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Abstract: In turbomachines, dry friction resulting from stator–rotor contacts is a severe problem
that may degrade lifetime of the machine or even lead to complete failure. Knowledge about the
system states and contact forces is beneficial for system monitoring or to prevent contacts through,
e.g., active magnetic bearings. In this paper, a nonlinear model is derived that describes the lateral
rotor vibrations in the case of contact and no contact. The elastic behavior of the shaft is modeled
based on the finite-element method. The contact is described by a dry friction model. An augmented
system description is formulated that allows estimation of rotor displacements and contact forces
by means of nonlinear filtering approaches like an extended Kalman filter. A simulation study was
conducted that explicitly considered the hazardous backward whirl. The suggested approach shows
suitable estimation performance related to both state and contact force estimation.

Keywords: unknown input estimation; nonlinear filtering; turbomachines; rotor to stator contacts;
forward/backward whirl; contact force estimation

1. Introduction

In turbo-machines like compressors, turbines or pumps, minimization of the clear-
ance between rotor and stator is desirable to maximize energy efficiency [1,2]. However,
vibration of the rotor may occur due to unbalance, trapped fluids, shaft cracks, thermal
bends. etc. [3]. As a consequence, rub between stator and rotor may appear. The rub can be
specified as point rub, partial rub, or full annular rub [2]. Among these kinds of rubs, full
annular rub is considered most dangerous. It may lead to effects known as forward and
backward whirling. Forward whirl denotes continuous rubbing in direction of the shaft
rotation, whereas during backward whirling, the rubbing occurs in the opposite direction of
the shaft rotation. The stator–rotor contacts may lead to heating of the shaft and occurrence
of hot spots [1,2]. Generally, the rubbing degrades the lifetime of the machine. It may lead
to damage of the contact surface, large deformation, high frequency stress, and even to
complete failure [4,5].

Several papers have been proposed to study the dynamics induced by stator–rotor
contacts. A simple but still recent modeling approach is to consider the shaft to be linear-
elastic and to model the contact with the stator based on a linear dry friction model [6].
Although the model is simple, it becomes nonlinear in the case of contact, inducing ef-
fects such as chaos, bifurcation, whirling, and wiping [6]. Conditions of existence for
forward and backward whirls depending on system parameters have been investigated [5].
For instance, an overview about different effects resulting from stator–rotor contacts can be
found in [1,7]. Experimental validation of the described effects has been undertaken in [8].
A study of the rotordynamics of more complex rotating systems with multiple rotor–stator
interface locations is conducted in [9].

Besides the linear dry friction model, different methods of contact force modeling
exist: approaches considering, e.g., Hertzian contact forces [10], contact damping [10], and
surface asperities [11].
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Estimation of rotor–stator contact forces has not been considered in the literature so
far. However, to predict the remaining lifetime and for the purpose of system monitoring,
estimation of the contact forces could be beneficial.

A promising strategy to prevent whirl responses is the usage of active elements such
as active bearings [3]. In [3], a state-feedback controller is applied to stabilize the rotor
displacements and mitigate effects resulting from contacts. Due to the special structure of
the feedback controller, the approach does not assume the system states to be measured,
but it requires all interacting forces between rotor and the surroundings to be measured.
To avoid additional sensors, an estimation strategy could be applied. Another active
bearing control approach based on H∞ control design is developed in [12]. It requires
several rotations and displacements to be measured, which could be reduced by applying
estimation approaches.

