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This article is addressed to the topic of robust state estimation of uncertain nonlinear
systems. In particular, the smooth variable structure filter (SVSF) and its relation to the
Kalman filter is studied. An adaptive Kalman filter is obtained from the SVSF approach by
replacing the gain of the original filter. Boundedness of the estimation error of the adaptive
filter is proven. The SVSF approach and the adaptive Kalman filter achieve improved
robustness against model uncertainties if filter parameters are suitably optimized.
Therefore, a parameter optimization process is developed and the estimation
performance is studied.
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1. INTRODUCTION

State estimation plays an important role in the field of control. System states are required for the
calculation of state feedback controllers, exact input-/output linearizations, equivalent control,
backstepping control, etc. Noise reduction of signals is desirable to improve performance of sliding
mode approaches under real conditions. Combined input-state estimation is useful for the estimation
and rejection of unknown exogenuous inputs. Additionally, robust model-based fault detection and
localization approaches can be designed based on filters.

Related to linear systems minimum variance unbiased [1, 2] and augmented state filters [3, 4] can
be used for combined input-state estimation. In case of known uncertainty bounds robust Kalman
filters [5] can improve state estimation of uncertain linear systems. In the field of H∞ filtering
robustness of the state estimation may be improved by minimizing the effect of worst possible
energy-bounded disturbances on the estimation error [6]. Multiple-model approaches [7] are a
powerful tool for state estimation of uncertain systems. Combining them with the particle filter
allows state estimation of nonlinear systems [8].

The smooth variable structure filter (SVSF) introduced in Ref. 9 is an approach for state
estimation of uncertain nonlinear systems. Several applications of SVSF can be found in the
literature. The filter has been applied to estimate the states and parameters of an uncertain
linear hydraulic system in Ref. 9. A multiple-model approach has been formulated for fault
detection e.g., leakage of the hydraulic system [10]. The state of charge and state of health of
batteries is estimated in Refs. 11 and 12. A multiple-model approach has been applied for target
tracking in Ref. 13 and a SVSF based probabilistic data association (PDA) approach has been
proposed for tracking in cluttered environment [14]. For multiple object tracking a SVSF based joint-
PDA approach has been developed [15]. Online multiple vehicle tracking on real road scenarios has
been investigated in Ref. 16. Several SVSF based simultaneous localization and mapping algorithms
have been proposed e.g., Refs. 17–19. Training of neural networks based on SVSF and classification of
engine faults has been studied in Ref. 20. Dual estimation of states and model parameters has been
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considered in Ref. 21. The estimation strategy works as follows.
The bi-section method, the shooting method, and SVSF are
combined. The bi-section and shooting method are applied to
determine best-fitting model parameter combinations. The
obtained model is used by SVSF to estimate the system states.
To apply the bi-section method the measurement signals are
divided into segments in which the model parameters remain
nearly constant. In comparison to the Kalman filter the SVSF
approach facilitates detection of these segments based on an
evaluation of chattering process.

As described in Ref. 9 the SVSF approach uses a switching gain
to drive the estimated state trajectory into a region around the
true state trajectory called existence subspace. Due to
measurement noise chattering occurs in the existence
subspace. By introducing a boundary layer, similar to the
saturation function approach of sliding mode control, the high
frequency switching in the existence subspace can be attenuated.
The claimed advantage of SVSF approach is that if the boundary
layer is not used, the filter guarantees to reach the existence
subspace for sure although an imprecise system model may be
used. It is shown in Ref. 22 that in case of not using the boundary
layer the estimations of the filter converge to the measurements,
which guarantees the estimation error to be bounded. However,
this is a trivial result because if the estimations are equal to the
measurements and every state is measured, than the filter is not
required. If the boundary layer is used, the estimations diverge
from the noisy measurements and estimation performance
improves. Unfortunately, it has never been proven that the
SVSF with boundary layer has bounded estimation error in
case of using an imprecise model.

As already mentioned a serious limitation of the SVSF
approach is that all system states have to be measured.
Additionally, the measurement model is required to be linear.
However, related to tracking a linear measurement model may be
achievd by applying a measurement conversion [23] and
measurements of the vehicle velocities could also be derived
from measured positions.

Another problem of SVSF results from the dependency of the
estimation performance on the width of the introduced
smoothing boundary layer. In Ref. 24 an estimation error
model for the SVSF is proposed and in Ref. 25 the estimation
error is minimized according to the smoothing boundary layer
width. A maximum a posteriori estimation of the noise statistics
of the error model is discused in Ref. 26. However, the derived
estimation error model and the related approaches require the
system to be linear and precisely known which contradicts the
idea of robustness.

In our previous publication [22] a new tuning parameter for
the SVSF approach was introduced to achieve online
optimization of the estimation performance. In this paper the
relation between the SVSF approach and the Kalman filter is
studied. An adaptive Kalman filter is obtained from the SVSF
approach by replacing the original filter gain. The estimation
performance of SVSF and the adaptive filter variant is compared
with one another. Therefore, a parameter optimization scheme is
proposed. In the simulation results the adaptive Kalman filter

shows superior performance compared to the original SVSF
approach.

