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Outline

»  Structural health monitoring (SHM)

» Signal-based approaches
»  Structural health monitoring of metallic structures
Classification of system states based on Acoustic Emission (AE) signal

- Damage acumulation calculation

a

g

UNIVERSITAT
Signal-based data analysis

D ISBURGSG
EUSSEN

Beganovic, Baccar, Soffker: Structural Health Monitoring @
|
© for all figureslillustrations by SRS U DuE | A




Structural health monitoring I
Diagnosis l
» Failure detection/localization

¥ Failure classification and quantification

Measuring of
system variables
¥

Data preprocessing
Prognosis |

#  Description of stochastic nature of
deterioration processes

SHM advantages
» Avoidance of premature breakdowns
»  Reduction of operating
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Evaluating and
affecting system functionality
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Structural health monitoring 11

Challenges

» Differentiation of various events

» Automated classification of events

» Improvement of events detectability

Data analysis and processing
¢ Data size reduction

Noise reduction
Separation of redundant and irrelevant information
Feature extraction and representation in a suitable way
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Structural health monitoring III

Model-based approaches

» Mathematical description
of physical processes

Signal-based approaches

¥ Signal analysis in time domain (Threshold exceedance)

» Analysis of signal frequency spectrum (FFT/DFT, Autoccorrelation/Crosscorrelation)
¥ Analysis of time-frequency spectrum (STFT, CWT/DWT)

FFT/DWT CWT/DWT Auto-/

Crosscorrelation

Presentation

| Energy- Energy-Time- | Energy-Tim Energy-

| Frequency Frequency Frequency Querfrequency
Complexity of Feasible High High High
algorithm

Feature extraction | Nein
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Signal-based data analysis I
Fast Fourier Transform (FFT)

y=10-sin(2-7-50-t) +5-cos(2-7-20-1)
Signal

Amplitude spectrum of signal
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¢ Signal contains two different frequencies (20 Hz, 50 Hz).
»  Frequency spectrum can be identified.
» It is not possible to allocate frequencies in time. .
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Signal-based data analysis I
Fast Fourier Transform (FFT)

yl =10-sin(2-7-50-1)(t <=0.5) & yl =5-cos(2-7-20-t)(t > 0.5)

Signal Amplitude spectrum of signal
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» It is not possible to allocate frequencies in time.
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Signal-based data analysis I1I
Short-time Fourier Transform (STFT)

y=10-sin(2-7-50-t) +5-cos(2-7-20-1)
Signal STET
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¢ Transformation of signal as a function of time and frequency
» Frequency spectrum identified, as well as allocated in time
» Better frequency resolution, worse time resolution (and vice versa)
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Signal-based data analysis III
Continuous Wavelet Transform (CWT)

y=10-sin(2-7-50-t)+5-cos(2-m-20-t)
Signal CWT
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Transformation of signal as a function of time, scale (frequency) and amplitude

B
¢ Different wavelet scales as well as wavelet functions
¥ High frequency and time resolution: Suitable for non-stationary or transient signals 8
Beganovic, Baccar, Soffker: Structural Health Monitoring e
\ bi'

UNIVERSITAT
Signal-based data analysis
© for all figuresl/illustrations by SRS U DuE hed

DUISBURSG
ESSEN




Signal-based data analysis III

Continuous Wavelet Transform (CWT)

y=10-sin(2-7-50-t) +5-cos(2-m-20-1)

Signal CWT
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» Transformation of signal as a function of time, scale (frequency) and amplitude
» Different wavelet scales as well as wavelet functions

# High frequency and time resolution: Suitable for non-stationary or transient signals o
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Signal-based data analysis IV

Discrete Wavelet Transform (DWT)
y=10-sin(2-7-50-t)+5-cos(2-m-20-t)
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» Transformation of signal as a function of time, level and amplitude
¢ Clear distincion of frequencies (contrary to CWT)
¥ Suitable for signal denoising and frequency identification 10
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Signal-based data analysis V

Discrete Wavelet Transform (DWT)

y=10-sin(2-7-50-t)+5-cos(2-m-20-1)

» Iterative high- and low-pass filtering
with further decreasing resolution

¥ Details cD: coefficients of high-pass
filtered signal

» Details cA: coefficients of low-pass
filtered signal
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Signal-based data analysis VI

Discrete Wavelet Transform (DWT)

Decomposition atlevel 5:s=a5+d5 +d4 +d3 +d2 +d1 .
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Condition monitoring of metallic structures I

Classification and prediction of wear state based on measured signals
» Tribological system under sliding wear conditions
» Effect of operating conditions on wear propagation

¥ Main wear effects induced by deficient lubrication
- Welding
- Cracks close to the surface
- Particles ...

#» Damage accumulated in the system

Tribological System

Normal

Hydraulic
Pressure

Position

13
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Condition monitoring of metallic structures I1I

Acoustic emission signals

Transient elastic waves of high-frequency
Induced by material removal

Acoustic emission used as wear indicator
Non-destructive monitoring technique

- Application during loading

- Surface mountable

- Suitable for microstructural characterization and monitoring of damage processes
- Low costs

Piezoelectric Tribological system
transducer

= Application of different signal processing techniques to acoustic emission signal
= Correlation of measured AE signhals to wear/damage propagation 14
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Condition monitoring of metallic structures I1I

Acoustic emission energy distribution over system usage
» Application of STFT to AE signal
» Structure deterioration

‘a) (b) (c)
a) Run-in phase 11(;
- Early failure region o
107}
b) Permanent wear phase 1o} J
- Constant failure rate 10} b i
1071

AE power

¢) Wear-out phase ool (3) (b) (c)
- System failure 10
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System usage (number of cycles)

= Identification of wear state based on AE signals possible
= Calculation of damage accumulation in the system possible 15
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Condition monitoring of metallic structures IV

Frequency examination of acoustic emission signal
» Identification of transient events Run-in phase Wear-out phase

» Distincion of three wear phases
based on frequency based signal analysis —

# Application of STFT on AE signal

i
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= STFT transformed AE signals during H-

run-in and wear-out phase nearly identical
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Condition monitoring of metallic structures V

Frequency examination of acoustic emission signal

» Application of CWT on AE signal
Signal
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= Better representation of wear state using CWT

transformed AE signal in comparison with STFT
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Conclusion

» Classification of wear states using
appropriate measured signals possible

» Frequency based signal analysis successfully applied in classification of wear states

» Signal-based processing methods requiring higher computational effort
in general give better results concerning signal analysis = trade off have to be found

¢ Damage accumulated in the system can be revealed
using information about acoustic emission energy
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Outline

» Motivation
¥ Wear-oriented monitoring

¥ Three innovative approaches

— Acoustic Emission-based analysis
— Diagnosis-oriented data filtering
— Data-based classification approach

¢ Comparison of results
¥  Condition lights for brief evaluation of system state

e Summary and outlook

1
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Motivation 1

Monitoring of critical components

Here:
Mechanical system with periodic load

Wear process
¥ Stochastically occuring wear
# Dependence on operating conditions

Loss of functionality due to surface destruction

Material surface

Tribological system

=» Goal: Establishment of a continuous, non-destructive state assessment 2
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Motivation 11

Development and use of monitoring approaches
for continuous monitoring of components and systems

¢ Fault diagnosis
— Error detection: Detection of deviations and non-normal behavior
— Damage diagnosis: Assignment of deviation cause

= Here: Real-time determination of the degree of wear

e Prediction:
— Determine the end of life-time
— Optimal use of remaining life-time

= Upcoming goal: Wear-oriented operation 3
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Wear-oriented monitoring I: Goals

Wear classification

¥ Specific distinctions
— Adhesive wear
— Surface distress

e Typical investigation methods
— Wear energy recording
— Measurement of geometrical changes
— Technical analysis of the material

Automation goals

e Real-time determination and recording
of wear characterizing parameters

¥ Wear-oriented operation

Method-oriented goals

¥ Knowledge required for design and use of models

4
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Wear-oriented monitoring II: Experiment

Force
?

\\_
Pressure
é

\\l =
=
3 v
(]

A\

AN A\NA\N \N\\\ A\N\N

| | 2
i 1 R B G,

Tribological
system

Position
(cylinder)
R
3} a
3
o

Features of tribological system test rig

#  Programmable trajectory of the wear plates

¢ Variable normal force (by lever arm)

#  Variable lubrication 5
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Wear-oriented monitoring I1I: Experiment

P = W Ve
Acoustic-Emission- Makro-data-
Measurement monitoring monitoring
chain
PZT- b Actuating Hydraulic
signal signal signal
FPGA-Board with A/D )
ja‘ A A
D D
3
A
~
! Real-time hardware
Trigger
A
Y
Monitoring/Control
Operation management 6
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AE-based analysis I

Wear progression of the tribo-system

¥ Local insufficient lubrication: Metal-to-metal contact
e  Cold shuts/surface crack

¥ Particle creation/discharge

¢ Fatigue of surface = Change of material

= Acoustic Emission (AE): Short-term, transient event whereby elastic energy
is generated by loading and crack extension.

Advantages of the AE-analysis

e Inexpensive

» Easy to integrate

e Ability for online use

# Adaptability for high frequency range

=» Possible application for non-destructive monitoring of damage processes 7

UNIVERSITAT Soffker, D.; Rothe, S.: © for all figures/illustrations by SRS U DuE %
DUISBURSG Comparison of Three — Easy to Apply and Innovative - %

Signal-based Approaches for Diagnosis of a Technical System with Wear td-A

ESSEN



AE-based analysis 11
FPGA-based filtering and analysis of sensor data [Baccar, Soffker, 2011f]

Piezoelectric

. |7 \ n
signal STFT
100 L E
= J 2
i g
Ll
3I5 35I.4 35I.El Time
= Correlation with time-dependent process information
= Establishment of the relationship
between material change and system damage 8
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AE-based analysis III

Frequency analysis of the AE-signals [Baccar, Soffker, 2011f]
e Change of the surface condition correlates to signal change

e Determination of the three main phases
(Run-in phase, permanent wear phase, and wear-out phase)

¢  Temporal allocation of
— Wear
— Degree of wear

PZT voltage [V]
AN ON B

Frequency [MHz]

0.2 06 1 14 1.8 x10°
Samples

Task
Detection of suitable features to distinguish the effects 9
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AE-based analysis IV

|||||||||

Frequency examinations
of AE-signal
[Baccar, Soffker, 201 1f]

o
o

©
o

Frequency [MHz]
o
N~
N MR 1 1[0 FR———win
i g , 17y |

|||||||||

Run-in phase
PZT voltage [V]
AN O N A

=» Distinction between
three major phases
of system failure 02 056 4 18 x10°
= Correlation of AE-signals
to identify phases
= Identification of
typical patterns and
wear inherent frequencies
=» Conclusion of state-of-wear
from recorded AE-signals

PZT voltage [V]
AV O N &
Frequency [MHz]

Permanent
wear phase

o
[N}

PZT voltage [V]
A0 O N A

Frequency [MHz]
o o
(o] i

02 06 1 14 1.8 x10°
Samples

Wear-out phase
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Diagnosis-oriented data-filtering I

Generation of characteristic value
for one load-cycle "
e Consideration of the last 20s S\
of measured pressure )
¢ Sliding window § N
— Size: 1s
— Arithmetic mean of each window \
20 25 30 35 40
¥ Arithmetic mean of all windows NN Time [s]
.?100
s f
£
% 60
=
= 40
% 20
£
9 T b ha O Of 029.11 01.12 03.12 05.12 07.12 09.12 11:12 13.12
Ime-benavior Time [d]
pressure equivalent characteristic values 11
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Diagnosis-oriented data-filtering 11

Further generation of characteristics I

=)
S

¥ Calculation of damage increments H U(
L 80
5(i) = QXD E
|t(i)—t(i—1)] E 60
X . pressure equivalent value 5 40
t : time 5
. 2 20
i : actual number of load-cycle 3
A 0
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Accumulated damage increments (AS)
< wn
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Diagnosis-oriented data-filtering 111

Further generation of characteristics 11
¥ Calculation of gradient of AS-curve

e Smoothing by using
centered moving average:
Using a specific number of values
before and after the actual value

3X 10](]

o
[

[\

—

o
h

029.]1 01.12 03.12 05.12 07.12 09.12 11.12 13.12

Time [d]

\

Accumulated damage increments (AS)

10°

2011 0112 0312 0512 0712 0912 1112  13.12
Time [d]

Centered moving average of AS gradient

= Surface condition temporarily
generates very large friction. 13
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Diagnosis-oriented data-filtering IV

Accumulated damage increments and gradients for three set-ups
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= Correlations between degree of wear and waveform changes
=» Strong correlations of experimental results 14
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Data-based classification approach I

Sliding window
feature extraction

e Scan of training data T et matr g size f
Variati f gi o Scanning matrix N ]
e Variation of size s
. .
of scanning matrix S
Data vector 1o [di] d2[d3] ~ [« [~ [T [ [ AT~ Terfon [ o [l [ Joe [ [ ol o oo T [ ] T f
Data vector 2e | [ | ; | w I
Calculation of pata Ve AN | | |
statistical features . . EeAtUre e | oirection of scanning
[ —p-
B Mean va I ue Matrix of n features » Statistical feautures:
o > ]
! . Y - Mean value
e Standard deviation o Featwrer [T Hybrid system - Standard deviation
B s Meatire2 | NG state matrix - Variance
L] v21
e Featurei
« N\
[ ]
e Featuren VAie
Data Data . Data
vectorvector vector
1 2 k

[Aljoumaa, Soffker, 2011]
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Data-based classification approach II

Fuzzy classifier a0t
¥ Use of features bounds 1
and features from training data
B Fuzzyfication using T[N S

triangular membership function p(xi)

e Determination of state
for each feature Mi

e Determination of final state
using decision unit =

x1 X

State 1 State2 ——State 3 State4 ——State5 ‘

| J1_N.J | MLMMMMMM

il
%O'é W‘\ "1". ¥l | P Lol LAY A

= Application to complex test data 2, e I .
- Automated detection, differentiation, EOSN Eﬂm T TR lLl“. 4

and classification of data Time [s] 16
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Comparison of results I

Comparison of the three methods using identical test data

p

Acoustic Emission analysis

Diagnosis-based data filtering

Data-based classification approach

Filtering

<
5

z1s|||| - Z15; =
. 1M ]
| - e m IJM Hi Ju"MmMIl.ulu.IIMIIII
B 25 JINEE™ um mummmmm

iy : E
2011 0112 0312 0512 07.12  09.12 112 1312

02911, 0142, 0342,

0512 0742, 0072 1112 1312, . &
Time [d] Time [d] T'"’e [s]
8 /
10° 10 e — - N N 5| —‘
10° \ ™N
i 10’ /
4
)
w1 / o -
< s
Ziot 2"
‘5 1 |= e 3
N £ &
- o 7}
%10’ 5 10
© o
’@ww ] 2|
10°
10"
| . .
2 1 L
10 2047 0112 0312 0512 0742 0012 1112 13.12 Bt 0f42 0312 0512 o742 0842 ALi2 112 G iz gheaz 812 0742 QEE G2 1342

Time [d]

Time [d]

Time [d]

= Three different methods show same results
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Comparison of results II

-

L

Method

Acoustic Emission
(AE)

[Baccar, Dettmann,

Diagnosis-based
Data Filtering
[Dettmann, Séffker]

Fuzzy-based
Classification
(with Macro-data)

Characteristic Soffker] [Aljoumaa, Soffker]
Effort of
Sensor Application + + + + +
Effort of
Data Analysis 0 + +
Device-related _
Effort ++ + +
Real-time Capability 2 + +
Complexity for "~
Users 0 + +
Complexity for K
Developers 0 ++
Capability for
Error Detection RF + +
Simple Diagnosis/
State-classification t+ + + + +
I:gl_omple?( o - \J
iagnosis

4
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Condition lights for brief evaluation of system state

State-related evaluation for
diagnosis-oriented data filtering approach

High

» Two main aspects
— Actual level of wear (y-axis)

Actual value
Medium

— Actual changes of the last step (x-axis)
¢  Combination of both aspects:

Low

sensitivity matrix
Negative

#  Heuristic definition of three states strong
(green, yellow, and red)

Negative Neutral

Last step

Plus

Plus
strong

System state
T
]

0k

= Derivation of the system state for whole test-run Time [

L I
29.11. 01.12. 03.12. 05.12. 07.12.

