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Abstract: Current drones find a variety of applications, including in viticulture. The appli-
cation of pesticides in steep slope viticulture is necessary to control pathogens. Due to the
characteristics of the applied liquids, high demands are placed on the robustness and reliability
of the drone and the selected sensors. For the application of the particle-laden fluid, a specific
altitude is useful, which should be realized by a flight attitude control system. Steep slope
situations generate increased demands on accurate relative altitude estimation. This study
compares various low-cost sensors for ground distance measurement suitable for spray drones.
Using the overflight of a vineyard as an example, the problem is demonstrated, sensor data are
recorded for evaluation, and suitable parameters and strategies are set. Sensor signals based on
ultrasound, range radar, and Doppler radar are filtered using a Kalman filter. Various measures
are presented to optimize the estimated altitude to improve the reliability in terms of relative
altitude estimation. The presented algorithm will be implemented on a companion computer
parallel to the flight controller.
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1. INTRODUCTION
1.1 Challenges of spraying drones in viticulture

Unmanned aerial vehicles (UAV) are becoming of increas-
ing relevance in the field of agriculture. A reasonable
application is plant protection spraying. In addition to
applications for precision agriculture, an UAV (drone)
can be used in areas that are difficult to access. This is
especially true for vineyards with steep slopes (Fig. 1).

e b o g

Vine monocultures are threatened by a wide range of
pathogens (viruses, bacteria, fungi, and parasites) which
either cause direct damage to plants and fruits or transmit
pathogens. This can lead to a loss of crops and a decrease
in the quality of the fruit and vines. For these reasons,
winegrowers are advised to use plant protection products
in their vineyards.

Fig. 1. Drone for plant protection application.

challenge. The leaves, dirt, and drops contaminating range

To increase efficiency and to reduce the amount of crop
protection agent, it is necessary for drones to have accurate
height and flight path control during crop protection
application.

Drones rely on sensor readings for flight control. The
adverse conditions during spraying applications pose a
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sensors. Sensors must be durable and reliable.

Machinery used to protect crops must be approved by
EU Directive EU-2009/128. As few harmful chemicals as
possible should get into the environment. In addition,
UAVs and their operations are regulated by the EU
Directives 2019/947 and 2019/945.

In the following, the focus is placed on altitude estimation,
as this aspect is especially relevant for spraying drone
applications in steep-slope viticulture. Range sensors are
mounted on a drone to measure the distance to the ground.
In this article, the focus is related to the quality of the
filtered signal.
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Fig. 2. Drone for measurements, all distance sensors are
directed downward.

1.2 Altitude control and estimation

Modern drone flight controllers for the specified and open
classes consist of estimators. The controller in the flight
controller uses an extended Kalman filter algorithm to
process sensor measurements and provide state estimates
of

e Quaternions (defining the rotation in the local frame),
e X.Y,Z positioning and
e kinematic (velocity, acceleration)

To estimate these states, sensor magnetometers, barom-
eters, GPS, gyroscopes, and accelerometers are typically
integrated into the IMU (Initial Measurement Unit). A
wide range of additional sensors are available that can be
merged by the estimator. Flight controllers like the Open
Source PX4 provide an API for companion computers
(Meier et al. (2015)). Companion computers are therefore
capable to provide additional functionalities.

The most essential sensors are designed to be redundant.
Redundant means that a sensor fault or erroneous mea-
surement like drift, outliers, bias, etc. is not leading to a
malfunction of the drone. For example, the IMU contains
sensors like magnetometers from different manufacturers.

Drones have no direct odometry (Achtelik et al. (2009)).
Drones are dependent on the measurement of mostly low-
cost, IC-integrated, sensors like accelerometers, magne-
tometers, gyroscopes, and GPS. In outdoor environments,
it is difficult to achieve an exact flight with a precision
of a few centimeters. Wind, changes in GPS accuracy,
lower quality of MEMS (Micro-Electro-Mechanical Sys-
tems), and magnetometer bias are examples of such kinds
of influences, see de Alteriis et al. (2021).

The aim of the sensor fusion is to improve the accuracy
of the estimation of the local position. All sensors have
different measurement rates. GPS, for example, has a
sample rate of 1 Hz, while the sensors within the IMU
use a sample rate of 100 Hz, see Meier (2021) and Li and
Fu (2018). The different measurement frequencies and the
conversion of global GPS positioning to a geodetic local
frame provide additional effort.

The measurement values given by the altitude sensors
must be filtered, weighted, and combined to get an accu-
rate height estimate. The optimized height information is
sent to the flight controller. The flight controller is capable
of using this information as a relative altitude indicator.

During the mission planning, a relative altitude can be
defined, which will be used as a set point for the altitude
control during flight operations.