The paper is organized as follows. In Section 2 the
preliminaries and the original SVSF approach are discussed. In
Section 3 the relation of SVSF and Kalman filter is studied.
Parameter optimization of the Kalman filter leading to an
adaptive filtering approach is considered in Section 4. The
stability of the adaptive filter is studied in Section 5. A
performance evaluation of SVSF and adaptive Kalman filter is
provided in Section 6.

Notations. An overview of the notations used within the paper
is given in Table 1.

2. PROBLEM FORMULATION AND
PREVIOUS WORK

Consider the dynamics of a nonlinear system to be exactly
described by the discrete-time model

xk+1 � fk(xk, uk), (1)

yk � xk + rk, (2)

with states xk ∈ Rn, inputs uk ∈ Rm, and outputs yk ∈ Rn. The
process rk ∈ Rn is assumed to be a white noise process with
independent samples described by the covariances
E(rkrTk ) � R_0, and E(rirTj ) � 0, for i≠ j, and the mean
E(rk) � 0. The measurement model Eq. 2 can be obtained
from any model of the form ~yk � Hkxk + ~rk as the considered
SVSF approach requiresHk to be invertible [9]. Consider �f k to be
a nominal description of system (1, 2), which may differ from the
true behavior. According to Ref. 9 an estimation x̂ of the system
states x can be obtained using the SVSF algorithm

eyk|k � yk − x̂k|k, (3)

x̂k+1|k � �f (x̂k|k, uk), (4)

eyk+1|k � yk+1 − x̂k+1|k, (5)

Mk+1 � (∣∣∣∣∣eyk+1|k∣∣∣∣∣+Φ∣∣∣∣∣eyk|k∣∣∣∣∣)+sat(eyk+1|k,Ψ), (6)

x̂k+1|k+1 � x̂k+1|k +Mk+1, (7)

where the operator “+” denotes the Schur product, Φ and Ψ are
diagonal matrices with Φii, Ψii denoting the ith diagonal element,
and the ith element of vector sat(eyk+1|k,Ψ) is defined as

sat(a,A)i �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 for

ai
Aii

> 1,

−1 for
ai
Aii

< − 1,

ai
Aii

for − 1≤
ai
Aii

≤ 1,

(8)

where i ∈ {1, 2, . . . , n}. According to Ref. 22 the SVSF algorithm
(Eqs 3–7) reduces to

x̂k+1|k � �f k(x̂k|k, uk), (9)

eyk+1|k � yk+1 − x̂k+1|k, (10)
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x̂k+1|k+1 � yk+1 − ~Mk+1eyk+1|k, (11)

~Mk+1 � diag(In×1 − ∣∣∣∣∣sat(eyk+1|k,Ψ)∣∣∣∣∣), (12)

in case of Φ � 0n×n.
Theorem 1 of Ref. 9 proves that the output estimation error

eyk|k of algorithm (Eqs 3–7) approaches zero if instead of the gain
Mk+1 the gain M+

k+1 � (∣∣∣∣∣eyk+1|k ∣∣∣∣∣+Φ∣∣∣∣∣eyk|k ∣∣∣∣∣)+sgn(eyk+1|k) is used. As a
consequence the estimations of the filter equal the measurements,
i.e., eyk|k � yk − x̂k|k � 0. This is a trivial result as all states are
required to be measured. So one might just use the measurements
instead of the filter estimates. The estimations of the filter diverge
from the measurements and estimation performance improves if
a boundary layer is introduced and gainM+

k+1 is replaced byMk+1.
However, it has neither been proven that algorithm (Eqs 3–7)
with gain Mk+1 has a bounded estimation error, nor it has been
shown that the introduced boundary layer minimizes the squared
estimation error or some other performance criterion.

3. RELATION BETWEEN SMOOTH
VARIABLE STRUCTURE AND KALMAN
FILTER
In this section the stochastic gain ~Mk+1 of SVSF approach is
replaced by a deterministic but yet undefined gainKk+1. Using the
deterministic gain the estimation error covariance matrix of the
filter is determined. By minimizing the mean squared estimation
error (MSE) the deterministic gain Kk+1 becomes the specific
optimal oneKopt

k+1. Replacing the original gain ~Mk+1 of SVSF by the
optimal one Kopt

k+1 gives a direct link to the Kalman filter.
From Eqs 1, 2, and 9–12 it follows that the state estimation

error and the output estimation error can be determined as

exk+1|k+1 � xk+1 − x̂k+1|k+1 � Kk+1eyk+1|k − rk+1, (13)

and

eyk+1|k � yk+1 − x̂k+1|k � exk+1|k + rk+1, (14)

where Kk+1 is a deterministic but yet undefined gain. To derive
the optimal gain that minimizes the MSE an expression of the a
posteriori error covariance dependent on Kk+1 is required to be
derived. However, first of all the calculation of the output error
covariance is considered. Inserting Eq. 14 into the definition of
the output error covariance Sk+1 � E(eyk+1|keTyk+1|k) gives

Sk+1 � E((exk+1|k + rk+1)(exk+1|k + rk+1)T). (15)

Expanding Eq. 15 and considering the definition of the a priori
estimation error covariance Pk+1|k � E(exk+1|keTxk+1|k ) and the
stationary measurement noise covariance R � E(rk+1rTk+1) yields