I
09.12.

11.12. 13.12.
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Summary and outlook

Summary
Representation of three signal-based data analysis methods

¥ AE-based analysis
— Wear characteristic sound signals (PZT, STFT)
— Close to physical effects

¥ Diagnosis-oriented data filtering
— Evaluation of surface state by generation of characteristic values
— Calculation of actual damage level

¥ Data-based classification approach
— Fuzzy-based model to characterize classification state
— Automated state classification

= Automatic classification of occured wear phases
= Different detailed insights using the three approaches

Outlook

¢ Implementation of failure rate calculation and life-time control strategies
20
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Thank you for your attention!

Comparison of Three — Easy to Apply and Innovative -
Signal-based Approaches for Diagnosis of a Technical System with Wear

Univ.-Prof. Dr.-Ing. Dirk Soffker

University of Duisburg-Essen
Chair of Dynamics and Control (SRS)

Lotharstr. 1-21, 47048 Duisburg, GERMANY

E-mail: soeffker@uni-due.de
Web: WWW.Srs.uni-due.de

Any questions?
21
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Motivation

RWE Power AG Kohleférderung

— Problem: Schaden
durch geférderte Steine

— Losung: Steinerkennungssystem

* Beschleunigungssensoren
und Laserscanner

* Filterung und Klassifikation

— Ziele der Steinerkennung: [Quelle: Privat, November 2011]
* Erkennungsquote groBer als 90%

* Geringe Anzahl an Fehlauslosungen
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Motivation

Komplexes System

Keine zuverlassige Gesamtentscheidung
auf Grund der einzelnen Sensorinformationen

Fusion der individuellen Entscheidungen zu einer Schlussentscheidung
— Entwicklung von neuen Fusionsmethoden
» Moglichkeit der Realisierung von Gewichtungsfaktoren

— Vergleich der neuen Methoden mit vorhandenen Methoden

3
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Gliederung

— Methoden der Fusion

— Erweiterung der Dempster-Shafer Theorie

— Vergleich anhand einiger Beispiele

— Diskussion der Ergebnisse anhand von Testdaten

— Zusammenfassung und Ausblick

4
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Background: Fusion techniques

Definition:
"The process of fusing information from several individual data sources after
each data source undergone a preliminary classification” [Fauvel, et al. 2006].

Types of sensor fusion
F  Observation fusion

B Feature fusion

B Decision fusion

Observation fusion (direct fusion)
B Raw data combination of multiple

| Sensor 1

0
sensors of the same type § N 5 ) é
P Accurate synchronization | Sensor 2 =4 5 5 @9 o
= _l_J =
of raw data required - - © O =0 o
O X n o '©
n v = k=
| Sensor N o o B G
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Background: Fusion techniques

Feature fusion

B Individual feature extraction of sensor signals

B Fusing extracted features _Sensor 1 2 c
= =
9 . . ~ & e . O
¥ Appropriate for combination sensor ' Sensor 2 £ % o 5
signals of different types D > =
< B B
,_ o =
Decision fusion Sensor N ) .
B Individual feature extraction and
classification of sensor signals
B Appropriate for combination sensor signals of different types
Sensor 1 AN | Classifier 1 | ‘Decision 1 3 o
' ] ® S s 1 — g O %
Sensor 2 L ' Classifier 2 Decision 2 | = S
B O : - =
L g S o
| Q . 7 7 'g _E
Sensor N | Classifier N | ‘Decision N AN "
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Methoden der Fusion I

Zwei Arten der Fusion
— Konkurrenz-Methoden
Entscheidung flur die Aussage eines Klassifikators
* Rangordnung
* Mehrheitswahl
* Gewichtete Wahl
— Kooperative Methoden
Kombination der Aussagen zu einer neuen Aussage
» Bayes'sche Kombinationsregel
 Dempster-Shafer Theorie

5
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Background: Bayesian Combination Rule (BCR)

Basic concept

B The performance of the individual classifiers is obtained
based on a training data set.

B A confusion matrix cM* for each classifier is constructed
based on the training data set.

B Confusion matrix CM* indicates the performance of
the related classifier.

[k k k k ]
n 11 n 12 ee. II'1ym n 1m+1)
k k k k
CMk \ n 21 n 22 ee. 11" 2m 1l 2(m+1)
k k k k
_17 M1 I ym2 ... R umm N M(M+1) |

¥ Element n;; denotes the number of samples with actual class i that

is assigned class j when j < M. When j =M + 1, it represents the
number of rejected samples.
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Background: Bayesian Combination Rule (BCR)

Basic concept

Conditional probability that a sample X actually belongs to class i,
given that classifier cl* assigns it to class j is

k
n j

Plx eC,[cl“(x)=))=— \

k
>t
i=1

Degree of belief that x belongs to class i by K classifiers, given that
Clkzjk fOI‘lSkSKlS

bel(i)=Pkx eC.[cl“(x)=J,,...cl"(x)=j, ).

Degree of belief bel(i) for independent decisions can be approximated
using Bayes formula as

ey o U PO EC "0 = /)
anﬂ P(x € Ci/C]k(X) = Ji)
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Methoden der Fusion III

Dempster-Shafer Theorie (DST) [Dempster, A. P., Shafer, G., 1976] I

— Betrachtungsrahmen bestehend aus drei Aussagen:

=|Ereignis tritt auf, Unsichere Aussage, Ereignis tritt nicht auf |

— Basis-Wahrscheinlichkeiten des Klassifikators X bezlglich der
Aussagen h,, h, und h;: m(X,), m(X,) und m(X,)

— Kombinationstabelle flr zwei Klassifikatoren [Erweiterung von
Rakowsky, U.K., 2007]:

h2 h2 h3
h3 h3 h3

o [A A A
h, h,

hl
hl h2 h3

7
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Methoden der Fusion IV

Dempster-Shafer Theorie (DST) II

Berechnung der Glaubenswerte

— Dempster-Shafer Theorie mit AND-Gate

m(Z;) = m(A;)m(B,)

m(Z,) = m(A;)m(B,)+m(A,)m(B,)+m(A,)m(B,)

m(Z;) = m(A,)m(B;)+m(A,)m(B;)+m(A;)m(B,)
+m(A;)m(B,)+m(A,)m(B;)

— Dempster-Shafer Theorie mit OR-Gate
m(Z,) = m(A;)m(B,)+m(A,)m(B,)+m(A,)m(B,)
+m(A,)m(B,)+m(A;)m(B,)
m(Z,) = m(A,)m(B,)+m(A,)m(B;)+m(A;)m(B,)

m(Z;) = m(A;)m(B;)

3
8
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Erweiterung der Dempster-Shafer Theorie I

Mittels Mehrheitswahl I

Annahme: Ereignis ,unsicher" wird als
Entscheidung der Klassifikatoren nicht betrachtet

m(X,)=0
Kombinationstabelle:

— Anzahl positive Entscheidungen > Anzahl negative
Entscheidungen => Zwischenentscheidung positiv (hA,)

— Anzahl positive Entscheidungen < Anzahl negative
Entscheidungen => Zwischenentscheidung negativ (h,)

— Anzahl positive Entscheidungen = Anzahl negative
Entscheidungen => Zwischenentscheidung unsicher (h,)

9
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Erweiterung der Dempster-Shafer Theorie 11

Mittels Mehrheitswahl II

Kombinationstabelle fur drei Klassifikatoren

UNIVERSITAT
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Erweiterung der Dempster-Shafer Theorie 111

Mittels Mehrheitswahl III

Kombinationstabelle filir vier Klassifikatoren

N~~~

S ' ~— ~— ~—r “~~—o

e e U U e U

S e ~—r ~—r— ~—r—- “——

TN~~~ —~ —~

S~ ' ~— ~— ~—r ~—ro

N~~~ N~

S e ~— ~——r— ~—r- “——

e e e U

S e ~— ~——r  ——
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o
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=
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Erweiterung der Dempster-Shafer Theorie IV

Mittels Mehrheitswahl IV

Keine Berlcksichtigung des Ereignisses
h, in der Gesamtentscheidung

m(Z,) wird zur Halfte auf m(Z,) und m(Z,) aufgeteilt

m(z,)" = m(Zl)+%m(Zz)
m(Z,)" = m(Z3)+%m(ZZ)

12
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Erweiterung der Dempster-Shafer Theorie V

Mittels gewichteter Wahl
Zuweisung einer Anzahl an Stimmen fur jede Entscheidung
Hier: Anzahl Stimmen = Basis-Wahrscheinlichkeiten
Kombinationstabelle:

— Berechnung der Summe der Basis-
Wahrscheinlichkeiten fur jede Entscheidung

— Relative Mehrheit flr eine Entscheidung
=> Zwischenentscheidung entsprechend Mehrheit

Berechnung der Glaubenswerte entsprechend der Tabelle

13
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Erweiterung der Dempster-Shafer Theorie VI

Mdoglichkeit der Realisierung von Gewichtungsfaktoren
Gewichtungsfaktor g(X,) fur jede Einzelentscheidung

— Multiplikation der Basis-Wahrscheinlichkeiten
mit den Gewichtungsfaktoren

m(X,)=g(X,)m(X))

]

— Ersetzen der Basis-Wahrscheinlichkeiten
durch Gewichtungsfaktoren

14
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Vergleich anhand einiger Beispiele — Beispiel Ia

Fusion von zwei Klassifikatoren I
- m(A,) und m(B,) sind variabel

— Zusammenhang fur bestimmte Werte von m(Z,)

Bayes'sche -
Kombinationsregel

» Sehr variable Zuverlassigkeiten der individuellen Klassifikatoren 15
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Vergleich anhand einiger Beispiele - Beispiel Ib

Fusion von zwei Klassifikatoren II

Dempster-Shafer Theorie (DST):
Mit AND-Gate "% Mit OR-Gate ™%~

0

A

m(Z,)=0 m{A,) m(z,)=0.5 mZ)=0  m@z)=05 MA)

» AND: Zuverlassigkeiten der Klassifikatoren = Gesamtzuverlassigkeit

0f 05

» OR: Zuverlassigkeiten der Klassifikatoren < Gesamtzuverlassigkeit 16
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Vergleich anhand einiger Beispiele — Beispiel Ic

Fusion von zwei Klassifikatoren III

Erweiterung der Dempster-Shafer Theorie:
Mehrheitswahl ™4™ __Gewichtete Wahl ™™

-

1

m(8,)

0

05 | 1 i 05 i
m(z1)=0 m(A1) m(Z1)=0_5 m(Z1)—0 m(A1) m(Z1)—D.5

» Mehrheit: Linearer Zusammenhang der Zuverlassigkeiten

» Gewichtung: Unterteilung m(A,) < oder > 1-m(B,)=m(B,) 17
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Vergleich anhand einiger Beispiele — Beispiel 11

Zuverlassigkeiten der Klassifikatoren A, B, C und D

80 90
90 95
70 85
80 80

Berechnung der Basis-Wahrscheinlichkeiten aus Tabelle
— Klassifikator A
Entscheidung positiv: m(A,)=0,8 m(A,)=0,2
Entscheidung negativ: m(A,)=0,1 m(A,)=0,9
— Fur Klassifikator B, C und D entsprechend

UNIVERSITAT
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Comparison of BBF and BCR using theoretical example

Theoretical example: multiclassifier system

B Number of independent classifiers: four (4,B,D,E)

B Classifiers statements:
- Positive (Pos.): a specific event exists, or
- Negative (Neg.): no specific event

B Training data set: 400 samples (including 180 specific event)
B Confusion matrix CM*:

oy _| 16020 0} P(x €C,,, Jcl(x) = Pos.) = m(4,) = 80%
40 180 O
:180 o\ )] _\ P(x €C,,, [cl"(x) = Pos.) = m(4,) =20%
CM” = neS- P(x €C,, [c]"(x) = Neg.) = m(4,)=10%
a0 _[140 30 0 P(x €Cy,, [cl’(x) = Neg.) = m(A4,) =90%
|60 170 0]
. 160 160 0
40 40 0
| 18
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Comparison of BBF and BCR using artificial example

Fusion results of first three classifiers using BBF and BCR

N\ Degree of accuracy 100 : :
gleSgiier Pos. [%] | Neg. [%] I 5cr
A 80 90 %0 __LE
B 90 95 _
D 70 85 = Ly ]
E 80 80 M 1 Decision boundary
Q - ]
o .
Case| A | B D |bel(Pos.) [%]]|bel(Pos.) [%] < 40 3 K Y
1 |Pos.| Pos. | Pos. 90.20 98.82 2 I X
2 |Neg.| Pos. | Pos. 66.40 70.00 20 o B .
3 |Pos.|Neg.| Pos. 57.90 32.94 -l i L
4 |Pos.| Pos. [Neg. 75.90 86.40 0 ‘_ I. I- o
5 [Neg.[Neg.| Pos. 10.30 1.35 T N ¥\ & { A, T §
6 [Neg.| Pos. |Neg. 21.30 15.00 Case number
7 |Pos.|Neg.|Neg. 15.60 3.58
8 |Neg.|Neg.|Neg. 2.00 0.10
= The BBF led to plausible final decision for all scenarios.
= The plausibility of BBF is ensured by the comparison with BCR.
= Fusion results of BBF in case 3 seems to be more plausible than of BCR. 19
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Comparison of BBF and BCR using theoretical example

Fusion results of the four classifiers using BBF and BCR

100

| I 557 Case A B C D

I ECR Pos. | Pos. | Pos. | Pos.
N Neg. | Pos. | Pos. | Pos.
Pos. | Neg. | Pos. | Pos.
Pos. | Pos. | Neg. | Pos.
Pos. | Pos. | Pos. | Neg.
Neg. | Neg. | Pos. | Pos.
Neg. | Pos. | Neg. | Pos.
Pos. | Neg. | Neg. | Neg.
Pos. | Neg. | Neg. | Pos.
Pos. | Neg. | Pos. | Neg.
Pos. | Pos. | Neg. | Neg.
Neg. | Neg. | Neg. | Pos.
Neg. | Neg. | Pos. | Neg.
Neg. | Pos. | Neg. | Neg.
Pos. | Neg. | Neg. | Neg.
Neg. | Neg. | Neg. | Neg.