From the perspective of filtering, the estimation of unknown contact forces is an
unknown input estimation problem. Related to linear stochastic systems, two main esti-
mation approaches exist: the minimum-variance unbiased (MVU) filtering approach and
the augmented state Kalman filtering (ASKF) approach. The MVU approaches provide
unbiased state estimations with minimum error variance under the influence of unknown
inputs. For this purpose, the Kitanides filter is the first MVU estimation approach that
has been derived [13]. However, it does not explicitly estimate the unknown inputs itself.
Later, an MVU estimator known as Gillijns-De-Moore filter was proposed that provides
explicit estimation of the unknown inputs [14]. For this filter, it is shown that, in addition
to the state estimations, the estimations of the unknown inputs are unbiased and have
minimum error variance. The fundamental property of the MVU approaches is that they
neither know nor assume any dynamics for the unknown inputs. This is in contrast to the
ASKF approaches. In augmented state Kalman filtering, the system model is augmented
by the dynamics of the unknown inputs. This was first described in [15] for the treatment
of a constant bias. However, in the case of time-varying inputs, the related dynamics of the
unknown inputs are typically not known and have to be approximated by, e.g., a piece-
wise constant model [16]. The variance of the process noise related to the augmented state
influences the estimation performance of the filter. It is a design parameter that is typically
tuned by trial and error. In [17], it was recently shown that a direct connection between
the MVU and ASKF approaches exists. If the considered noise variance related to the aug-
mented state is selected as infinity, then the ASKF algorithm equals the Gillijns–De-Moore
filter. Consequently, the MVU approaches appear as a special case of augmented-state
Kalman filtering.

In this paper, an estimation strategy to estimate states and contact forces in rotating
machines is proposed. First, a linear-elastic model based on the finite-element method
is derived to describe the elastic movement of the shaft. The contact with the stator is
described based on a dry friction model. As a consequence, a nonlinear augmented state
description is obtained that exactly describes the system dynamics in case of contact and
no contact. No assumptions about the dynamics of the unknown input are required to
be made. By applying a nonlinear filtering approach to the augmented state description,
the displacements and bendings, as well as the contact forces can be estimated. As the
augmented state description is an exact description, an optimal estimation approach like
the particle filter would lead to optimal estimation results of the unknown contact force.
However, due to the large number of states and the resulting computational costs, particle
filtering is considered to be unapplicable. Instead, the extended Kalman filter is applied,
and the related Jacobians are derived. In the conducted simulation example, contact force
estimation under the hazardous backward whirl is explicitly considered.



Automation 2021, 2 85

The paper is organized as follows. The modeling of the elastic shaft and the contact
force is described in Section 2. In Section 3 the estimation strategy to estimate the states
and contact forces is proposed. The contact force estimation under forward and backward
whirl is considered in the simulation study of Section 4.

Throughout the paper In denotes an identity matrix of dimension n× n and 0n×m
denotes a zero matrix of dimension n×m.

2. Stator–Rotor Contact Force Modeling
2.1. Modeling of Rotating Shaft

In this section, a rotating shaft is modeled as an elastic beam. As visualized in
Figure 1a, the shaft is assumed to rotate around the z-axis. The mass of the shaft is consid-
ered to be unbalanced, so that the resulting unbalance force leads to radial displacement
of the beam in x and y-directions. Based on finite element method [18], the dynamics of
displacements of the shaft can be modeled as

(a) (b)

Figure 1. Finite element modeling of elastic rotor. (a) Shaft rotating around the z axis with angle ϕ

and angular velocity Ω. Rotating shaft modeled by eight elastic beam elements with nine nodes.
Displacements of node two and eight in x and y directions and rotating angle ϕ measured. (b) Each
node i is described by displacements xi, yi and angles θxi , θyi .

Md̈ + Dḋ + Kd = B̄uFu + B̄gG, (1)

where M ∈ R36×36, D ∈ R36×36, K ∈ R36×36 describe the mass, damping, and stiffness of
the shaft; d ∈ R36 comprises the coordinates of the nodes; Fu ∈ R2 with its input matrix
B̄u ∈ R36×2 describes excitation resulting from the unbalance force; and G = mg ∈ R with
input matrix B̄g ∈ R36 describes excitation resulting from gravity, where m ∈ R is the mass
of the shaft without the unbalance mass. The vector d ∈ R36 is defined as

d =
[
y1 x1 θy1 θx1 y2 x2 θy2 θx2 · · · y9 x9 θy9 θx9

]ᵀ, (2)

where θyi , θxi ∈ R are angles and yi, xi ∈ R are displacements around the y and x axis at
node i (Figure 1b). The derivation of the matrices M, D, K can be found in Appendix A.
The unbalance force and its input matrix are given as