Sk+1 � Pk+1|k + R + E(rk+1eTxk+1|k) + E(exk+1|krTk+1). (16)

The value of the remaining expectations in Eq. 16 is studied as
follows. First of all the a priori estimation error exk+1|k is known to
directly depend on the noise realizations rj with j ∈ {0, 1, . . . , k}
but not on the realization rk+1. In addition rj with j ∈ {0, 1, . . . , k}
and rk+1 are independent of each other due to the independent
white noise assumption. Finally, rk+1 can not have any effect on
exk+1|k and both random variables are stochastically independent.
It follows E(rk+1eTxk+1|k ) � E(rk+1)E(eTxk+1|k) and E(exk+1|krTk+1) �
E(exk+1|k)E(rTk+1). From the zero-mean assumption of the
noise i.e., E(rk) � 0 it follows

Sk+1 � Pk+1|k + R. (17)

Next the expression for the a posteriori estimation error
covariance is considered. Inserting Eq. 13 into the definition
of the a posteriori estimation error covariance Pk+1|k+1 �
E(exk+1|k+1eTxk+1|k+1) leads to

Pk+1|k+1 � E((Kk+1eyk+1|k − rk+1)(eTyk+1|kKT
k+1 − rTk+1)). (18)

Expanding Eq. 18 and considering the definition of the output
error covariance Sk+1 yields

Pk+1|k+1 � Kk+1Sk+1KT
k+1 + R − E(rk+1eTyk+1|kKT

k+1)
− E(Kk+1eyk+1|kr

T
k+1). (19)

Based on Eq. 14 the two remaining expectations in Eq. 19 can be
written as

E(rk+1(eTxk+1|k + rTk+1)KT
k+1) � RKT

k+1,

E(Kk+1(exk+1|k + rk+1)rTk+1) � Kk+1R,
(20)

where E(rk+1eTxk+1|k ) and E(exk+1|krTk+1) again vanish due to the
stochastic independency of rk+1 and exk+1|k. Finally, the a posteriori
error covariance is achieved as

Pk+1|k+1 � Kk+1Sk+1KT
k+1 + R − RKT

k+1 − Kk+1R. (21)

In the followingminimization of MSE is considered. Based on Eq.
21 the error covariance can also be written as

TABLE 1 | Nomenclature.

Symbol Description

^ Estimated quantity
f(·) Real system model
�f(·) Nominal system model (imprecise)
E(·) Expectation value
(·)T Transpose operator
tr(A) Trace of matrix A
ai Element i of vector a
Aii � (A)ii Diagonal element i of square matrix A
A_0 Positive definite matrix A
Ad0 Positive semi-definite matrix A
|a| Absolute value applied element-wize on vector a
a Euclidean vector norm

����
aTa

√
||a||W Weighted Euclidean vector norm

������
aTWa

√
||A|| Frobenius matrix norm

�������
tr(ATA)

√
a+b Schur product of vectors a and b
A⊗B Kronecker product of matrices A and B
a � vec(A) Vectorization by concatenating matrix columns of A
A � vec− 1(a) Inverse vector operator (dimension of A assumed as known)
sgn(a) Signum function applied element-wize on vector a
A � diag(a) Build diagonal matrix A with Aii � ai

λmin{A} Minimal eigenvalue of matrix A
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Pk+1|k+1 � Kk+1Sk+1KT
k+1 + R − RS−1k+1Sk+1K

T
k+1 − Kk+1Sk+1S−1k+1R.

(22)

By adding RS−1k+1R − RS−1k+1R expression Eq. 22 can be rewritten as

Pk+1|k+1 � R − RS−1k+1R + (Kk+1 − RS−1k+1)Sk+1(Kk+1 − RS− 1k+1)T .
(23)

The trace of Pk+1|k+1 gives the MSE of the a posteriori estimation.
The last term in Eq. 23 is at least a positive semidefinite matrix
with a trace greaterequal zero as Sk+1_0. All other terms do not
depend on Kk+1. Consequently, the minimum of MSE is achieved
by

Kopt
k+1 � RS−1k+1 � R(Pk+1|k + R)− 1, (24)

as the trace of the last term is zero for Kopt
k+1. The connection

between algorithm (Eqs 3–7) and the Kalman filter is studied as
follows.

THEOREM 1. The state prediction and correction of algorithm
(Eqs 9–12) equals the one of the extended Kalman filter if ~Mk+1 is
replaced by Kopt

k+1 as stated in Eq. 24.
PROOF. 1The state prediction (Eq. 9) obviously equals the one of

the extended Kalman filter. Regarding the correct step (Eq. 11) it
follows that

x̂k+1|k+1 � yk+1 − Kopt
k+1eyk+1|k � x̂k+1|k + eyk+1|k − Kopt

k+1eyk+1|k, (25)

� x̂k+1|k + (In×n − Kopt
k+1)eyk+1|k � x̂k+1|k + KKal

k+1eyk+1|k, (26)

holds true if ~Mk+1 is replaced by Kopt
k+1 of (Eq. 24). As the

introduced KKal
k+1 of (Eq. 26) equals the Kalman filter gain

KKal
k+1 � In×n − Kopt

k+1 � In×n − R(Pk+1|k + R)− 1, (27)