(=]
]

[y ]
]

Decision boundary

=
Lo |

bel(Pos.) [%]

[
=

0
1 2 3 4 5 6 7 8 9 101112 13 14 15 16
Case number

= The BBF led to plausible final decisions for
all scenarios.

= The difference of the final degree of belief
between BBF and BCR is up to 23%.

= Both methods led to similar final decisions. 20
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Vergleich anhand einiger Beispiele — Beispiel Ila

Fusion von drei Klassifikatoren [[IEacsRRANDIIRCRN ER e fesvichunsy

Case  A([%]) B ([%]) C ([%]) bel(p) [o] m(Z_1)[%] m(Z_1)[%] m(Z_1)[%] m(Z_1)[%]
1 Pos. (80)  Pos. (90)  Pos. (70) 98,82 50,40 99,40 90,20 90,40
2 Neg.(90) Pos.(90) Pos. (70) 70,00 6,30 97,30 66,40 66,40
3  Pos.(80) Neg.(95) Pos. (70) 32,94 2,80 94,30 57,90 57,90
4  Pos.(80) Pos.(90) Neg. (85) 86,40 10,80 98,30 75,90 75,90
5  Neg.(90) Neg.(95) Pos. (70) 1,35 0,35 74,35 10,3 0,35
6  Neg.(90) Pos.(90) Neg. (85) 15,00 1,35 92,35 21,30 21,30
7 Pos.(80) Neg.(95) Neg. (85) 3,58 0,60 83,85 15,55 15,48
8  Neg.(90) Neg.(95) Neg. (85) 0,10 0,08 27,32 2,60 0,08

» Keine plausiblen Ergebnisse mit DST mit OR- und AND-Gate

» Ahnliche Ergebnisse mit BK,
Erweiterung mit Mehrheitswahl und Erweiterung mit gewichteter Wahl

Ausnahme Case 3
BK berucksichtigt Komponenten
mit hoher Zuverlassigkeit starker

UNIVERSITAT
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Vergleich anhand einiger Beispiele — Beispiel IIb

Fusion von vier Klassifikatoren

Case

16

A ([%])

Pos. (80)
Neg. (90)
Neg. (90)
Neg. (90)
Pos. (80)
Pos. (80)
Pos. (80)
Neg. (90)

B ([%])

Pos. (90)
Neg. (95)
Pos. (90)
Pos. (90)
Neg. (95)
Neg. (90)
Pos. (90)
Neg. (95)

C ([%])

Pos. (70)
Pos. (70)
Neg. (85)
Pos. (70)
Neg. (85)
Pos. (70)
Neg. (85)
Neg. (85)

D ([%])

Pos. (80)
Pos. (80)
Pos. (80)
Neg. (80)
Pos. (80)
Neg. (80)
Neg. (85)
Neg. (80)

bel(p) [%] m(Z_1)[%] m(Z_1)[%] m(Z_1)[%]

99,70
5,18
41,38
36,84
12,94
10,94
61,36
0,03

40,32
0,28
1,08
1,26
0,48
0,56
2,16
0,02

99,88
94,87
98,47
97,84
96,77
95,44
98,64
41,86

89,90
34,92
47,73
45,45
41,38
39,50
52,10
4,06

» Keine plausiblen Ergebnisse mit DST mit OR- und AND-Gate

» Gleiche Gesamtentscheidung mit BK,

Erweiterung der DST mit Mehrheitswahl und gewichteter Wahl
=> Korrektheit der neuen Methoden

» Eindeutige Entscheidungen bei Erweiterung
mit gewichteter Wahl (z. B. Case 7)

m(Z_1) [%]

99,88
8,31
17,31
18,32
12,56
13,82
80,38
0,58
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Diskussion der Ergebnisse anhand von Testdaten I

— Testdaten: Datensatz mit 40 manuell klassifizierten Objekten (Steine)
— Signale der Sensoren => Filter, Klassifikator => Entscheidungsvektor

— Berechnung der Quoten:

_Anzahl der richtigen positiven Entscheidungen
Anzahl aller positiven Entscheidungen

TPQ

_Anzahl der richtigen negativen Entscheidungen
Anzahl aller negativen Entscheidungen

TNQ

_Anzahl der richtig erkannten Steine
Anzahl aller existierenden Steine

_Anzahl der Fehlausldsungen
Anzahl aller Entscheidungen

21
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Diskussion der Ergebnisse anhand von Testdaten 11

Quoten der Beschleunigungssensoren und des Laserscanners

50,00 50,00 45,00 32,50 90,00
11,25 16,25 15,00 6,25 1,25 2,50

» Laserscanner ist die Komponente mit den
hochsten Korrektheits- und Erkennungsquoten

» Drei mogliche Vorgehensweisen zur Fusion
* Fusion der Beschleunigungssensoren
* Fusion aller Sensoren gleichwertig

* Fusion der Beschleunigungssensoren mit dem Laserscanner
22
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Diskussion der Ergebnisse anhand von Testdaten III

Ergebnisse: EQ[%] FQ[%] N
N iti Bayes 50 5 1
— INUr positive
Entscheidungen mit > Flriﬂsion_der A?\E 130 500 2
) eschleunigungs-
DST mit OR-Gate
bl Mehrheit 50 5 4
— Nur negative Gewichtung 50 5 5
Entscheidungen mit Bayes 92,5 4 6
DST mit AND-Gate OR 100 50 7
Fusion aller
. : : AND 0 0 8
— Ahnliche Ergebnisse Sensoren
bei mehreren Mehrheit 65 1,25 9
Methoden Gewichtung 65 1,25 10
Bayes 90 2,5 11
Fusion der OR 92,5 6,25 12
Beschleunigungs-
sensoren mit dem D Sk 122 13
» Entscheidung fiir eine Laserscanner Mehrheit 90 2,5 14
A Gewicht 90 2,5 15
Methode schwierig ewichiung >3

DRI T Rothe, S.: Multi-Klassifikatorfusion basierend auf der
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Diskussion der Ergebnisse anhand von Testdaten IV

. . . Opti
— Gutefunktion o 27 ™,
9]

G:\/(1—FQ)2+EQ2 %0 S 14:15
_ Optimum: EQ=1, FO=0 :
G=v2 60 9,10
— Die Fusionierung entsprechend § 50 13
den Nr. 6, 11, 12, 14 und 15 _—n

weisen eine ahnliche Gute auf. -

20
0 3:8

0 10 20 30 40 50 60 70 80 90 100
1-FQ [%]

» Beste Gute bei der Fusion aller
Sensoren mit Bayes'scher Kombinationsregel (Nr. 6) 24
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Diskussion der Ergebnisse anhand von Testdaten V

— Dempster-Shafer Theorie nicht fur Fusion
von mehr als zwei Klassifikatoren geeignet

— Wichtigste Komponente zur Steinerkennung: Laserscanner
— Fusion aller Sensoren:

* Bayes'sche Kombinationsregel: hochste Erkennungsquote, da
Komponenten mit hohen Korrektheitsquoten starker
berlcksichtigt werden

— Fusion der Entscheidungen der Beschleunigungssensoren mit der des
Laserscanners: gleiche Ergebnisse mit

* Bayes'sche Kombinationsregel
* Erweiterung der Dempster-Shafer Theorie mit Mehrheitswahl

* Erweiterung mit gewichteter Wahl

DUISBURSGE .
ESSEN Zuverlassigkeit individueller Klassifikatoren
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Diskussion der Ergebnisse anhand von Testdaten VI

Zielvorgabe: EQ >= 90%, Minimierung der FQ

27
— Alle Sensoren mit BK (Nr. 6) R~ | ’
90 i z ?
— Beschleunigungssensoren mit ARNE & =Sl U D . A
Laserscanner ;
* DST mit OR-Gate (Nr. 12) 6o ®
+ BK (Nr. 11) = 50
- Erweiterung mittels "2
Mehrheitswahl (Nr. 14) 301
201
* Erweiterung mittels
gewichteter Wahl (Nr. 15) RIS |
% 10 20 30 40 50 60
FQ [%]
» FUnf Methoden erflllen das Ziel des Steinerkennungssystems. -6
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Zusammenfassung und Ausblick I

— Entwicklung von zwei neuen Fusionsmethoden
— Erweiterung der Dempster-Schafer Theorie
« Mit Mehrheitswahl: Plausible Ergebnisse

* Mit gewichteter Wahl: eindeutige
Entscheidungen bei gerader Anzahl an Klassifikatoren

« Moglichkeit der Realisierung von Gewichtungsfaktoren
— Vergleich der neuen Methoden mit vorhandenen Fusionsmethoden

- Ahnliche Ergebnisse wie bei Bayes'scher Kombinationsregel
=> Korrektheit der neuen Fusionsmethoden

— Ausblick: Bestimmung von Gewichtungsfaktoren,
Optimierung der Filterung der Beschleunigungssensordaten,
Bestatigung der Ergebnisse durch Auswertung weiterer Testdaten

DRI T Rothe, S.: Multi-Klassifikatorfusion basierend auf der
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Vielen Dank fur Ihre Aufmerksamkeit.
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Motivation I 1

A fundamental change in understanding
how fault detection and fault diagnosis is realized,
occurs due to the use of modern information science-based approaches.
Relevant terms are changing, methods are changing:
> Vibration Monitoring
> Fault Detection and Isolation
> Structural Health Monitoring (SHM), Prognostic .... (PHM)
> BIG DATA

> ?
YIS A
!-‘:.--
UNIVERSITAT Soffker, D
DUISBURSG From data-driven NDT of systems to BIG DATA-based modeling
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Motivation I1 2

Reality
» Supervision and monitoring of systems are becoming more and more popular.
» Related approaches should use existing information and sensor data.

» Information and knowledge can be established
using this kind of extensive data usage (> modeling, BIG DATA-based ...)

Ideas and goals of this presentation

¥ Demonstrate the change from signal- to model-based to data-driven approaches

» Illustrate the effect of suitable sensor filtering in combination with data-driven approaches
» Introduce to AI/Machine learning approaches (ideas)

#» Show how this can be realized (realized by SRS)

» Illustrate the change vom 1st-order principle thinking and modeling
to data-driven approaches

= Here: focus to existing research results of the Chair of Dynamics and Control, U DuE

UNIVERSITAT Sﬁffker, D.:
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ST © for all figures/illustrations by SRS U DuE




Outline

® Motivation

» I How FDI (NDT for vibrational systems) was realized years ago: crack detection
- From the modeling of errors, faults, changes, and effects to
- the analysis of effects (Fault detection and isolation)
- Signal- and model-based FDI
- Example: crack detection of rotors (198x-199x)

» II Looking for unique features: using AE leading to data-driven FDI (SHM) today
- How to understand complex behaviors/changes?
- How to use and how to find unique characteristics?
- Example 1: Wear analysis and damage distinction (metal)
- Example 2: Damage distinction (CFRP)

» III Using AI/Machine learning
- Principles and how they can be used?
- Example: Remaining useful lifetime calculation using
trained/optimized state machine model

# IV Next step: BIG DATA-based modeling and analysis
- What are the changes and the key tools in this,new world'?
- What is possible, what can be obtained, what do we lose?

» Summary and outlook

UNIVERSITAT S&iffker, D.:

DUISBURG From data-driven NDT of systems to BIG DATA-based modeling
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I How FDI (NDT applied to vibrational systems)
was realized years ago?

Diagnosis to realize safe operation and perfect functionality
Detecting faults like

— contacts

- cracks Disturbances:

~ delamination considered as unknown
— unbalance inputs

B

I

Measurements
>
>
u(t)

Problem solution I

Estimation of unknown inputs

(using observers etc.) Pl-Observer

Y
Problem solution II Di _
Analyzing the output Estimation of lagnosis
-4-

UNIVERSITAT Sﬁffker, D.:
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I Modeling of the considered rotor system (practical example)

Sensor Crack Sensor

2 O

el [ [i] Ll ] ] Ll L)y

IS

Bearing Unbalance Bearing

System parameters
Length: 4.2 m
Radius: 0.14 m
Damping: 9e3 Ns/m
Stiffness: 3e7 N/m

(Siemens, KWU)

State-space model

x = Ax+ Bu
y = Cx A: System matrix B: Input matrix
0 I 0 C: Output matrix x: State vector
A = ~ - B = - . Input vector : Output vector
~MK —-MYD +0G) M-ip| U.lnp y: P
M: Mass matrix D: Damping matrix
N7 [C 0], and y = y K: Stiffness matrix G: Gyroscopic matrix

=» State-space model (based on FE approach) be used as analytical reference

UNIVERSITAT Séffker, D.:

DUISBURSG From data-driven NDT of systems to BIG DATA-based modeling
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I Modeling of the considered rotor system: mode shapes 6

Parallel Mode: 21.4 [Hz] Tilting Mode: 45.8 [Hz]

= The first four (forward) bending modes are illustated. (Ass.: Rotation speed: 9000 rpm)

UNIVERSITAT Séffker, D.:
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I Modeling of the considered fault: crack modeling 7

Crack model (Gasch, 1976)

nl 0 hi | F,

ha

]?r - T

£ Deflection in crack direction

Fe: Force in crack direction

h Compliance

hy Addtional compliance

hy Relative crack compliance
> Open crack leads to an increasing compliance in crack direction.

Result 1: Nonlinear dynamical behavior results even in case of linear base systems
Result 2: Linear reference models may not be suitable

UNIVERSITAT Sﬁffker, D.:

DUISBURSG From data-driven NDT of systems to BIG DATA-based modeling
2o © for all figures/illustrations by SRS U DUE




Complex behavior of the
considered rotor system

5
IR =6
%0
TEM 605 B1D 615 0 100 e
Tias (4} J-'t'tq,u.-m‘p Mmzi

[
2

Miiller, P.C.; Bajkowski, 1.; Soffker, D.: Chaotic Motions and Fault Detection in a

Cracked Rotor. Nonlinear Dynamics, Vol. 5, Issue 2, 1994, pp. 233-254.

AT T ) 100 0 300
W, AT Fregqaancy |Hal

h.: = 0,090

Az L] 100 b 300
A AT Frequescy (HE)

I1r = p.io2

= il b 100 1M 30
= Crack may also lead to complex o -
vibrational behavior depending on crack k- T s
depth and damping ” ll -
=> Difficulties to distinguish and -} "
to allocate effects ol T . L
600  B05F  E1R LIS 0 140 00

Timk (8} Frequency [Ha)




! |
I Model-based method: PI-Observer* o Nn |
! !
n~ Hv u(t) i Py =(t) [ I y(t)
| ll_|_ |
v =Fv+ Gu i |
0 0 1 0] i A ) t |
0 0 0 1 | . ____ - _Nonlinear system |
G - O F N _.JJ2 U U U : *********************************** **1|
0 —w? 0 0] : ) |
| + B(t) T- |
Modeling rotor system with crack i O+ NH e L / j} Ly « i
ny - h _— | |
x| [A NH x| [B ; F |
vl = lo F||v| " |o|" | N i
) | + ¥+ i:t‘ |
y=[c o ¥ CLE LTl |
_ v | |
| |
Observer | N |
: Disturbance observer I

x| [A-L,C NH|[x| [B AL 7 MR G e S S et J

o I S G H S B ) i § Y

\% — L2 v 2 * Soffker, D; Yu, Tie-Jun; Mdller, P.C.: State Estimation of Dynamical
Systems with Nonlinearities by using Proportional-Integral Observer.
International Journal of System Science, Vol. 26 (1995), No. 9, pp. 1

= Result: the model-based approach allows to estimate
the dynamical behavior of crack-equivalent forces and unmeasurable displacements.

