataset
is based on a 40 min drive, while the testing dataset is based on a 10 min drive. The experiments
were conducted with driving participants with ages from 25 to 38 years. All participants held a valid
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driving license. The best results are defined as those results generated from the tuned model showing
the closest fit to the actual driving behaviors. The results in Figures 4–6 are based on Testing Datasets 1,
2, and 3 when training their respective training datasets. In the ordinate, the y-axis represents the three
different states, while the x-axis represents time, in seconds. The blue line represents the estimated
driving behavior (or calculated states), and the red dotted line represents the driving behavior from
the driving simulator.

In Figure 4, the estimated and measured driving behavior lines have a close fit with Testing
Dataset 1 for most of the behaviors with some inconsistencies.

Figure 4. Comparison of calculated and measured driving states (Training Dataset 1, Testing Dataset 1).

In Figure 5, the results are based on Training Dataset 2 and Testing Dataset 2. The results show a
close fit for most of the states.

Figure 5. Comparison of calculated and measured driving states (Training Dataset 2, Testing Dataset 2).
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The results shown in Figure 6, are based on Training Dataset 3 and Testing Dataset 3. A close fit to
the measured driving behavior can also be observed.

Figure 6. Comparison of calculated and measured driving states (Training Dataset 3, Testing Dataset 3).

All figures show different lane changing behaviors. The driver makes the choice of staying in the
same lane or makes a lane change based on assessing the traffic situation. The driver may steer to
alternative lanes even if the current lane is free or may stay in the same lane even if there is a vehicle in
front of the ego vehicle based on his/her free will. Besides lane changing behaviors, the input variables
given in Table 1 change throughout the driving for each driver.

The ACC, DR, and FAR values for each state when training different datasets and the
corresponding test data are shown in Tables 3–5. The ACC, DR, and FAR values given correspond to
the datasets tested.

Table 3. Recognition results for different training/test data combinations (here: Training Dataset 1,
Testing Datasets 1–3).

Objectives (%) Training Dataset 1 Testing Dataset 1 Dataset 2 Dataset 3

ACCoverall 91.90 92.90 95.30 91.69
ACCright 95.03 96.02 97.70 98.61
DRright 90.64 88.94 73.27 87.07
FARright 4.76 3.32 1.41 0.82
ACCkeep 92.11 93.11 95.37 92.08
DRkeep 92.13 93.32 97.37 91.99
FARkeep 8.11 8.88 22.31 7.11
ACCle f t 96.66 96.66 97.53 93.23
DRle f t 88.69 88.76 80.75 95.92
FARle f t 2.94 2.94 1.58 6.92

In Table 3, Training Dataset 1 it is tested with Testing Dataset 1, Training Dataset 1 (used for the
test as well), Dataset 2 (a combination of Training and Testing Dataset 2), and Dataset 3 (a combination
of Training and Testing Dataset 3) to show the generalizability and transferability.
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Table 4. Recognition results for different training/test data combinations (here: Training Dataset 2,
Testing Datasets 1–3).

Objectives (%) Dataset 1 Training Dataset 2 Testing Dataset 2 Dataset 3

ACCoverall 92.89 93.08 95.77 91.69
ACCright 96.22 94.97 97.48 98.56
DRright 86.93 83.82 79.31 86.01
FARright 3.32 4.35 1.41 0.82
ACCkeep 93.05 93.22 95.97 91.93
DRkeep 93.40 94.12 97.22 91.74
FARkeep 10.23 13.74 13.74 6.30
ACCle f t 96.45 97.97 98.08 92.88
DRle f t 88.66 86.22 89.78 95.92
FARle f t 3.15 1.33 1.42 7.28

In Table 4, Training Dataset 2 is tested with Testing Dataset 2, Training Dataset 2 (used for the test
as well), Dataset 1 (a combination of Training and Testing Dataset 1), and Dataset 3 (a combination of
Training and Testing Dataset 3).

Table 5. Recognition results for different training/test data combinations (here: Training Dataset 3,
Testing Datasets 1–3).