Fu =

[
Fuy
Fux

]
= muΩ2γ

[
sin(ϕ)
cos(ϕ)

]
, B̄u =


016×2
1 0
0 1
018×2

, (3)

where mu ∈ R is the unbalance mass, γ ∈ R is the distance between the unbalance mass
and the geometric center, and ϕ ∈ R and Ω ∈ R are the rotating angle and angular velocity
of the shaft. The gravity is distributed over all nodes leading to
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B̄g =
1
9
[
1 0 0 0 1 0 0 0 · · · 1 0 0 0

]ᵀ. (4)

2.2. Modeling of Stator–Rotor Contact

The unbalance force leads to radial displacement of the nodes. If the displacement
exceeds the clearance, contact between rotor and stator occurs. It is assumed that the
contact occurs at node five.

As visualized in Figure 2a, the distance dc ∈ R between the stator and rotor at node
five is given by

dc(y5, x5) = d5(y5, x5) + rr − rs = d5(y5, x5)− r0, (5)

where rr ∈ R is the radius of the rotor, rs ∈ R is the inner radius of the stator, r0 ∈ R is the
clearance, and d5 ∈ R is the displacement of node five, known as

d5(y5, x5) =
√

y2
5 + x2

5. (6)

(a) (b)

Figure 2. Radial displacement and stator–rotor contact. (a) Radial displacement d5 of node five and
rotation of node five around z axis with angular velocity Ω?. Both effects are caused by unbalanced
mass mu, which generates unbalance force Fu. (b) Rotor–stator contact with normal force Fs and
force of friction Ff . Body-fixed coordinate system with axis x?, y? rotating with shaft. Velocity vc,x? is
velocity of rotating shaft at contact point projected on the x? axis.

It follows from (5) that dc ≥ 0 characterizes contact and dc < 0 characterizes no contact.
In the literature, it is common to model rotor–stator, rotor-bearing, or rotor-casing contact
forces by spring and damper elements [5,6,19,20]. In this contribution, the bearing forces
are modeled by springs and dampers but without clearance and without rub. The focus
is on the contact of rotor and stator with rub. Following [5,6], this contact is modeled by
a set of radial springs as visualized in Figure 2. The springs generate the normal force
FN = k̄dc ∈ R, where k̄ = ks109 > 0 ∈ R denotes the constant stiffness of the springs
and ks is the prefactor of the spring stiffness. The factor 109 results from high values
of the Young modulus EY > 109 for the materials in contact. The force of friction is
given by the dry friction model Ff = µFN ∈ R with friction coefficient µ > 0 ∈ R. In
addition, lubrication of the contact surfaces can be considered by proper choice of the
friction coefficient. The contact force Fc ∈ R2 in x− y coordinates of the inertial coordinate
system is
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Fc(y5, x5, ẏ5, ẋ5, ks, µ) =

[
Fcy

Fcx

]
=

[
cos(ψ)FN − sgn(vc,x? (y5, x5, ẏ5, ẋ5))sin(ψ)Ff
−sin(ψ)FN − sgn(vc,x? (y5, x5, ẏ5, ẋ5))cos(ψ)Ff

]
,

=

 ks109dc(y5,x5)
d5(y5,x5)

(−y5 − sgn(vc,x? (y5, x5, ẏ5, ẋ5))x5µ)
ks109dc(y5,x5)

d5(y5,x5)
(−x5 + sgn(vc,x? (y5, x5, ẏ5, ẋ5))y5µ)

, (7)

where

vc,x?(y5, x5, ẏ5, ẋ5) = ẋ5cos(ψ)− ẏ5sin(ψ) + Ωrr,

= − 1
d5(y5, x5)