� (Pk+1|k + R)(Pk+1|k + R)− 1 − R(Pk+1|k + R)− 1
� Pk+1|k(Pk+1|k + R)− 1, (28)

step (Eq. 26) and thus (Eq. 11) is identical to the correction step
of the Kalman filter. ∎

4. PARAMETER OPTIMIZATION OF THE
KALMAN FILTER

The robustness of SVSF against model uncertainties is achieved
by tuning the parameters of the smoothing boundary layer width
[25]. However, also the Kalman filter gain can be made adaptive
to achieve improved robustness [27]. In this section an adaptation
law for the unknown a priori estimation error covariance Pk+1|k of
the optimal gain (Eq. 24) is derived. The error covariance Pk+1|k
should not be propagated based on the system model (like it is
done usually in the field of Kalman filtering) as this would lead to
prediction errors due to the imprecize model description. Instead
Pk+1|k itself is required to be estimated.

As according to Eq. 17 the state error covariance Pk+1|k is
related to the output error covariance Sk+1 the expression

P̂k+1|k � Ŝk+1 − R, (29)

with

Ŝk+1 � 1
N

∑
j�k−N+2

k+1 (eyj|j−1eTyj|j−1), (30)

� 1
N

∑
j�k−N+2

k+1 (exj|j−1eTxj|j−1 + rje
T
xj|j−1 + exj|j−1r

T
j + rjr

T
j ), (31)

might be considered to gain information about Pk+1|k.
Estimating Ŝk+1 based on the innovation process eyk+1|k is
common in the field of adaptive Kalman filtering, e.g.,
Refs. 27 and 28. From Eq. 31 it can be seen that if exk+1|k is
constant over N time steps, and rk+1 is ergodic in the sense of
1
N∑ k+1

j�k−N+2rj � 0, and 1
N∑  k+1

j�k−N+2rjrTj � R then Ŝk+1 − R equals
the a priori error covariance. Additional information about
Pk+1|k can be obtained by considering the suboptimal gain
Ksub
k+1 � 0. Replacing Kk+1 of Eq. 23 by the suboptimal gain Ksub

k+1
gives the error covariance Psub

k+1|k+1 � R of the suboptimal filter.
As the filter with the optimal gain minimizes the MSE the
upper bound

tr(Pk+1|k+1)≤ tr(R), (32)

can be established. If it is assumed that Pk+1|k+1 ≈ Pk+1|k, which is
the case for sufficient small sampling time then

P̂k+1|k � ξR, ξ ∈ [0, 1], (33)

might be considered to gain information about Pk+1|k. Due to the
recursive nature of the filtering approach the relation of Pk+1|k to
the previous value Pk|k−1 might be considered. For small sampling
time this can be roughly described by

P̂k+1|k � P̂k|k−1. (34)

In order to find an estimation P̂
+

k+1|k that fits best to the
established Eqs 29, 33, and 34 a weighted least squares (WLS)
estimation problem is formulated. The importance of the
individual equations is expressed by the scalar weights
α, β, c> 0, which will be determined in a parameter
optimization process. Using the vector operator “vec” the WLS
problem

p+
k+1 � argmin

pk+1
‖ bk+1 − Apk+1‖2W, P̂

+

k+1|k � vec− 1(p+
k+1),

(35)

subject to

A � In×n⊗⎡⎢⎢⎢⎢⎢⎣ In×nIn×n
In×n

⎤⎥⎥⎥⎥⎥⎦, bk+1 � vec⎛⎜⎜⎜⎜⎜⎝⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ Ŝk+1 − R
ξR

P̂
+

k|k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠,

W � In×n⊗⎡⎢⎢⎢⎢⎢⎣ αIn×n 0 0
0 βIn×n 0
0 0 cIn×n

⎤⎥⎥⎥⎥⎥⎦,
is considered. The solution of this WLS problem is

1The authors thank the anonymous reviewers of European Control Conference
2020 for the insightful comments and suggestions related to the proof of the
theorem.
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P̂
+

k+1|k �
1

α + β + c
(α(Ŝk+1 − R) + βξR + cP̂

+

k|k−1), (36)

which is a weighted sum of the solutions of the individual
equations. The obtained solution (Eq. 36) is not guaranteed to
be positive semidefinite. However, as Pk+1|k is a covariance matrix
it must be at least positive semidefinite. In practice it will even be
positive definite as otherwise the MSE would be zero.
Incorporating the constraint Pk+1_0 into the WLS problem
(Eq. 35) would lead to a nonlinear optimization problem. In
order to keep the problem simple it is suggested to replace P̂

+

k+1|k
by some P̂k+1|k_0 if P̂

+

k+1|k has non-positive eigenvalues. The
modified error covariance P̂k+1|k_0 is

P̂k+1|k � Lk+1Dk+1LT
k+1, (37)

where Lk+1 diagonalizes P̂
+

k+1|k as

D+
k+1 � LT

k+1P̂
+

k+1|kLk+1, (38)

and matrix Dk+1 is a diagonal matrix with the ith diagonal
element (Dk+1)ii defined by

