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Abstract: Precision deficit irrigation offers a solution to the increasing global pressure on
freshwater resources occasioned by a rising demand for agricultural outputs to support a
growing human population. Plant physiological responses to water deficit are describe in terms
defining severity of water stress. Implementation of deficit irrigation control strategies capable
of achieving the twin goals of maximizing potential yield and minimizing cumulative water
consumption requires the identification of water deficit levels corresponding to significant stress
thresholds to ensure memory initiation and prevent permanent damage to the crop. In this
contribution machine learning approaches are implemented for dynamic identification of water
stress thresholds during deficit irrigation of potted maize plants. K-means clustering is initally
applied to delineate three zones of water stress described as ”no stress”, ”mild stress” and ”high
stress” for chronologically segmented data points. Least squares-based polynomial curve fitting
is employed to mathematically represent the dynamic progression of stress cluster centroids,
with accuracy values ranging between 90 % and 98 %.
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1. INTRODUCTION

Sustainability of irrigation-based agriculture depends on
continued availability of freshwater resources. A growing
human population has resulted in rising demand for
agricultural outputs, placing increasing pressure on global
freshwater availability. Modern approaches to irrigation
water management are based on the paradigm ”more crop
per drop” (Giordano et al., 2006), which seeks to achieve
an acceptable compromise between crop yield and water
consumption.

Deficit irrigation approaches involve supplying irrigated
crops with quantities of water lower than evapotranspirat-
ion-based demand, resulting in physiological responses
described as water stresss or drought stress. Commonly
measured indicators of plant stress include leaf surface
temperature, turgidity, growth rate and visual indicators.
Successful implementation of deficit irrigation requires
achievement of two goals- initiation of stress memory to
ensure triggering of a recovery response upon withdrawal
of water stress, and prevention of damage, which requires
a knowledge of quantitative and chronological water stress
thresholds.

Various approaches have been applied for definition of
quantitative and chronological thresholds used to describe
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deficit irrigation treatments. A common approach is an
expression of applied water as a ratio of full water
holding capacity of the growth substrate, with well
watered conditions corresponding to a replenishment of
soil status to 100 % of the water holding capacity during
each irrigation event (Álvarez et al., 2012; Mohawesh
and Karajeh, 2015; Wasonga et al., 2020). Deficit is
induced by application of lower quantities of water
during common irrigation events (Ismail and Phizackerl,
2008). An alternative strategy involves implementation of
varied water application frequency, with irrigation events
triggered by specific water availability thresholds (Halli
et al., 2021). In this approach, the severity of water
deficit is described by the maximum allowable depletion of
substrate water availability, with greater severity of deficit
corresponding to higher maximum allowable depletion
values (Barker et al., 2019). The severity of water deficit
in crops with known irrigation requirements at specific
stages of growth can also been defined by determining
the ratio of applied water to documented requirements.
This approach is implemented in (Jia et al., 2017) in field
grown maize under semi arid conditions. Quantification of
water deficit severity has additionally been approached by
comparing the quantity of supplied water to plant demand,
quantified in terms of evapotranspiration (Cea et al., 2022)
or stomatal conductance (Puértolas et al., 2017).

Existing definitions of water deficit severity as applied
to deficit irrigation in potted plants assume a static
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relationship between plant response to stress and water
deficit level as compared to well watered crops. This
neglects the effect of root growth on actual water
availability, as root expansion increases the ability of
the plant to access a greater proportion of supplied
water (Turner, 2018), thereby resulting in dynamic stress
thresholds despite constant watering conditions.

In this contribution, dynamic stress thresholds for pot-
grown maize plants are evaluated. The evolution of the
stress thresholds over time are mathematically defined.