(y5 ẋ5 + x5ẏ5) + Ωrr, (8)

is the velocity of the shaft at the contact point projected on axis x? of the body-fixed
coordinate system (Figure 2b). The final model that comprises occurance of rotor stator
contact is given by

Md̈ + Dḋ + Kd = B̄uFu + B̄gG + N̄ΘFc(y5, x5, ẏ5, ẋ5, ks, µ), (9)

where N̄ ∈ R36×2

N̄ =

[
01×16 1 0 01×18
01×16 0 1 01×18

]ᵀ
, (10)

is the input matrix of the contact force and Θ ∈ R is one in the case of contact (dc ≥ 0) and
zero otherwise (dc < 0). By rearranging (9) and assuming full rank of M, the state-space
representation

η̇ = Aη + Bu + NΘ$(η, ks, µ), (11)

with η ∈ R72, u ∈ R3, $ ∈ R72, A ∈ R72×72, B ∈ R72×3, and N ∈ R72×72 can be achieved.
The state vector η is defined as η =

[
dᵀ ḋᵀ

]ᵀ, and the input vector u is

u =
[
Fᵀ

u G
]ᵀ. (12)

The system matrix A, the input matrix B of known respectively measured inputs,
and the input matrix N related to the contact force are

A =

[
036×36 I36
−M−1K −M−1D

]
, B =

[
036×2 036×1

M−1B̄u M−1B̄g

]
, N = I72. (13)

Let η(i) denote the i-th element of η. The nonlinear term $(η, ks, µ) is given by

$(η, ks, µ) =

[
036×1

M−1N̄Fc(η(17), η(18), η(53), η(54), ks, µ)

]
. (14)

In the following, discretization of the model is discussed. From the well-known
discretization rules of linear time-invariant systems (see, e.g., [21]) it follows that the
system matrix and input matrix can be discretized as
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Ad = exp(Ats), Bd = A−1(Ad − I72)B, (15)

where A is assumed to have full rank and ts denotes the sampling time. The contact force
related term $(η, ks, µ) is assumed to stay constant between two time steps (k + 1)ts and kts
which is a suitable approximation if the sampling time is sufficient small. For the piece-wise
constant input $(η, ks, µ) the corresponding input matrix N can be discretized as

Nd = A−1(Ad − I72)N. (16)

Finally, the nonlinear discrete-time model

ηk+1 = Adηk + Bduk + NdΘk$(ηk, ks, µ), (17)

is achieved.

3. State and Contact Force Estimation

It is assumed that the parameters ks and µ of the introduced model (17) are unknown.
The contact force can be estimated by estimating the state ηk and the parameters ks and
µ of (17). By applying the contact force model (7), the estimations of the contact force
are achieved. The parameters ks and µ are estimated based on augmented state Kalman
filtering. The discrete-time model (17) is augmented by the dynamics of ks and µ leading toηk+1

ksk+1

µk+1


︸ ︷︷ ︸

ζk+1

=

Adηk + Bduk + NdΘk$(ηk, ksk , µk)
ksk

µk


︸ ︷︷ ︸

f (ζk ,uk ,Θk)

+

qηk

qsk

qµk


︸ ︷︷ ︸

qk

, (18)

where ζk ∈ R74 is the augmented state vector. The parameters ks and µ are indeed
constants such that (18) describes the true dynamics. The vector of process noise qk ∈ R74

is introduced to account for discretization and modeling errors. The noise qk is assumed to
be zero-mean, white, and to have covariance

Q = E

qηk

qsk

qµk

[qᵀηk qsk qµk

] =

σ2
η I72 072×1 072×1

01×72 σ2
ks

0
01×72 0 σ2

µ

, (19)

with standard deviations ση , σks , σµ ∈ R and ση , σks , σµ > 0. The augmented state model (18)
is nonlinear. Consequently, the extended Kalman filter is applied. Therefore, the Jacobian
Φk =