(Dk+1)ii � {(D+
k+1)ii if (D+

k+1)ii is > 0,
η × (LT

k+1RLk+1)ii if (D+
k+1)ii is ≤ 0,

where i ∈ {1, 2, . . . , n}. The scaling factor η ∈ (0, 1] will be part of
the parameter optimization process. The diagonalization (Eq. 38)
can always be achieved as P̂

+

k+1|k is symmetric if a symmetric initial
matrix P̂0 is chosen. Finally, estimating the optimal Kalman filter
gain Kopt

k+1 based on P̂k+1|k leads to the adaptive Kalman filtering
(A-KF) approach

x̂k+1|k � �f k(x̂k|k, uk), (39)

eyk+1|k � yk+1 − x̂k+1|k, (40)

x̂k+1|k+1 � yk+1 − K̂
opt

k+1eyk+1|k, (41)

K̂
opt

k+1 � R(P̂k+1|k + R)− 1, (42)

with

P̂k+1|k � Lk+1Dk+1LT
k+1, (43)

where Lk+1 diagonalizes P̂
+

k+1|k so that diagonalization D+
k+1 is

achieved as

D+
k+1 � LT

k+1P̂
+

k+1|kLk+1, (44)

P̂
+

k+1|k �
1

α + β + c
(α(Ŝk+1 − R) + βξR + cP̂k|k−1), α, β, c> 0,

(45)

and the diagonal matrix Dk+1 is obtained from

(Dk+1)ii � { (D+
k+1)ii if (D+

k+1)ii is > 0,
η × (LT

k+1RLk+1)ii if (D+
k+1)ii is ≤ 0,

(46)

with i ∈ {1, 2, . . . , n} and factor η ∈ (0, 1].
The adaptive filtering approach (Eqs 39–46) depends on the

set

P � {N , α, β, c, ξ, η}, (47)

of tuning parameters. In order to optimize these parameters a
training model is introduced. The filter is applied to the training
model instead of the real system. The training model simulates
the effects of model uncertainty occurring from the real unknown
system by varying the system parameters of the known nominal
model �f . Let Np be the number of system parameters and let p(0)i
be the nominal value of parameter i. Assume that a priori
knowledge about the amount of model uncertainty is available
meaning that parameter p(0)i is required to be varied by 9i percent
to account for the severity of model uncertainty. It is suggested to
obtain the ith parameter of the training model p(t)i by drawing a
sample p(t)i ∼ U((1 − 9i/100)p(0)i , (1 + 9i/100)p(0)i ) from an
uniform distribution. Repeating the procedure for all Np

system parameters forms one set of training parameters
denoted as a training model. The optimization of the filter
parameters based on the training model can be achieved as
follows. Let xk be the states and yk be the measurements of
the training model and let x̂k|k

∣∣∣∣Yk be the estimations of the filter
using the nominal model but receiving the measurements from
the training model Yk � {y0, y1, . . . , yk} then the optimized
parameters P+ are given as

P+ � arg min
P

J(P) � arg min
P

∑
k

∣∣∣∣∣∣∣∣xk − x̂k|k
∣∣∣∣Yk(P)

∣∣∣∣∣∣∣∣2, (48)

where J denotes the costfunction. The optimization is a mixed
integer optimization problem which can be solved by e.g., genetic
approaches. In order to make the optimization process more
reliable it is recommended to build several training models and
optimize the filter parameters for each of them separately. The
final optimized filter parameters can be obtained by taking the
mean or median of the optimized parameters of the individual
training models. The process of filter parameter optimization is
illustrated in Figure 1.

5. STABILITY ANALYSIS OF THE ADAPTIVE
KALMAN FILTER

As mentioned previously boundedness of the estimation error of
SVSF approach (Eqs 3–7) using smoothing boundary layer has
never been proven. However, if the adaptive Kalman filter is used
instead ( ~Mk+1 is replaced by K̂

opt
k+1) the boundedness of the

estimation error can be proven as follows.
THEOREM 2. The estimation error of the a posteriori estimation

x̂k+1|k+1 � yk+1 − K̂
opt

k+1eyk+1|k, (49)

of the adaptive Kalman filtering approach (Eqs 39–46) is
bounded by ∣∣∣∣∣∣∣∣exk+1|k+1∣∣∣∣∣∣∣∣≤ �����

a22
4ϵ1ϵ2

√
R + a1, (50)

if the measurement noise is bounded by ‖ rk‖< a1 and the
following conditions are fulfilled

Ωk � P̂k+1|k − ϵ1eyk+1|keTyk+1|kX 0, (51)
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ε1e
T
yk+1|k(R +Ωk)− 1eyk+1|k ≠ 1, (52)

λmin{(R +Ωk)− 1}> ε2, (53)

a2 > ‖ (R +Ωk)− 1 ‖, (54)

where ε1, ε2 are sufficient small positive constants, a1, a2 are
sufficient large positive constants.

