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Abstract—Hybrid electric vehicles can provide better per-
formance assuming the power is intelligently and adaptively
managed among the multiple sources in real-time. Most of the
available power management strategies are either non-optimal
or are not real-time applicable. Only a few focus on multiple
and conflicting challenges of optimization objectives. In this
contribution a fuel cell-battery-supercapacitor EV is considered
with optimized rule-based power management. An important
aspect of the optimized rule-based controller concept is its ability
to offer flexibility of changing the priority or weights between the
objectives so as to obtain an improved battery life or a better fuel
economy or a better drivability. The weights are a representative
of different rule-sets which prioritize either or a combination of
the objectives. A concept of adaptive prioritization is proposed
which can limit/allow the usage of each of the HEV sources
depending on the driver/situation requirements and assumed
future priorities. The simulation results with two different drive
cycles, indicate the switching between rule sets to give better
results with reference to one or two objectives at the cost of the
other and vice versa.

Nomenclature

SoC State of Charge
SoH State of Health
DoD Depth of Discharge
σ Severity
Ah Ampere hour
EFC Energy equivalent of fuel consumption
Pdemand Power demand
PFC Power from fuel cell
PSC Power from/to supercapacitor
Pbat Power from/to battery

I. INTRODUCTION

Power management strategies in hybrid EVs mostly focus
on ensuring optimal power split between different sources to
fulfill various objectives. These objectives can be minimization
of fuel consumption and emissions [1]–[4], drivability and
range extension [5], [6]. They can also aim prolonging the life
of the battery. Prognostic information can be used in power

management actions based on the battery status and assumed
future user requirements/priorities [7]. Various prognostics
methods have been used to capture the aging phenomena
in batteries [8]–[11]. Some contributions have proposed a
battery health conscious power management which aims to
prolong the life of the battery. For example in [12], [13] and
[14]. However, power management of hybrid /electric vehicles
often involve multiple and conflicting objectives [15], [16]
for example fuel consumption minimization of hybrid electric
vehicles will be difficult to achieve without compromising on
the battery life. Similarly, a better range can be provided by
pure electric vehicles if battery life is sacrificed. In both [15]
and [16], the effect of different situations and user preferences
on the trade-off relationships between the different objectives
is emphasized. A decision on priorities between objectives
has to be made depending on assumed future conditions.
Prediction on future conditions is based on past and present
conditions with some assumptions of the future and has been
considered in [17]–[19]. Multi-objective optimization with
energy minimization of total cost and minimization of battery
degradation has been considered in [20] where a pareto-front
was obtained of optimal solutions for the two objectives. It was
concluded that minimizing energy cost required high state of
charge (SoC) at the beginning of the trips, which in turn caused
more degradation. Similarly, minimizing degradation compro-
mised with the energy cost. The conflicting solutions obtained
were compared in terms of the trade-offs made between the
objectives. This could be extended to real driving scenarios
where the weightage on the two conflicting objectives can be
changed depending on the present and future conditions. It
could be combined with prognostic-based power management
that adapts itself situatively. In our previous contributions, an
online, sub-optimal power management strategy [21] for a fuel
cell-battery-supercapacitor powertrain which can dynamically
allocate power between its sources depending on the drive
patterns of the human driver, was proposed. The optimal power
split between the battery and supercapacitor was decided on
two conflicting objectives: minimization of fuel consumption
and final and initial SoC deviations. Battery aging was included
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as an objective in [22] where capacity loss was determined for
unknown load profiles. In this contribution, using the concept
of severity map, the effective value of Ampere-hour (Ah)
is computed; a rule-based power management controller is
developed with predefined rule-sets for computing the power
split between the fuel cell, battery, and supercapacitor. The
values of power split are offline-optimized for three objectives:
minimization of fuel consumption, battery degradation, and
power difference (drivability). Since the three objectives may
not be simultaneously satisfied so a 3D pareto front is obtained
with different weights assigned to the objectives. A novel
approach here is to allow flexibility in shifting the weights
depending on the user priorities and the future conditions.

II. WEIGHTED AH MODELS AND SEVERITY FACTOR MAP

Battery degradation and lifetime can be estimated as a
function of certain parameters like voltage, current, tempera-
ture, SoC, and SoH. These parameters are estimated based on
various modeling techniques [7]. Out of these, weighted Ah-
throughput models relate battery EoL to Ah-throughput as the
actual amount of current being drawn/supplied to the battery.
According to [7], the severity of current in/out of the battery
depends primarily on the C-rate, temperature, and DoD. Based
on the nominal/standard operating conditions (known C-rate,
temperature, and DoD), the actual operating conditions can
be considered to be deviated from the standard by a severity
factor σ as

σ(DoD, Tbatt) =
Ah− throughputnominal

Ah− throughputactual
, (1)

where the Ah− throughputactual is given by

Ah− throughputactual =
∫ EoL

0

|I(t)| dt, (2)

with I(t) denoting the battery current.