∂ f
∂ζk
∈ R74×74 has to be calculated, which is

Φk(ζk, uk, Θk) =
∂ f (ζk, uk, Θk)

∂ζk
=

 Ad 072×1 072×1
01×72 1 0
01×72 0 1

+

NdΘk
∂$(ηk ,ksk ,µk)

∂ζk
01×74
01×74

, (20)

with ∂$/∂ζk ∈ R72×74 as

∂$

∂ζk
=

[
036×74

M−1N̄
∂Fc(ηk ,ksk ,µk)

∂ζk

]
, (21)



Automation 2021, 2 89

and ∂Fc/∂ζk ∈ R2×74 specified as

∂Fc

∂ζk
= Θk

01×16
∂Fcy

∂ζk(17)
∂Fcy

∂ζk(18) 01×54
∂Fcy

∂ζk(73)
∂Fcy

∂ζk(74)

01×16
∂Fcx

∂ζk(17)
∂Fcx

∂ζk(18) 01×54
∂Fcx

∂ζk(73)
∂Fcx

∂ζk(74)

, (22)

where

∂Fcy

∂ζk(17)
= −109ζk(73) +

r0109ζk(18)ζk(73)(ζk(18)− Γkζk(17)ζk(74))

(ζ2
k(17) + ζ2

k(18))
√

ζ2
k(17) + ζ2

k(18)
, (23)

∂Fcy

∂ζk(18)
= −109Γkζk(73)ζk(74) +

r0109ζk(17)ζk(73)(Γkζk(17)ζk(74)− ζk(18))

(ζ2
k(17) + ζ2

k(18))
√

ζ2
k(17) + ζ2

k(18)
, (24)

∂Fcy

∂ζk(73)
= −109ζk(17)− 109Γkζk(18)ζk(74) +

r0109(ζk(17) + Γkζk(18)ζk(74))√
ζ2

k(17) + ζ2
k(18)

, (25)

∂Fcy

∂ζk(74)
= −109Γkζk(18)ζk(73) +

r0109Γkζk(18)ζk(73)√
ζ2

k(17) + ζ2
k(18)

, (26)

∂Fcx

∂ζk(17)
= 109Γkζk(73)ζk(74)− r0109ζk(18)ζk(73)(Γkζk(18)ζk(74) + ζk(17))

(ζ2
k(17) + ζ2

k(18))
√

ζ2
k(17) + ζ2

k(18)
, (27)

∂Fcx

∂ζk(18)
= −109ζk(73) +

r0109ζk(17)ζk(73)(ζk(17) + Γkζk(18)ζk(74))

(ζ2
k(17) + ζ2

k(18))
√

ζ2
k(17) + ζ2

k(18)
, (28)

∂Fcx

∂ζk(73)
= −109ζk(18) + 109Γkζk(17)ζk(74) +

r0109(ζk(18)− Γkζk(17)ζk(74))√
ζ2

k(17) + ζ2
k(18)

, (29)

∂Fcx

∂ζk(74)
= 109Γkζk(17)ζk(73)− r0109Γkζk(17)ζk(73)√

ζ2
k(17) + ζ2

k(18)
, (30)

and Γk = sgn(vc,x?(kts)). The switching functions Γk, Θk are assumed to be independent
of ζk, i.e., ∂Γk

∂ζk
= ∂Θk

∂ζk
= 0.