PROOF. From Eq. 51 it can be concluded that P̂k+1|k can be
written as

P̂k+1|k � ε1eyk+1|ke
T
yk+1|k +Ωk, (55)

with Ωkd0. As known from Eq. 13 the a posteriori estimation
error is

exk+1|k+1 � K̂
opt

k+1eyk+1|k − rk+1. (56)

With the definition ~Rk � R + Ωk_0 the estimated optimal filter
gain can be written as

K̂
opt

k+1eyk+1|k � R(~Rk + ϵ1eyk+1|keTyk+1|k)− 1

eyk+1|k. (57)

Applying the Sherman-Morrison-Woodbury formular (Fact
2.16.3 [29]) in combination with assumption (Eq. 52) gives

(~Rk + ϵ1eyk+1|keTyk+1|k)− 1

eyk+1|k � ~R
−1
k eyk+1|k −

~R
−1
k ϵ1eyk+1|keTyk+1|k ~R

−1
k eyk+1|k

1 + eTyk+1|k
~R
−1
k ϵ1eyk+1|k

,

�
~R
−1
k eyk+1|k

1 + ϵ1eTyk+1|k ~R
−1
k eyk+1|k

. (58)

Using the submultiplicative Frobenius norm (Proposition 9.3.5
[29]) and Eq. 58, Eq. 57 can be written as

‖ K̂opt

k+1eyk+1|k‖≤
‖R‖ ‖ ~R−1

k ‖‖eyk+1|k‖
1 + ϵ1eTyk+1|k ~R

−1
k eyk+1|k

. (59)

Based on the minimum eigenvalue of ~R
−1
k the inequality

ϵ1λmin{~R−1
k }∣∣∣∣∣∣∣∣∣∣eyk+1|k∣∣∣∣∣∣∣∣∣∣2 ≤ ϵ1eTyk+1|k ~R−1

k eyk+1|k, (60)

can be established (Lemma 8.4.1 [29]). Using Eq. 60 and
assumption Eq. 53 an upper bound of Eq. 59 is obtained as

‖ K̂opt

k+1eyk+1|k ‖ ≤
‖R‖ ‖ ~R−1

k ‖‖ eyk+1|k ‖
1 + ϵ1ϵ2 ‖eyk+1|k‖2

. (61)

Unfortunately, ~R
−1
k implicitly depends on eyk+1|k so that

assumption Eq. 54 has to be taken into consideration leading to

‖ K̂opt

k+1eyk+1|k ‖ ≤
a2 ‖R‖‖eyk+1|k ‖
1 + ϵ1ϵ2‖eyk+1|k ‖2

. (62)

Based on the derivative of Eq. 62 with respect to
∣∣∣∣∣∣∣∣∣∣eyk+1|k∣∣∣∣∣∣∣∣∣∣ it can

be shown that the maximum of the upper bound is achieved for∣∣∣∣∣∣∣∣∣∣eyk+1|k∣∣∣∣∣∣∣∣∣∣ � ���
1

ϵ1ϵ2

√
which leads to

‖ K̂opt

k+1eyk+1|k‖≤
�����
a22

4ϵ1ϵ2

√
‖R‖ . (63)

Then (Eq. 50) is proven by applying the triangle inequality on
Eq. 56.

6. NUMERICAL EXAMPLE

In this section state estimation and control of a chemical plant is
considered in order to evaluate the performance of original SVSF
and the adaptive Kalman filtering variant. According to Ref. 30,
Ref. 31 a species A reacts in a continuous stirred tank reactor. The
dynamics of the effluent flow concentration CA � x1 of species A
and the reactor temperature T � x2 can be described by the time-
continuous model

FIGURE 1 | Filter parameter optimization. Training: The training is based
on a specific system description called training model which is assumed to be
the true unknown system model. The training model equals the known nominal
system description but with varied system parameters to account for the
model uncertainty. The filter runs with the nominal model and its tuning
parameters are optimizedby comparing the filter estimateswith the true states of
the training model. Test: The filter is applied to the real system, it runs with the
optimized tuning parameters and uses the nominal system description.
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[ _x1
_x2

]︸''︷︷''︸
_x

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q
V

(CAf − x1) − k0x1exp(− E
Rx2

)
a + UA

VρCp
(u + Teq

c − x2)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,︸'''''''''''''''︷︷'''''''''''''''︸

f (x,u)

(64)

a � q
V

(Tf − x2) + −ΔHk0x1
ρCp

exp(− E
Rx2

),
with measurements y, and control variable z defined as

y � x + r, z � x1. (65)

The parameters of the system are shown in Table 2. The input
of the system is the change of the coolant stream temperature
u � ΔTc related to the nominal value Teq

c . An input saturation of
|u|≤ 50K is considered. The system is simulated based on Euler
method using a sampling time of 0.1 s. The resulting discrete-time
measurement model is

yk � xk + rk, (66)

where the zero-mean, white noise rk is Gaussian with covariance

R � [ σ2CA
0

0 σ2
T
], σ2

CA
� 0.8

mol2

m6
, σ2T � 0.5K2.

For the initial state values x1(t0) � 0.875mol/l, and x2(t0) �
325K are considered.