2. PLANT STRESS RESPONSE TO WATER DEFICIT

Exposure to water deficit elicits a physiological response in
plants, with measurable indicators including leaf surface
temperature, growth rate and turgidity. Severity and
duration of stress episodes govern the nature and permane-
nce of plant response. In (Kögler and Söffker, 2020), the
level and duration of stress is mapped out with regard
to the initiation of a memory response in the plant
and/or occurrence of damage, described as a permanent
retardation of growth rate in comparison to a well watered
control group, even after subsequent reirrigation. In this
contribution, a similar evaluation of stress characterization
is adopted, with a focus on deficit levels. Plant stresses
are categorized under ”no stress”, representing well
watered conditions, ”mild stress”, representing observable
reduction in growth rate with a recovery to pre-stress
levels upon reirrigation, and ”high stress”, representing
observable permanent reduction in growth rate, with
occurrence of damage. The growth rate in this work is
described based on daily leaf elongation rate, which is
calculated from manually obtained measurements of maize
leaf length.

Characterization of stress levels in existing literature
adopts a one-on-one static relationship to water deficit
levels, with preset boundaries used to characterize mild
and severe deficit/stress, both in field and pot-based
research. A key limitation of this approach arises due to
the expansion of plant roots within growing pots, which
results in greater availability of water to the plant even at
relatively lower values of water content. This is observed in
leaf surface temperature readings taken from plant groups
subjected to mild stress with a static boundary (Figure
1). During initial water stress events, the test plants are
easily discernible by the elevated leaf surface temperatures
in comparison to the control group. In a subsequent
stress event, the differences in surface temperature are less
visible, which could be attributed either to a higher stress
tolerance exhibited by the plant, or to a dynamic stress
threshold as the plant roots expand to allow access to more
water within the pot.

3. MACHINE LEARNING-BASED DYNAMIC STRESS
THRESHOLDING

The generation of dynamic stress thresholds was achieved
through a three-step process involving data pre-processing,
k-means clustering and regression analysis of obtained
centroids. Evaluation of clustering accuracy was based on
the R2 value of the generated regression equations.

Fig. 1. Leaf surface temperature measured in water-
stressed and unstressed maize plants, with test
groups A, B, and C (subjected to mild to severe
water stresses, displayed individually as blue markers)
compared to the control group C (no stress / full
irrigation, displayed as outlined grey bars in each
graph)

3.1 Pre-processing of data

Experimental data was obtained from growth experiments
conducted in an indoor greenhouse located in the Chair
of Dynamics and Control at the University of Duisburg-
Essen. Maize plants (SWS Ronaldinio variety) were
grown in a granular loamy-clay substrate (Seramis© clay
granulate) under artificial lighting (9500K, 14 hour day
length). Temperatures were maintained at 25 ◦ C during
the day and 17 ◦ C in the night (± 2 ◦ C). Data referenced
in this work was obtained in May and June of 2019.

Plants were grown in individual 500 ml PET containers
each filled with 175 g of substrate. A single maize seed
was planted in each container, and all plants maintained
at a water content equivalent to the pot capacity, which
had previously been experimentally determined to be 145
g of water (0.8286 g/g gravimetric water content) until
the first three leaves were visible. High stress was induced
by withholding irrigation until the water content in the
pot had reduced to zero through evapotranspiration, upon
which reirrigation was performed to full pot capacity.
Mild stress was induced based on thresholds surmised
from previous experiments, with a water content of 100
g presumed to represent the mild stress threshold. Plants
under no stress received full irrigation throughout the
test period. An upper limit of three consecutive days of
mild stress was set to avoid damage due to prolonged
exposure to mild stress. The key experimental goals
involved determination of the mild stress and high stress
thresholds/boundaries.

Pre-processing of the experimental data involved segment-
ation of the growth data by total number of appeared
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relationship between plant response to stress and water
deficit level as compared to well watered crops. This
neglects the effect of root growth on actual water
availability, as root expansion increases the ability of
the plant to access a greater proportion of supplied
water (Turner, 2018), thereby resulting in dynamic stress
thresholds despite constant watering conditions.

In this contribution, dynamic stress thresholds for pot-
grown maize plants are evaluated. The evolution of the
stress thresholds over time are mathematically defined.