As illustrated in Figure 1a, the displacements of nodes two and eight are measured.
The corresponding measurement model

yk = Cζk + rk, (31)

with

C =


01×4 1 0 01×68
01×4 0 1 01×68
01×28 1 0 01×44
01×28 0 1 01×44

, (32)

describes four measurements yk ∈ R4, i.e., the displacements of nodes two and eight in x
and y directions. The measurement noise rk ∈ R4 is assumed to be white, zero-mean, with
covariance

R = rkrᵀk = σ2
r I4, (33)

and standard deviation σr > 0 ∈ R.
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The Kalman filter is applied to estimate the states of the augmented system. Quantities
ζ̂k, d̂5,k, Θ̂k, F̂cy,k+1, F̂cx,k+1 denote the estimation of ζk, d5,k, Θk, Fcy,k+1, Fcx,k+1. First,
the estimated displacement

d̂5,k =
√
(ζ̂k(17))2 + (ζ̂k(18))2, (34)

of node five is determined. It is checked if the known clearance r0 is exceeded or not, i.e.,

Θ̂k =

{
1 if d̂5,k − r0 ≥ 0,
0 otherwise.

(35)

The a priori state estimation

ζ̂k+1|k = f (ζ̂k, uk, Θ̂k), (36)

is obtained from the nonlinear augmented model f . The input vector uk is known and
equals u from (12) at time step k. The a priori error covariance is determined as

Pk+1|k = ΛkPkΛᵀ
k + Q, (37)

where Λk denotes the Jacobian

Λk = Φ(ζ̂k, uk, Θ̂k), (38)

known from (20). The a posteriori state estimation is calculated as

ζ̂k+1 = ζ̂k+1|k + Kk+1(yk+1 − Cζ̂k+1|k), (39)

where yk+1 are the measured node displacements and Kk+1 denotes Kalman filter gain
according to

Kk+1 = Pk+1|kCᵀ(CPk+1|kCᵀ + R)−1. (40)

The a posteriori error covariance is obtained from

Pk+1 = (I74 − Kk+1C)Pk+1|k(I74 − Kk+1C)ᵀ + Kk+1RKᵀ
k+1. (41)

According to (7), the estimation of the contact forces at time step k + 1 is given by[
F̂cy,k+1
F̂cx,k+1

]
= Fc

(
ζ̂k+1(17), ζ̂k+1(18), ζ̂k+1(53), ζ̂k+1(54), ζ̂k+1(73), ζ̂k+1(74)

)
. (42)

4. Results

In the following, the lateral behavior of a rotating shaft under the influence of rotor–
stator contact forces is simulated. The system parameters used in the simulation are
summarized in Table 1.

The behavior of the shaft during forward and backward whirling is considered with
the aim to estimate the appearing contact forces. During forward whirling, the angular
velocities Ω and Ω? of Figure 2a have the same algebraic signs, whereas during back-
ward whirling, Ω and Ω? have opposite signs. The lowest eigenfrequency of the shaft is
23.71 [1/s]. The rotational speed Ω of the shaft is increased according to
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0.5Ω̇ + Ω = 35× 2π, Ω(t0) = 0. (43)

A simulation duration of 5 [s] is considered. During that time, the shaft runs through
its first eigenmode. The resulting resonance peak leads to stator–rotor contacts. Dependent
on the values µ, ks of the dry friction model, forward or backward whirling occurs. The
simulated measurement noise has standard deviation σr = 1× 10−3 [mm] and the sampling
time of the filter is chosen as Ts = 0.001 [s]. The initial states and error covariance are
ζ̂ = 074×1, P0 = I74 × 0.0001. The design parameters σks , σµ are chosen as σks = 100,
σµ = 100.

Selecting µ, ks as µ = 0.2, ks = 1 establishes a forward whirl as shown in Figure 3.
The unknown radial displacement of node five is estimated well by the filter. The ex-
ceedance of the clearance can be correctly detected from the estimated displacements. The
estimated contact forces are shown in Figure 4. The forward whirl remains stable until
the end of the simulation. A strong vibrational effect can be detected. For both x− and
y−components of the contact force, shape as well as amplitude of the true and estimated
signal closely fit to each other.