This severity factor has been mapped in [7] as a func-
tion of DoD and temperature. It is used to calculate Ah −
throughputeffective as given in

Ah− throughputeffective =
∑

we · ne ·Ahe, (3)

where e denotes an event and we, the weight or severity
associated with the event, ne, the number of events, and
Ahe, the actual Ah-throughput associated with that event.
According to [7], the battery is supposed to reach its EoL
when the Ah − throughputeffective is greater than the
Ah− throughputnominal.

III. POWER MANAGEMENT CONTROL WITH ADAPTIVE
PRIORITIZATION

In the presence of multiple energy sources, the role of
power management controller is to optimally split the power
between the sources/storage components to fulfil a certain
objective. However, optimization in case of hybrid electric
vehicle control is rarely a single objective problem. In this
contribution a previously developed rule-based power man-
agement control concept [21] is modified to include rule-sets
instead of a single rule base. The optimization is performed for

minimization of fuel consumption, minimization of degrada-
tion with is represented by Ah-effective, and power difference
between the demanded and supplied power, also known as
drivability. The drivetrain is purely electric with fuel cell-
battery-supercapacitor. Specifications are given in [21]. The
role of the power management controller is to request the
desired current signals from the DC/DC converters connected
to the three sources. The objective function for optimization
using Multi-objective genetic algorithm (MOGA) is specified
as:

f1(y, z) = min

∫ tend

t0

EFC dt (4)

f2(y, z) = min

∫ tend

t0

Aheffective dt (5)

f3(y, z) = min

∫ tend

t0

Pdiff dt (6)

where the objective function f is subjected to variation of
power split variables y and z. Here, f is a function of power
demand, initial Ah, power split ratio, and SoC of both battery
and supercapcitor. The energy consumption of the fuel cell
equivalent to the mass of hydrogen consumed is represented
by EFC . The difference between the supplied and demanded
power is represented by Pdiff . The duration of the drive cycle
is t0 to tend. The total objective function is given as,

f(y, z) =

∫ tend

t0

x1f1(y, z) + x2f2(y, z) + x3f3(y, z)dt, (7)

subject to
Vbusmin < Vbus < Vbusmax (8)

SoCbattmin
< SoCbatt < SoCbattmax

(9)

SoCscmin
< SoCsc < SoCscmax

(10)

and
xLi < xi < xUi (11)

yLi (n) < yi(n) < yUi (n) (12)

zLi (n) < zi(n) < zUi (n) (13)

Here, the constraints that is the bus voltage Vbus, and the
battery and supercapacitor SoCs namely SoCbatt and SoCsc

are held within limits and the weights between the objectives
x1, x2, x3 are varied within predefined boundaries. Along with
x, the other two optimization variables y and z are also
bounded and expressed as a function of n where, n represents
the rule number. The range in which n may vary is 1 to 10.
This concept is explained in Figure 1.

For a certain drive cycle, having a finite duration t0 to
tend, representing a certain situation, a rule number is chosen.
This corresponds to certain rule base which assigns a particular
value to the power split variables y and z. It also defines the
weights between the objectives. The rule may be designed
to prioritize fuel consumption for instance over the other
two objectives. Another drive cycle or pattern may lead to
a different choice of x which may prioritize battery life
extension. Similarly, a number of intermediate values of x
may also be chosen which offer a compromise between both
objectives, or prioritize a third objective- drivability. Thus, the
rule base x will decide the weight between the objectives
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Fig. 1. Selection of optimal rule and powersplit

for a particular drive cycle. In this contribution, 10 rules are
developed for both extreme and intermediate solutions. The
logic of the rule-bases is explained in Figure 2.
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Fig. 2. Rule-based logic

The rule-based logic is explained in Figure 2. The power
demand corresponding to a particular drive cycle is the input
which may decide whether the vehicle is in accelerating
(Pdemand > 0), decelerating or braking modes. Here, PFC,
PSC, and PBat represent the fuel cell, supercapacitor, and bat-
tery power output respectively. The values of power split may
be chosen accordingly. For the Pdemand < 0 case, the battery
and supercapacitor are required to share the regenerated power
equally. For the Pdemand > 0 case, boundaries are chosen such
that during low, medium, and high power demands, certain

values of split (y and z) are chosen. During optimization, these
split values are varied as a function of the rule number. In
other words, depending on the rule number or the weightage
given to each of the objectives, y and z will yield different
cases. Ten such cases have been developed corresponding to
ten rules. Finally, the desired current values I FC out, I SC out,
I Bat out are computed considering the voltage to be constant.
This desired current value is requested from the sources via
the DC/DC converters.