2. PLANT STRESS RESPONSE TO WATER DEFICIT

Exposure to water deficit elicits a physiological response in
plants, with measurable indicators including leaf surface
temperature, growth rate and turgidity. Severity and
duration of stress episodes govern the nature and permane-
nce of plant response. In (Kögler and Söffker, 2020), the
level and duration of stress is mapped out with regard
to the initiation of a memory response in the plant
and/or occurrence of damage, described as a permanent
retardation of growth rate in comparison to a well watered
control group, even after subsequent reirrigation. In this
contribution, a similar evaluation of stress characterization
is adopted, with a focus on deficit levels. Plant stresses
are categorized under ”no stress”, representing well
watered conditions, ”mild stress”, representing observable
reduction in growth rate with a recovery to pre-stress
levels upon reirrigation, and ”high stress”, representing
observable permanent reduction in growth rate, with
occurrence of damage. The growth rate in this work is
described based on daily leaf elongation rate, which is
calculated from manually obtained measurements of maize
leaf length.

Characterization of stress levels in existing literature
adopts a one-on-one static relationship to water deficit
levels, with preset boundaries used to characterize mild
and severe deficit/stress, both in field and pot-based
research. A key limitation of this approach arises due to
the expansion of plant roots within growing pots, which
results in greater availability of water to the plant even at
relatively lower values of water content. This is observed in
leaf surface temperature readings taken from plant groups
subjected to mild stress with a static boundary (Figure
1). During initial water stress events, the test plants are
easily discernible by the elevated leaf surface temperatures
in comparison to the control group. In a subsequent
stress event, the differences in surface temperature are less
visible, which could be attributed either to a higher stress
tolerance exhibited by the plant, or to a dynamic stress
threshold as the plant roots expand to allow access to more
water within the pot.

3. MACHINE LEARNING-BASED DYNAMIC STRESS
THRESHOLDING

The generation of dynamic stress thresholds was achieved
through a three-step process involving data pre-processing,
k-means clustering and regression analysis of obtained
centroids. Evaluation of clustering accuracy was based on
the R2 value of the generated regression equations.

Fig. 1. Leaf surface temperature measured in water-
stressed and unstressed maize plants, with test
groups A, B, and C (subjected to mild to severe
water stresses, displayed individually as blue markers)
compared to the control group C (no stress / full
irrigation, displayed as outlined grey bars in each
graph)

3.1 Pre-processing of data

Experimental data was obtained from growth experiments
conducted in an indoor greenhouse located in the Chair
of Dynamics and Control at the University of Duisburg-
Essen. Maize plants (SWS Ronaldinio variety) were
grown in a granular loamy-clay substrate (Seramis© clay
granulate) under artificial lighting (9500K, 14 hour day
length). Temperatures were maintained at 25 ◦ C during
the day and 17 ◦ C in the night (± 2 ◦ C). Data referenced
in this work was obtained in May and June of 2019.

Plants were grown in individual 500 ml PET containers
each filled with 175 g of substrate. A single maize seed
was planted in each container, and all plants maintained
at a water content equivalent to the pot capacity, which
had previously been experimentally determined to be 145
g of water (0.8286 g/g gravimetric water content) until
the first three leaves were visible. High stress was induced
by withholding irrigation until the water content in the
pot had reduced to zero through evapotranspiration, upon
which reirrigation was performed to full pot capacity.
Mild stress was induced based on thresholds surmised
from previous experiments, with a water content of 100
g presumed to represent the mild stress threshold. Plants
under no stress received full irrigation throughout the
test period. An upper limit of three consecutive days of
mild stress was set to avoid damage due to prolonged
exposure to mild stress. The key experimental goals
involved determination of the mild stress and high stress
thresholds/boundaries.