Selecting µ, ks as µ = 0.5, ks = 1 establishes a backward whirl as visualized by
Figure 5. It can be seen that the displacement of node five is correctly estimated so that
the exceedance of the clearance can be detected. The backward whirl remains stable for
the remaining simulation time. In comparison to the forward whirl, more than four times
higher amplitude values can be observed, which also vary in time. The estimations of the
contact forces are visualized in Figure 6. Again, shape and amplitude of true and estimated
signals closely fit to each other.

Table 1. Parameters of lateral rotor vibration model.

Description Parameter Unit Value

Length of beam elements li with i ∈ A m 437.5

Cross section area Σi with i ∈ B mm2 159,043

Σj with j ∈ C mm2 31,416

Material density ρ kg/m3 7850

Shaft mass m kg 863

Unbalance mass mu kg 20

Displacement of unbalance mass γ mm 35

Young modulus E kg/mms2 190× 104

Second moment of area Ji with i ∈ B mm4 2.01× 109

Jj with j ∈ C mm4 7.85× 107

Spring coefficient (bearing) kb N/m 10× 108

Damper coefficient (bearing) db Ns/m 1000

Damping coefficients (shaft) α - 0.002

β - 0.002

Clearance r0 mm 1.55
Sets of beam elements: A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {4, 5}, C = {1, 2, 3, 6, 7, 8}.
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Figure 3. Visualization of forward whirl. (a) Rotating angles ϕ(t) =
∫ t

t0
Ωdτ and ϕ?(t) =

∫ t
t0

Ω?dτ with Ω, Ω? defined
by Figure 2a. (b) Time span in which radial displacement exceeds clearance for the first time. Visualization of true and
estimated radial displacements.
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Figure 4. Visualization of true and estimated contact forces during forward whirl. Components x and y with respect to
inertial coordinate system. (a) y−component. (b) x−component.
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Figure 5. Visualization of backward whirl. (a) Rotating angles ϕ(t) =
∫ t

t0
Ωdτ and ϕ?(t) =

∫ t
t0

Ω?dτ with Ω, Ω? defined
by Figure 2a. (b) Time span in which radial displacement exceeds clearance for the first time. Visualization of true and
estimated radial displacements.
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Figure 6. Visualization of true and estimated contact forces during backward whirl. Components x and y with respect to
inertial coordinate system. (a) y−component. (b) x−component.
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In the following, the contact force estimation performance is quantified based on the
measures

∀Fcx,k 6= 0 : px,k =
|F̂cx,k − Fcx,k|
|Fcx,k|

× 100 [%], (44)

∀Fcy,k 6= 0 : py,k =
|F̂cy,k − Fcy,k|
|Fcy,k|

× 100 [%]. (45)

For both scenarios, the performance measures are stated in Table 2. The performance
measures are sensitive to relatively high estimation errors occuring when |Fcx,k| or |Fcy,k|
are small. However, from Figures 4 and 6, it is known that the amplitudes of the contact
forces are large most of the time. For that reason, the performance values (44), (45) are
evaluated for all |Fcy,k| > 5000 and |Fcx,k| > 5000 additionally.

Table 2. Quantification of contact force estimation performance.

Mean px,k Mean py,k Median px,k Median py,k

Forward whirl 219.54 257.34 21.03 21.01

Backward whirl 78.89 80.51 15.89 16.36

Forward whirl * 24.30 24.21 16.90 17.09

Backward whirl * 22.44 23.05 12.26 13.06
* Only larger quantities i. e. ∀Fcy,k : |Fcy,k | > 5000 and ∀Fcx,k : |Fcx,k | > 5000.