UNIVERSITAT Sﬁffker, D.:
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I Data-driven method based on trained classifiers 10

Classification system based on two main modules

® Feature extraction module:
Extraction of reliable features using DWT/RMS

® C(Classification module:
Classification of the extracted features using SVM

[ Sensor Data H Wav;licle:é?MS }4’{ SVM Filter ]—>{ System State

UNIVERSITAT Sﬁffker, D.:
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I Signal analysis based on Wavelet Transform (WT) 11

Discrete Wavelet Transform (DWT)

e Comparison of the signals —> |_\_ —> A
with scaled and shifted mother wavelets Lowpass

Signal Filters

® Use of two complementary wavelet filters to decompose
the signal into A. and D. components L |_/_

—>»| D
Highpass
® Multiple successive level decomposition is applied to
realize a wavelet decomposition tree
X/, : . S
e Denoising is realized by selective l l
consideration of components

D1

[ ]

A3 D3

S1 S2 S3 S4
UNIVERSITAT Sﬁffker, D.:
DUISBURSG From data-driven NDT of systems to BIG DATA-based modeling
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I Learning and classification using Support Vector Machine (SVM) 12

I: Training II: Classification/real-time
once, can be renewed I application

I
I
1

, Predefined . Unknown testing

. training data ; data X
i
I

N\ AN PN . O NMEEER

Signal-based .

SVM training /learning |gr:r?0dealse : | SVM classification

’ I
i
:
:
)
1 | System state Y
|

UNIVERSITAT Sﬁffker, D.:
DEUSISSEEHU R G From data-driven NDT of systems to BIG DATA-based modeling
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I Results*: model-based approachl

13
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* Soffker, D.; Wei, C.; Wolff, S., Saadawia, M.S.: Detection of Rotor Cracks: Comparison of an old Model- with a new
Signal-based approach. Nonlinear Dynamics, Vol. 83, 2016, pp. 1153-1170.

>
>

Displacement and crack force estimations are perfect in noise-free cases.

The quality of the result depends on the signal (and the model).

UMIVERSITAT
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I Results*: model-based approach I1 14

Variation of damping

Estimated vibration on the crack node Estimated crack-force in X-dir. % 1 0-3
60 . 2000 . . £ 2 :
(O]
e
= — 1000} =
g £ Z = 1.5
— ) E
5 g 3
2 2 0 MR
= o O
S 20 £ g
< < -1000¢ o 0.5
& \ L
0 -2000 & 0 . -
1.405 1.41 1.415 1.42 1.405 1.41 1.415 1.42 1.405 1.41 1.415 1.42
Time [sec] Time [sec] Time [sec]
d=5e-6
—d=1e-5
—d=2e-5
——— Simulation

* Soffker, D.; Wei, C.; Wolff, S., Saadawia, M.S.: Detection of Rotor Cracks: Comparison of an old Model- with a new
Signal-based approach. Nonlinear Dynamics, Vol. 83, 2016, pp. 1153-1170.

-> No noticeable influence on the estimated displacements and crack force
-> Detectable effect on the reconstructed compliance hr

UNIVERSITAT Séffker, D.:
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I Results*: feature-based approach 15

Binary SVM classification

~N

® Binary training data

® Position and distance from the separating 5

hyperplane can be used

Decision value

® Easy to use for prediction of
remaining life time

Multiclass SVM classification

® Grouped training data

® Flexible scaling of cracks possible

® Larger implementation effort

9.2F

RMS of Wavelet (RY), drey, 6

8.8

Crack Size 1e-3|

8'6-| 1 1 1 1 1 1 1 1 1 1
9.2 9.3 9.4 9.5 9.6 9.7 98 9.9 10 1041 10.2
RMS of Wavelet (RX), dmey, 6 x10°

—~—

* Soffker, D.; Wei, C.; Wolff, S., Saadawia, M.S.: Detection of Rotor Cracks: Comparison of an old Model- with a new
Signal-based approach. Nonlinear Dynamics, Vol. 83, 2016, pp. 1153-1170.
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II Complex analysis: wear analysis and evolution I 16

Research goals

- Signal-based classification of wear states

- Signal-based/data-driven lifetime estimation
- How to find suitable features?

» Advantages: - Ability to use systems/components up to the end of lifetime
- Advanced production reliability due to known remaining lifetime
- Equipment/spare parts management in context Industry 4.0

» Main wear effects induced by insufficient lubrication
- Metal-on-metal contact
- Welding
- Cracks close to surface
- Particles
- Surface fatigue

Tribological system

=» Material removal causes Acoustic Emission (AE) and additional friction.
= Idea I: Acoustic emision can be used as wear indicator.
= Idea II: Changing frictional behavior used as wear indicator.

UNIVERSITAT Sﬁffker, D.:
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II Complex analysis: wear analysis and evolution I1 17

Lever arm

.__n,a-'llrﬂi.w,l
et l""«;"-a.,..‘
.>

Time

Test rig

Tribological
system

i

Force

NANNANNANNNNNNNNNNNNNNY

N

N

Differential cylinder

WL/ A7/ A/ AN

Z
2

C .
23 awe
Fatigue (rate) of tribological system adjustable by 3 %
» Programmable motion trajectory of wear plate -2 Time
(motion/pause ratio, shape of reference input, ...)
» Variable normal force (by lever arm)
» Variable lubrication (not depicted)
UNIVERSITAT Sﬁffker, D.:
DUISBURG From data-driven NDT of systems to BIG DATA-based modeling
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II Complex analysis: wear analysis and evolution III 18

Wear plates after a 20-days endurance test

Surface destruction

Pittings

Abrasion scratches

il Surface
| fatigue

VergreGenmg = 500X T
| — 1 mm Phota b, Zoit 14

Wear debris _‘ Steel pittings

=» Surface fatigue is the main wear mechanism. Additionally abrasion is detected.

UNIVERSITAT Siiffker, D.:
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ITI AE-based measurement and signal processing 19

Signal processing chain
FPGA-based filtering and analyzing of AE signals
Piezoelectric signal O I I
— =0 2
=
@ 9
| > % — §
) =2
7 g
=4 =
T
T 3 € 4 < —
= = = ' g |
N EWW%MMHMH
STFT, DWT, and CWT are realized to extract relevant E S
features related to damage. L st it ekl Y
samplés

= Strong correlation with typical, time-dependent process information (position, velocity, etc.)
= Revealing a connection between material changes (e. g. crack growth)
and system damage (probability of failure)

UNIVERSITAT Sﬁffker, D.:
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II Experimental results1I 20

AE energy distribution and derived AE accumulation over system usage

» Summation of

deterioration-equivalent 10.! ,x10°
AE energy: | | |
. - 1 1
damage accumulation hypothesis Lok
. S . -4 0.8
to obtain the deterioration- ), < Y, c
proportional information ; \ ' o
10 404 )
E 105 U 402 2
» Progression of 2 ' g
deterioration-proportional Y - =
information g 10+ X1 O
_(ac_cumulated AE_ener_gy): 102 1 L]
indicator of deterioration level 102 I <
10* Ho.6
10° 404
10 40.2
107 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 °
System usage (number of cycles)
UNIVERSITAT Sﬁffker, D.:
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II Experimental results II 21

Run-in phase
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Frequency examinations of AE signal

L

» Distinction between the three
major phases of system failure
» Identification of
- typical patterns
- transient wear events
- wear inherent frequencies
¥ Conclusion from recorded AE signal
to state-of-wear

E o o o B

02 06 1 14 18 x10°

Permanent-wear phase

S T S
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Frequency [MHZz]

Wear-out phase

= The STFT-transformed AE signals during
run-in and wear-out phase look similiar.
= The STFT is not efficient to establish

differences between the states. a0
Alternative choice: CWT/DWT 02 06 1 14 18 x10

|
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II Experimental results* II1I

22

Generation of unique features:
Frequency examinations of AE signal

» Distinction between the three
major phases of system operation
» Identification of
- transient wear events
- typical patterns

=
m
!

AE power

CWT of AE signal

15000

* Baccar, D.; Soffker, D.: Wear Detection by Means of Wavelet-based Acoustic Emission Analysis.
Mechanical Systems and Signal Processing, Vol. 60-61, August, 2015, pp. 198-207.

= Main goal: define unigue features connecting recorded AE signals to state-of-wear

UNIVERSITAT Séffker, D.:

DUISBURSG From data-driven NDT of systems to BIG DATA-based modeling
© for all figures/illustrations by SRS U DuE
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II Experimental results IV 23

CWT coefficients corresponding to frequency range [100kHz , 200kHz]

=

10

Pl
T

Cumulativ e AE energy
s =y
A L

0 1000 2000 3000 4000 S000 6000 7000 S000 9000 100

AE gnergy

0 1000 2000 3000 4000 S000 6000 7000 B000 S000 100 o Number of cycles
Systam usage (number of cycles)

= Frequency components appear in run-in and wear-out phases.
= Higher energy content in wear-out phase

UNIVERSITAT Séffker, D.:
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II Experimental results V 24
CWT coefficients corresponding to frequency range [200kHz , 300kHz]
;. 0.025 T
E 0.02F J_} - )10
W 005} ¥, y 1w
; 0.01 |
X 0.8 -
g 0.005
e 1 | [ 1 I [ 1 | L E DE"-\-
0 1000 2000 3000 4000 5000 GBO0OD 7000 8000 3000 10000 %
L 0.4
10° K
0.2
TN 0-
% 150 il
- 10000
% 10 " 1 LLEk Ll G000 iz
S0 4000
»H:I'Ii i L i i i i 1 L L 2000
0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000 Frequency 0o o

Systen usage (number of cycles)

Murnber of cycles

= Frequency components appear in run-in and wear-out phases.
= Higher energy content in run-in phase

UMIVERSITAT

Soffker, D.:
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II Experimental results VI 25

CWT coefficients corresponding to frequency range [800kHz , 900kHz]

w 100

i5
o,
3 =
< . x 10
< j e,
- -
B 05 Fo > 4 25-
E
O

0

L
. il |

0 1000 2000 3000 4000 S000 &000 7000 8000 9000 100 1
Systam usage (number of cycles)

Mumber of cycles

= Frequency components appear only at the end of permanent phase.
= Very low energy content
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Differences between maximum amplitude and minimum amplitude
of the frequency components in the different process phases

Run-in phase

2,5?1.50..._......_._.

350 550 750 950
Frequency [kHz]

= Run-in phase:
= Permanent-wear phase:
= Wear-out phase:

Permanent-wear phase Wear out phase

ogx10° 5*19
2 |

|
1.5 .
11 .
05| ﬂ5! I I
0 _-___-________ __I__I-

350 550 750 550 750 950

Frequency [kIIz] Frequency [kHz]

Frequencies from 300 kHz up to 600/700 kHz
Components about 550 kHz dominate
Frequencies close to 1 MHz are observed.

* Baccar, D.; Soffker, D.: Wear Detection by Means of

Wavelet-based Acoustic Emission Analysis.

Mechanical Systems and Signal Processing,
Vol. 60-61, August, 2015, pp. 198-207.
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II Diagnosis-oriented filtering using other data* 27

Use of hydraulic pressure signals effected by friction change

Accumulated

Generation of _
damage increments

Hydraulic pressure W
characteristic value

(AS)
gﬂ"-&,ﬁf”l \.~ Filte £l | | Rjfeer .M N
S W L 4 ——
o Tin;e | Time | AE— T|me

Generation of suitable characteristic value/feature

» Consideration of friction proportional pressure behavior
¥ Using of sliding window technique

e Sliding window-based calculation of characteristics

¥ Use of arithmetic mean

* Soffker, D.; Rothe, S.: New Approaches for Supervision of Systems with Sliding Wear:
Fundamental Problems and Experimental Results Using Different Approaches. Applied Sciences, Vol. 7, 2017, pp. 843.

=» Generation of characteristics are used for wear state evaluation.

UNIVERSITAT Sﬁffker, D.:
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II Comparison of methods * 28

Comparison of the three methods using identical test data
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of Systems with Sliding Wear: Fundamental Problems and
Experimental Results Using Different Approaches.

Applied Sciences, Vol. 7, 2017, pp. 843.
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* Soffker, D.; Rothe, S.: New Approaches for Supervision

=>» The three different methods show same results. Which one is true? Is there truth behind?

UNIVERSITAT S&iffker, D.:

DUISBURGSG From data-driven NDT of systems to BIG DATA-based modeling
SRR © for all figures/illustrations by SRS U DuE




II Defining unique features/physical damage distinction 29

Loading of meshing gears =3 Driven

B Cyclic loading

B Combined rolling and sliding s R

B Different damage modes \ s\
—  Micro-pitting (1) —
~ Pitting (2) \ 3\
—  Tooth-root crack (3) | s

(3)

Different damage modes of spur gears

© Chair of Industrial and Automotive Drivetrains, Ruhr-Universitdat Bochum

UNIVERSITAT Soffker, D
DUISBURG From data-driven NDT of systems to BIG DATA-based modeling
S © for all figures/illustrations by SRS U DUE




II Experimental setup I 30

Standard test rig (FZG1)

B Standardized for wear-testing of lubricated spur gears
B Two cylindrical gear stages (slave and testing gears)
B Static torque loading using calibrated weights
B Different loads indicated by Load Stages (LS)
B Principle of circulating power
# of teeth rpm
Wheel 24 1450
Pinion 16 2175

Specification of tested gears

a0

FZG standard test rig

© Chair of Industrial and Automotive

1 Forschungsstelle fir Zahnrader und Getriebebau (FZG) Drivetrains, RuhrAQivagsitat Bochiygs

UNIVERSITAT Séffker, D.:
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II Experimental setup I1

31

Measurement equipment
B Custom AE measurement system

B Sensors mounted outside the housing above
the pinion of the test gears

B FPGA-based data acquisition

Torque measurement shaft Electric dnve
lest gear s Torque clutch Slave gear '
)y 1 I:I - oy 4

L]

"

“In g
AE sensor position

Top view of FZG test rig
showing AE sensor location

© Chair of Industrial and Automotive Drivetrains, Ruhr-Universitat Bochum

© §RS, U DuE 2016

Data acquisition Feature extraction

b
.]t.m
I

Illustration of
AE measurement system

UNIVERSITAT Séffker, D.:
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II Experimental results I 32

Time domain signal: Normal operation

=
wh =

I
=
W

|

Normalized Amplitude
o

\ (*1) | | |
10 15 20 25 30
Time [ms]
Time domain representation of measurement signal

s
(Jl -

Fault-free gears
Transient, continuous-type waveforms
Distinct periodic pattern (*1), duration: ~1.7 ms

Correspondence with meshing frequency: 580 Hz

UNIVERSITAT Sﬁffker, D.:
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Time domain signal: Pitting fault

[

o} his

= n

e
@)
|

|
=
n
|

Normalized Amplitude
o

4o A2 3 4 s o6 7. 8 0 0 U L 13 1415 16 I
0 5 10 15 20 25 30
Time [ms]

Time domain representation of measurement signal

Pitting fault at single pinion tooth

Transient, continuous-type waveforms

Additional superimposed bursts every 16th period
Correspondence of periodicity and the number of pinion teeth

= Measurement signal: dominated by meshing of the gears

UNIVERSITAT Sﬁffker, D.:
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II Experimental results* II11 34

Wavelet analysis: Normal operation

Frequency [kHz]

LS10 LS8
25} -: oy 25TV T
2 28
3188 < 31
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41| > 4l
49 2 498
60 S 60§
7 3 7718
10 = 108§
180 1804 i
541 i Ui ol 11 L] il ' H”‘” ! ! h Al I b il i J‘”‘ i ! I ] w 541 Wi u o e Tl s VRl i u ““" “ ‘ S P T A W O TN AT
0 0.125 0.25 0.37 0.5 0 0.1875  0.375  0.5625 0.75
Time [ms] Time [ms]

Time-frequency domain representation of measurement signal

Fault-free gears
Baseline pattern at frequencies of [40 kHz - 60 kHz], localized in time
Similar patterns at different loads

* Wirtz, S.F.; Beganovic, N.; Tenberge, T.; Soffker, D.: Frequency-based damage detection of spur gear using wavelet
analysis. European Workshop on Structural Health Monitoring, Bilbao, Spain, July 5-8, 2016.