In Driessen et al. (2018) an Extended Kalman filter for
sensor fusion of an IMU, an optical-flow sensor (CMOS
cams), and a sonar sensor for altitude and attitude esti-
mation is used. The sonar is measuring the altitude, while
the flow sensor is measuring the velocity in the horizontal
x and y axis of the UAV body frame. A complete attitude
controller is introduced to handle the drone. This kind of
sensor combination is common for altitude estimation. It
has the disadvantage that a failure of one sensor leads to
a failure of the altitude estimation.

The authors of Yang et al. (2021) used a LiDar Lite V3 to
implement terrain following control for an UAV. No sensor
redundancy is given and a complete UAV odometry for
altitude control is implemented. In this article, an already
flight controller provided interface for altitude estimation
is used.

An approach to increase accuracy is to implement outlier
filters. Outliers are sensor data points that lie outside of a
common range. A study on combining an outlier filter with
a Kalman filter was conducted by Ting et al. (2007) on a
walking robot dog. The Kalman filter is combined with a
scalar Bayesian weighting factor (gamma distribution) for
each measurement value. Such weighing is described as an
” Expectation-Minimization-like (EM) learning problem”,
according to Dempster et al. (1977).

Thus, the aim of this study was to assess a simple and
reliable sensor setup for altitude control of a viticulture
spraying drone, especially suited for the requirements of
steep-slope vineyards. As an additional practical require-
ment, the rows of the vine and its leaves must be ignored by
the altitude estimation. The vineyards are systematically
disturbing the altitude estimation using related sensors.
A temporary non-working sensor must be detected and
excluded. The remaining sensors must be able to generate
a sufficient base for the altitude estimation. If an errornous
sensor is not switching back to normal operation, the error
messaging system must be informed about the reduced
number of sensors.

In Section 2, the technical and mathematical methods for
this work are briefly explained. Besides the presentation of
the different sensors, the interface to the controller and the
mathematical model of the filter are described. In Section
3, the experiment and its evaluation are described.

2. MATERIALS AND METHODS
2.1 Drone setup

The spraying drone considered is an individual-constructed
drone for carrying four sensors using the PX4 flight con-
troller and a Raspberry Pi companion computer. All dis-
tance measurement sensors for relative altitude estima-
tions are oriented downwards. The specifications of these
sensors are given in table 1.

The accuracy and range depend on further factors. For
example, the sun light can reduce the accuracy of the
laser probe. Enclosures and drone parts can also reduce the
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Table 1. Sensors for distance measurement.
The standard deviation is signed with o.

Type Freq. Range o
Dopp. radar OPS241-A  15Hz Oms !to5ms~! 05 %
Range radar OPS241-B 15Hz 0.1m to 20m 0.5 %
Ultrasonic HC-SR04 10Hz 0.2m to 3.5m 3 mm
1D laser STM VL53L1X 5Hz 0.0m to 3.5m 0.5 %
MU Vision System Altitude Range
Sensors Sensors Sensors
Qg By Ve e, Y z
Y
Attitude Control H Fosition Control H Altitude Control
Loy Fal
\ T,y /7
N /

Mission Planning /
Pilot Commands

Fig. 3. Control schema of an UAV controller according to
Bouabdallah and Siegwart (2007). The control units
are today standard components in common flight
controllers.

range and accuracy of the radar. Rectangular speed above
1.5ms~! reduces the range of the used ultrasonic sensor.
The UAV is flying rectangular to the reflected signal.

Kalman Filter and system model A Kalman filter can
be set up with a basic mathematical model of the drone’s
altitude behavior.

The prediction of the system state vector is the result
of merging model knowledge with assumed or updated
knowledge about sensors, model errors, and sensor signals.
The Kalman filter consists of an update step and a
prediction step. This article focuses on the interfaces
between the already implemented control loops of the
flight controller and the Kalman filter combined sensors
for altitude control in Fig. 3. This algorithm is running
on a companion computer. The flight controller provides
an interface for the external altitude sensor system.

The system state space representation is described by
%X = Ax+ Bu+w, (1)

where x denotes the state vector, A the system matrix, B
the input matrix and w the system noise.

A discrete description is used. With

X = FXp_1 + Bruy (2)
the prediction is calculated for a time discrete system.

The state transition matrix F can be derived from the
state space representation. The transformation matrix F
computes the change in A over a discrete time step.

By substituting the power series

F =A% =14+ AAL+ ... (3)
and using the system matrix

Table 2. System model variables

Variable Description Unit
dy Range radar Z-Axis m
do Laser probe Z-Axis m
ds Ultra sonic sensor Z-Axis m
dy Doppler radar Z-Axis m/s
1 State variable distance Z-Axis m
T2 State variable speed Z-Axis m/s
Aol Roll angle degree
Qpitch Pitch angle degree
Y1 Z altitude set point m
Y2 Drone speed Z direction m
01
A= l:O 0:| 3 (4)
the transition matrix
1 At
F— [O 1 } (5)

can be derived.