6.1. Filter Training Process
In the following the optimization of the tuning parameters of
A-KF and SVSF approach is considered. As explained in Section
4 variation of the nominal system parameters is required to build
the training model. To account for the model uncertainty a
variation of 20% of the nominal parameters is considered
which is assumed as a priori known. Consequently, the ith
parameter of the training model p(t)i is obtained from the
uniform distribution p(t)i ∼ U((1 + 0.2)p(0)i , (1 − 0.2)p(0)i ).
Repeating the step for all parameters i ∈ {1, 2, . . . , 10} forms
one training model. The parameter Teq

c is not varied as it is
required to be precisely known for control. In Table 3 an
overview of the true and nominal system parameters and the
parameters used to build the training model is given. In order to
account for the different combination and variation of the system
parameters three training models are build denoted as Training I,
Training II, and Training III.

For each set the tuning parameters of the filters are optimized
separately. The parameters of A-KF approach required to be
optimized are given by Eq. 47. For the SVSF approach the
boundary layer widths Ψ11, Ψ22 and convergence rates Φ11, Φ22

of the first and second state are optimized. The optimization is
achieved using “genetic algorithm” of MATLAB with default
settings. During optimization only one realization of
measurement noise is considered so that the costfunction does
not vary due to the noise.

The results of optimization are shown in Table 4. The A-KF
approach requires at least 60 times more computational time

for the optimization than SVSF. The SVSF algorithm is
computationally more efficient and in addition it requires
less parameters to be optimized. However, the achieved
minimal value of the costfunction is always lower in case
of A-KF.

6.2. Open Loop Case
In the open loop case the step functions u � 5K and u � −5K are
applied to the system and the resulting step responses are

TABLE 2 | System parameter description [30].

Description Parameter Unit

Tank volume V l
Feed flow rate q l/min
Feed concentration CAf mol/l
Feed temperature Tf K
Density ρ g/l
Enthalpy −ΔH J/mol
Exponential factor E

R K
Frequency factor k0 min− 1

Heat transfer characteristic UA J/minK
Specific heat Cp J/gK
Coolant flow temperature Teq

c K

TABLE 4 | Computational effort of training process.

Training I Training II Training III

A-KF SVSF A-KF SVSF A-KF SVSF

GA iterations 4,795 4,330 6,049 3,813 6,106 4,095
GA
convergence

Achieved Achieved Achieved Achieved Achieved Achieved

Min. value of
costfunction

0.26877 0.49976 0.41247 0.74274 0.37931 0.56349

Total number
of FLOPS

74867e6 779e6 94446e6 686e6 95337e6 737e6

Training time
[min]

173.24 2.48 215.23 2.37 208.60 2.65

GA: Genetic Algorithm of MATLAB, GA iterations: Calls of costfunction, GA
convergence: Change of costfunction falls below tolerance, Min. value of costfunction
equals J(P+) of Eq. 48, FLOPS: floating point operations, Hardware: 4xCPU@3.7GHz
with 8 GB memory.

TABLE 3 | System parameters of nominal, real, and training model.

Parameter Nominal Real Training

V 100 92 [80, 120]
Q 100 94 [80, 120]
CAf 1 0.98 [0.8, 1.2]
Tf 350 354 [280, 420]
ρ 1,000 953 [800, 1,200]
−ΔH 5e4 4.91e4 [4e4, 6e4]
E
R 8,750 8,893 [7,000, 10,500]
k0 7.2e10 7.68e10 [5.76e10, 8.64e10]
UA 5e4 4.68e4 [4e4, 6e4]
Cp 0.239 0.299 [0.191, 0.287]
Teq
c 300 300 300

Interval [a,b] denotes: Parameter for training equals a sample u drawn from uniformly
distribution U(a,b), i.e., u ∼ U(a,b).
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considered for state estimation. The system behavior is simulated
over a time horizon of 6 min.

The performance values of A-KF and SVSF approach are shown
in Table 5. The filters are applied based on four sets of optimized
parameters. Three sets result from Training I, Training II, and
Training III. The fourth set denoted as Training I-III considers the
mean values of the optimized parameters of the other three sets. As
all states are measured the MSE of the measurements is considered
also. In order to account for the effect of different noise realizations
the results are obtained by simulating the step response 100 times
and taking the mean value and variance of the squared estimation
error. The filters are applied to the same measurements with same
noise realizations. From the results it can be seen that bothA-KF and
SVSF estimations are more precise than the measurements. In
comparison to SVSF the A-KF approach achieves better
estimation performance for all considered sets of optimized
parameters and both step responses. For one specific run the
step responses and the corresponding state estimations are
visualized in Figures 2 and 3. The computational time required
to generate Table 5 (to simulate both step responses 100 times and
apply 8 filters each time) is 18.90 min on a 4xCPU@3.7Ghz with
8 GB memory. The computational time required to apply only one
filter on one specific step response is 0.11 s in case of SVSF and 1.49 s
in case of A-KF. Both values are far less than the 6 min of simulated
system behavior.

6.3. Closed Loop Case
In the closed loop case the effluent flow concentration CA of
the chemical plant is controlled. The controller relies on the
filter estimates. Consequently, the estimation performance as
well as the control performance dependent on the filters is
studied.