Pre-processing of the experimental data involved segment-
ation of the growth data by total number of appeared

Fig. 2. Silhouette plots for 4-leaf stress clustering (with k =
3) and 5-leaf stress clustering (with k = 4) showing
negative silhouette values indicative of overlapping
datapoints in neighboring clusters

leaves, followed by an additional chronological segmentat-
ion. This article focuses on the data obtained at the 4-leaf
and 5-leaf stages, with chronological segmentation done on
a day to day basis. Thermal time is used to evaluate the
progression of stress boundaries, with a base temperature
of 10 ◦ C used for the calculation of growing degree days.
Measurement of leaf length was done manually using a
flexible rule, with daily elongation rate calculated from
consecutive total leaf length measurements.

3.2 Clustering into stress levels

The pre-processed data was grouped based on water stress
levels using k-means clustering. The determination of the
number of clusters was based on evaluation of silhouette
plots generated in MATLAB® for different numbers of
clusters for each set of data. Mean and median silhouette
values produced relatively high values (above 0.75) for up
to 4 clusters. Silhouette plots for k=3 for the 4-leaf stage
and k=4 for the 5-leaf stage however produced multiple
negative values, indicating overlap between neighbouring
clusters, as shown in Figure 2. For simplicity, it was
decided to implement k = 2 and k = 3 for the 4-leaf
and 5-leaf stages respectively, representing no stress, mild
stress and high stress levels, where the 4-leaf stage was
considered to have no plants expressing a high stress
response.

3.3 Generation of stress clusters

The normalized total leaf elongation rates during the 4-leaf
and 5-leaf growth stages were grouped into clusters using

Fig. 3. Static clustering for 4-leaf growth stage using all
growth data

Fig. 4. Dynamic behavior of stress cluster centroids
partitioned chronologically. The black spot indicates
the initial location of the centroid.

k-means clustering, with k values of 2 and 3 respectively.
Five replications were performed, with squared Euclidean
and city block distance options (which calculate the
centroid as the mean and median of individual cluster
points respectively) producing similar outcomes. The
clustering was initially performed for all the recorded
observations, then individually repeated for groups consist-
ing of daily observations. The coordinates of the cluster
centroids were stored for each iteration. Regression curves
for the mild stress and high stress centroids observed over
time (expressed as thermal time) were then defined for
both sets of data using basic curve fitting.

4. RESULTS AND DISCUSSION

Results for an initial clustering for the 4-leaf stage with k =
2 are shown in Figure 3. The cluster containing ”no stress”
data shows a clear distinction from the stressed data
points. The cluster representing stressed plants exhibits
large variations both in terms of gravimetric water content
represented and physiological response as expressed in the
normalized leaf elongation rate.

Partitioning of the data chronologically and extraction
of the centroids from the different data clusters allowed
a visualization of the dynamic behavior of the stress
thresholds, as presented in Figure 4.

The 4-leaf stage shows relatively constant values for
the ”no stress” region. The ”mild stress” centroid curve
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Fig. 5. Dynamic behavior of mild stress threshold for the
4-leaf growth stage

Fig. 6. Dynamic behavior of stress cluster centroids for
the 5-leaf stage partitioned chronologically. The black
spot indicates the initial location of the centroid.

exhibits significant variations both in terms of gravimetric
water content values and normalized total leaf elongation
rates. Extraction of the water content values and comparis-
on with values of thermal time allow an evaluation of
the dynamic variation in mild stress threshold. This is
presented in Figure 5.

A linear relationship with an R2 value of 0.998 is observed
between the mild stress threshold and thermal time,
with the boundary decreasing with increase in thermal
time. This matches the hypothesized behavior, with an
expansion of plant roots within the pot over time allowing
access to reduced quantities of water, thereby shifting the
stress threshold gradually downwards.

The observed centroids obtained from clustering of the
5-leaf stage observations are presented in Figure 6.
In this case, the ”no stress” cluster centroids display
a downward trend (with respect to gravimetric water
content), indicating an expansion of the range within
which the plant displays no physiological response, even
with water content below pot capacity. The ”mild stress”
region similarly occupies a greater range than observed for
the 4-leaf stage, and the ”high stress” cluster covers the
bottom left section, representing lowest observed values
both for water content and elongation rate.