During flight operations, the derivation of the altitude
should be zero. Further process-related changes are consid-
ered by a time discrete white noise. For a basic concept, the
state vector and the state transition function are designed
considering the kinds of available sensors, distance, and
their derivation. The speed of the altitude is measured by
the Doppler radar.

The state vector corresponds to the distance to the ground
and its derivative
X; = [ﬂfz] . (6)

The state covariance P is an indication for the trust in the
with F described system

2
_|oz 0
G v
The measurement vector and the measurement covariance
matrix is described by

2
|4 o Uzi 0
i) o-[3a]l W
The set variance during the experiments in dependence of
the sensor can be found in table 2.3.

Measurement data  The modification of the measured
values by consideration the pose of the UAV is necessary.

With the attitude angles provided by the flight controller
(table 2), the measurement variables can be calculated
with

zi = d; cos(ronr) cos(piten), (9)
where the indexes of z; and d; correspond to the radar,
Doppler, ultrasonic, and laser sensor.

The asynchronous incoming measurements are fused re-
garding the algorithm 1. Sensor fusion means here, that
the updated system state vector xy is calculated using the
sensor specific R;. In this sense, the update is triggered
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when any sensor signal is 'ready’. The prediction is calcu-
lated after each time step.

Algorithm 1 Asynchronous sensor fusion

: procedure UPDATELOOP
: if (Sensor Radar ready) then
. UPDATE(z, P, ZRadars RRadar, H)

1
2
3
4: if (Sensor Laser ready) then
5
6
7

UPDATE(-I7 P7 ZLaser RLaser; H)

if (Sensor US ready) then

UPDATE(.I, P, zuitraSonic, RuitraSonic; H)
PREDICT(z, P, F, Q, B, u)

The software package used is published by Labbe (2021).

Outlier and robust filter A Gaussian weighting factor
is used in (11) to change the measurement covariance
matrix R; dynamically. The planned flight altitude is one
parameter of the weighting factor. With this factor, the
measurement covariance R; is updated with regard to the
weighted measurement value

Rwi = g(Zi; ,ualtapw)Ri (10)

Pw _(Z _,ualt)2
i Halts Pw) = 1-— —_— | . 11
9(%i, fatts Pw) Umexp< 572 ) (11)

The parameters in (11) are

with

e Altitude mean value pgq;: given by flight controller
interface / mission planning,

e Weighting factor p, for range with higher trust.
Altitude mean value is implemented as a value given
from the flight controller,

e Measurement value z; of the corresponding sensor.

With (11), an inverted Gaussian can be defined, which
weights the sensor variance regarding the predefined flight
altitude.

2.2 Fuault detection

In this section, the implemented failure detection and
handling is presented. The requirement is, that a sensor
failure should not lead to errors in height detection.

In the algorithm 1, the condition for accepting the mea-
surement (sensor ready) is therefore combined with further
conditions. The first condition for accepting the measure-
ment is that z; — 21, the state height minus the measured
value, has to be lower than a threshold. The threshold is
set to the pg¢ altitude of the flight mission. Outliers due
to height, roll, and pitch angles of the UAV are therefore
considered.

The second condition is, that the measurement must be
larger than 0.02m. This value is especially relevant to the
radar. For this sensor, reflections on the enclosure or UAV
are assumed (protection foil), which generates iterations
with a frequency between 6 and 8 Hz. This is half of
the maximal measurement frequency. By filtering radar
measurements below 0.02m, this reflection can be filtered
out.

Table 3. Variance for different covariance ma-

trices.
Oz Oz Tz Tz%z
RRradar 9 6 0 0
Rpoppier 12 6 0 0
Ryus 6 6 0 0
Rlaser 2 6 0 0
P 2 6 0 0

2.8 Ezxperimental site

The goal is to optimize the relative altitude estimation to
the ground as this information allows the flight controller
to fly in an approximation parallel to the terrain. This
problem is especially challenging in the case of flying
perpendicular to vine rows. This has been considered in
the chosen flight path over an experimental vineyard from
the Hochschule Geisenheim University, Johannisberg. The
selected vineyard for test flights is located at latitude
49.994588° and longitude 7.974138° at an elevation of 153
m asl (above sea level). The vines are oriented transversely
to the slope. The flight path covers a height difference
of 1m. The distance between the rows is approximately
2m. This is a common distance to realize the movement
of narrow-gauge tractors.