UNIVERSITAT Sﬁffker, D.:
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II Experimental results* IV 35

Wavelet analysis: Micro-pitting
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Time-frequency domain representation of measurement signal

B Deteriorated flank surfaces, matte gray appearance indicating micro-pitting
B Shift of baseline pattern down to [30 kHz - 40 kHz]
B Additional peak frequencies above 100 kHz

* Wirtz, S.F.; Beganovic, N.; Tenberge, T.; Soffker, D.: Frequency-based damage detection of spur gear using wavelet
analysis. European Workshop on Structural Health Monitoring, Bilbao, Spain, July 5-8, 2016.
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Wavelet analysis: Pitting

requency [kHz]
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Time-frequency domain representation of measurement signal

Pitting fault at single pinion tooth, no further surface deterioration
Peak frequencies similar to baseline pattern at [40 kHz - 60 kHZz]
Additional high-frequency patterns at [100 kHz - 400 kHz]

* Wirtz, S.F.; Beganovic, N.; Tenberge, T.; Soffker, D.: Frequency-based damage detection of spur gear using wavelet

analysis. European Workshop on Structural Health Monitoring, Bilbao, Spain, July 5-8, 2016.

UNIVERSITAT Soffker, D
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II FDI, here: distinction of damages in CFRP material

37

From sensors to decisions to decision fusion
» Individual feature extraction and classification of sensor signals
» Fusion using reliability of classification results

Sensor 1 v ] Classifier 1 Decision 1 E <
c o =)

Q O = s o ]

Sensor 2 & Classifier 2 | Decision 2 o @]
o (B ]

S S c o

X = ©

““ a =

Sensor N , Classifier N Decision N i -

[Al-Shrouf, 2013]

= Decisions show a certain reliability (correct, wrong)
=>» Decisions can be fused with other decisions > decision fusion

UNIVERSITAT Sﬁffker, D.:
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II Experimental results of damage detection in composites I 38

Experimental setup 1 sy

» Bending test rig
- Specimens of composite material
- Cyclic bending load with different
amplitudes and frequencies

» Acoustic Emission (AE):
Elastic waves emerging
within structures on
damage initiation or propagation

» Composite materials:
Frequency content of AE waveforms
as reliable descriptor of
underlying source mechanisms

1. Specimen
2 PET Sensor

3 Visc

4. Shder

5. Frume construction
6. Proximily sensor
7. Actuator

8. Crank

= Detection and distinction of damages within the material using frequency-domain features

UNIVERSITAT Séffker, D.:

DUISBURG From data-driven NDT of systems to BIG DATA-based modeling
SRR © for all figures/illustrations by SRS U DuE




II Experimental results* of damage detection in composites 11 39

Experimental setup*

» Specimen dimensions:
425 x 425 x 1.8 mm?3

#  Mounting specimens
using clamping system

—L Indentor

Clamping
system

» Quasi-static load applied manually in s e ————
transverse direction [ \ CFRP

plate
N A
» Sharp cone-shaped tool [Baccar, 2017]

Damage pattern
» Top side: indentation marks

» Bottom side: extensive damage
- Delamination
- Broken fibers
- Crack

Top )' Bottom

* Baccar, D.; Soffker, D.: Identification and Classification of Failure Modes in Laminated Composites by using a Multivariate

Statistical Analysis of Wavelet Coefficients. Mechanical Systemand Signal Processing, Vol. 96, 2017, pp. 77-87.
= Generation of data samples according to specific damages

UNIVERSITAT Sﬁffker, D.:
DUISBURG From data-driven NDT of systems to BIG DATA-based modeling
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II Experimental results* of damage detection in composites III 4o

Data samples with unknown labels 6 : 1
» Two independent specimens subjected to | Mos =
identical testing procedure ES g
» Measurement series of each specimen 2y ' '"‘ﬁ,;‘_:-,i
containing a total of 25(*) to 120 (**) datasets % N | (043F
» Five different excitation frequencies [2 Hz - 6 HZz] =3 ME
» Five different amplitudes [6 mm - 18 mm] ) ',
» Four considered damages ®  Oamplndefmm]
- Class 1: Delamination
- Class 2: Matrix crack 6 '
- Class 3: Debonding l”u
- Class 4: Fiber breakage ¥ O
» Three classification algorithms 7, | '“‘EE
- Support Vector Machine (SVM) 2 04F
- K-Nearest Neighbor (KNN) g, Z
0.2

- Artificial Neural Network (ANN)

12

Amplitude [mm]
* Wirtz, S.F.; Beganovic, N.; Soffker, D.: Investigation of damage detectability in composites using frequency-
based classification of Acoustic Emission measurements. Structural Health Monitoring, 2018, pp. 1-12.
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II Experimental results*,** of damage detection in composites IV

Results of classification and fusion of data samples with unknown labels T
ANNH
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II Experimental results*, ** of damage detection in compositesV 4

Results of classification and fusion of data samples with unknown labels II

' I u-'l
’l
!
¥

o

* Wirtz, S.F.; Beganovic, N.; Soffker, D.: Investigation of damage detectability in composites using frequency-
based classification of Acoustic Emission measurements. Structural Health Monitoring, 2018, pp. 1-12.

** Rothe, S.; Wirtz, S.F.; Kampmann, G.;Nelles, O.; Soffker, D.: Ensure the reliability of damage detection in
composites by fusion of differently classified Acoustic Emission measurements. In: Chang, F.K.; Kopsaftopoulos
(Ed.): Structural Health Monitoring 2017, Stanford, USA, September 12-14, 2017, pp. 1380-1387.

=>» Structure of fused results show similarities to all individual results

= BCR: Crisper decision for one class (0 % or over 80 % probability estimation)
= A new problem occurs: Is the automatic generated statement correct?

UNIVERSITAT Soffker, D
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II Experimental results* of damage detection in composites VI 43

Classification results and fusion ANN | knN [ reus T svm WV BCR
Complete datasets Accuracy 9250 95.00] 9667 96671 9583 9750
as validation and test Chss1]| 8333 91671 91671 9565] 91671 9200
= RKHS and SVM show the best Class 2| 91.30] 91.67] 95.65] 92.00] 91.67] 100.00
individual results . lchss3| 95651 100.000 100.00] 100.00] 100.00 100.00
regarding the accuracy, Precision Fepss 4| 100.00] 100.00] 100.00] 100.00] 100.00] 100.00
the average recall, Chass5| 9231 9231 96.00] 96.00] 96.000 96.00
and the average FAR. % 92.52] 9513 96.66] 9673 9587 97.60

= Using WV the performance
cannot be improved.

= BCR shows higher
performance measure values Recall

Chss 1| 8333] 9167 91670 91.67] 91.67 9583
Chss2| 8750 91.67] 91670 9583 91.67 91.67
Chss3| 91670 91.67] 100.00] 95.83] 95.83] 100.00
FON ave S ineasods’ Class 4| 100.00] 100.00] 100.00] 100.00] 100.00] 100.00
>R cisiopd €Xall, apNAR of Class 5| 100.00[ 100.00] 100.00] 100.00] 100.00] 100.00
class one is best using only 0 92.50]  95.00] 96.67| 96.67] 95.83|  97.50

SVM. Class 1 4.17 2.08 2.08 1.04 2.08 2.08
Class 2 2.08 2.08 1.04 2.08 2.08 0.00

* Rothe, S. et al.: Ensure the reliability of

damage detection in composites by fusion of Class 3 1.04 0.00] 0.00 0.00 0.00 0.00
differently classified Acoustic Emission FAR Class 4 0.00 0 OOI 0 00|| 0.00 0 00" 0.00
measurements. In: Chang, F.K.; ' : : . . .
Kopsaftopoulos (Ed.): Class 5 2.08 2.08 1.04 1.04 1.04 1.04
Structural Health Monitoring 2017, Stanford, %) 1.87 1.25 0.83 0.83 1.04 0.62
USA, September 12-14, 2017, pp. 1380-1387-
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II Experimental results of damage detection in composites VI

Classification results and fusiagn ANN | KNN [ RKHS| SVM | WV | BCR [BCR 1+4
Complete datasets Accuracy 92.50] 9500 96.67] 96.67] 95.83] 9583 96.67
as validation and test Class 1| 83.18] 91.86| 91.63] 9546] 91.63] 91.63] 95.46
> WV and BCR show worse Class2| 91.88] 92100 95711 9231 9210l 92100 9231
performance than the ~ |class3| 95.46] 100.00[ 100.00] 100.00] 100.00[ 100.00] 100.00
individual classifiers RKHS — |Preeson fep s al 100000 100,000 100.000 100.00] 100.000 100.00] 100.00
and SVM. Class 5| 9249 9249 96160 96.16] 96.16] 96.16]  96.16
= Static Ensemble Selection 0 92.60] 9520 96700 96.78] 95.98] 95.98] 9678

shows best fusion results
for fusion of ANN and SVM
although ANN has worst
individual results. Recall
= Improvement of results
compared to individual
results not possible

Class 1 83.34] 91.67] 91.67] 91.67] 91.67] 91.67 91.67
Class 2 87.50 91.67] 91.671 95.84F 91.67] 91.67 95.84
Class 3 91.67( 91.67] 100.000 95.84] 95.84] 95.84 95.84
Class 4| 100.00] 100.00 IO0.00|| 100.00] 100.00{ 100.00§ 100.00
Class 5| 100.00{f 100.00] 100.00] 100.00f 100.00] 100.000 100.00
9] 92.50[ 95.00 96.67] 96.67] 95.83] 95.83 96.67
Class 1 4.17 2.08 2.08 1.04 2.08 2.08 1.04
¥ Rothe, S. et al.: Ensure the reliability of Class 2 2.09 2.09 1.04 2.09 2.09 2.09 2.09

damage detection in composites by fusion Bfy b Class 3 1.04 0.00 0.00 0.000  0.00 0.00§ 0.00

differently classified Acoustic Emission Class 4 0.00 0.00 0_()0|| 0.00 0.00 (),()()I 0.00
measurements. In: Chang, F.K.;

Kopsaftopoulos (Ed.): Class 5 2.08 2.08 1.04 1.04 1.04 1.04 1.04
Structural Health Monitoring 2017, Stanford, %) 1.87 1.25 0.83 0.83 1.04 1.04 0.83
USA, September 12-14, 2017, pp. 1380-1387.
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III Principles and how they can be used 45

How Data-driven approaches works?

» Supervised data-driven approaches (SVM, KNN, ANN, RT, HMM, Regression-based ..., ....)
are using data (input, output, both) and given classifying knowledge

#» Non-supervised approaches (K-means, ANN, GM, HMM, ...)
are using data (input, output, both) and internally generate internal relations
> IF data-sets are extreme large > BIG-DATA (using other analytical tools)

» Feeding the approaches with data and knowledge leads to so-called data-driven models
> trained data-driven I/0O-models establishing relations between I/0

> feed the algorithms with data => train the model (Training)
> use the trained model with unknown data => test/apply the model (Test)

» Training is denoted as learning > Machine learning denotes automated modeling
#» Several approaches compete for ‘free lunch’.

» In case of classification:
detection rate, false alarm rate etc. (ROC) are used for evaluation.

= Data-driven/Machine Learning/Training: similar terms for generating data-based models
= Established models are not related to first principles.

UNIVERSITAT Séffker, D.:
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III Principles and how they can be used 46

How Data-driven approaches works?

e E Fauli E -
A aull i
E [l
e uft) wit) E
a Syslem a
gl E 8
= = =
@ .
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|—
b, N =
Z S
E ? Slatemant E
= ML-Algorithm ' > s
-E F_.'-'lmf.l B %
)| %
m
= Advantages: = L
easy to establish. 7
- Disadvantages: o, . =
- . L o Statement =
- Difficult to interprete yiy | Liparameters) == 2
(beside the statement itself) o Fault i g
- Not necessary reliable g
- Wrong generalizability. .
UNIVERSITAT Sﬁffker, D.:
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III Example: Establishment of a data-driven RUL model I 47

Remaining useful lifetime as key variable within the
Prognostic health management (PHM) view

Monitoring Diagnosis Prognosis
Data —»|- Fault detection +»- Fault indicator —»- Degradation path ™ RUL
- Health assessment | |- End of life
A
c
Q
w X
t m
© 2| Monitoring
73 data RUL
0 e > > VO o’ ) .
» RUL: distance from prediction time
IS @) T - Failure state (t,) to end of life (EoL) time
Trr———————+——————+ —-Threshold
3 \ RUL = EoL-t,; EoL > ¢,
Predicted
N .
degradation _ _
path » EolL: based on predicted degradation
path exceeding threshold (Tr) and
reach failure state
0 —p
tp Eol Time
Correlation of degradation index and lifetime
UNIVERSITAT Sﬁffker, D.:
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III Example: Establishment of a data-driven RUL model II

48

Prognostic process based on state machine scheme

Degradation Identify current \fetime

data machine state equation RUL estimation
selection

: ?I.J._I-w . Fl‘ J‘L * T - ‘ iw:— ‘ g o = ,_/

Ll -~ -|-
L . R e

| | I L N g | /
= — - 1
—_—
‘ |I |h- ”| = HES W ot A T e I
] Hid Y sl i

o v Suitable parameters required here
@ (=} (=} - ™)

Process flow:

(i) Degradation data as prognostic model input
(ii) Identification of current machine state

(iii)Selection and parameter definition corresponding of state specific lifetime equation
(iv)Estimation of overall RUL based on state-specific lifetime equations contribution

= Required suitable parameters (thresholds and design variables) has to be defined.