5. Conclusions

In this paper, an estimation strategy suitable to estimated forces resulting from stator–
rotor contacts is proposed. An augmented system description is developed that exactly
describes the system dynamics for the considered type of contact force. The extended
Kalman filter (EKF) is applied to an augmented system description to estimate the system
states including contact forces. The signals of the estimated and true contact forces closely
fit to each other regarding shape and amplitude. Apart from the EKF, other nonlinear
filtering approaches may be applied to the proposed model in the future. In addition,
plastic deformation could be considered.
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Appendix A. Finite Element Modeling

In the following, the lateral displacement of the rotor is described based on the
principals of finite-element modeling. The mass-, stiffness-, and damping matrices of the
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considered beam elements can be found in [18] for instance. The lateral displacement of
the rotor shown in Figure 1a is described by the following model

M0d̈0 + D0ḋ0 + K0d0 = B̄uFu + B̄gG, (A1)

where the forces resulting from the bearings are not yet considered. The eight beam
elements form the mass M0 ∈ R36×36, stiffness K0 ∈ R36×36, and damping matrices
D0 ∈ R36×36 according to

M0 = Tᵀ
A M̄TA, K0 = Tᵀ

AK̄TA, D0 = αK0 + βM0, (A2)

with M̄, K̄ ∈ R64×64 specified as

M̄ =


Mi 0 . . . 0
0 Mi . . . 0
...

...
. . .

...
0 0 . . . Mi

, K̄ =


Ki 0 . . . 0
0 Ki . . . 0
...

...
. . .

...
0 0 . . . Ki

, (A3)

and Mi, Ki ∈ R8×8 given as

Mi =
ρΣili
420



156 0 0 −22li 54 0 0 13li
0 156 22li 0 0 54 −13li 0
0 22li 4l2

i 0 0 13li −3l2
i 0

−22li 0 0 4l2
i −13li 0 0 −3l2

i
54 0 0 −13li 156 0 0 22li
0 54 13li 0 0 156 −22li 0
0 −13li −3l2

i 0 0 −22li 4l2
i 0

13li 0 0 −3l2
i 22li 0 0 4l2

i


, (A4)

Ki =
EY Ji

l3
i



12 0 0 −6li −12 0 0 −6li
0 12 6li 0 0 −12 6li 0
0 6li 4l2

i 0 0 −6li 2l2
i 0

−6li 0 0 4l2
i 6li 0 0 2l2

i
−12 0 0 6li 12 0 0 6li

0 −12 −6li 0 0 12 −6li 0
0 6li 2l2

i 0 0 −6li 4l2
i 0

−6li 0 0 2l2
i 6li 0 0 4l2

i


. (A5)

The quantities used are: the material density ρ ∈ R, the cross section of the i-th beam
element Σi ∈ R, the length of the i-th beam element li ∈ R, the Young modulus EY ∈ R,
the second moment of area of the i-th beam element Ji ∈ R, and the damping factors
α, β ∈ R. The transformation matrix TA ∈ R64×36 describes the relation

v = TAd, (A6)

between the generalized coordinates of the eight beam elements v ∈ R64

v =
[
y1l x1l θy1l θx1l y1r x1r θy1r θx1r y2l x2l

θy2l θx2l y2r x2r θy2r θx2r · · · y8l x8l θy8l

θx8l y8r x8r θy8r θx8r

]T , (A7)

and the displacements and bending angles of the nine nodes d ∈ R36 are known from (2).
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In the following, the presently missing forces resulting from the bearings are consid-
ered. The excitation pb ∈ R36 of system (A1) resulting from the bearings can be described
by

pb = −kbΠd− dbΠḋ, (A8)

with spring stiffness kb ∈ R and damper coefficient db ∈ R. The location of the forces are
defined by Π ∈ R36×36

Π =



1 0 0 0
0 1 0 0

030×1 030×1 030×1 030×1
0 0 1 0
0 0 0 1

02×1 02×1 02×1 02×1




1 0 01×30 0 0 0 0
0 1 01×30 0 0 0 0
0 0 01×30 1 0 0 0
0 0 01×30 0 1 0 0

. (A9)

Considering pb to affect system (A1), it follows that

M0d̈ + D0ḋ + K0d = B̄uFu + B̄gG− kbΠd− dbΠḋ. (A10)

Consequently, the matrices of model (1) are achieved as

M = M0, D = D0 + dbΠ, K = K0 + kbΠ. (A11)
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