Fig. 7. Dynamic behavior of mild stress threshold for the
5-leaf growth stage

Fig. 8. Adjusted curve representing dynamic behavior of
mild stress thresholds for the 5-leaf growth stage
(excluding outlier values from first three days)

Assessment of the dynamic behavior of the stress thresholds
follows based on the chronologically recorded variation of
cluster centroids over thermal time. The progression of
mild stress is presented in Figure 7.

The first three data points represent outliers, with
observations representing less than 10 % of test plants (3
plants out of 35, which all displayed leaf 5 two to three
days before all other plants) thus showing the strongest
individuals. Filtering out of the outliers allows a more
accurate projection of the trend, as presented in Figure 8.
With the elimination of outliers, it is possible to represent
the dynamic behavior of mild stress thresholds for the 5-
leaf stage using a third order polynomial to an accuracy
of 89 %. Despite the high accuracy, the need to exclude
initial elongation rate values introduces a reduction in
reliability, signifying a need for further data analysis to
confirm obtained results.

The demarcation of the high stress cluster from the mild
stress and no stress clusters was observed to be markedly
distinct, as can be seen in Figure 6. The water content
component of the centroids for all generated clusters
showed zero overlap with any of the other clusters. An
evaluation of the dynamic behavior ”high stress” cluster
for the 5-leaf stage is based on the results presented in
Figure 9.
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Fig. 5. Dynamic behavior of mild stress threshold for the
4-leaf growth stage

Fig. 6. Dynamic behavior of stress cluster centroids for
the 5-leaf stage partitioned chronologically. The black
spot indicates the initial location of the centroid.

exhibits significant variations both in terms of gravimetric
water content values and normalized total leaf elongation
rates. Extraction of the water content values and comparis-
on with values of thermal time allow an evaluation of
the dynamic variation in mild stress threshold. This is
presented in Figure 5.

A linear relationship with an R2 value of 0.998 is observed
between the mild stress threshold and thermal time,
with the boundary decreasing with increase in thermal
time. This matches the hypothesized behavior, with an
expansion of plant roots within the pot over time allowing
access to reduced quantities of water, thereby shifting the
stress threshold gradually downwards.

The observed centroids obtained from clustering of the
5-leaf stage observations are presented in Figure 6.
In this case, the ”no stress” cluster centroids display
a downward trend (with respect to gravimetric water
content), indicating an expansion of the range within
which the plant displays no physiological response, even
with water content below pot capacity. The ”mild stress”
region similarly occupies a greater range than observed for
the 4-leaf stage, and the ”high stress” cluster covers the
bottom left section, representing lowest observed values
both for water content and elongation rate.

Fig. 7. Dynamic behavior of mild stress threshold for the
5-leaf growth stage

Fig. 8. Adjusted curve representing dynamic behavior of
mild stress thresholds for the 5-leaf growth stage
(excluding outlier values from first three days)

Assessment of the dynamic behavior of the stress thresholds
follows based on the chronologically recorded variation of
cluster centroids over thermal time. The progression of
mild stress is presented in Figure 7.

The first three data points represent outliers, with
observations representing less than 10 % of test plants (3
plants out of 35, which all displayed leaf 5 two to three
days before all other plants) thus showing the strongest
individuals. Filtering out of the outliers allows a more
accurate projection of the trend, as presented in Figure 8.
With the elimination of outliers, it is possible to represent
the dynamic behavior of mild stress thresholds for the 5-
leaf stage using a third order polynomial to an accuracy
of 89 %. Despite the high accuracy, the need to exclude
initial elongation rate values introduces a reduction in
reliability, signifying a need for further data analysis to
confirm obtained results.