UNIVERSITAT Sﬁffker, D.:
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III Example: Establishment of a data-driven RUL model III 49

State machine model:
illustrative example (concept)

» All states correspond to three : i
degradation phases
Sl Frrr.nr.-n'ﬁ SZ F (Tr, DT,

» State selection according to
threshold (Tr) and input

= 53 S$4

decreasing/increasing trend v
(DT/NDT) F (I, DT, ~DT})
» Possible state transition paths:
i- From S1 (initial state) to Run-in phase Permanent wear Wear-out
S2 if Tr; exceeded 10 phase phase

..-
(=]

ii- From S2 to S3 if Tr, exceeded
and input increase (~DT)

iii- From S3 to S2 if Tr, exceeded
and input decrease (DT)

iv- From S2 to S4 if Tryis exceeded
and input increase (~DT)

,_
=]
e

AE power

o
E
e

il
(=] =]
- n

[=
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III Example: Establishment of a data-driven RUL model IV 50

A simple model: Type I*

» Feature values of AE data

directly used as input to Ve Vel N
prognostic model val > Tr,
» Thresholds are S1 AL S2 20, G3 S4
subject of optimization
» Threshold 1 (Tr;) excluded \/\/abTrz
from sorting procedure of & DT
NSGA-II
Val > Trgiss
& ~DT
State-machine topology
Val Feature value
Tr Threshold
S State-machine
DT Decreasing trend
* Beganovic, N.; Soffker, D.: Remaining lifetime modeling using State-of-Health ~DT | Increasing trend
estimation. Mechanical Systems and Signal Processing, Vol. 92, 2017, pp. 107-123.
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III Example: Establishment of a data-driven RUL model V 51

Lifetime equation for model type I*

» Each state leads to identical lifetime equations [Weng, 2013]
» 36 design parameters identified by optimization

aiq a4 aiy

S1: IT=agp+ 1+ es2(Fi-a13) 1 4 ears(Fi—aw) = 1 4 ea18F1

. _ ar A24 az7

SZ. LT = azo + 1 + eaZZ(Fl_a23) 1 + eaZS(Fl_a26) + 1 + eaZSFl
a a a

S3: LT =az + > < x

1+ e%32(fi—asz3) = 1 4 ea35(F1—aze) T 1 + e%38f1

41 (g4 A47

S4: LT =ag + 1+ ets2(Fi—as3) 1 4 easa(Fi—ase) ~ 1 4 ¢%8F1

LT Consumed lifetime (%)

ayy, | Design variable

* Beganovic, N.; Soffker, D.: Remaining lifetime modeling using State-of-Health F, Feature value
estimation. Mechanical Systems and Signal Processing, Vol. 92, 2017, pp. 107-123.
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III Example: Establishment of a data-driven RUL model VI 52

Model type II*

Try< Val «Try, Saa
» Accumulated AE data & ~DT

used as input to prognostic model . Val<Tr, Try< Val <Trag

» Thresholds are n ﬂ &DT
subject of optimization

Val>Tr Val > Trag fTrsnfTr,
. o . Sl ) | 52 Eli.lrr Elhlrr [ 1 > 54
» State 3 is divided into state 3a
and state 3b for more flexibility
rz< Val <Trgy
Trp< Val <Tr &I
& ~DT
State-machine topology
Val Feature value
Tr Threshold
S State-machine
* Jihin, R.; Soffker, D.; Beganovic, N.: Integrated Prognostic Model For RUL Estimation DT Decreasing trend
Using Threshold Optimization. In: Chang, F.K.; Kopsaftopoulos (Ed.): Structural Health ~DT Increasing trend

Monitoring 2017, Stanford, USA, September 12-14, 2017, pp. 640-647.
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III Example: Establishment of a data-driven RUL model VII 53

Lifetime equation for model type II*

» Each state leads to different lifetime equations
» 45 design parameters identified by optimization

Without significant change

aq7
1+ e4isf

a1
1 + ea12(F2—a13)

S1: LT =aq + +aiFp + ays K +

Not significant but noticeable change

az1 a4
1 4+ ea22(F2—az3) = 1 4 eazs(F2—aze)

S2: LT = apo + + a27ea28(1_Fz)

azq 34
1+ e%32(F2—a33) 1 4 eass (F2—aze)

S3a: LT =azg+ + az,e%380-F2)
a41 (44

asg(1—F2)
14 em2(F2—as3) 1 4 eaas (Fa—ase) T dae

SBb' LT = Q49 +

Significant change identified
as1 asy as7 LT | Consumed lifetime (%)

S4: LT =asy + 14 eas2(F2—as3) 1 4 eass(F2—ase) 1 4+ eassf2 ayy | Design variable

F, Feature value
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III Example: Establishment of a data-driven RUL model VIII

54

Optimization of the prognostic
model using NSGA-II

» Parameters optimization
using NSGA-II

» Fixed thresholds prone to error
when not set to optimal variables
[Bai, 2016]

¥ Objective functions:
minimize discrepancies between
observed (measured) and
predicted (based on the model)
lifetime

Offline

NSGA-Il optimization

Training
data

Normalization
and scaling

Initial population of ay,
based on dataset 1

+

Crossover and
mutation selection

l

Evaluation based on
dataset (2..n)

Maximum
generation?

YES

Optimized

parameter
stored

Online

Thresholds

4

1
Design variables

{

/ Test data F}

State
estimation

. Lifetime model
selection

RUL
estimation
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III Example: Establishment of a data-driven RUL model IX 55

Application of experimental data

Tribology test rig

Test rig H Lever arm
¥ Prognostic models deployed using r‘ Tribological g -
experimental data from tribology sysiQ@ \&@ J : |rﬂm|
test at Chair SRS, U DuE Aoy me//ﬂ = 7 S
» Consist of two metal plates sliding A N
on each other (in exact operating m Ik j ,/_] _,-g@- ,,,_\ || Differential cylinder
conditions) L ~

)
.

[Dettmann, 2009]

Position
(cylinder)
>
-
L

» Wear progress
due to tribological effect

» Generate AE energy until life ended
(run-to-failure data)

» Dataset used (different test runs)
- Training: Z15, 220, 221, Z22
- Test: Z16, Z24

5 £ 8 ¢

Maimalined s
Aniriagh ih: rermied []
o s

Manmalized sum
damage iferarment [

2 3 4
Tim ey e 4 10°

-

UNIVERSITAT Sﬁffker, D.:

DUISBURSG From data-driven NDT of systems to BIG DATA-based modeling
2o © for all figures/illustrations by SRS U DUE




III Example: Establishment of a data-driven RUL model X 56

Model evaluation: performance criteria

» Efficiency measurement based on overall RUL prediction

» Performance evaluation using Root Squared Error (RSE), Mean Squared Error
(MSE) and Absolute Error (ABE)

Mean Squared Error (MSE) Root Squared Error(RSE) Absolute Error (ABE)
4 1
0.45 =716 60
0.4 mZ24 140
0.35 » ) o £
0.3 100 ;;‘:; "
w0.25 w k™
:;22 v 80 -~
0.2 i i -
0.15 G0 =
. 40
0.1 5
0.05 ‘ 20
o N BN W B 0 0
Typel Type " Type ll Type II* Type | Type I Typell T'ﬂ]& n Type | Type I* Type Il Type lI*
Maodel Model Model

= Less errors obtained by model type II* compared to other models

UNIVERSITAT Soffker, D
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III Example: Establishment of a data-driven RUL model XI 57
Evaluation: Model type | Model type I*
end of life estimation ' ' ol
106 | a 216
L+ aQ 716 724
N 2104 *~ 104f N
» Prediction of EoL ®
3 £ 102} 102}
based on n % = 3 N 6 o 0 0 0 © © 5 © 0 o o
available r-;:mu—— TTeTTe T8 T e T T e e L miairtuil Sale aiuk Tabe ek nil Tobe diub e
measurement data g %/ o °
» Real EoL considered e | | . | o6} . | . .
when system reach 0 20 40 60 80 100 0 20 40 60 80 100
100 % lifetime Model type Il Model type II* 1
» Closer to 100 % | o zie | 108 ozie
better EoL prediction =™ A
41E]. 102 \ o s " (< 102F
B 10— ————= -:---i’--.- ------------- 1'}':"___5__"_'5__!‘__5'_I_T_i__g__"
E sal @ ‘ 61
- =] ! e
1] 20 40 G0 80 100 0 20 40 G0 an 100

Number of available measurements [%]

= Type I*: Able to estimate lifetime from the beginning (20/25/30%) of system life
= Type II*: Perfect estimations (errors +1%) of EoL at the very beginning of lifetime

Number of available measurements [%]

Soffker,

UMIVERSITAT

DE l.ls ISSEE"U R G

D.:
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III Example: Establishment of a data-driven RUL model XII 58

Simple fold cross-validation

» EolL estimated using model type II* for six training and test datasets variations
» Observation based on number of available measurement and lifetime prediction

Model Type II*

1o | ' O Z16-G1
1
108 O Z16-G2
— 106 | 10 722-G3
=2
2104 1 10 Z15-G4
@ i 0 o | Z15-G5
E 102 Q * * ° © © < O 0 721-G6
E 100 . g g g g g f;r i_;} Q J" 224-G1 Group | Test dataset
D 98 0 ) 4 * * * Z15-G2 Gl | 716,224
w 96 1% 721-G3
2 94 1% 722.G4 G2 716,715
gol | Z224Gs G3 | 222,221
o0 ; L , , 220-G6 G4 | 715,222
0 20 40 60 80 100 G5 | z15,224
Number of available measurements [%] G6 | 221,220

= Estimated results independent from training and test datasets variations
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IV Next step:
BIG DATA-based
modeling

and analysis 1

What are the changes
and the key ideas
in this ,new world'?

= We use (as users):
Suitably choosen
Machine-learning
approaches

=> We get:
Automated modeling
and decision making
We lose(*):
- Interpretability
- Robustness

Signal-based

Model-based

Data-driven

i i

] : i+ Use of Ay(t) for FDI : i Interpretation of Ay(t) by I

! % A | ' expert (human, artificial) |
My spem (U, 5 i

i H8 i {1 | !

i e il .

: X iy i

: i ¥ !

i i 1 1

| (] | i

| i P n i

i 1 (R | .

i 11 (| .

i i (] ]

i i1 | |
1 1l Tl L
i I i 0 !

: 2 o ™,
! |1+ Use of I/O-relation (u(t), y(t)) | |- Best case: l

! s % w11 forgeneration of reference | | Interpretation not required |

| —7—+ Swem L+ i model ' 1= Worst case: :

: " 11 Use of residuum e(t) for FDI 1 ' Residuum allows only fault |

] b '+ detection :

| Estabiishmasnt of ' L :

: rifesrencs maosdel 11 : : I

L] i1 11 i

i i [ | ]

i 11 i1 i

i i 1 | i

: bt o i i l

,: .'.-"n'-lr-dj'ub:.;':fwr!-'-l : : : : :

i 11 i1 1

i 1 ] i

i I i ¥

! i i L
H i B 1

[ :‘I ] ll"‘"'
: S i1+ Use of VO-relation and \ 1 * Model is not interpretable

: _ —6—‘ _ i1 label information ' 1 (Exception: Residuum |
b spwem " |} « ML-Algorithm determines ! !  allows only fault detection) |

! — O\ || suitable model para- ' 1« Model validation is l
v [Fault i uitk ¥} 't meters using training Bx challenging :

! 'y dala 1 1+ + Reliability depends on !

1 11+ Use of model to | + operating conditions and !

i i1 distinguish between i 1 the environment !

: v different faults b i
: ¥ ;
1 2 = v
P . S e ) i = (ot i S A SF B F L

L e e = T R S e

- . e A . . e . ) .



IV Next step: BIG DATA-based modeling and analysis 11 60

A new type of modeling:
we have to learn about the options, the risk,
and how to evaluate the results obtained

» Machine learning provides a large variety of new obtions

- Modeling > instead of 1st principle-based I/O-models
- Classification > instead of logic or thresholds
- Numerical results > replacing classical numerical models (experimental modeling)
» Risk: y ‘
Even easy to generate C ML Algorithm Model
. abel z
data-driven models are even models
» Evaluation
- becomes part of the election process, 4 Model w Statement
- is crucial for risk analysis, and y J (classes) >
- ensure robustness by defining bounds.
u Model w £
y ode J (variable)

= ROC-based evaluation of data-driven approaches becomes crucial.
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IV Next step: BIG DATA-based modeling and analysis I1I 61

A new type of modeling: now we have the tool to
- compare apples with pears and
- connect storks and babies

2

Y [ |
rd

Temperature
Failure
Usage
Maintenance
Spare part ordering
Stress

Strain

Acoustic Emission

information e
Input orders ™

Qil pressure
Exchange rates (§, €, ¥, ...)

= Increasing the horizon with allow to go the next steps
- fault > failure > RUL > maintainance > spare part logistics
= Do not forget to check causal mechanisms behind.

UNIVERSITAT Séffker, D.:
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Summary, conclusion, and outlook 62

Summary and conclusion

» Introduction to signal-, model-, data-driven FDI/NDT
- crack rotor, sliding surfaces, damaged gears, damaged CFRP plates
- Lessions learned:
> More clear fault-related statement (less interpretation required)
> Easy application of data-driven approaches (ML)

» Data-driven approaches allow complex modeling of complex relation
- health status of tribological system, damage distinction of damaged
CFRP plates, Remaining Useful Life (RUL)
- Lessions learned:
> Modeling is possible even no physical model exists.
> Detection rate+ has to be considered.
> BIG-DATA is similar to small data approaches (ML-based, critical aspects)

Outlook
» Big data relations (NDT-maintaince) will be considered in the near future.

» Reliability(*,**) and interpretability has to considered and improved.

* Rothe, S.; Wirtz, S.F.; Kampmann, G.;Nelles, O.; Soéffker, D.: Ensure the reliability of damage detection in composites by
fusion of differently classified Acoustic Emission measurements. In: Chang, F.K.; Kopsaftopoulos (Ed.): Structural Health
Monitoring 2017, Stanford, USA, September 12-14, 2017, pp. 1380-1387.