Objectives (%) Dataset 1 Dataset 2 Training Dataset 3 Testing Dataset 3

ACCoverall 92.69 95.30 91.76 93.35
ACCright 96.22 97.70 98.62 96.22
DRright 86.93 73.27 86.10 91.55
FARright 3.32 0.98 0.74 1.12
ACCkeep 92.97 95.37 91.91 93.35
DRkeep 93.40 97.37 91.70 93.74
FARkeep 12.11 22.31 6.20 11.04
ACCle f t 96.30 97.53 92.99 94.75
DRle f t 85.28 80.75 98.18 86.80
FARle f t 3.14 1.58 7.29 4.88

In Table 5, Training Dataset 3 is tested with Testing Dataset 3, Training Dataset 3 (used for the test
as well), Dataset 1 (a combination of Training and Testing Dataset 1) and Dataset 2 (a combination of
Training and Testing Dataset 2).

4. Discussion

In this section, the validity of the results and the method used will be discussed. The state machine
approach is established in this contribution first to recognize/predict driving behaviors. One of the
objectives of this research is to develop a suitable driving recognition model by generating the optimal
thresholds of variables using the NSGA-II. The other objective is to develop a close fit between the
measured driving behaviors and generated behaviors from the model. The driving behavior considered
here is lane changing behavior [8,17,18].

The results generally show a good fit between the behaviors for the datasets used. This method
produces high ACC and DR and low FAR for most of the states. For an example, in Table 3, the overall
accuracy for Testing Dataset 1 is 92.90%, with the highest left maneuver accuracy of 96.66% and
low false alarm rates for all maneuvers. The overall accuracy for Testing Dataset 2 is the highest in
comparison to the other datasets with an accuracy of 95.77%. A high accuracy of the left maneuver at
98.08% is achieved, which is not only the highest within the Testing Dataset 2, but also the highest
value when compared with other testing datasets. However, the false alarm rate for lane keeping in
Testing Dataset 2 is higher than the rest of the maneuvers within this dataset. The same can be said
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regarding the FAR for lane keeping in Testing Datasets 1 and 3. On the other hand, the FAR for the
right and left maneuvers for Testing Dataset 2 is low at 1.41% and 1.42%, respectively. The detection
rate also seems to perform well for the different maneuvers in all the datasets, with values larger
than 73%. The results from this contribution generally show a close resemblance to the results from
previous works [7,8]. The newly introduced approach is therefore easier to understand and, from the
machine learning perspective, interpretable.

To verify the effectiveness of this method, the results developed in this paper are compared with
the results developed using other techniques. In Deng et al. [8], who used the same dataset as this
work, the average values of the ACC, DR, and (1-FAR)were higher than 80%. Here, the values of the
ACC, DR, and (1-FAR) from the datasets are also generally higher than 80%, with some exceptions;
for example, for Training Dataset 2, the DR for the right maneuver in Testing Dataset 2 is 79.31%.
In contrast to Deng et al. [8], the main advantage of the approach introduced in this contribution is that
the approach is interpretable, which is not the case for all the approaches applied by Deng et al. [8].

5. Conclusions

In this contribution, a state machine approach is introduced for driving behavior recognition/
prediction. A topology is developed based on the transition of states by applying threshold-based
conditions as the model parameters to be trained using the NSGA-II [19,20]. These transition
parameters are determined by optimization. This allows the optimization to define those model
parameters that fit best to the whole driving behavior sequence. To validate this model, three training
and testing datasets are used and combined in the sense of cross-validation. The results show that the
dataset trained and the dataset used for testing allow a close fit with acceptable accuracies. The ACC,
DR, and FAR of the datasets are also evaluated to validate the efficiency of this model. Due to the
fact that only three suitable datasets are used, it can be concluded that this machine learning-based
approach may be also a new candidate for situation and driver behavior recognition and prediction in
the future. Improvements, especially to the robustness with respect to different individual driving
patterns, are required.
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