In order to achieve reference tracking of the control variable
CA the super-twisting sliding mode approach [32] is applied. By
introducing the estimated tracking error

êr � zr − ẑ, (67)

with reference value zr the sliding variable can be calculated as

ŝ � _̂er + λêr , λ> 0. (68)

Then reference tracking can be achieved by applying the super-
twisting approach [32]

u � −k1
∣∣∣∣̂s∣∣∣∣12sgn(ŝ) − k2∫

sgn(ŝ)dt (69)

The controller parameters are chosen as k1 � 0.001 and k2 � 25
based on trial and error. For the sliding dynamics λ � 0.08 is
considered. The simulated time horizon is 20 min with reference
values defined by

TABLE 5 | Estimation performance in open loop case (100 realizations).

Training I Training II Training III Training I-III Meas

A-KF SVSF A-KF SVSF A-KF SVSF A-KF SVSF —

u � +5 K μex 0.194 0.297 0.198 0.509 0.200 0.295 0.197 0.329 0.889
σ2ex 7.63e−5 7.10e−5 7.43e−5 2.44e−4 8.82e−5 1.00e−4 8.27e−5 1.21e−4 2.66e−4

u � −5 K μex 0.114 0.276 0.117 0.503 0.117 0.279 0.117 0.314 0.892
σ2ex 7.65−5 8.50−5 7.12e−5 2.59−4 8.86e−5 1.20−4 8.45−5 1.37−4 2.67−4

Meas., Measurements, μex : Mean of eT
x ex (squared estimation error), σ2ex : Variance of eT

x ex (squared estimation error).

FIGURE 2 | Open loop response of step input u � +5K (Estimation errors of shown realization: μA−KFex � 0.193, μSVSFex � 0.296, μMeas.
ex � 0.892).
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zr �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.8 mol/l if t ≤ 6 min,
0.75 mol/l if 6 min< t ≤ 10 min,
0.7 mol/l if 10 min< t ≤ 14 min,
0.85 mol/l if 14 min< t ≤ 20 min,

(70)

where t ∈ [0 min, 20 min]. Related to the control performance the
following four cases are studied. The sliding variable (Eq. 68) is
calculated using the estimations of A-KF approach or the
estimations of SVSF approach or the measurements denoted as
“W/O filters” or the true states denoted as “Optimum”. For the
filters the optimized filter parameters of the different training
models are considered. The control of the plant over the time
horizon of 20min is simulated 100 times to account for the noise
realizations. The measurements used by the filters have same noise
realizations. The performance values are shown in Table 6. The best
control performance can be achieved based on the true states which are
noise-free. Control based on estimations of A-KF or SVSF achieves
better performance than applying the controller directly on the noisy
measurements. In comparison to SVSF approach A-KF method
achieves better reference tracking and more precise state estimation

TABLE 6 | Control and estimation performance in closed loop case (100 realizations).

Training I Training II Training III Training I-III W/O Opt

A-KF SVSF A-KF SVSF A-KF SVSF A-KF SVSF Filter —

μer 4.999e2 5.420e2 5.006e2 5.884e2 5.006e2 5.518e2 5.005e2 5.562e2 6.229e2 4.711e2

σ2er 31.512 46.292 31.441 62.391 31.625 58.460 31.787 60.623 1.939e2 0
μex 0.221 0.327 0.222 0.520 0.225 0.322 0.222 0.352 0.890 0
σ2ex 2.38e−5 3.55e−5 2.44e−5 8.70e−5 2.43e−5 4.36e−5 2.37e−5 5.12e−5 9.07e−5 0
μu 1.557e2 1.495e2 1.551e2 1.369e2 1.559e2 1.460e2 1.554e2 1.458e2 1.086e2 1.588e2

σ2u 14.383 4.7964 15.022 7.301 15.397 5.928 14.968 6.100 8.758 0

Opt., Optimum; μer : Mean of e2r (squared tracking error), σ2er : Variance of e
2
r (squared tracking error), μex : Mean of eT

x ex (squared estimation error), σ2ex : Variance of e
T
x ex (squared estimation

error), μu: Mean of u2 (input energy), σ2u: Variance of u2 (input energy).

FIGURE 3 | Open loop response of step input u � −5K (Estimation error of shown realization: μA−KFex � 0.105, μSVSFex � 0.267, μMeas.
ex � 0.886).

FIGURE 4 | Closed loop tracking performance using measured,
estimated, or true state values for calculation of the sliding variable
(Performance values of shown realization: μA−KFer � 5.005e2, μSVSFer � 5.392e2,
μW/O filter
er � 6.057e2, μOpt.er � 4.711e2).
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for all considered training models. The control variable and the input
values of one specific realization are visualized in Figures 4 and 5. The
computational time required to generate Table 6 (to simulate 100 runs
of 10 closed loop systems in parallel) is 34.54min on a 4xCPU@3.7Ghz
with 8GB memory. The computational time required to simulate the
closed loop behavior only once based on one controller is 0.45 s if the
controller is fed by the estimations of SVSF and 5.24 s if the controller is
fed by the estimations of A-KF. This is in both cases far less than the
time horizon of 20min over which the system behavior is simulated.

7. CONCLUSION

In this paper the relation of smooth variable structure filter
(SVSF) and Kalman filter has been studied. An adaptive
Kalman filter (A-KF) was derived from the SVSF approach.
Sufficient conditions for the boundedness of the estimation
error of A-KF approach have been formulated. The simulation
results show that beside the SVSF approach also an adaptive
Kalman filter can be used to achieve robust estimation
performance.
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