In this contribution, two different drive cycles are used
namely, FTP and WLTP, to predict the prioritization between
the objectives. As a part of the future work, a combination of
standard and real cycles will be used, together with a suitable
drive pattern recognition algorithm to recognize unknown
situations and user constraints. Based on the recognized drive
cycle as shown in Figure 3, the rule-based power management
controller will determine the most appropriate rule set. The
corresponding power split values can be stored in a look-
up table as obtained after optimization with respect to the
three objectives. Thus the recognized situation or causes from
outside will influence the weights between the objectives. The
real-time applicability of the power management controller will
be validated.
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Fig. 3. Adaptive power management and dynamic weight adjustment

IV. RESULTS AND DISCUSSION

The simulations for two drive cycles, FTP and WLTP are
normalized and co-ordinated to have same time points. The
values of Ah effective, fuel consumption, power difference
between demanded and supplied power, battery and super-
capacitor SoCs are plotted for FTP and WLTP as shown in
Figure 4 and 5 respectively. The values corresponding to the
ten rules are represented in different colored curves as shown
in the figures. It is noted from Figure 4 and 5, that for the
WLTP cycle the blue line (corresponding to rule number 2)
has highest values of Ah effective. This rule however gives



the lowest value of fuel consumption. The red dashed line
(corresponding to rule number 8) has exactly the opposite
effect. Apart from these two extreme rules, most of the other
rules provide intermediate solutions. The power difference or
drivability objective also attains slightly different values for
the ten rules. With a different drive cycle, that is, FTP,

Fig. 4. Variation of powertrain parameters with rules for FTP cycle

Fig. 5. Variation of powertrain parameters with rules for WLTP cycle

which represents quite similar driving conditions, a slight
change in the rule numbers is observed in the sense that,
rule number 1 corresponds to maximum Ah effective and
rule 7 corresponds to maximum fuel consumption. In other
words, under a certain driving cycle, a certain objective may
be met by a certain rule number and a completely different
rule number under another driving cycle. Therefore, depending

on the drive cycle, and the users preference of objectives, a
certain specific rule number has to be chosen in a given time
frame. The distinction between the rules and corresponding
preference between objectives is more evident in the spider
plots shown in Figure 6. For the FTP cycle, the best rule set for
minimum fuel consumption is rule 1 whereas the best rule set
for minimum Ah effective is rule 9. For WLTP cycle, it is rule
2 and rule 8 respectively. The effect of change in rule-sets on
the third objective-power difference is minimal. This however
will not always be the case. An intuitive design of rule-bases
considering other driving cycles/conditions can be made which
may sacrifice drivability to further prioritize the other two
objectives. The optimization results are represented in the form
of 2D and 3D pareto optimal fronts in Figures 7 and 8. Here,
it can be observed that individual pareto fronts for each of
the ten rules combine to give different trade-offs which can
then be chosen depending on the user/situation preferences.
For example, a perfect compromise solution can be observed
to be represented by the violet diamond and the red dot
corresponding to rules 4 and 6 in the 3D pareto front of Figure
8. Thus the novelty of the contribution lies in the adaptability
in prioritizing the weights between the objectives for the two
chosen drive cycles. This can be combined with drive pattern
recognition to give a more situation-based solution. As shown
in the results, prioritizing fuel consumption and sacrificing Ah
effective has led to a selection of different set of results as
compared to when the case is opposite. The drivability is not
compromised although a provision of compromising it based
on situation is left for future work.

V. CONCLUSION

The main objective of this contribution is to present an
adaptive power management which is capable of shifting
the priorities between its objectives depending on the user
preferences/drive cycle requirements. The idea is to develop
rules which assign different weightages to three objectives.
The total objective function is a weighted sum of fuel con-
sumption minimization, minimization of battery aging and
power difference between demand and supply. The optimized
variables are computed offline and can be embedded online
as look-up tables. An extension of the developed concept for
real-time application is proposed, where, a dynamic weight
adjustment is possible. The simulation results compare and
contrast the different rules for two drive cycles and present
the available options for an intelligent controller to select the
most appropriate rule for the upcoming situation. This latter
part will be taken up as a part of future work.
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