The demarcation of the high stress cluster from the mild
stress and no stress clusters was observed to be markedly
distinct, as can be seen in Figure 6. The water content
component of the centroids for all generated clusters
showed zero overlap with any of the other clusters. An
evaluation of the dynamic behavior ”high stress” cluster
for the 5-leaf stage is based on the results presented in
Figure 9.

Fig. 9. Dynamic behavior of high stress thresholds for the
5-leaf growth stage

The dynamic behavior of the high stress threshold can
be approximated linearly to an accuracy of 89 %, and
using a second order polynomial to an accuracy of 98 %.
A downward trend is observed over time, with negative
water content values appearing as a result of utilization
of the residual moisture present in the substrate during
initial use.

5. APPLICATION IN MODEL-BASED PLANT
GROWTH CONTROL

A model predictive deficit irrigation-based plant growth
controller as described in (Owino and Söffker, 2022) has
been developed based on a state machine description
of plant growth. The elongation rate (representative of
growth), appearance of new leaves (described in (Owino
and Söffker, 2019)), and state-specific evapotranspiration
rate (based on a multiple linear regression model) are
required for determination of the required irrigation
sequence to achieve targeted growth and/or water consum-
ption. Previous experimental work has relied on static,
user-determined stress thresholds based on expert knowle-
dge, limiting the performance of the controller. The
dynamic stress thresholding approach described in this
contribution would allow a dynamic adaptation of the
state machine-based plant growth and evapotranspiration
models. The updated model-based predictive controller is
represented in the block diagram shown in Figure 10.

Implementation requires the calculation of elapsed thermal
time (since sowing), which can be generated from the
temperature inputs integrated in the evapotranspiration
prediction model. Fully automated growth control through-
out the vegetative phase within desired limits of yield loss
and cumulative water consumption additionally requires
automated measurement of growth (in this work represented
by total leaf length), evapotranspiration (or substrate
water content), and number of plant leaves (representing
specific growth stage within the vegetative phase).

6. SUMMARY AND OUTLOOK

A clustering-based approach for evaluation of dynamic
behavior of stress thresholds for deficit irrigation implemen-
tation in potted maize plants is presented. Stress onset
and level is characterized using total leaf elongation rate

as an indicator to represent physiological response of the
plant to water deficit. It is hypothesized that the effect of
root expansion and increase in root density with growth
in potted plants should result in a gradual lowering of
stress thresholds as the plant gains access to more moisture
within the growth substrate. The hypothesis is tested by
chronological segmentation of growth data and clustering
into stress levels. The hypothesis is validated for growth
at both the 4-leaf and 5-leaf stage, with trajectories of
both stress thresholds observed to trend downwards over
time. Outliers are observed in the initial days of the 5-
leaf stage (which overlap with the final days of the 4-leaf
stage). The dynamic progression of stress thresholds is
represented using polynomials of between first and third
order.

While this work focuses on the dynamic nature of the
stress boundaries as the maize plant progresses through
the vegetative stage, underlying reasons for the differences
in trajectories observed for the mild and high stress
boundaries have not been investigated. It is theorized that
the physiological response of the plant is determined by the
main goal during different stress events. It is assumed that
during mild stress events the focus is on conservation of
resources by growth limitation during the periods of water
withdrawal, and acceleration of growth during recovery
stages to prepare the plant to handle future stresses.
During periods of high stress, the focus would be on
mitigating damage to prevent plant death. Evaluation of
these underlying reasons could be a potential area for
future research.

Further investigation of additional growth stages as well as
an experimental evaluation of generated stress thresholds
would be useful next steps in the further definition of
dynamic stress thresholds for deficit irrigation. Automatic
determination of optimal number of clusters could also
be integrated by calculation of silhouette values during
clustering, with the maximum number of clusters limited
to the number of stress states integrated in the growth
model (the implemented state machine model allows up
to seven states based on deficit levels and previously
encountered states). Future work could include additional
validation of the results using classification approaches.
Implementation of the described approach in other maize
cultivars or other crops exhibiting similar physiological
responses to water stress would require similar training
data in order to adequately parametrize the growth model.
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