** Wirtz, S.F.; Beganovic, N.; Soéffker, D.: Investigation of damage detectability in composites using frequency-based

classification of Acoustic Emission measurements. Structural Health Monitoring, 2018, pp. 1-12.
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Thank you for your attention! 63

From data-driven NDT of systems
to BIG DATA-based modeling

Dirk Soffker

I"I‘_L.“I l”i_I . .
By Chair of Dynamics and Control (SRS)

University of Duisburg-Essen

soeffker@uni-due.de
WWW.Srs.uni-due.de

UNIVERSITAT Soffker, D

DUISBURG From data-driven NDT of systems to BIG DATA-based modeling
SRR © for all figures/illustrations by SRS U DuE




Introduction: Performance measures 64

Individual-based performance measures Assigned class
» Overall effectiveness of a classifier Posiive . P Negative
4 TP+TN . |3 <\ _
ccuracy = neca
N TP +TN+FP+FN @ Positive TP EN TP
» Classification error m 7+ PN
Error rate = FP+ FN E : I False pogitive rafe
| TP+TN#FP+ FN = | Negative | FP TN Fp
» False alarm rate/false positive rate AT
FAR = F—P Poiecision Specificin Acenrac
TN + FP rp I'N I'B TN
» Reliability of positive classification s sl & P T ER N
Tectsion = TP+ FP
» Detection rate (DR)/sensitivity/effectiveness to classify positive labels
Recall P
ECall = —m———
= TPTFN
» Effectiveness to classify negative labels
i picit TN TP | True Positive
PECLIICILY —= Y=
TN+ FP TN | True Negative
» Weighted harmonic mean of recall and precision 7P | False Positive
P (1 4+ B?)Recall - Precision
-score = .
B - Precision + Recall FN | False Negative
UNIVERSITAT Sﬁffker, D.:
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Motivation I 1

N3 Understanding the significance of the current situation in light
of pertinent operator goals improves situation awareness.

[Endsley, 1995] %

UNIVERSITAT Siiffker, D.:
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Motivation 11 2

Challenges

» Driver assistance systems and autonomous driving
are becoming popular.

» Related approaches are not really reliable.

» Difficulties in modeling real traffic scenarios
and human behaviors

Goals of this presentation

» Modeling individual human behavior with respect to
situation recognition and intention prediction

» Maximization of the reliability of related approaches with
respect to detection rate (DR) and false alarm rate (FAR)

= Here: improvement of real-time situation recognition and intention prediction accuracy

UNIVERSITAT Siiffker, D.:
DU ISSEBNU R G Intention and option: Modeling and recognition of human ...
© for all figures/illustrations by SRS U DuE ;




Motivation III 3

Overall goal:

Development of an individualized situation and intention recognition
for different human drivers/operators

Use of driver specific knowledge for supervision and assistance

« Establishing reliable situation and intention recognition
» Close the loop:
driver/operator <> supervision <> interface/automated system

Y
e >\ >
) Perception 'bomprehensmﬁ
of current state
BOD.DB - « Knowledge
R moon L
|
\_ O.B J \_ J
Situation recognition
UNIVERSITAT Soffker, D.:
DEUSISSEBNU R G Intention and option: Modeling and recognition of human ...
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Outline

® Motivation

» Situation-Operator-Modeling (SOM) approach
- Formalizing interaction
- Generating the action space
- Integration within the driver-vehicle loop

» Situation recognition using SOM-based CBR
- Concept of CBR-based modeling of interaction
- Generalization and individualization
- Application and results

» Intention prediction using FL-HMM
- Concept of FL-HMM for prediction of human behaviors
- Application and results

# Next step: closing the loop
» Summary and outlook

UNIVERSITAT Soffker, D.: rﬂ@
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Situation-Operator-Modeling (SOM) approach I 5

Approach: Situation-Operator Modeling (SOM) *
» Modeling event-discrete structural variable systems

» Simuliar to ‘state-action’ paradigm but
- using internal structure for modeling
- allowing modeling of discrete-event action sequences

Abilities

# Interpretation of real world events using

Situation and Operator
by means of

- Characteristics defining situations and operators
- Relation between characteristics/features

» Use of a formalizable model
for knowledge representation

» Generation of an action space

using sequences of situations and operators

* Soffker, D.: From human-machine-interaction modeling to new concepts constructing
autonomous systems: a phenomenological engineering-oriented approach.
Journal of Intelligent and Robotic Systems, Vol. 32, Issue 2, 2001, pp. 191-205

= Application of SOM for knowledge modeling

®: Characteristics

QO: Relations
C(' Function-oriented
" connections
Si SHl
Initial Following
situation situation

Graphical illustration of situation
and operator [Soffker, 2001]

S; & e Spe v e Sge—

[ - [ \ <" 4

- - i - ®

\ 5 2 -iS\—

\&

\ \
\ - v -
N J L]

— .55 /| S &

-

= o
© SRS:2011 o

/
— s

Sample of an action space
[Langer and Soffker, 2014]
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Situation-Operator-Modeling (SOM) approach I1 6

Prefilter: from sensors to situation

lfSensor data

Velocity

Distance to fr.
Acceleration
Steering ang.
Lane mark le.
Lane markri.
Turn signal left
Turn signal right

AN

Prefilter for data
lr compression

/@f ((L1=0)&(Lr= 1))ther?\

returnl

if (L1=0)&(1r=0))then

return 2

if (11=1)&(1r=0))then

k return3

( return [Si < threshold]

Q‘oooo

Situation—Characteristics/
Parameters

l

D1l s 3]
[real]

[no/left/right]

 left/right/left

and right]
[yes/no]

[no/left/right/

“ left and right)

[yes/no]

= Use of SOM and prefilters connecting measurements and (high-level) SOM-based state

UNIVERSITAT

D | B R
EUS SSE NU P

Soffker, D.:
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Situation-Operator-Modeling (SOM) approach III 7

Defining situations and
generating action space ) . ) )

t t t t
based on SOM: situ:;irgr?& situ:Iirc?QSZ situ;:irgr?S:a situggiroer?&

Generating the action space

» Automated definition of action space
Definition of possible actions

¥ Definition of useful actions T
» Evaluation of alternative action options .
¥ Definition of
action sequences for given goals T T
tHlJI\' t
Upcoming
options
A Upcoming and
. and conl connected
L‘Elff)mmg c;| action action logic

© SRS 2014

Action options within an action space

= Generation of i) all options, ii) best options, and iii) best paths
= Detection of critical states and transitions

UNIVERSITAT Soffker, D.: —
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Situation-Operator-Modeling (SOM) approach III 8

Integration within the driver vehicle loop

;- Evaluation of operator from driver \
Actual situation | Action space
&\
| S :
- —/
P 3 1 [no) P 3 2 [a .
Pre-definition of _ (S) o % Switches between
situation vector e Tiegs | |'e IF'**O* e driving modules
al 1,2,3) alfl |[r I‘L\g/-’ \\ Y 5 <
|, T L
v [real) lcp [left]) t \' . Interface d|sp|aying
iss [no/left/right]) dp [yes) | I'y ;'. : - evaluation and suggestion
[left/right/lef = /
P1® and right) \ J 4
alf [yes/no] f t . _ L J .
lep 1'2?{1::; /rri.;%r:__tl/ | Filtering (S_ltuatlon)_" L Evaluation | p O
| driving
ap |[yes/no)
) . "N
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Situation recognition using SOM-based CBR I *

Case base
» Fuzzy object-oriented knowledge base

» Storage of the modeled cases as class objects

» Retrieving the cases as rules

Casey 2 if (51) & (O1) then Sa; end;
Cases : 1f (S2) & (0O2) then Ss; end;
Cases - 1f (S3) & (O3) then Sy; end.

Class Situation

Class Operator

Class Meta_operator

C1: Integer <Fuzzified=
C2: Integer <Fuzzified=

Cj: Integer <Fuzzified>

Cn: Integer <Fuzzified>

P1: Integer <Fuzzified=
P2: Integer <Fuzzified=

Pr: Integer <Fuzzified=

—<>

Pm: Integer <Fuzzified>

O1: Operator
Q2: Operator

Of : Operator

Oq: Operator

6

Class Case
— > CaseNo: Integer <>
S1: Situation
O: Meta-operator/Operator
- Class S2: Situation
rak =1 zulb

—<>: Aggregation between

two classes

* Sarkheyli-Hagele, A.; Soffker, D.: Learning and representation of event-discrete situations for individualized situation recognition

using fuzzy SOM-based CBR.

Engineering Applications of Artificial Intelligence, 72, 2018, pp. 357-367.

Soffker, D.:
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Situation recognition using SOM-based CBR 11 10
Fuzzy SOM-based CBR process  Scene Adfion
» Fuzzification “ ~
¥ Retrieve (KNN*") [ > )
Indexed
» Reuse (inference) and defuzzification @
— I
» Revise
» Reconfiguration of M.F.* and fuzzification e
¥ Retain
» Feature selection (density-based algorithm) Yes indight - \
|
4 . E
¥ Case base indexing (KNN**) N \ =
e rom ot
Knowledge base
» Case base o R—
. Defuzzificati Fuzzy design
» M.F* design parameters (DB-FDP) ~arameters of M.F.
» Relevant features for indexing (DB-IX) ) " Revise es
» Indexed case base e
» User interface >
*: Membership function \ 8.5RS2015/
**: K-Nearest Neighbor Fuzzy SOM-based CBR cycle
UNIVERSITAT Sﬁffker, D.: ar
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Situation recognition using SOM-based CBR III 11

Experiment: Lane-change situation recognition

Situation recognition of movements of
ego-vehicle from the current lane to the adjacent lane

Situation patterns

» Lane-keeping (LK)

» Lane-change to left (LCL)

» Lane-change to right (LCR)

Abilities
» Learning different behaviors and
new experiences of individual drivers

» Evaluating the confidence of actual situations
to change the lane based on experiences

Goals

» Realization of fuzzy SOM-based CBR approach
» Evaluation of learning for situation recognition
» Evaluation of individualized situation recognition Lane-change to right

UNIVERSITAT Siiffker, D.: ar E
D.UIS BURGE Intention and option: Modeling and recognition of human ... W Uiy
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Situation recognition using SOM-based CBR IV 12

EXpe I‘i m ent: sceéna I'i o d eSCI'i ptiO n Number  Characteristic Range
. . . 1 Velocity of ego-vehicle [km /h] [0 220]
» Considering 6 test drivers 2 Lane number {L....4}
) ] . 3 D::Lstancc to vch%clc in front [m] [0 250]
B Seve ral d rivi ng usi ng simu Iator 4 D:.Lstancc to vch?clc l(;ft—frorlt [m)] [0 250]
5 Distance to vehicle right-front [m] [0 250]
T\ i 6 Distance to vehicle left-behind [m] [0 2 0]
. DrIVI ng Cond Itlons 7 Distance to vehicle right-behind [m)] [0 250]
. . . . .. istance to vehicle behind [m
_ Simulation of a highway with two driving lanes SR vl algad wR o0
i i i i 10 Velocity of vehicle left-front [km/h] [0 220]
In Cl u d I ng win d In g roa d 11 \’clocit; of vehicle right-front [km/h] [0 220]
— Several vehicles in the same driving lane 13 Velosity of vebicle mght-pehind femt/t o 229
T 14 Velocity of vehicle behind [km/h] [0 220]
— Possibility of two lane-change maneuvers 15 TTC for vehicle in front [s] 0 12]
: H 16 TTC for vehicle left-front [s] [0 12]
per min Ute In ave rage 17 TTC for vehicle right-front [s] [0 12]
18 TTC for vehicle left-behind [s] [0 12]
- - 19 TTC for vehicle right-behind [s] [0 12]
Sltuatlon assessment 20 TTC for vehicle behind |[s] [0 12]
. g Y 21 Accelerator pedal [0 1]
» Defined using a set of characteristics 2 Brogbedal (L}
23 rearbox 1,...4
» Update every 0.05 s 24 o Suglicator _ {0.1}
25 Heading angle between ego-vehicle and road  [-3.14 +3.14]
26 Steering wheel angle for ego-vehicle [-3.14 +3.14]
Operators for lane-change Set of characteristics
» Use of steering wheel
» Use of accelerator pedal
UNIVERSITAT Soffker, D.:
DUISBURSG Intention and option: Modeling and recognition of human ...
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Situation recognition using SOM-based CBR V 13

Experiment phases

» Offline training: Learning .
¥ Online training: Environment ]
Situation v
i dat i
recognition and Perception ‘ Perception \
learning *,** —
k Test: ~ CBR without - CBR CBR without
. ) situation recognition learning
Situation —
recognitior . =

Knowledge

.base'

Knowledge
‘ base '

Y

Performance Performance
evaluation evaluation

Offline training | Online training Test

* Sarkheyli-Hagele, A.; Soffker, D.: Fuzzy SOM-based Case-Based Reasoning for individualized situation recognition
applied to supervision of human operators. Journal of Knowledge-Based Systems, 2017, pp. 1-12.
* Sarkheyli-Hagele, A.; Soffker, D.: Online learning for an individualized lane-change situation recognition applied to driving assistance system.
IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA 2017), SAVANNAH, GA, March 27-31, 2017, pp. 1-6.

UNIVERSITAT Siiffker, D.:
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Situation recognition using SOM-based CBR VI 14

Experimental results: different lane-change behaviors

Using around 340 lane-change maneuvers done by the drivers #1,#2,...,#6

Clustering the behaviors based on average distance, velocity, and
time to collision (TTC) to the vehicles in front or right behind in the points P, P,, P;

Clustering the drivers based on maximum number of experience in each behavior cluster

Lane-keeping Lane-change Lane-keeping

Lane-keeping Lane-change Lane-keeping

St i st,ist, | St, | St, st}
P L\ s
® L | [V
W ==l — — — - —
a;| " ) -,
P, P, PP, P, P, PP,
2 = 'S [ BV A N PRy WA N a a5 . —
1 -
€0
— A o=
> -1:______ f/’/
o ¢
| | | | | J |
20 40 60 80 100 120 140
X [m]

2-dimensional representation of ego-vehicle trajectories samples
during lane-change maneuvers done by drivers

= Two groups of drivers (A: drivers #1,#2,#5, B: drivers #3,#4,#6)

Related lane-change points:

1 P: approximate start point

s

: approximate middle point
: exact point
: approximate end point

e
W

UNIVERSITAT

D I BURG
EUSSSEN
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Situation recognition using SOM-based CBR VII 15
Performance eval_uation Driver No. of lane-change experiences Driving duration time [m:s]
based on the experlments No. To left To right Online learning Offline test
» Feature selection approach #1 34 33 31:30 56:19
# 10-Fold cross validation e gV &8 28:15 38:44
. . #3 25 26 30:41 45:21
- Evaluation independent of the data
A #4 20 22 30:33 42:17
- Generalizability of the approach N | 3 Yoo =)
» Evaluation of learning process #6 28 29 32:21 39:22
» Evaluation of individualized recognition Experiments
Performance evaluation metrics Metric | Number of lane change situations which are
. . d TP |cC tl ized
¥ Recognition/Learning elapsed time OO PR
] . TP FN Not correctly not recognized
* Detection rate o TPEEN TN | Correctly not recognized
¥ False alarm rate = W F'P | Not correctly recognized
» Accuracy = p %ﬁ—i—%fl\; s Evaluation metrics
+ TN+ FP+
UNIVERSITAT Soffker, D.: — &
DUISBURG Intention and option: Modeling and recognition of human ... e iy
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Situation recognition using SOM-based CBR VIII

Evaluation: Situation recognition before and after online learning
» Training using offline learning
» Evaluation before and after online learning

Highlights

Driver Offline learning After online learning
NQ Detection rate False alarm rate Detection rate False alarm rate
#1 0.9522 0.0760 0.9794 0.0143
#2 0.9678 0.0465 0.9756 0.0129
#3 0.9714 0.0371 0.9646 0.0179
#4 0.9683 0.0335 0.9886 0.0074
#5 0.6551 0.0563 0.9654 0.0175
#6 0.9755 0.0335 0.9671 0.0147

» Improvement of detection rate in most of the tests
¥ Reduction of false alarm for all the tests to less than 2%

= Acceptable improvement of situation recognition by online learning application

UNIVERSITAT

D I B R
EUS SSE NU P

Soffker, D.:
Intention and option: Modeling and recognition of human ...
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Situation recognition using SOM-based CBR IX 17

Results: Situation recognition performance during online learning

» Training using offline learning ..
¥ Evaluation of online learning £

every 5 seconds 21
» Recognition elapsed time: 2 os | | |
0.04 sec in average 8 02 -
EO:A% |
» Learning elapsed time: G os MW\M M MM\ NM A NL |
0.3 sec in average E“”g\f\« AMS : MM NCn> ) AN ]
. 1 /1. : <10
U Driver #1 fime s
Highlights |
¥ Learning frequently }USF\WV\/
done in the first minutes < o
» Considerable changes in st W
situation recognition accuracy £:: _ _
» Effectiveness of online g M|
learning of new cases g Y L (ar® ) : o
2000 4000 6000 8000 '10000 12000 14000 16000 18000
Driver #2 Timedal

= Effectiveness and importance of online learning for situation recognition is illustrated.