The selection criteria for the choice of the test field are

e viticulture slopes,
e sufficient distance to infrastructure (150m), and
e barrier possibilities of the access roads.

The relative flight altitude is set to 3.5 meters relative to
the start position. The drone flies along a path defined by
GPS positions. The height difference due to the slope of
the cultivated area is approximately 1 meter. The take-off
and landing points (below) are the overall lowest points,
while the upper u-turn is the highest point. The speed is
defined by the plant protection application. Typical values
are in between 1.5ms~'and 2ms~!. In this experiment,
2ms~! was used.

The sensors continuously record measurement data during
the flight, which is used for later evaluation. A log file
is generated on the UAV in which the measured values
are entered asynchronously for each range sensor. Height
control by sensors is not required during recording. Only
GPS altitude data was used for flying. This step requires
prior recording of GPS positions along the planned flight
path and is therefore only practical for an experimental
setup (see section 2.4).

The altitude of the UAV is evaluated with GPS-RTK
and compared with landmarks (measurement points) to
determine the true distance between the ground and the
UAYV in the data evaluation. The pillars of the vine yard to
connect the vineyard wires were used as reference points.

2.4 Terrain height calculation

Reference altitudes for flight path over the experimental
field were measured at twenty positions along the path
by setting up a GPS-RTK antenna around 2m above the
ground by placing it at the grapevine pillars (table 2).
The altitude variance and the horizontal position for all
measured points is below 0.02m. For the calculation of
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Fig. 4. Flight trajectory (purple) during the experiment
with GPS-RTK reference positions for terrain mea-
surement (green dots)
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Fig. 5. GPS measurement points 1-20 absolute terrain
height.

the distance between the GPS positions of the measuring
points (pillar tips), the Haversine function was chosen,
Alkan and Celebi (2019). This function is used to calculate
the distances between two GPS coordinates. With the
equation

y1 = altitudey oy — altitudeierrain (12)
the reference relative altitude y; is calculated. The abso-
lute altitudey ay (asl) is provided by the GPS-RTK of the
UAV, while the altitude;e,rqin is given by the interpolated

terrain measurement points (Fig. 5).
3. RESULTS
3.1 Experimental results

In Fig. 4 the flight track of the drone during the experiment
is visualized. The GPS-RTK measurement points are also
shown. The absolute terrain height is visualized in dia-
gram 5. In Fig. 6, the estimates of the Kalman filter are
shown. The first two axes of the diagram of the experiment
show the measurement of the sensor data (radar, ultrasonic
and laser range sensor). The orange line is the true value of
the UAV altitude y;. The third horizontal axis shows the
estimated altitude (distance to ground) from the Kalman
filter in comparison to the true value y; (orange line). The
fourth graph displays the measurements coming from the
Doppler radar. In comparison to the GPS z-axis velocity

(derivative of altitude change). The last diagram shows
the angle estimation (pitch and roll angle) supplied by the
flight controller.

Another field of investigation is the detection of faulty
data. For example, another experience was made where the
range radar got completely faulty data for a few seconds.
One reason could be drops, dirt, or a cable that disturbs
the measurement. Interference can also happen to other
sensors installed on the drone. In Fig. 7, the range radar
in this second experiment under the same conditions has
two failures in the first 15 seconds, with inconsistent data.
The measurement value is around 0.01 m due to drops or
leaves in front of the sensor. The laser range sensor has
also failed. There is no laser range data available up to 18
seconds. Despite these disturbances, the estimated flight
height in the 3rd row is relatively accurate due to the
different outlier and weighting approaches.

The ultrasonic radar has the slowest measurement fre-
quency. At a speed of the UAV by 1.5ms™!, the signal re-
flection of the distance arrives the ultrasonic sensor 0.02 m
behind the sensor. This characteristic reduces the maximal
range when flying at a higher speed than 1.5ms~!. Laser
sensors can be disturbed by sunlight, which can also harm
the range. The 1D range laser STM VL53L1X has the
ability to reduce the frequency automatically for accuracy
improvements in the case of measurement bias. This be-
havior results in a reduced update frequency during flight.
The variance between the real relative altitude y; and the
estimation x; was for both experiments below 0.1 m, which
is reasonable enough for an approximate flight parallel to
the terrain. Generally, the smoothness of the filter should
be more important than a strict parallel flight to the
terrain.

With a standard Kalman filter, a more smooth estimation
of altitude is possible. The dynamic weighting factor of
the sensor values and a few simple outlier filters show
that even a failure of one sensor in a combination of
minor disturbances of a second sensor does not yield a
faulty and useless altitude estimation. The different used
sensors have different characteristics regarding possible
issues (reflections, sunlight). Therefore, a combination of
different kinds of sensors contributes to more robust and
accurate altitude estimation.
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