UNIVERSITAT Soffker, D.:
DEUS ISSEBNU R G Intention and option: Modeling and recognition of human ...
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Situation recognition using SOM-based CBR X

Effectiveness of using individual and non-individual knowledge base (KB)

» Application of different trainers and users
» Evaluation through online learning

Left ane R — T 1 1 = Labeled
RN HH [ e H
' - |7 |7l « Recognized
Right IaneM L UL J- ‘ ‘ ‘ o}l ‘ ‘ “ H ‘ { L] situations
50‘| 502 5.03 504 505 506 50? 5.08 5','09,(104
Lane-change situations recognized using individual knowledge base
N4 . ﬂ- ] il N | AT T =41 « Labeled
‘ } ’ situations
TS A . |l @ _ Y ‘ - - “ ‘ "1.Recognized
| S
Right lane ;_J P L‘ i N ] lJ ; J Jd LJ y 2 ] situations
5.005 5.01 5015 502 5025 503 503 504 5045 505 5005 4
Time [s] x10
Lane-change situations recognized using not-individual knowledge base
Highlights
» Individualized KB: recognized situations nearly overlap the labeled situations
» Non-individualized KB: inconsistency between the recognized and labeled situations

= Considering individual driver behavior strongly affects the recognition properties.

UNIVERSITAT Sﬁffker, D.: — @
D U SEBNU R G Intention and option: Modeling and recognition of human ... L 4
S'S © for all figures/illustrations by SRS U DuE b




Intention prediction using FL-HMM 1 19

Concept using a prefilter-based (FL) multi-HMM approach *
» Data processing

» Driving behaviors prediction

#»  Optimization

Driving behaviors prediction

4 G N E
: Prefilter VS '
—» Fuzzy Logic ]—» Prefilter S :

Sensor : - P Estimated, states
signal | gglect : Prefilter D il Fusi states 1 Obiecti
™ data | - v/ ::[ usion }—-b{l jectives ]

Y

Actual

Poperation
Prefilter 1
\ operation operafio / ' -

N apa ol ([ Optimizing Optimized
\ / Te & lusing NSGA I model parameters

* Deng, Q.; Soffker, D.: Improved dring behaviors prediction based on Fuzzy Logic-Hidden Markov Model (FL-HMM).
IEEE Intelligent Vehicles Symposium, Changshu, Suzhou, China, 2018, pp. 2003-2008.

UNIVERSITAT Soffker, D.: rﬂ@
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Intention prediction using FL-HMM 11 20

Predicting behaviors: FL-HMM based on driving scenes
*» VS-, S-, and D-scenes distinguished by FL using d; and TT(
# Establishment of a corresponding HMM (HMM VS/S/D) for each scene

» Applying a prefilter for each HMM
to process and combine observation variables

¥ Observation variables: TTC values
¢ OQutput: probability of driving behaviors P, ...

Driving behaviors prediction

- \\ :
Prefilter VS '
Fuzzy Logic ]—» Prefilter S @ ;
) L ' lActuaI
ensor - p Estimated, states
signal < Prefilter D im; , states Obiecti
s, data L | Fusion }—vﬁ jectives ]
Poperation
; Prefilter %MW :
\ __operation operatio ' i
"““”_”“-““T-“”--ﬁqpo_omn (Optimizing} Optimized
\ ) gl i lusing NSGA I model parameters
UNIVERSITAT Soffker, D.: ——
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Prefilter

-
(__operation operatio /

Poperatfon

Intention prediction using FL-HMM 111 21
Predicting behaviors II: HMM based on drivers operation
# As a supplement to the model,
another HMM established based on drivers operation signals
» Applying a prefilter to process and combine observation variables
» Observation variables: Accelerator/brake pedal signal, steering wheel angle, etc.
» Output: probability of driving behaviors Py,qration
—rsn ! . Driving behaviors prediction :
:/ i HMM VS :
; Prefilter VS BTl .
: . J \____// :
] F Ut Rl (W Ly HMM S :
:P[ uzzy OQIC]—b \ Prefilter S J@ . A
Sensolr : - _ m B e Estimated, states
signa Sdea!?;t : & Prefilter D ViV ——»1 N I states : { Objectives}

i

[ Optimizing

lusing NSGA |

)

Optimized
model parameters
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Intention prediction using FL-HMM 1V 22

Predicting behaviors III: Fusion

» Calculating the probabilities of FL-HMM (driving scene) P, one
and HMM (operation) Py,crqtion SEParately

» Final probability of the next driving behaviors fused using a weight w as
P =w*Pene + (1 —w) * Poperation: w € [0,1]
»  Output: the highest final probability defines the predicted driving behaviors.

Driving behaviors prediction

- o :
: (S HMM VS :
: Prefilter VS - '
: P{FUZZV Logic Prefilter S HMM S .
: . Actual
Sensor ' TE P Estimated states
signal et | Prefilter D HMM D sl , states .
N S . " Teu Fusion Objectives ]
: Poperatfon
: » Prefilter m . No
.\ | operation operatio / ; i onvergenc
______.._-------_-.T“--,--;\QDQOMQ (Optimizing] Optimized
\ , . w lusing NSGA I model parameters

UNIVERSITAT Sﬁffker, D.:
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Intention prediction using FL-HMM V 23
Optimization I: Design parameters Approach Input Definition Design
.. . . parameters
’ C_)ptl_mlzatlon aChIeV_ed by FL dr Distance to vehicle in front [Xdr1..Xaral
ﬂnd_mg the most suitable TTCy | TTC to vehicle in front [Xeec1.. Xeea]
deS|gn para meters TTCy | TTC to vehicle in front [ttcrr...ttcs]
. . TTCy | TTC to vehicle in left-front [ttcrn...ttC 5]
* Design parameter_s are defined as HMM TTCy, | TTC to vehicle in right-front [t1C 1. ttCprs]
parameters affecting \ (scenc) TTCy | TTC to vehicle left-behind [££Cor1.11Chi5]
the model prediction capability. TTC;, | TTC to vehicle right-behind [££Chr1...tChy5 ]
- FL thresholds TTC, | TTC to vehicle behind [ttCp1...ttCps]
(prediction of driving scene, I M fycdtor U1...15]
. . HMM S Steering wheel angle [S51...53]
selecting HMM and prefilter) \ -y £ |
) (operation) P, Accelerator pedal position [Pat...Ba3]
= Prefllter thrEShOIdS Of HMMS -Pb Brake peda] pressure [PbI-FEJBJ
(defining observation sequence) Fusion W Weight W]

- Weight w
(affecting driving scene prediction)

= Optimization of design parameters is important to improve

the performance of driving behaviors prediction.

Descriptions of observation variables and design parameters

UNIVERSITAT

Soffker, D.:
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Intention prediction using FL-HMM VI

24

Optimization II: Minimizing objective functions
Selecting optimal design parameters by using Non-dominated Sorting Genetic Algorithm II

(NSGA-II)

Objective functions in terms of
max. accuracy (ACC), max. detection rate (DR), and min. false alarm rate (FAR):
fi-s = (1 —=ACC;_3) + (1 — DRy_3) + FAR, _3

fa = abs(estimated maneuvers — actual maneuvers)

Driving behaviors prediction

COS :
- e e e =
: Prefilter VS —””\\\_‘ :
: {Fuzzy Logic Prefilter S HMM S :
S o X~ ~ : lActuaI
ensor . P Estimate states
sighal Mol | | Prefilter D HMM D S : states L
i 4 = : < fen Fusion Objectives ]
: Popemt?on
i x \ M‘\ . =
: Prefilter | HMM :
: \ ” operation ﬁw ' i MO onvergenc
---------------- | ;] & :ﬁ D ([ Optimizing Optimized
\ ) bl lusing NSGAI model parameters
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Experimental results: Experimental setup 25

Realization of the experiments
Driving simulator (SCANeR Studio)

Design of the experiment

» Driving scenario
- Highway (4 lanes, two directions)
- Traffic environment

» 7/ test drivers
- Age: 25 to 38
- Driving license required

» Training/test data
- Training data (about 40 min. driving)
- Test data (10 min. driving)

UNIVERSITAT Siiffker, D.:

DUISBURG Intention and option: Modeling and recognition of human ...
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Intention prediction using FL-HMM VII

Training phase

Goal

Determination of optimal design
parameters and model

- FL thresholds

- Prefilter thresholds

- Weight w

Input (training data)
- Measured driving behaviors

- Measured observation variables:

Test phase

Goal
Calculation of driving behaviors

Input (test data)
Measured observation variables

Comparison
- Measured driving behaviors
- Computed driving behaviors

. Training phase Actual
| states l

. ") Estimate

| Training data Design states Obioct

I parameters W Jectives

; J

I —[ NSGA I Convergence?

i J

. Yes

I

i NSGA Il optimal

results

A AR, - W .. . WY Jh. VN 0" o Whe IEDEN NNEEA. WA

I

I Test data Opt|mal design Pred|ct|on > Estimated states
parameters mode J (driving behaviors)

; OSRS2018

| Test phase

- mm o omm o omm b oEm o s Em o Em o Em o Ew r Em o Em o o

Soffker, D
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Intention prediction using FL-HMM VIII 27

Prediction results of the optimal FL-HMM for test data set #2

| Actual states
b i Estimated states (Optimal FL-HMM)
S 0 ] .
5! T- ! T:ﬁ T‘:ﬂ *  Starting time of correct predictions
a ! i | _
' I
E I !I E i @ lane
| | | i
o 2 | | |
© ! | o !
NS |mamdd amem e et | o e | = .!"‘—"'“i""'—““‘l S———
< ! | | il 3
! I | i
Il : ' .
i : | : S: | Lane change to right
| i1 : . g
o i¥ : S, | Lane keeping
il i i
! il 1 H S; | Lane change to left
s, e . ) R
860 680 900 920 940 960 980

t[s]
Successful prediction of driving behaviors

Average prediction time for dataset #2:
- 1.8£0.7s before tgp4.

- 3.9+0.8s before t;4,,

v

UNIVERSITAT Soffker, D.: ——
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Intention prediction using FL-HMM IX 28

Evaluation: average ACC, DR, and FAR achieved by different models for 7 test

(
100,00% M Lane changing to right ACC
Q,
000 ® Lane changing to right DR
80.00%
° B Lane changing to right 1-FAR
70.00% .
Lane keeping ACC
60.00%
B Lane keeping DR
50.00%
g B Lane keeping 1-FAR

40.00%
30.00% MW Lane changing to left ACC

. (+]
20.00% B Lane changing to left DR

N (+]
10.00% B Lane changing to left 1-FAR

0.00% m Over all ACC
SVM* ANN** ANN-SVM ANN-SVM Optimal *

[Huang, et al. 2006]
(Conservative) (Aggressive) ** FL-HMM ** [Dou, et al. 2016]

* &

= Comparison to Artificial Neural Networks (ANN), Support Vector Machines (SVM), and
combined ANN and SVM
- All ACC, DR, and (1-FAR) values are higher than 80 %
- A high ACC and DR in combination with a very low FAR
can be achieved using optimal FL-HMM.

UNIVERSITAT Soffker, . ME
DUISBURSG Intention and option: Modeling and recognition of human ... W iy
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Intention prediction using FL-HMM X

29

Receiver Operating Characteristic (ROC) graph for different models

1

SVM *
O ANN*
P> ANN-SVM (Conservative) **
0.9 P> ANN-SVM (Aggressive) **
' HMM
a O Optimal FL-HMM
i DR=0.82
0.8 y FAR=0.1
14
0 0 *  [Huang, et al. 2006]
0.7 L i ** [Dou, et al. 2016]
0.6 |
D
0.5 ' ' ' ' :
0 0.05 0.1 0.15 0.2 0.25 0.3
FAR
= Highest DR (> 82 %) and lowest FAR (< 10 %)
= Optimal FL-HMM shows the best prediction performance
in terms of DR and FAR of all models
UNIVERSITAT Siiffker, D.: — @
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Next step: closing the loop 30

Actual lane number : (3] 2] (2]
Actual velocity u?:] Setind u?n (u?n ||3| (1201 S (1201 (1201 [1?01
S nd. 5 3 et ind.
Inccator signalset  [ne] signal uo_gel ::e':rto (eft) Sr;,::roff (lg_gl Accelerate tl?ol 3‘9"3' lrtg:r.l :;;rtto mg)ne] Accelerate tne)
on
Passing lane exist uoﬂ:} . . ilott] ‘ @ B @ i @ [right) D @ lught] . . (I.oﬂ'.] s @ [loﬂ:]
Actual lane free ? )
Lane change possible [I%;] (htc] [n‘_;l af-’] Fusion oum lle;tl
Acceleration possibie ‘ll“i tl‘.* :ﬁm ] [no]
< J 4
i _ R v
Initial situation F@ndm - S2 Final situation Sf
| and probability
|
B SRG IH4 | ‘ B
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Summary and outlook 31

Summary

» Introduction to SOM-approach used for
- event-discrete modeling of interaction (of driver-vehicle or operator-machine systems)
- action space generation including optional actions

» Realization of CBR-based situation recognition
- Understand the SOM-triple as case
- Learning the CBR-data base > model of behaviors
- Online-learning to update the data base for individualization
- Experimental results show high DR and low FAR

» First realization of FL-HMM-based intention prediction
- Continuous evaluation of real scenes for classification of intended behaviors
- Introduced approach shows best performance in comparison to standard approaches
- Results must be improved to be used for practical application

Outlook

» Combining action space generation, safety evaluation, and prediction estimation
to determine and display interaction conflicts *

» Improving computation load of CBR-based approaches

* Wang, J.; Soffker, D.: Bridging gaps among human, assisted, and automated driving with DVIs: a conceptional experimental study.
IEEE Transactions on Intelligent Transportation Systems, 2018, accepted.
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Thank you for your attention! 32

Intention and option:
modeling and recognition of human driver behavior

Dirk Soffker

Chair of Dynamics and Control (SRS)
University of Duisburg-Essen

soeffker@uni-due.de
WWW.Srs.uni-due.de
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